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Abstract

Non-linear Programming (NLP) is an optimization technique for determining the opti-

mum solution to a broad range of research issues. Many times, the objective function is

nonlinear, owing to various economic behaviors such as demand, cost, and many others. Since

the appearance of Kuhn and Tucker’s fundamental theoretical work, a general NLP problem

can be resolved using many methods to find the optimum results. This article tackles the chal-

lenge of nonlinear programming (NLP) problems with uncertainty in inequality constraints.

Traditional, ”crisp” NLP methods might not be ideal when dealing with imprecise or subjec-

tive data. Here, we propose a fuzzy mathematical model that incorporates Beale’s condition

to handle such NLPPs. Furthermore, the model demonstrates how quadratic programming

problems can be solved using membership functions(MF’s). This leads to more realistic and

robust solutions. The model unfolds in three stages: Mathematical Formulation: Establishing

the fuzzy NLP framework with Beale’s condition and membership functions. Computational

Procedures: Outlining algorithms for solving fuzzy NLP problems based on MF’s and a ro-

bust ranking index. Numerical Illustration: Applying the model to a specific case study and

comparing results from both approaches. Through comprehensive analysis, we demonstrate

the model’s ability to find optimal solutions while considering vagueness and uncertainty in

NLPPs. This opens door for more adaptable and realistic optimization in various problem

domains.
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1. Introduction

The objective function and constraints were both linear in the decision
variable in Linear Programming (LP). Whereas this linear relationship is
represented in several practical applications, also the relationship between
the parameters and objective function might have nonlinear relation in
many real-time applications. The computational work involved in solv-
ing the problems which require the application of knowledge of differential
calculus. LP also assumes that the cost of production or the contribu-
tion of profit units or problems need not differ over the implementation
period and different production levels. As a result, the issue is simplified
on the assumption. Though, the profit and resource requirements of com-
peting aspirants in the real world will differ at different production levels.
The standard approach appears to replace the estimated relation and view
the specified problem as an inhomogeneous model of the ideal problem
to approximate the nonlinear relationship. However, in such a case, the
conclusion will never be appropriate for the specific situation or it may
reveal options that do not provide the appropriate optimality. There is no
renowned algorithm for solving a specified general NLPP effectively and
efficiently. A model that fits the data well in one issue may not work well
in another. These are one of the motivating factors why all NLPPs cannot
be clustered together. To estimate the difficulty of the methodology, dif-
ferentiate between the factors that make LPP more convincing and those
that consider an NLPP more complicated. The method used to solve LPP
is based upon the principle that optimal solutions are to be located at the
extreme ends of the convex polyhedron. This indicates that we should re-
strict our search to vertexes, which can be achieved in a limited number
of iterations. However, in NLPP, the optimum value could be everywhere
along the feasible region’s boundaries or anywhere even inside the feasible
region. A linear relation between most of the model parameters seems to
be very accurately adaptable to linear algebraic transformation, although
non-linear relations tend to require extreme caution when mostly resulting
in complicated issues. Because of the relationship in nonlinearity, there is
a significant difference between local and global results. It further implies
that any local optimum solution must be evaluated for optimality over the
whole feasible region, rather than just at the extreme points, which is pos-
sible in an LPP. This furthermore suggests that simplex-type algorithms
are unsuitable for solving NLPPs.
Fuzzy nonlinear programming (FNLP) problems arise when optimizing



An optimization model for fuzzy nonlinear programming with ... 427

problems with nonlinear relationships between variables and uncertain, im-
precise, or subjective data. Imagine trying to optimize something like re-
source allocation in a complex supply chain where demand is based on
forecasts and market trends, rather than definitive numbers. In such cases,
using traditional, ”crisp” optimization techniques (where everything is pre-
cise) might not be ideal. That’s where FNLP comes in. It utilizes fuzzy
set theory, which allows for representing and quantifying degrees of mem-
bership to sets instead of just being a member or not. This enables incor-
porating uncertainty and ambiguity into the optimization process, leading
to more realistic and robust solutions.Here are some key characteristics of
FNLP problems:

• Nonlinear objective function: The relationship between variables and
the optimal solution is not linear, adding complexity to the optimiza-
tion process.

• Fuzzy parameters: Values like costs, demands, or resource availabil-
ity are not precise but represented by fuzzy sets with membership
degrees.

• Fuzzy constraints: Restrictions on the variables involve some level of
vagueness or ambiguity, unlike the well-defined constraints in tradi-
tional optimization.

While FNLP adds complexity compared to ”crisp” optimization, it of-
fers more realistic and adaptable solutions in situations with inherent uncer-
tainty and imprecision. Nonlinear programming typically describes rather
more significant challenges than linear programming. As such, even when
some of the restrictions are linear and the cost function is nonlinear, this
scenario is always complex and difficult. For instance, the set of feasible
solutions may or may not be convex, and the optimum solution may be
lying inside the feasible set, on its boundary, or its vertex. For the most
part, the scientific programming issue manages the ideal use or distribution
of constrained assets to meet the ideal goal. The fuzzy NLPP is valuable
in taking care of issues due to the uncertain, emotional nature of the prob-
lematic definition or has a precise arrangement. In this case, an objective
function must improve while working within certain constraints. [[1]-[2]]
introduced the fuzzy theory and fuzzy rule-based decision-making, and the
right decision is used in decision problems to attain the optimum result
[3]. The verdicts are fuzzy in maximum real-life situations, and initial at-
tempts at the choices are essential to formulate a suitable model or cases
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to be analyzed. Likewise, we introduce fuzziness in our models of such
situations to suggest means of processing fuzzy information [4]. In linear
programming solution that satisfies both the constraints and the objective
function has been named an optimum solution. Accordingly, such a prob-
lem has an objective function, as well as variables, which include constraints
and coefficients all are described in the form of fuzzy. If the objective or
limitations are nonlinear, at that point, we think of it as a nonlinear pro-
gramming problem. In this model to tackle such an optimization problem,
a fuzzy mathematical model has been proposed to address the NLP with in-
equality constraints in terms of fuzziness using Beale’s condition to find an
optimum solution. In addition, the model suggests how quadratic program-
ming problems have been demonstrated. However, this model represents
the mathematical formulation and is followed by the computational proce-
dure with the numerical illustration. The procedure employs trapezoidal
fuzzy MFs and its mathematical calculations to describe the illustrated nu-
merical results of NLP. It has offered a fuzzy model to the general NLP,
which helps to handle the vagueness and also clarified its optimum solution
within the description of MFs [[5]-[6]]. Also, the above procedure was exe-
cuted in the numerical illustration in two different cases: the first case was
discussed with fuzziness, and the second case offered with a robust ranking.
Lastly, the study of the optimum solution of the above two cases reveals the
newness and cost-effectiveness of a fuzzy model, clarifying the vagueness,
and giving much more optimum values.

2. Literature Review

The following key contributions shed light on the diverse approaches and
applications of fuzzy NLP: Tang and Wang [7] explored non-symmetric
frameworks for solving NLPPs with inequality constraints in a fuzzy con-
text. They proposed a model using penalty coefficients expressed as fuzzy
sets, allowing for more nuanced representation of resource limitations and
constraints. Additionally, their model employed nonlinear membership
functions, providing greater flexibility in capturing real-world complexities.
Tang et al. [8] presented a hybrid optimization approach for a specific type
of NLP problem. Their method combines a genetic algorithm with a genetic
defect mechanism and a weighted gradient search. This approach leverages
the strengths of both genetic algorithms, known for their exploration capa-
bilities, and gradient search, effective in local optimization.Fung et al. [9]
expanded the hybrid genetic algorithm and also focused on essential strate-
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gies for applying to NLPPs involving both the types of constraints. Focus-
ing on the LUDE algorithm, Sarimveis and Nikolakopoulos [10] suggested
an approach for constrained penalty weight based optimization problems.
Syau and Lee [11] explained the methodology for fuzzy convex optimization
with numerical illustrations of multiobjective programming. Chen [12] uses
mathematical programming with fuzzy sets and Yager’s ranking index for
cost-based queueing decision problem. Qin et al. [13] outlined an interval
parameter nonlinear system for managing stream water quality in a fuzzy
environment. Fuzzy programming and interval procedures are combined in
a common outline to suggest the fuzziness in both sides of the nonlinear con-
stratints. Kassem [14] developed a method for determining the consistency
of optimal results for multiobjective NLPPs. Ravi Sankar et al. [15] pre-
sented a new approach for optimizing the nonlinear objective function using
a genetic algorithm which has both coefficient and constraints are in the
form of fuzziness. Abd-El-Wahed et al. [16] presented a hybrid approach
which incorporates two heuristic optimization techniques, they are parti-
cle swarm optimization and genetic algorithm. Jameel and Sadeghi [17]
addressed fuzzy NLPPs with an adequate numerical examples and com-
pared the crisp problem which demonstrate a more accurate solution. Ali
H. et al. [18] has constructed the scheduling problem as a stochastic opti-
mization problem, specifically NLP, and then modeled in a multiobjective
optimization problem which offers suitable scheduling with various models.
Bi-level preferential operation problems have been suggested by M. F. Khan
et al. [19] through a methodology for estimating the reliability parameters
by employing the nonlinear optimization with the Kuhn Tucker approach.
Gupta et al. [20]. described a data driven mechanism based on fuzzy-based
Lagrangian method have supported vector machines for readily accessible
biomedical data interpretation. Lin et al. [21] proposed an NLP model
for production inventory based on statistical data. Likewise, Lu et al. [22]
has presented NLP approach for evaluating manufacturing process. Saberi
Najafi et al. [23] investigated a nonlinear model for fully fuzzy LP which
can be addressed under uncertainties with fully unrestricted variables and
parameters. A few researchers have proposed various methodologies for
tackling nonlinear issues such as quadratic programming, allocation prob-
lems in supply chain management, and many other issues considered in a
fuzzy situation; it starts the best approach to take care of these to satisfy
the stack holder’s needs cost-effectively [[24]-[25]]. Palanivel K. and Amrit
Das [26] proposed a new fuzzy optimization model through computational
procedure which has an important role in acquiring the optimum result by
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utilizing the necessary and sufficient conditions of the Lagrangian multi-
pliers method in terms of fuzziness. Veeramani et al.[27] discussed fuzzy
NLP approach for optimizing multi-objective sum of linear and linear frac-
tional programming problem. Xianfeng Ding et al. [28] studied quadratic
programming whose parameters are all fuzzy numbers based on the A-PSO
algorithm. Numerical examples are illustrated to compare and analyze
the algorithm and its results, which enhances the efficiency and effective-
ness of the proposed method. Sumati Mahajan et al. [29] presented the
study of fuzzy fractional quadratic programming problem, which has dis-
cussed through a hybrid method that combines analytic and numerical ap-
proaches. Also methodology illustrates a transportation problem in tourism
sector switching between both balanced and unbalanced cases. Shivani et
al. [30] studied multiobjective NLP with rough interval parameters which
originates for the management of solid wastes, the model aimed to optimize
the cost of waste transportation, cost of waste treatment and the revenue
generated from various treatment facilities. Sumati Maharajan et al. [31]
developed a simplified novel goal programming method under intuitionis-
tic fuzzy environment using both membership/non-membership functions.
Additionlly, it helps to obtain a Pareto optimal solution to a multiobjec-
tive quadratic programming problem. Existing research provides diverse
methodologies for fuzzy NLPP’s, but a clear gap remains in identifying the
approach that best balances stakeholder needs requires further exploration.

3. Preliminaries

We review various important preliminary concepts and perspectives on
fuzzy arithmetic in this section. Now it seems to address some definitions
which are required:

3.1. Definition [5]

A trapezoidal fuzzy number M can be represented as M= [m1,m2,m3,m4]
with the following MF:

µM(x) =

⎧⎪⎨⎪⎩
x−m1
m2−m1

, m1 ≤ x ≤ m2

1, m2 ≤ x ≤ m3
x−m4
m3−m4

, m3 ≤ x ≤ m4

the trapezoidal MF µM(x) is illustrated in the figure 3.1.
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Figure 3.1: Trapezoidal Membership function µM(x)

3.2. Definition (α cut) [5]

Assumed a fuzzy set M in X and any real number α in [0, 1], then the α
cut of M, denoted by αM is the crisp set αM = {x ∈ X : µM(x) ≥ α}. For
illustration, let M be a fuzzy set whose membership function is given as
above µM(x). To find α-cut of M, where α ∈ [0,1], let us set the reference
functions of M to each left and right.

α =
x(1) −m1

m2 −m1
and α =

x(2) −m1

m3 −m4

Expressing x to α, where x(1) = (m2 − m1)α + m1 and x(2) = m4 +
(m3 −m4)α which provides the α-cut of M is αM = [x(1), x(2)] = [(m2 −
m1)α+m1,m4 + (m3 −m4)α].

3.3. Definition (Robust ranking index) [5]

The robust ranking index satisfies compensation, homogeneity, and additive
properties, and produces results that are controlled by human perception.
If M is a fuzzy number, the robust ranking index is measured as R(M) =R 1
0 (0.5) ∗ [ML

α ,M
u
α ]dα, where [M

L
α ,M

u
α ] = [(m2 −m1)α +m1,m4 + (m3 −

m4)α] is the α-cut of the fuzzy number M. Here the robust ranking index
R(M) offers the numerical significance of fuzzy M.

Marisol Martínez
1
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3.4. Remarks

• If the ranking of R(M) > R(N) then M is called fuzzy maximum,
then N.

• If the ranking of R(M) < R(N) then M is called fuzzy minimum,
then N.

4. The model for fuzzy nonlinear programming

Research emphasis on fuzzy optimization issues in the area of nonlinear
programming is mainly limited. However, there is little interest in nonlin-
ear programming, including fuzzy quadratic programming. Besides this,
there are many kinds of fuzzy nonlinear problems in many real issues, es-
pecially in complex industrial systems. Research emphasis on problems of
fuzzy optimization in the field of nonlinear programming is generally lim-
ited. However, there is little interest in nonlinear programming to address
the vagueness of the issues. Besides this, in many real issues, there are
many kinds of fuzzy nonlinear problems that occur, especially in complex
manufacturing systems. It cannot be represented and solved by traditional
models. However, research on modeling and enhancing approaches for non-
linear programming in a fuzzy background is not only crucial in the concept
of fuzzy optimization, but it is also significant and of extensive importance
in the application to the issues. Thus, the fuzzy optimization model has
been proposed in three stages, namely the formulation of the problem,
computational procedure, and lastly, numerical illustration followed by a
comparative analysis.

4.1. Formulation of the NLPP with inequality constraints in terms
of fuzziness [26]

Fuzzy NLPP has well-defined as the problem of finding a fuzzy vector

[(x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )], for all k = 1, 2, 3, 4, where (x

(k)
i ), i = 1, 2, 3, . . . , n&

for all k = 1, 2, 3, 4 is a trapezoidal fuzzy membership function, which opti-
mizes (maximize / minimize) the objective function Z, which is a real-valued
function of ’n’ fuzzy variables defined by

[Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.(4.1)

Under the constraints,
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gj([(x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )]) {≤,≥, or =}(b(k)j ); for all k = 1, 2, 3, 4 & j =

1, 2, . . . ,m.

Where gj,s are ’m’ real- valued function of ’n’ fuzzy variables and bj
0
s

are ’m’ fuzzy constants, and (x
(k)
i ) ≥ 0, i=1,2,3, . . .,n and for all k=1,2,3,4.

Moreover, as stated before, the problem can be restated as

Maximize [Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.

Under the constraints,

gj([(x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )]) ≤, (b(k)j );(4.2)

for all k=1,2,3,4 & j=1,2, . . . , m. where gj,s are ’m’ real- valued function

of ’n’ fuzzy variables and bj
0
s are ’m’ fuzzy constants, and (x

(k)
i ) ≥ 0,

i=1,2,3, . . .,n and for all k=1,2,3,4.

(x
(k)
i ) ≥ 0, i = 1, 2, 3, . . . , n and for all k = 1, 2, 3, 4.(4.3)

The fuzzy vector that satisfies conditions (4.3) and (4.4) is a feasible
solution to the fuzzy NLP.

[X(k)] = [(x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )],

for all k = 1,2,3,4.

4.2. Computational Procedure

Using Beale’s conditions, find an optimum solution to a fuzzified NLPP.
Now the problem becomes:

Maximize [Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.

Subject to the constraints [(xk1, x
k
2), . . . , (x

(k)
n )] ≤ C, and (x

(k)
i ) ≥ 0,

i=1,2,3, . . .,n and for all j = 1, 2, 3, 4 and xi’s are real-valued ń́fuzzy
variables. Now introduce the new variables Si (slack variables) such that
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(x
(k)
i ) + S2i = C, i = 1, 2, 3, . . .,n and for all k = 1, 2, 3, 4.

Therefore the problem can be restated as
Maximize

[Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.

Subject to the constraints,

(x
(k)
i ) + S2i = C, i = 1, 2, 3, , . . . , n and for all k = 1, 2, 3, 4.(4.4)

Now, solve the problem using the above Beale’s conditions and choose
arbitrarily m and n-m basic and non-basic variables respectively. Let us
consider xb and xnb as basic and non-basic variables.

Iteration 1: Assume that, xb = (x
(k)
1 ) and xnb = (x

(k)
2 , . . . x

(k)
n ) for all

k = 1, 2, 3, 4.

Express the basic feasible variables (x
(k)
1 ) for all k = 1, 2, 3, 4 in terms

of the non-basic variables.

[(x
(k)
2 , x

(k)
3 , . . . x(k)n )],

for all k = 1, 2, 3, 4.

(x
(k)
1 ) = (Constant− (x

(k)
2 − x

(k)
3 − . . .− x(k)n ))(4.5)

for all k = 1, 2, 3, 4. Express the objective functions

Maximize

[Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.

in terms of the non-basic variables [(x
(k)
2 ), . . . x

(k)
n )], for all k = 1, 2, 3, 4.

Therefore, Beale’s conditions for maximization concerning each non-basic
variable at zero values can be stated as

∂f(x)

∂xi
= Constant(4.6)

∂f(x)
∂xi

at (xi = 0) = Constant; where = 2, 3, . . . n.
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Let us choose the non-basic variables that provide the significant im-
provements and replace the remaining non-basic variables which are zero
in the Equation. (4.6), solve the equations and find the right solution.

Iteration 2: Assume that, xb = (x
(k)
2 ) & xnb = [(x

(k)
1 , x

(k)
3 , . . . x

(k)
n )], for all

k = 1, 2, 3, 4. Express the basic variables (x
(k)
2 ) for all k = 1, 2, 3, 4 in terms

of the non-basic variables. [(x
(k)
1 , x

(k)
3 , . . . x

(k)
n )], for all k = 1, 2, 3, 4.

(x
(k)
2 ) = (Constant− (x

(k)
1 − x

(k)
3 − . . .− x(k)n ))(4.7)

for all k = 1, 2, 3, 4. Express the objective functions

Maximize

[Z(k)] = f((x
(k)
1 ), (x

(k)
2 ), . . . , (x

(k)
n )), for all k = 1, 2, 3, 4.

in terms of the non-basic variables [(x
(k)
1 ), (x

(k)
3 ) . . . x

(k)
n )], for all k = 1, 2, 3, 4.

Therefore, Beale’s conditions for maximization concerning each non-basic
variable at zero values can be stated as

Let us choose the non-basic variables that provide the significant im-
provements and replace the remaining non-basic variables which are zero in
the Equation (4.7), solve the equations and find the right solution. Hence,
the above iterations 1 and 2, which give the same solution, are the optimal
solution to the considered problem.

5. Numerical illustrations

This section addresses two cases of numerical illustrations that can sim-
plify the models for solving the problem of fuzzy NLP using trapezoidal
membership functions and its mathematical calculations. The fuzzy model
explains the procedure employing the membership function approach in
case 1 and, the same problem was investigated with the help of the robust
ranking approach in case 2.

Let us consider the NLP in terms of fuzziness using Beale’s method:
the fuzzified form of the considered NLPP can be stated as below:

Maximize

[0, 1, 3, 4](x
(k)
1 ) + [1, 2, 4, 5](x

(k)
2 )− [−1, 0, 2, 3](x

(k)
1 ),
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for all k = 1, 2, 3, 4.
Subject to the constraints,

[−1, 0, 2, 3](x(k)1 ) + [0, 1, 3, 4](x
(k)
2 ) + [−1, 0, 2, 3](x

(k)
3 ) = [2, 3, 5, 6],

for all k = 1, 2, 3, 4.

(x
(k)
1 ), (x

(k)
2 ), (x

(k)
3 ) ≥ 0,(5.1)

for all k = 1, 2, 3, 4.

5.1. Case (i): NLP with fuzzy membership functions

The above NLPP has been optimized with fuzziness by employing Beale’s
condition, as discussed earlier. There is only one equation in the numerical
illustration under consideration. As a result, the number of basic variables
is one. Take one of the variables to be a basic variable and the other two
to be non-basic variables.

Iteration 1: Assume that, Assume that, xb = (x
(k)
1 ) and xnb = (x

(k)
2 , x

(k)
3 )

for all k = 1, 2, 3, 4.

From Eqn. (5.1)

[−1, 0, 2, 3](x(k)1 ) + [0, 1, 3, 4](x
(k)
2 ) + [−1, 0, 2, 3](x

(k)
3 ) = [2, 3, 5, 6],

for all k = 1, 2, 3, 4. Express the basic variables (x
(k)
1 ) for all k = 1, 2, 3, 4

in terms of the non-basic variables [x
(k)
2 , x

(k)
3 ], for all k = 1, 2, 3, 4.

(x
(k)
1 ) = [2, 3, 5, 6]− [0, 1, 3, 4](x

(k)
2 )− [−1, 0, 2, 3](x

(k)
3 )(5.2)

Expressing

Q(x) = [0, 1, 3, 4](x
(k)
1 ) + [1, 2, 4, 5](x

(k)
2 )− [−1, 0, 2, 3](x

(k)
1 )

2

for all k = 1, 2, 3, 4.

In terms of the non-basic variables [(x
(k)
2 ), (x

(k)
3 )], for all k = 1, 2, 3, 4.

Q(x) = [0, 1, 3, 4]([2, 3, 5, 6]− [0, 1, 3, 4](x(k)2 )− [−1, 0, 2, 3](x
(k)
3 )) +

[1, 2, 4, 5](x
(k)
2 )− [−1, 0, 2, 3]([2, 3, 5, 6]− [0, 1, 3, 4](x

(k)
2 )− [−1, 0, 2, 3](x

(k)
3 ))

2(5.3)
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for all k = 1, 2, 3, 4.

∂Q(x)
∂x2

= −[0, 1, 3, 4][0, 1, 3, 4] + [1, 2, 4, 5]− 2([2, 3, 5, 6]− [0, 1, 3, 4](x(k)2 )

[−1, 0, 2, 3](x(k)3 ))(−[0, 1, 3, 4])(5.4)

[∂Q(x)∂x2
](x2=0,xs=0) = [-12, -3, 15, 24].

As a result, increasing x2 will lead to greater development in the objec-
tive function than increasing x3. Then it will be considered, x3=0.

Substituting (x
(k)
3 ) = [−2,−1, 1, 2], for all k = 1, 2, 3, 4, in Eqn (5.3),

which results (x
(k)
2 ) = [0.125, 1, 2.75, 3.625], for all k = 1, 2, 3, 4.

By substituting, we get (x
(k)
2 ) = [0.125, 1, 2.75, 3.625]&(x

(k)
2 ) = [0.125, 1, 2.75, 3.625],

for all k = 1, 2, 3, 4. in Eqn (5.2). which implies that, (x
(k)
1 ) = [−5.5,−2.625, 3.125, 6],

for all k = 1, 2, 3, 4.

Hence the optimum solution is,

(x
(k)
1 ) = [−5.5,−2.625, 3.125, 6], (x

(k)
2 ) = [0.125, 1, 2.75, 3.625], &(x

(k)
3 ) =

[−2,−1, 1, 2], for all k = 1, 2, 3, 4.

Iteration 2: Assume that, Assume that, xb = (x
(k)
2 ) and xnb = (x

(k)
1 , x

(k)
3 )

for all k = 1, 2, 3, 4.
From Eqn. (5.1)

[−1, 0, 2, 3](x(k)1 ) + [0, 1, 3, 4](x
(k)
2 ) + [−1, 0, 2, 3](x

(k)
3 ) = [2, 3, 5, 6],

for all k = 1, 2, 3, 4. Express the basic variables (x
(k)
2 ) for all k = 1, 2, 3, 4

in terms of the non-basic variables [x
(k)
1 , x

(k)
3 ], for all k = 1, 2, 3, 4.

(x
(k)
2 ) = [1, 1.5, 2.5, 3]− [−0.5, 0.1, 1, 1.5](x

(k)
1 )− [−0.5, 0.1, 1, 1.5](x

(k)
3 ),(5.5)

for all k = 1, 2, 3, 4. Expressing

Q(x) = [0, 1, 3, 4](x
(k)
1 ) + [1, 2, 4, 5](x

(k)
2 )− [−1, 0, 2, 3](x

(k)
1 )

2
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for all k = 1, 2, 3, 4.

In terms of the non-basic variables [(x
(k)
2 ), (x

(k)
3 )], for all k = 1, 2, 3, 4.

Q(x) = [0, 1, 3, 4](x
(k)
1 ) + [1, 2, 4, 5]([1, 1.5, 2.5, 3]− [−0.5, 0.1, 1, 1.5](x

(k)
1 )

−[−0.5, 0.1, 1, 1.5](x(k)3 ))− [−1, 0, 2, 3](x
(k)
1 )

2(5.6)

for all k = 1, 2, 3, 4.

∂Q(x)

∂x1
= −[0, 1, 3, 4]− [−0.5, 0.1, 1, 1.5]− [−2, 0, 4, 6](x(k)1 )(5.7)

for all k = 1, 2, 3, 4.

[
∂Q(x)

∂x1
](x2=0,x3=0) = [−0.5, 1, 2, 2.5].

As a result, increasing x1 will lead to greater development in the objective
function than increasing x3. Then it will be considered, x3=0.

From Eqn (5.7), which results in (x
(k)
1 ) =[-1.25,-0.5,1,1.75], for all k =

1, 2, 3, 4.

By substituting, we get

(x
(k)
1 ) = [-1.25,-0.5,1,1.75] & (x

(k)
3 ) = [-2,-1,1,2], for all k = 1, 2, 3, 4. in

Eqn (5.6). which implies that, (x
(k)
2 ) = [0.625,1.25,2.5,3.125], for all k =

1, 2, 3, 4.

Hence the optimum solution is,

(x
(k)
1 ) = [-1.25,-0.5,1,1.75], (x

(k)
2 ) = [0.625,1.25,2.5,3.125], & (x

(k)
3 ) = [-2,-

1,1,2], for all k = 1, 2, 3, 4.

Therefore, Q(x)=[1.6875,3.875,8.25,10.437]

The optimum solutions are the same in both the iteration, so the above
solution becomes an optimum solution.
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5.2. Case (ii): The robust ranking approach for NLP with fuzzy
membership functions [5]

Let us solve the above NLPP by employing a robust ranking approach.
Further, the ranking index of R[0,1,3,4] and its fuzzy membership function
are as follows.

µR[0,1,3,4](x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x, 0 ≤ x ≤ 1
1, 1 ≤ x ≤ 3
−x+ 4, 3 ≤ x ≤ 4
0, otherwise

(5.8)

The confidence interval for each degree α& the trapezoidal structures
will be described in the following way by the functions of α.

Here α = x
(α)
1 &α = −x(α)2 + 4

Therefore,

[x(1), x(2)] = [ML
α ,M

U
α ] = [(m2−m1)α+m1,m4+(m3−m4)α] = [α,−α+4]

R(M) = R[0, 1, 3, 4] =

Z 1

0
(0.5) ∗ [ML

α ,M
U
α ]dα =

Z 1

0
(0.5)(4)dα = 2

Similarly, the ranking index R[1,2,4,5] is as follows:

µR[1,2,4,5](x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x− 1, 1 ≤ x ≤ 2
1, 2 ≤ x ≤ 4
−x+ 5, 4 ≤ x ≤ 5
0, otherwise

(5.9)

The confidence interval for each degree α& the trapezoidal structures
will be described in the following way by the functions of α.

Therefore,

[x(1), x(2)] = [M
L
α ,M

U
α ] = [α+ 1,−α+ 5]

R(M) = R[1, 2, 4, 5] =

Z 1

0
(0.5) ∗ [ML

α ,M
U
α ]dα = 3
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Furthermore, for all other fuzzy numbers, the ranking index has been
determined as follows:

R(M) = R[−1, 0, 2, 3] =
Z 1

0
(0.5) ∗ [ML

α ,M
U
α ]dα = 1

R(M) = R[2, 3, 5, 6] =

Z 1

0
(0.5) ∗ [ML

α ,M
U
α ]dα = 4

By employing the above approach, the fuzzy nonlinear programming
problem is reduced to the standard crisp problems, which is as follows.

Maximize Q(x) = 2x1 + 3x2 − x21

Subject to the constraints: x1 + 2x2 ≤ 4 and x1, x2 ≥ 0

Now apply the existing conventional approach to the nonlinear pro-
gramming problem by using Beale’s conditions and obtained the optimum
solution for the above is

x1 = 0.25, x2 = 1.875, x3 = 0 & Maximum Q(x) = 6.0625.

5.3. Comparison Analysis

The table 1 below provides a comparison of the optimal solution obtained
from the existing, fuzzy model and robust ranking approach for the fuzzy
nonlinear programming problem preferred in the numerical illustration above.
From the results shown in the table, it is evident that the same results are
given regardless of what existing or fuzzy membership and ranking ap-
proaches do. It shows the newness of the proposed model and also the
decision-maker may use this kind of model to clear the vagueness of any
suitable problem to achieve the best optimum value. Based on the above
result, it has been recommended to use either of the models given instead of
the existing model, namely the fuzzy membership function model or robust
ranking approach, which is ideal.
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Table 1: Optimum solution comparison of existing and proposed mod-
els.

The existing model is based on the conventional approach

x1 x2 x3 Max Q(x)

0.25 1.875 0 6.0625

The proposed model is based on the conventional approach in terms of fuzziness (i=1,2,3,4)

(x
(k)
1

)

=[-1.25,-0.5,1,1.75]

(x
(k)
2

)

=[0.625,1.25,2.5,3.125]

(x
(k)
3

)

=[-2,-1,1,2]
[1.69,3.88,8.25,10.44]

The proposed model is based on the robust ranking approach.

(x
(k)
1

)

=[-1.25,-0.5,1,1.75]

=R[-1.25,-0.5,1,1.75]

=0.25

(x
(k)
2

)

=[0.625,1.25,2.5,3.125]

=R[0.625,1.25,2.5,3.125]

=1.875

(x
(k)
3

)

=[-2,-1,1,2]

=R[-2,-1,1,2]

=0

[1.69,3.88,8.25,10.44]

=R[1.69,3.88,8.25,10.44]

=6.0625

6. Results and discussion

Employing the proposed model illustrations that the optimum value of the
fuzzy nonlinear programming problem is [1.69,3.88,8.25,10.44], which might
be a fresh attempt to clear the vagueness. The optimum solution for the
fuzzified nonlinear programming problems will be continuously greater than
1.69 and less than 10.44, and the most likely outcome will be somewhere in
the range of 3.88 and 8.25. The varieties in cost with significant probability
have appeared in the following Figure 6.1. Also, obtained fuzzy optimum
solutions xij might be empirically comprehended.

• Decision-makers (DM) choice will be the total fuzzified NLPP values
will be greater than 1.69 and less than 10.44.

• According to the DM, in favor of the whole fuzzified NLPP values
are tends to be bigger than or sufficient to 3.88 and smaller than or
adequate to 8.25

• Hence, the percentage of the favors of the DM for the residual values
of the whole fuzzified NLPP result is frequently attained as follows:



442 K. Palanivel and P. Muralikrishna

Figure 6.1: Fuzzy Optimal Solution of Trapezoidal FMF

Let x represent the fuzzified NLPP optimum result, and then the per-
centage of best in the DM, where

µmax(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−1.69
3.88−1.69 for 1.69 ≤ x ≤ 3.88
1 for3.88 ≤ x ≤ 8.25
x−10.44
8.25−10.44 for 8.25 ≤ x ≤ 10.44
0 otherwise

(6.1)

7. Conclusion

The fuzzy version of the problem has been addressed using Beale’s condi-
tions through fuzziness with the aid of a numerical illustration. Besides,
which clarifies by solving two numerical illustrations, one is using member-
ship functions and another one approaches by robust rankings. The mem-
bership function provides a significant role in the creation of a model in a
fuzzy context. This model offers an ideal approach to handle the problems
of NLP. Moreover, the optimal solution has been signified through fuzziness
with the result and discussion. A representation of trapezoidal membership
functions is also used to explain the approach. Furthermore, the comparison
analysis could be a novel approach to addressing NLP under uncertainties.
The model tries to overcome decision-makers uncertainties and subjective
experiences, and it can aid in the resolution of decision-making problems.
This similar model can be recommended in future studies of fuzzy opti-
mization models as well other types of nonlinear optimization problems.

Marisol Martínez
2
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