
A remark about mirror symmetry of elliptic
curves and generalized complex geometry  

Lino Grama and Leonardo Soriani
University of Campinas, Brazil

Received : May 2022. Accepted : January 2023

Proyecciones Journal of Mathematics
Vol. 42, No 2, pp. 445-456, April 2023.
Universidad Católica del Norte
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Abstract

In this short note we describe the isomorphism of generalized com-
plex structure between T -dual manifolds introduced by Cavalcanti-Gualtieri,
in the case of elliptic curves. We also compare this isomorphism with
the mirror map for elliptic curves described by Polishchuk and Zaslow.
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1. Introduction

Mirror symmetry predicts that in the mirror manifolds M and M∨, the
symplectic geometry of M can be related to the complex geometry of M∨

and vice-versa. This correspondence between mirror manifolds has a geo-
metric description by Strominger, Yau and Zaslow via T -duality [10].

Kontsevich provides another interpretation for mirror symmetry, also
known as homological mirror symmetry(HMS): two Calabi-Yau manifolds
M and M∨ are mirror if the derived category of coherent sheaves on M is
equivalent to the derived Fukaya category of M∨.

In the case of elliptic curves, the HMS conjecture was proved by Pol-
ishchuk and Zaslow [9].

Cavalcanti and Gualtieri in [4] describe how to transport generalized
complex structures between T -dual manifolds (in the sense of Bouwknegt,
Hannabuss and Mathai) using an isomorphism of sections of the vector
bundle where are defined the generalized complex structures.

In this work we explicitly describe the Cavalcanti-Gualtieri isomor-
phism in the case of elliptic curves, and we remark that in the case of
trivial B-fields this isomorphism coincides with the mirror map described
by Polishchuk-Zaslow as well SYZ-mirror symmetry.

In the first three sections we briefly review generalized complex geome-
try, T -duality in the sense of BHM and mirror symmetry for elliptic curves.
In the last section we construct the Cavalvanti-Gualtieri map for elliptic
curves and we compare this with the other versions of mirror symmetry.

2. Generalized complex geometry

We will recall the basics of generalized complex geometry. A detailed de-
scription of this theory can be found in [5]. Let M be an n-dimensional
smooth manifold and H ∈ Ω3(M) a closed 3-form. The sum of the tangent
and cotangent bundles TM ⊕ T ∗M has a natural symmetric bilinear form
of signature (n, n) defined by

hX + ξ, Y + ηi = 1

2
(η(X) + ξ(Y ))

and a bracket of sections called the Courant bracket:

[X,Y + η]H = [X,Y ] + LXη − iY dξ + iXiYH.

If B ∈ Ω2(M), we can see it as a map TM → T ∗M given by X 7→
B(X) = iXB. Then we define the orthogonal automorphism exp(B) :
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TM ⊕ T ∗M → TM ⊕ T ∗M

exp(B) :=

Ã
1 0
B 1

!
.

Definition 2.1. A generalized complex structure on (M2n,H) is an or-
thogonal automorphism J : TM⊕T ∗M → TM⊕T ∗M satisfying J 2 = −1
whose i-eigenbundle is involutive under the Courant bracket.

The remarkable feature of the generalized complex structures is that
they encompass complex and symplectic structures as special cases. If J
and ω are, respectively, complex and symplectic structures on M , then

JJ :=
Ã
−J 0
0 J∗

!
and Jω :=

Ã
0 −ω−1
ω 0

!

are generalized complex structures on M .
Given a generalized complex structure J , we can use a 2-form B ∈

Ω2(M) to obtain exp(−B)◦J ◦exp(B), which is again a generalized complex
structure thanks to the orthogonality of exp(B).

Definition 2.2. If J is a generalized complex structure on M and B ∈
Ω2(M), the generalized complex structure exp(−B) ◦ J ◦ exp(B) is called
B-field transform of J . If J comes from a symplectic (complex) structure,
exp(−B) ◦ J ◦ exp(B) is called B-symplectic (B-complex) structure.

3. T-duality in the sense of Bouwknegt, Hannabuss andMathai

We start with the definition of T-duality for principal torus bundles pro-
vided with a closed 3-form, following [3].

Definition 3.1. Let M and M̃ be principal T k-bundles over the same
base B and let H ∈ Ω3(M), H̃ ∈ Ω3(M̃) be invariant closed 3-forms. Let
M ×B M̃ be the fiber product and consider the diagram
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We say that (M,H) and (M̃, H̃) are T-dual if p∗H − p̃∗H̃ = dF , where
F ∈ Ω2(M ×B M̃) is a T 2k-invariant non-degenerate 2-form on the fibers.
The product M ×B M̃ is called the correspondence space.

Given T-dual spacesM and M̃ , Cavalcanti and Gualtieri [4] constructed
an isomorphism ϕ between the spaces of invariant sections of TM ⊕ T ∗M
and TM̃ ⊕ T ∗M̃ preserving the bilinear form and the twisted Courant
bracket. Thus one can transport T k-invariant generalized complex struc-
tures between M and M̃ .

Essentially, ϕ is the composition of the pull back to the correspondence
space, B-transform defined by −F on the correspondence space and push-
forward to M̃ :

ϕ(X + ξ) = p̃∗(X̂) + p∗ξ − F (X̂),(3.1)

where X̂ is the only lift of X to M × M̃ such that p∗ξ − F (X̂) is a basic
form. The existence and uniqueness of such a lift is guaranteed by the
non-degeneracy of F .

Theorem 3.2. The map ϕ is an isomorphism; that is, for all u, v ∈ (TM⊕
T ∗M)/T k

hϕ(u), ϕ(v)i = hu, vi and [ϕ(u), ϕ(v)]H̃ = ϕ([u, v]H).

Now we use ϕ to transport invariant generalized complex structures:

Corollary 3.3. Let (M,H) and (M̃, H̃) be T-dual spaces. If J is an
invariant generalized complex structure on M , then

J̃ := ϕ−1 ◦ J ◦ ϕ

is an invariant generalized complex structure on M̃ .

pc
f-1
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4. Mirror of elliptic curves

In this section we briefly review the well-known results about mirror symme-
try for elliptic curves: homological mirror symmetry and T-duality. Clas-
sical references are [1], [7] and [9]. We start by recalling the complex and
symplectic structure on elliptic curves.

4.1. Complex and symplectic structures on elliptic curves

Definition 4.1. An elliptic curve is a compact Riemann surface of genus
one. de gnero 1 junto com a escolha de um ponto p ∈M .

Topologically, every elliptic curve is homeomorphic to a 2-dimensional
torus.

Definition 4.2. Let V be a vector space and Λ a subgroup of V . We say
that Λ is a lattice if it is discrete and the quotient V/Λ is compact.

Example 4.3. Let V be a vector space with base {v1, . . . , vn}. Then Λ =
v1Z⊕ . . .⊕ vnZ is a lattice on V .

Every elliptic curve can be described by the quotient C/Λ where Λ is a
lattice on C. Since an elliptic curve is a quotient of C, it inherits a complex
structure and a group structure.

Proposition 4.4. Two complex tori (C/Λ1) and (C/Λ2) are isomorphic
if, and only if, there exists c ∈ C∗ such that Λ1 = cΛ2.

Given a complex number τ with imτ > 0, we construct the elliptic
curve E = C/(Z⊕ τZ), and the complex structure on E is determined by
τ . Of course different complex numbers give rise to bi-holomorphic elliptic
curves. For more details about the moduli space of elliptic curves, see for
instance [6].

In the mirror symmetry setting we consider complexified symplectic
structures ωC = B + iω on the elliptic curve E, where ω is a symplectic
form and B is a closed 2-form on E called B-field. As H2(E,R) = R a
complexified symplectic form is again determined by a complex number
ρ = b + ia with a > 0 (since a corresponds to the area of E) where a
determines a symplectic struture on E and b determines a 2-form. In the
language of generalized complex structures it corresponds to aB-symplectic
structure (see Definition 2.2)with

ω =

Ã
0 a
−a 0

!
and B =

Ã
0 b
−b 0

!
.
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4.2. SYZ mirror symmetry

Mirror symmetry is a phenomenon predicted by string theory, where ques-
tions about symplectic geometry of a manifold M can be translated into
the complex geometry of a manifoldM∨, and vice-versa. The manifoldM∨

is called the mirror of M .
Strominger-Yau-Zaslow [10] suggest a geometric interpretation to mir-

ror symmetry: the SYZ mirror map in the case where there are no singu-
larities is, by definition, T -duality.

We will briefly review the SYZ-construction.

Definition 4.5. A Kähler manifold (M,ω, J) of complex dimension n is
called Calabi-Yau if its canonical bundle is holomorphically trivial; that is,
there is a globally defined holomorphic volume form Ω ∈ Ωn,0(M).

One can write the restriction of Ω to a Lagrangian submanifold X ⊂M
as

Ω|L = ψvolg,

where ψ ∈ C∞(L,C∗) and volg is the volume form induced by the Kähler
metric g := ω(·, J ·).

Definition 4.6. Let (M,ω, J) be a Kähler manifold with complex dimen-
sion n. A Lagrangian submanifold X ⊂ M is called special Lagrangian if
the argument of ψ is constant.

In [10] Strominger-Yau-Zaslow suggest that mirror Calabi-Yau mani-
folds can be fibred over the same base in such way that the fibers are
special Lagrangian tori. The idea is the following: if M is Calabi-Yau with
a special Lagrangian torus fibration f : M → B, the mirror M∨ is the
moduli space of pairs (L,∇) where L is a special Lagrangian torus on M
and ∇ is a flat connection on L. Since the dual torus can be realized as the
moduli space of flat connections (see [8]) mirror manifolds are fibred over
the same base B and the fiber over each point is the dual torus.

In the case of elliptic curves, the Lagrangian torus fibration has no
singularities and the mirror map can be described as follows:

Example 4.7. Consider the elliptic curve M = C/(Z ⊕ τZ), where for
simplicity we assume τ = iγ with γ ∈ R+, holomorphic volume form
Ω = dz and Kähler form ω such thatZ

M
ω = λ.
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Note that the complex and symplectic structures on M are determined
by γ e λ respectively. The mirror elliptic curve has the complex structure
determined by λ and symplectic structure determined by γ; that is, M∨ =
C/(Z⊕ iλZ) with Kähler form ω∨ such thatZ

M∨
ω∨ = γ.

For more details, see for instance [1].

4.3. Homological mirror symmetry

Kontsevich in [7] suggests a new approach to mirror symmetry based on an
equivalence of categories. Such categories are built in terms of the complex
and symplectic geometry of the Calabi-Yau manifold M and its (Calabi-
Yau) mirror M∨. This version of mirror symmetry is called homological
mirror symmetry (HMS). uma abordagem matemtica para o estudo de
simetria do espelho, realizando-a como uma equivalncia entre duas catego-
rias. Tais categorias so construdas a partir de diferentes aspectos geomtricos
de duas variedades Calabi-Yau, chamadas de variedades espelho.

Homological mirror symmetry predicts that the derived category of co-
herent sheaves on the Calabi-Yau manifold M is equivalent to the Fukaya
category on the mirror Calabi-Yau manifold M∨. More precisely:

Conjecture 4.8 (Kontsevich). If (M,J, ω) and (M∨, J∨, ω∨) are mirror
manifolds, then

DbFuk(M,ω) ∼= DbCoh(M∨, J∨)

DbCoh(M,J) ∼= DbFuk(M∨, ω∨)

are equivalences of categories.

In Conjecture 4.8, Fuk(M,ω) is the Fukaya category of (M,ω) whose
objects are Lagrangian submanifolds of (M,ω) equipped with a flat bundle,
whose morphims are given by Lagrangian intersection theory, and whose
compositions are given by Floer homology.

The homological mirror conjecture remains open for an arbitrary Calabi-
Yau manifold. For elliptic curves it was proved by Polishchuk and Za-
slow in [9]. Denote by Eγ

λ the elliptic curve with complex structure given
by C/Z ⊕ iγZ and symplectic structure given by the 2-form ω such thatR
E ω = λ.
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Theorem 4.9 (Polishchuk-Zaslow). Homological mirror symmetry holds
for elliptic curves. The mirror of Eγ

λ is E
λ
γ ; that is,

DbCoh(Eγ
λ) = DbFuk(Eλ

γ ).

5. Mirror symmetry via generalized complex geometry

We start this section with a remark about T -duality of 2-dimensional tori.

Proposition 5.1. Let M and M̃ be 2-dimensional tori. Then M and M̃
are T -dual (in the sense of BHM).

Proof. Consider M and M̃ as S1-bundles over S1. We have Ω3(M) =
Ω3(M̃) = {0}. In this case we just take the closed 2-form onM×S1 M̃ = T 3

given by F = θ ∧ θ̃, where θ and θ̃ are connection forms on M and M̃ ,
respectively. 2

Now we will construct the isomorphism ϕ explicitly in the case of two
T -dual 2-tori (M,H) and (M̃, H̃). Denote by ∂θ and ∂θ̃ the duals of the

connection forms θ and θ̃. As shown in [4], we can use θ and θ̃ to split the
spaces of invariant sections as

(TM ⊕ T ∗M)/S1 ∼= TS1 ⊕ h∂θi⊕ T ∗S1 ⊕ hθi

(TM̃ ⊕ T ∗M̃)/S1 ∼= TS1 ⊕ h∂θ̃i⊕ T ∗S1 ⊕ hθ̃i

Therefore, each element of (TM ⊕ T ∗M)/S1 decomposes into X + a∂θ +
ξ + bθ, with a, b ∈ R.

Theorem 5.2. With the notation above, the isomorphism ϕ : (TM ⊕
T ∗M)/S1 → (TM̃ ⊕ T ∗M̃)/S1 is given by

ϕ(X + a∂θ + ξ + bθ) = X + b∂θ̃ + ξ + aθ̃.(5.1)

Proof. The pull back of X + a∂θ + ξ + bθ is

X + a∂θ + c∂θ̃ + ξ + bθ.

Applying the B-transform defined by −F , we have

X + a∂θ + c∂θ̃ + ξ + bθ + aθ̃ − cθ = X + a∂θ + c∂θ̃ + ξ + (b− c)θ + aθ̃.
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For ξ + (b − c)θ + aθ̃ to be the pull-back of a form on M̃ , we need b = c.
Finally, we have

ϕ(X + a∂θ + ξ + bθ) = X + b∂θ̃ + ξ + aθ̃.

2

Now we will analyze the behavior of complex and B-symplectic (com-
plexified symplectic) structures on elliptic curves under the isomorphism
ϕ. Recall that both structures are determined by complex numbers with
positive imaginary part.

Theorem 5.3. The isomorphism ϕ defined via expression (5.1) send the
complex structure on M defined by τ = b+ ia to a B-symplectic structure
(completely determined by τ) on the T -dual M̃ . On the other hand, starting
with the B-symplectic structure onM determined by ωC = b+ ia, ϕ yields
on M̃ a complex structure completely determined by ωC.

Proof. We saw that for T-dual 2-dimensional tori M e M̃ , ϕ just swaps
the tangent and cotangent coefficients of the fiber . Considering the de-
composition

(TM ⊕ T ∗M)/S1 ∼= TS1 ⊕ h∂θi⊕ T ∗S1 ⊕ hθi

we can write ϕ as a matrix

ϕ =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠ .

Given the complex parameter τ = b + ia on M , the correspondent
complex structure is structure J em M is

J =

Ã
b −1−b2

a
a −b

!
.

Regarding it as a generalized complex structure we have

JJ =
Ã
−J 0
0 J∗

!
=

⎛⎜⎜⎜⎝
−b 1+b2

a 0 0
−a b 0 0
0 0 b a

0 0 −1−b2
a −b

⎞⎟⎟⎟⎠ .
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Now we transfer JJ to M̃ using ϕ, as done in Corollary 3.3, obtaining

J̃J = ϕ−1 ◦ JJ ◦ ϕ

=

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝
−b 1+b2

a 0 0
−a b 0 0
0 0 b a

0 0 −1−b2
a −b

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
−b 0 0 1+b2

a

0 −b −1−b2
a 0

0 a b 0
−a 0 0 b

⎞⎟⎟⎟⎠ .

Then J̃J = exp(−B) ◦ Jω ◦ exp(B) where

ω =

Ã
0 a

1+b2

− a
1+b2

0

!
and B =

Ã
0 ba

1+b2

− ba
1+b2 0

!
.

That is,J̃J is the B-symplectic structure correspondent to the complex num-
ber

ρ =
ba

1 + b2
+ i

µ
a

1 + b2

¶
.

Similarly, if we start with complexified symplectic structure on M de-
termined by b + ia, which in our setting corresponds to the symplectic
structure ω and B-field given by

ω =

Ã
0 a
−a 0

!
, B =

Ã
0 b
−b 0

!

and apply ϕ to the generalized complex structure exp(−B) ◦ Jω ◦ exp(B),
on the dual torus we will obtain the invariant generalized complex structure
induced by the invariant complex structureÃ

b
a − 1a

a+ b2

a − b
a

!
,

which corresponds to the complex parameter

τ =
b

a
+ i

Ã
a+

b2

a

!
.

2
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If we assume a trivial B-field on the complexified symplectic form one
can recover the mirror map described by Polishchuk and Zaslow (see Section
4 of [9]). Let us remember the notation of Theorem 4.9: let τ = ip and ρ =
iq be pure imaginary numbers with p, q > 0. Then Eτ

ρ is the elliptic curve
with complex structure determined by τ and symplectic form determined
by ρ.

Corollary 5.4. Let τ and ρ pure imaginary numbers as above. Then the
isomorphism ϕ interchange complex and symplectic structures on the ellip-
tic curve E, that is, the map ϕ send Eτ

ρ to E
ρ
τ .

Proof. Just set b = 0 in the proof of Theorem 5.3. 2

Remark 5.5. The procedure outlined above for T-duality and mirror sym-
metry of 2-tori can be extended to nilmanifolds (quotients of nilpotent Lie
groups by lattices, which can always be seen as total spaces of principal
torus bundles). In this broader setting, one can study T-duality of nilman-
ifolds in a very algebraic way through an infinitesimal duality on the the
corresponding Lie algebras. For details see [2].
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