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Abstract

For an ordered k-decomposition D = {G1, G2, . . . , Gk} of a con-
nected graph G = (V,E), the D-representation of an edge e is the k-
tuple γ(e/D) = (d(e,G1), d(e,G2), . . . , d(e,Gk)), where d(e,Gi) rep-
resents the distance from e to Gi. A decomposition D is resolving if
every two distinct edges of G have distinct representations. The min-
imum k for which G has a resolving k-decomposition is its decomposi-
tion dimension dec(G). In this paper, the decomposition dimension of
corona product of the path Pn and cycle Cn with the complete graphs
K1 and K2 are determined.
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1. Introduction

Let G = (V,E) be a finite undirected connected graph without loops or
multiple edges. A decomposition of a graphG is a collection of subgraphs of
G, none of which have isolated vertices, whose edge sets provide a partition
of E(G). A decomposition of G into k subgraphs is a k-decomposition
of G. A decomposition D = {G1, G2, . . . , Gk} is ordered if the ordering
(G1,G2, . . . , Gk) has been imposed on D. If each subgraph Gi of D is
isomorphic to a graph H, then D is said to be an H-decomposition of G.

For edges e, f ∈ E(G), the distance d(e, f) between e and f is the
minimum non negative integer k for which there exists a sequence e =
e0, e1, e2, . . . , ek = f of edges of G such that ei and ei+1 are adjacent
for i = 0, 1, . . . , k − 1. For an edge e of G and a subgraph F of G,
d(e, F ) = min{d(e, f), f ∈ E(F )}. Let D = {G1, G2, . . . , Gk} be an or-
dered k-decomposition of G. The D-representation of an edge e is the k-
tuple γ(e/D) = (d(e,G1), d(e,G2), . . . , d(e,Gk)), where d(e,Gi) represents
the distance from e to Gi. We call D a resolving k-decomposition if for any
pair of edges e and f , there exists some index i such that d(e,Gi) 6= d(f,Gi).
The minimum k for which G has a resolving k-decomposition is its decom-
position dimension dec(G). These concepts were introduced by Chartrand
et.al in [1]. It is further studied in [2,3,8].

The concepts of resolving set and minimum resolving set have appeared
in the literature previously. Slater introduced and studied these ideas with
a different terminology ’locating set’ in [9]. Harary and Melter [4] discov-
ered these concepts independently. Later these concepts were rediscovered
by Johnson in [5]. Chartrand et.al [1] proved that dec(G) ≥ 3 for all
connected graphs G that are not paths and for a tree T of order n and
diameter d, dec(T ) ≤ n− d+ 1. M. Hagita, A. Kundgen and D. B. West
[3] used probabilistic methods to obtain upper bounds for decomposition
dimension of complete graphs and regular graphs. H. Enomoto and T.
Nakamigawa [2] established a lower bound for decomposition dimension of
graphs using the maximum degree of G. They proved that for any graph
G, dec(G) ≥ dlog2∆(G)e + 1. Reji T. and Ruby R. studied about decom-
position dimension of cartesian product of graphs in [6].

The corona product, G1 ¯ G2 of two graphs G1 (with n1 vertices and
m1 edges) and G2 (with n2 vertices and m2 edges) is defined as the graph
obtained by taking one copy of G1 and n1 copies of G2, and then joining
the ith vertex of G1 with an edge to every vertex in the ith copy of G2.
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Metric dimension and partition dimension, which distinguishes the vertices
of a graph using distance, of corona product of graphs are studied in [7,10].

2. Main Results

Define α+i : R
n → Rn by α+i (x1, . . . , xi, . . . , xn) = (x1, . . . , xi + 1, . . . , xn)

and α−i : R
n → Rn by α−i (x1, . . . , xi, . . . , xn) = (x1, . . . , xi − 1, . . . , xn)

Theorem 1. dec(Pn ¯K1) =

(
2 if n = 2
3 if n ≥ 3

Proof. Case 1: n = 2
The corona product of the path P2 and the complete graph K1, P2¯K1 is
the path P4. Hence dec(P2 ¯K1) = 2.

Figure 1. P2 ¯K1.

Case 2: n ≥ 3
The corona product of the path Pn and the complete graph K1, Pn ¯K1

is also known as the n-centipede graph. Let v1, v2, . . . , vn be the n vertices
and e1, e2, . . . , en−1 be the n − 1 edges of the path Pn. Label the edges
joining the vertex vi in Pn and K1 as fi, 1 ≤ i ≤ n.

Figure 2. Pn ¯K1.
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Consider the decompositionD = {G1, G2, G3} of Pn¯K1 whereE(G1) =
{f1}, E(G2) = {fn} and E(G3) consists of all other edges of Pn ¯ K1.
Then γ(f1/D) = (0, n, 1), γ(fn/D) = (n, 0, 1), γ(fi/D) = (i, n + 1 − i, 0),
2 ≤ i ≤ n−1 and γ(ei/D) = (i, n− i, 0), 1 ≤ i ≤ n− 1. Thus D is a resolv-
ing decomposition of Pn ¯K1. So dec(Pn ¯K1) ≤ 3. Since Pn ¯K1 is not
a path dec(Pn ¯K1) ≥ 3. Hence dec(Pn ¯K1) = 3. 2

Theorem 2. dec(P2 ¯K2) = 3 and dec(Pn ¯K2) ≤ 4, if n ≥ 3

Proof. Case 1: n = 2
Consider the graph P2 ¯K2. Let v1, v2 be the vertices of the path P2 and
e1 be the edge joining v1 and v2 in P2. For i = 1, 2 label the edges joining
the vertex vi in P2 and K2 as fi, gi and let hi be the edge in K2 adjacent
to the edges fi and gi.

Figure 3. P2 ¯K2.

Consider the decompositionD = {G1, G2, G3} of P2¯K2 whereE(G1) =
{g1}, E(G2) = {g2} and E(G3) consists of all other edges of P2¯K2. Then
γ(g1/D) = (0, 2, 1), γ(g2/D) = (2, 0, 1), γ(f1/D) = (1, 2, 0), γ(f2/D) = (2, 1, 0),
γ(h1/D) = (1, 3, 0), γ(h2/D) = (3, 1, 0), γ(e1/D) = (1, 1, 0). Thus D is a re-
solving decomposition of P2 ¯K2. So dec(P2 ¯K2) ≤ 3. Since P2 ¯K2 is
not a path, dec(P2 ¯K2) ≥ 3. Hence dec(P2 ¯K2) = 3.

Case 2: n ≥ 3
Consider the corona product of the path Pn and the complete graph K2,
Pn ¯ K2. Let v1, v2, . . . , vn be the n vertices and e1, e2, . . . , en−1 be the
n − 1 edges of the path Pn. For i = 1, 2, . . . , n label the edges joining the
vertex vi in Pn and K2 as fi, gi and let hi be the edge in K2 adjacent to
the edges fi and gi.
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Figure 4. Pn ¯K2.

Since Pn ¯K2 is not a path, dec(Pn ¯K2) ≥ 3. Consider the decom-
position D = {G1, G2, G3, G4} of Pn ¯K2 where E(G1) = {g1}, E(G2) =
{g2, g3, . . . , gn−1}, E(G3) = {gn} and E(G4) consists of all other edges of
Pn ¯K2.

Then γ(g1/D) = (0, 2, n, 1), γ(gn/D) = (n, 2, 0, 1), γ(f1/D) = (1, 2, n, 0),
γ(fn/D) = (n, 2, 1, 0), γ(h1/D) = (1, 3, n+ 1, 0), γ(hn/D) = (n+ 1, 3, 1, 0),
γ(ei/D) = (i, 1, n− i, 0), 1 ≤ i ≤ n− 1.
For 2 ≤ i ≤ n−1, γ(gi/D) = (i, 0, n+ 1− i, 1), γ(fi/D) = (i, 1, n+ 1− i, 0),
γ(hi/D) = (i+ 1, 1, n+ 2− i, 0). Thus D is a resolving decomposition of
Pn ¯K2. So dec(Pn ¯K2) ≤ 4. 2

Theorem 3. dec(Cn ¯K1) = 3

Proof. Consider the corona product of the cycle Cn and the complete
graph K1, Cn¯K1. Let v1, v2, . . . , vn be the n vertices of the path Cn and
e1, e2, . . . , en be the n edges of the cycle Cn. Label the edges joining the
vertex vi in Cn and K1 as fi, 1 ≤ i ≤ n.
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Figure 5. Cn ¯K1.

Let n ≥ 3 be any positive integer. Then n = 3k−1 or 3k or 3k+1, where
k = 1, 2, . . .. Consider the decomposition D = {G1, G2, G3} of Cn ¯K1.

Case 1: n = 3k − 1

Let E(G1) = {f1, fn, fn−1, . . . , fn−k+3}, E(G2) = {f2, f3, . . . , fk+1} and
E(G3) consists of all other edges of Cn ¯K1. Then

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 2
(0, k, 1) if i = n− k + 3
α−2 (γ(fi−1)) if n− k + 4 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k + 2
(1, k − 1, 0) if i = n− k + 3
α−2 (γ(ei−1)) if n− k + 4 ≤ i ≤ n

Case 2: n = 3k or 3k + 1
Let E(G1) = {f1, fn, fn−1, . . . , fn−k+2}, E(G2) = {f2, f3, . . . , fk+1} and

pc
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E(G3) consists of all other edges of Cn ¯K1.
When n = 3k

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 1
(0, k + 1, 1) if i = n− k + 2
α−2 (γ(fi−1)) if n− k + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k + 1
(1, k, 0) if i = n− k + 2
α−2 (γ(ei−1)) if n− k + 3 ≤ i ≤ n

When n = 3k + 1

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 2, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 1
(0, k + 1, 1) if i = n− k + 2
α−2 (γ(fi−1)) if n− k + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k
(1, k + 1, 0) if i = n− k + 1
α−2 (γ(ei−1)) if n− k + 2 ≤ i ≤ n
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Thus D is a resolving decomposition of Cn¯K1. So dec(Cn¯K1) ≤ 3.
Since Cn ¯K1 is not a path dec(Cn ¯K1) ≥ 3. Hence dec(Cn ¯K1) = 3.
2

Theorem 4. dec(Cn ¯K2) ≤ 4

Proof. Consider the corona product of the cycle Cn and the complete
graph K2, Cn¯K2. Let v1, v2, . . . , vn be the n vertices of the path Cn and
e1, e2, . . . , en be the n edges of the cycle Cn. For i = 1, 2, . . . , n label the
edges joining the vertex vi in Cn and K2 as fi, gi and let hi be the edge in
K2 adjacent to the edges fi and gi.

Figure 6. Cn ¯K2.

Let n be any positive integer. By division algorithm there exists positive
integers q, r such that n = 3q+r where r = 0 or 1 or 2. Since Cn¯K2 is not a
path, dec(Cn¯K2) ≥ 3. Consider the decomposition D = {G1, G2, G3, G4}
of Cn ¯K2.

Case 1: n = 3q

Let E(G1) = {g1, g2, . . . , gq}, E(G2) = {gq+1, gq+2, . . . , g2q},
E(G3) = {g2q+1, g2q+2, . . . , gn} and E(G4) consists of all other edges of
Cn ¯K2. Then
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q
(2, 1, q + 1, 0) if i = q + 1
(α+1 ◦ α−3 )(γ(fi−1)) if q + 2 ≤ i ≤ 2q
(q + 1, 2, 1, 0) if i = 2q + 1
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 2 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎨⎪⎩
(1, q + 1− i, i+ 1, 0) if 1 ≤ i ≤ q
(α+1 ◦ α−3 )(γ(ei−1)) if q + 1 ≤ i ≤ 2q
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 1 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q
(α+1 ◦ α+3 )(γ(fi)) if q + 1 ≤ i ≤ 2q
(α+1 ◦ α+2 )(γ(fi)) if 2q + 1 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Case 2: n = 3q + 1
Let E(G1) = {g1, gn, . . . , gq+1}, E(G2) = {gq+2, gq+2, . . . , g2q+1},
E(G3) = {g2q+2, g2q+3, . . . , gn} and E(G4) consists of all other edges of
Cn ¯K2. Then
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 3− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(2, 1, q + 1, 0) if i = q + 2
(α+1 ◦ α−3 )(γ(fi−1)) if q + 3 ≤ i ≤ 2q + 1
(q + 1, 2, 1, 0) if i = 2q + 2
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q
(1, 1, q + 1, 0) if i = q + 1
(α+1 ◦ α−3 )(γ(ei−1)) if q + 2 ≤ i ≤ 2q + 1
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 2 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q + 1
(α+1 ◦ α+3 )(γ(fi)) if q + 2 ≤ i ≤ 2q + 1
(α+1 ◦ α+2 )(γ(fi)) if 2q + 2 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Case 3: n = 3q + 2
Let E(G1) = {g1, gn, . . . , gq+1}, E(G2) = {gq+2, gq+3, . . . , g2q+2}, E(G3) =
{g2q+3, g2q+4, . . . , gn} and E(G4) consists of all other edges of Cn ¯ K2.
Then
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 3− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(2, 1, q + 2, 0) if i = q + 2
(α+1 ◦ α−3 )(γ(fi−1)) if q + 3 ≤ i ≤ 2q + 2
(q + 1, 2, 1, 0) if i = 2q + 3
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 4 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(α+1 ◦ α−3 )(γ(ei−1)) if q + 2 ≤ i ≤ 2q + 1
(q + 1, 1, 1, 0) if i = 2q + 2
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 3 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q + 1
(α+1 ◦ α+3 )(γ(fi)) if q + 2 ≤ i ≤ 2q + 2
(α+1 ◦ α+2 )(γ(fi)) if 2q + 3 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Thus D is a resolving decomposition of Cn¯K2. So dec(Cn¯K2) ≤ 4.
2
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