Decomposition dimension of corona product of some classes of graphs

Reji T.
Government College Chittur, India
and
Ruby R.
Government College Chittur, India
Received: May 2022. Accepted : August 2022

Abstract

For an ordered k-decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ of a connected graph $G=(V, E)$, the \mathcal{D}-representation of an edge e is the k tuple $\gamma(e / \mathcal{D})=\left(d\left(e, G_{1}\right), d\left(e, G_{2}\right), \ldots, d\left(e, G_{k}\right)\right)$, where $d\left(e, G_{i}\right)$ represents the distance from e to G_{i}. A decomposition \mathcal{D} is resolving if every two distinct edges of G have distinct representations. The minimum k for which G has a resolving k-decomposition is its decomposition dimension $\operatorname{dec}(G)$. In this paper, the decomposition dimension of corona product of the path P_{n} and cycle C_{n} with the complete graphs K_{1} and K_{2} are determined.

Key words: Decomposition dimension, Corona product, Path, Cycle.

1. Introduction

Let $G=(V, E)$ be a finite undirected connected graph without loops or multiple edges. A decomposition of a graph G is a collection of subgraphs of G, none of which have isolated vertices, whose edge sets provide a partition of $E(G)$. A decomposition of G into k subgraphs is a k-decomposition of G. A decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is ordered if the ordering $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ has been imposed on \mathcal{D}. If each subgraph G_{i} of \mathcal{D} is isomorphic to a graph H, then \mathcal{D} is said to be an H-decomposition of G.

For edges $e, f \in E(G)$, the distance $d(e, f)$ between e and f is the minimum non negative integer k for which there exists a sequence $e=$ $e_{0}, e_{1}, e_{2}, \ldots, e_{k}=f$ of edges of G such that e_{i} and e_{i+1} are adjacent for $i=0,1, \ldots, k-1$. For an edge e of G and a subgraph F of G, $d(e, F)=\min \{d(e, f), f \in E(F)\}$. Let $\mathcal{D}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ be an ordered k-decomposition of G. The \mathcal{D}-representation of an edge e is the k tuple $\gamma(e / \mathcal{D})=\left(d\left(e, G_{1}\right), d\left(e, G_{2}\right), \ldots, d\left(e, G_{k}\right)\right)$, where $d\left(e, G_{i}\right)$ represents the distance from e to G_{i}. We call \mathcal{D} a resolving k-decomposition if for any pair of edges e and f, there exists some index i such that $d\left(e, G_{i}\right) \neq d\left(f, G_{i}\right)$. The minimum k for which G has a resolving k-decomposition is its decomposition dimension $\operatorname{dec}(G)$. These concepts were introduced by Chartrand et.al in [1]. It is further studied in $[2,3,8]$.

The concepts of resolving set and minimum resolving set have appeared in the literature previously. Slater introduced and studied these ideas with a different terminology 'locating set' in [9]. Harary and Melter [4] discovered these concepts independently. Later these concepts were rediscovered by Johnson in [5]. Chartrand et.al [1] proved that $\operatorname{dec}(G) \geq 3$ for all connected graphs G that are not paths and for a tree T of order n and diameter $d, \operatorname{dec}(T) \leq n-d+1$. M. Hagita, A. Kundgen and D. B. West [3] used probabilistic methods to obtain upper bounds for decomposition dimension of complete graphs and regular graphs. H. Enomoto and T. Nakamigawa [2] established a lower bound for decomposition dimension of graphs using the maximum degree of G. They proved that for any graph $G, \operatorname{dec}(G) \geq\left\lceil\log _{2} \Delta(G)\right\rceil+1$. Reji T. and Ruby R. studied about decomposition dimension of cartesian product of graphs in [6].

The corona product, $G_{1} \odot G_{2}$ of two graphs G_{1} (with n_{1} vertices and m_{1} edges) and G_{2} (with n_{2} vertices and m_{2} edges) is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and then joining the i th vertex of G_{1} with an edge to every vertex in the i th copy of G_{2}.

Metric dimension and partition dimension, which distinguishes the vertices of a graph using distance, of corona product of graphs are studied in $[7,10]$.

2. Main Results

Define $\alpha_{i}^{+}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by $\alpha_{i}^{+}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)$ and $\alpha_{i}^{-}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by $\alpha_{i}^{-}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)$

Theorem 1. $\operatorname{dec}\left(P_{n} \odot K_{1}\right)= \begin{cases}2 & \text { if } n=2 \\ 3 & \text { if } n \geq 3\end{cases}$
Proof. Case 1: $n=2$
The corona product of the path P_{2} and the complete graph $K_{1}, P_{2} \odot K_{1}$ is the path P_{4}. Hence $\operatorname{dec}\left(P_{2} \odot K_{1}\right)=2$.

Figure 1. $P_{2} \odot K_{1}$.

Case 2: $n \geq 3$
The corona product of the path P_{n} and the complete graph $K_{1}, P_{n} \odot K_{1}$ is also known as the n-centipede graph. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the $n-1$ edges of the path P_{n}. Label the edges joining the vertex v_{i} in P_{n} and K_{1} as $f_{i}, 1 \leq i \leq n$.

Figure 2. $P_{n} \odot K_{1}$.

Consider the decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, G_{3}\right\}$ of $P_{n} \odot K_{1}$ where $E\left(G_{1}\right)=$ $\left\{f_{1}\right\}, E\left(G_{2}\right)=\left\{f_{n}\right\}$ and $E\left(G_{3}\right)$ consists of all other edges of $P_{n} \odot K_{1}$. Then $\gamma\left(f_{1} / \mathcal{D}\right)=(0, n, 1), \gamma\left(f_{n} / \mathcal{D}\right)=(n, 0,1), \gamma\left(f_{i} / \mathcal{D}\right)=(i, n+1-i, 0)$, $2 \leq i \leq n-1$ and $\gamma\left(e_{i} / \mathcal{D}\right)=(i, n-i, 0), 1 \leq i \leq n-1$. Thus \mathcal{D} is a resolving decomposition of $P_{n} \odot K_{1}$. So $\operatorname{dec}\left(P_{n} \odot K_{1}\right) \leq 3$. Since $P_{n} \odot K_{1}$ is not a path $\operatorname{dec}\left(P_{n} \odot K_{1}\right) \geq 3$. Hence $\operatorname{dec}\left(P_{n} \odot K_{1}\right)=3$.

Theorem 2. $\operatorname{dec}\left(P_{2} \odot K_{2}\right)=3$ and $\operatorname{dec}\left(P_{n} \odot K_{2}\right) \leq 4$, if $n \geq 3$
Proof. Case 1: $n=2$
Consider the graph $P_{2} \odot K_{2}$. Let v_{1}, v_{2} be the vertices of the path P_{2} and e_{1} be the edge joining v_{1} and v_{2} in P_{2}. For $i=1,2$ label the edges joining the vertex v_{i} in P_{2} and K_{2} as f_{i}, g_{i} and let h_{i} be the edge in K_{2} adjacent to the edges f_{i} and g_{i}.

Figure 3. $P_{2} \odot K_{2}$.
Consider the decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, G_{3}\right\}$ of $P_{2} \odot K_{2}$ where $E\left(G_{1}\right)=$ $\left\{g_{1}\right\}, E\left(G_{2}\right)=\left\{g_{2}\right\}$ and $E\left(G_{3}\right)$ consists of all other edges of $P_{2} \odot K_{2}$. Then $\gamma\left(g_{1} / \mathcal{D}\right)=(0,2,1), \gamma\left(g_{2} / \mathcal{D}\right)=(2,0,1), \gamma\left(f_{1} / \mathcal{D}\right)=(1,2,0), \gamma\left(f_{2} / \mathcal{D}\right)=(2,1,0)$, $\gamma\left(h_{1} / \mathcal{D}\right)=(1,3,0), \gamma\left(h_{2} / \mathcal{D}\right)=(3,1,0), \gamma\left(e_{1} / \mathcal{D}\right)=(1,1,0)$. Thus \mathcal{D} is a resolving decomposition of $P_{2} \odot K_{2}$. So $\operatorname{dec}\left(P_{2} \odot K_{2}\right) \leq 3$. Since $P_{2} \odot K_{2}$ is not a path, $\operatorname{dec}\left(P_{2} \odot K_{2}\right) \geq 3$. Hence $\operatorname{dec}\left(P_{2} \odot K_{2}\right)=3$.

Case 2: $n \geq 3$
Consider the corona product of the path P_{n} and the complete graph K_{2}, $P_{n} \odot K_{2}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the $n-1$ edges of the path P_{n}. For $i=1,2, \ldots, n$ label the edges joining the vertex v_{i} in P_{n} and K_{2} as f_{i}, g_{i} and let h_{i} be the edge in K_{2} adjacent to the edges f_{i} and g_{i}.

Figure 4. $P_{n} \odot K_{2}$.
Since $P_{n} \odot K_{2}$ is not a path, $\operatorname{dec}\left(P_{n} \odot K_{2}\right) \geq 3$. Consider the decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $P_{n} \odot K_{2}$ where $E\left(G_{1}\right)=\left\{g_{1}\right\}, E\left(G_{2}\right)=$ $\left\{g_{2}, g_{3}, \ldots, g_{n-1}\right\}, E\left(G_{3}\right)=\left\{g_{n}\right\}$ and $E\left(G_{4}\right)$ consists of all other edges of $P_{n} \odot K_{2}$.

Then $\gamma\left(g_{1} / \mathcal{D}\right)=(0,2, n, 1), \gamma\left(g_{n} / \mathcal{D}\right)=(n, 2,0,1), \gamma\left(f_{1} / \mathcal{D}\right)=(1,2, n, 0)$, $\gamma\left(f_{n} / \mathcal{D}\right)=(n, 2,1,0), \gamma\left(h_{1} / \mathcal{D}\right)=(1,3, n+1,0), \gamma\left(h_{n} / \mathcal{D}\right)=(n+1,3,1,0)$, $\gamma\left(e_{i} / \mathcal{D}\right)=(i, 1, n-i, 0), 1 \leq i \leq n-1$.
For $2 \leq i \leq n-1, \gamma\left(g_{i} / \mathcal{D}\right)=(i, 0, n+1-i, 1), \gamma\left(f_{i} / \mathcal{D}\right)=(i, 1, n+1-i, 0)$, $\gamma\left(h_{i} / \mathcal{D}\right)=(i+1,1, n+2-i, 0)$. Thus \mathcal{D} is a resolving decomposition of $P_{n} \odot K_{2}$. So $\operatorname{dec}\left(P_{n} \odot K_{2}\right) \leq 4$.

Theorem 3. $\operatorname{dec}\left(C_{n} \odot K_{1}\right)=3$

Proof. Consider the corona product of the cycle C_{n} and the complete graph $K_{1}, C_{n} \odot K_{1}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices of the path C_{n} and $e_{1}, e_{2}, \ldots, e_{n}$ be the n edges of the cycle C_{n}. Label the edges joining the vertex v_{i} in C_{n} and K_{1} as $f_{i}, 1 \leq i \leq n$.

Figure 5. $C_{n} \odot K_{1}$.
Let $n \geq 3$ be any positive integer. Then $n=3 k-1$ or $3 k$ or $3 k+1$, where $k=1,2, \ldots$. Consider the decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, G_{3}\right\}$ of $C_{n} \odot K_{1}$.

Case 1: $n=3 k-1$
Let $E\left(G_{1}\right)=\left\{f_{1}, f_{n}, f_{n-1}, \ldots, f_{n-k+3}\right\}, E\left(G_{2}\right)=\left\{f_{2}, f_{3}, \ldots, f_{k+1}\right\}$ and $E\left(G_{3}\right)$ consists of all other edges of $C_{n} \odot K_{1}$. Then

$$
\begin{aligned}
& \gamma\left(f_{i} / \mathcal{D}\right)= \begin{cases}(0,2,1) & \text { if } i=1 \\
(i, 0,1) & \text { if } 2 \leq i \leq k+1 \\
(k+1,2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k+2 \\
(0, k, 1) & \text { if } i=n-k+3 \\
\alpha_{2}^{-}\left(\gamma\left(f_{i-1}\right)\right) & \text { if } n-k+4 \leq i \leq n\end{cases} \\
& \gamma\left(e_{i} / \mathcal{D}\right)= \begin{cases}(i, 1,0) & \text { if } 1 \leq i \leq k+1 \\
(k, 2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k+2 \\
(1, k-1,0) & \text { if } i=n-k+3 \\
\alpha_{2}^{-}\left(\gamma\left(e_{i-1}\right)\right) & \text { if } n-k+4 \leq i \leq n\end{cases}
\end{aligned}
$$

Case 2: $n=3 k$ or $3 k+1$
Let $E\left(G_{1}\right)=\left\{f_{1}, f_{n}, f_{n-1}, \ldots, f_{n-k+2}\right\}, E\left(G_{2}\right)=\left\{f_{2}, f_{3}, \ldots, f_{k+1}\right\}$ and
$E\left(G_{3}\right)$ consists of all other edges of $C_{n} \odot K_{1}$.
When $n=3 k$

$$
\begin{aligned}
& \gamma\left(f_{i} / \mathcal{D}\right)= \begin{cases}(0,2,1) & \text { if } i=1 \\
(i, 0,1) & \text { if } 2 \leq i \leq k+1 \\
(k+1,2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k+1 \\
(0, k+1,1) & \text { if } i=n-k+2 \\
\alpha_{2}^{-}\left(\gamma\left(f_{i-1}\right)\right) & \text { if } n-k+3 \leq i \leq n\end{cases} \\
& \gamma\left(e_{i} / \mathcal{D}\right)= \begin{cases}(i, 1,0) & \text { if } 1 \leq i \leq k+1 \\
(k, 2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k+1 \\
(1, k, 0) & \text { if } i=n-k+2 \\
\alpha_{2}^{-}\left(\gamma\left(e_{i-1}\right)\right) & \text { if } n-k+3 \leq i \leq n\end{cases}
\end{aligned}
$$

When $n=3 k+1$

$$
\begin{aligned}
\gamma\left(f_{i} / \mathcal{D}\right) & = \begin{cases}(0,2,1) & \text { if } i=1 \\
(i, 0,1) & \text { if } 2 \leq i \leq k+1 \\
(k+2,2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k+1 \\
(0, k+1,1) & \text { if } i=n-k+2 \\
\alpha_{2}^{-}\left(\gamma\left(f_{i-1}\right)\right) & \text { if } n-k+3 \leq i \leq n\end{cases} \\
\gamma\left(e_{i} / \mathcal{D}\right) & = \begin{cases}(i, 1,0) & \text { if } 1 \leq i \leq k+1 \\
(k+1,2,0) & \text { if } i=k+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } k+3 \leq i \leq n-k \\
(1, k+1,0) & \text { if } i=n-k+1 \\
\alpha_{2}^{-}\left(\gamma\left(e_{i-1}\right)\right) & \text { if } n-k+2 \leq i \leq n\end{cases}
\end{aligned}
$$

Thus \mathcal{D} is a resolving decomposition of $C_{n} \odot K_{1}$. So $\operatorname{dec}\left(C_{n} \odot K_{1}\right) \leq 3$. Since $C_{n} \odot K_{1}$ is not a path $\operatorname{dec}\left(C_{n} \odot K_{1}\right) \geq 3$. Hence $\operatorname{dec}\left(C_{n} \odot K_{1}\right)=3$.

Theorem 4. $\quad \operatorname{dec}\left(C_{n} \odot K_{2}\right) \leq 4$

Proof. Consider the corona product of the cycle C_{n} and the complete graph $K_{2}, C_{n} \odot K_{2}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices of the path C_{n} and $e_{1}, e_{2}, \ldots, e_{n}$ be the n edges of the cycle C_{n}. For $i=1,2, \ldots, n$ label the edges joining the vertex v_{i} in C_{n} and K_{2} as f_{i}, g_{i} and let h_{i} be the edge in K_{2} adjacent to the edges f_{i} and g_{i}.

Figure 6. $C_{n} \odot K_{2}$.
Let n be any positive integer. By division algorithm there exists positive integers q, r such that $n=3 q+r$ where $r=0$ or 1 or 2 . Since $C_{n} \odot K_{2}$ is not a path, $\operatorname{dec}\left(C_{n} \odot K_{2}\right) \geq 3$. Consider the decomposition $\mathcal{D}=\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ of $C_{n} \odot K_{2}$.

Case 1: $n=3 q$

Let $E\left(G_{1}\right)=\left\{g_{1}, g_{2}, \ldots, g_{q}\right\}, E\left(G_{2}\right)=\left\{g_{q+1}, g_{q+2}, \ldots, g_{2 q}\right\}$,
$E\left(G_{3}\right)=\left\{g_{2 q+1}, g_{2 q+2}, \ldots, g_{n}\right\}$ and $E\left(G_{4}\right)$ consists of all other edges of $C_{n} \odot K_{2}$. Then

$$
\begin{gathered}
\gamma\left(f_{i} / \mathcal{D}\right)= \begin{cases}(1, q+2-i, i+1,0) & \text { if } 1 \leq i \leq q \\
(2,1, q+1,0) & \text { if } i=q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } q+2 \leq i \leq 2 q \\
(q+1,2,1,0) & \text { if } i=2 q+1 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } 2 q+2 \leq i \leq n\end{cases} \\
\gamma\left(e_{i} / \mathcal{D}\right)= \begin{cases}(1, q+1-i, i+1,0) & \text { if } 1 \leq i \leq q \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } q+1 \leq i \leq 2 q \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } 2 q+1 \leq i \leq n\end{cases} \\
\gamma\left(h_{i} / \mathcal{D}\right)= \begin{cases}\left(\alpha_{2}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 1 \leq i \leq q \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } q+1 \leq i \leq 2 q \\
\left(\alpha_{1}^{+} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 2 q+1 \leq i \leq n\end{cases}
\end{gathered}
$$

$\gamma\left(g_{i} / \mathcal{D}\right), 1 \leq i \leq n$ is obtained by replacing 1 and 0 in corresponding $\gamma\left(f_{i} / \mathcal{D}\right)$ by 0 and 1.

Case 2: $n=3 q+1$
Let $E\left(G_{1}\right)=\left\{g_{1}, g_{n}, \ldots, g_{q+1}\right\}, E\left(G_{2}\right)=\left\{g_{q+2}, g_{q+2}, \ldots, g_{2 q+1}\right\}$,
$E\left(G_{3}\right)=\left\{g_{2 q+2}, g_{2 q+3}, \ldots, g_{n}\right\}$ and $E\left(G_{4}\right)$ consists of all other edges of $C_{n} \odot K_{2}$. Then

$$
\begin{gathered}
\gamma\left(f_{i} / \mathcal{D}\right)= \begin{cases}(1, q+3-i, i+1,0) & \text { if } 1 \leq i \leq q+1 \\
(2,1, q+1,0) & \text { if } i=q+2 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } q+3 \leq i \leq 2 q+1 \\
(q+1,2,1,0) & \text { if } i=2 q+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } 2 q+3 \leq i \leq n\end{cases} \\
\gamma\left(e_{i} / \mathcal{D}\right)= \begin{cases}(1, q+2-i, i+1,0) & \text { if } 1 \leq i \leq q \\
(1,1, q+1,0) & \text { if } i=q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } q+2 \leq i \leq 2 q+1 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } 2 q+2 \leq i \leq n\end{cases} \\
\gamma\left(h_{i} / \mathcal{D}\right)= \begin{cases}\left(\alpha_{2}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 1 \leq i \leq q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } q+2 \leq i \leq 2 q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 2 q+2 \leq i \leq n\end{cases}
\end{gathered}
$$

$\gamma\left(g_{i} / \mathcal{D}\right), 1 \leq i \leq n$ is obtained by replacing 1 and 0 in corresponding $\gamma\left(f_{i} / \mathcal{D}\right)$ by 0 and 1.

Case 3: $n=3 q+2$
Let $E\left(G_{1}\right)=\left\{g_{1}, g_{n}, \ldots, g_{q+1}\right\}, E\left(G_{2}\right)=\left\{g_{q+2}, g_{q+3}, \ldots, g_{2 q+2}\right\}, E\left(G_{3}\right)=$ $\left\{g_{2 q+3}, g_{2 q+4}, \ldots, g_{n}\right\}$ and $E\left(G_{4}\right)$ consists of all other edges of $C_{n} \odot K_{2}$. Then

$$
\begin{gathered}
\gamma\left(f_{i} / \mathcal{D}\right)= \begin{cases}(1, q+3-i, i+1,0) & \text { if } 1 \leq i \leq q+1 \\
(2,1, q+2,0) & \text { if } i=q+2 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } q+3 \leq i \leq 2 q+2 \\
(q+1,2,1,0) & \text { if } i=2 q+3 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i-1}\right)\right) & \text { if } 2 q+4 \leq i \leq n\end{cases} \\
\gamma\left(e_{i} / \mathcal{D}\right)= \begin{cases}(1, q+2-i, i+1,0) & \text { if } 1 \leq i \leq q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{-}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } q+2 \leq i \leq 2 q+1 \\
(q+1,1,1,0) & \text { if } i=2 q+2 \\
\left(\alpha_{1}^{-} \circ \alpha_{2}^{+}\right)\left(\gamma\left(e_{i-1}\right)\right) & \text { if } 2 q+3 \leq i \leq n\end{cases} \\
\gamma\left(h_{i} / \mathcal{D}\right)= \begin{cases}\left(\alpha_{2}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 1 \leq i \leq q+1 \\
\left(\alpha_{1}^{+} \circ \alpha_{3}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } q+2 \leq i \leq 2 q+2 \\
\left(\alpha_{1}^{+} \circ \alpha_{2}^{+}\right)\left(\gamma\left(f_{i}\right)\right) & \text { if } 2 q+3 \leq i \leq n\end{cases}
\end{gathered}
$$

$\gamma\left(g_{i} / \mathcal{D}\right), 1 \leq i \leq n$ is obtained by replacing 1 and 0 in corresponding $\gamma\left(f_{i} / \mathcal{D}\right)$ by 0 and 1.

Thus \mathcal{D} is a resolving decomposition of $C_{n} \odot K_{2}$. So $\operatorname{dec}\left(C_{n} \odot K_{2}\right) \leq 4$.

References

[1] G. Chartrand, D. Erwin, M. Raines and P. Zhang, "The decomposition dimension of graphs", Graphs and Combinatorics, vol. 17, pp. 599-605, 2001 doi: 10.1007/PL00007252
[2] H. Enomoto and T. Nakamigawa, "On the decomposition dimension of tres", Discree Matheratics, vol. 252, pp. 219-225, 2002. doi: 10.1016/S0012-365X(01)00454-X
[3] M. Hagita, A. Kundgen and D. B. W est, "Probabilistic methods for decomposition dimension of graphs", Graphs and Combinatorics, vol. 19, pp. 493-503, 2003. [On line]. Available: https://bit.ly/3R HITD4
[4] F. Harary and R. A. M elter, "On the metric dimension of a graph", Ars Combinatoria, vol. 15, pp. 191-195, 1976.
[5] M. A. Johnson, "Structure-activity maps for visualizing the graph variables arising in drug design", Journal of Biopharmacatical Statistics, vol. 3, pp. 203-236, 1993. doi: 10.1080/10543409308835060
[6] T. Reji and R. Ruby, "Decomposition dimension of cartesian product of some graphs", Discree Mathenatics Algorithms and Applications, 2022, doi: 10.1142/S1793830922501154
[7] J. A. Rodríguez-Velázquez, I. G. Yero and D. Kuziak, "The partition dimension of corona product graphs", arXiv:1010.5144v, 2010.
[8] V. Saenpholphat, P. Zhang, "Connected Resolving Decompositions in Graphs", Mathenatica Boherica, vol. 128, pp. 121-136, 2003. doi: 10.21136/mb.2003.134033
[9] P. J. Slater, "Dominating and reference sets in graphs", Journal of Mathenatical Physics, vol. 22, pp. 445-455, 1988.
[10] I. G. Yero, D. K uziak, J. A. R odríguez-V elázquez, "On the metric dimension of corona product graphs", ComputersandMathenaticswithApdications, vol. 61, pp. 2793-2798, 2011 doi: 10.1016/j.camw a.201103.046

Reji T.

Department of Mathematics
Government College Chittur
Palakkad,
Kerala,
India-678104
India
e-mail: rejiaran@gmail.com
and
Ruby R.
Department of Mathematics
Government College Chittur
Palakkad,
Kerala,
India-678104
India
e-mail: rubymathpkd@gmail.com
Corresponding author

