
Approximating roots by quadratic iteration

Alfredo Poirier
Pontificia Universidad Católica del Perú, Perú

and
Jesús Torres

Pontificia Universidad Católica del Perú, Perú
Received : May 2022. Accepted : December 2022

Proyecciones Journal of Mathematics
Vol. 42, No 2, pp. 407-431, April 2023.
Universidad Católica del Norte
Antofagasta - Chile

Abstract

We apply a coctel of elementary methods to the problem of finding
the roots of an arbitrary polynomial. Specifically, we combine prop-
erties of the iteration z 7→ z2 + c with rudimentary Galois theory in
order to justify an algorithm to find the roots of a complex polynomial.

Keywords: Roots of polynomials, iteration of quadratic polynomials,
Complex Dynamics.

MSC numbers, AMS2020: Primary 37F10, Secondary 65H04.

10.22199/issn.0717-6279-5447

Scielo

Scielo

408 Alfredo Poirier and Jesús Torres

1. Introduction

In modern mathematics, the theory of complex dynamical systems has been
very active for the last forty years. The purpose of this work is to apply
the basic theory of iteration of quadratic maps to a practical problem: how
to find a root of an arbitrary polynomial.

As a way of introduction, suppose we want to split p(x) = x3− x2− 2x
into linear factors. Of course, this is the same as finding its roots, which
here are precisely 0,−1, 2. Each of these can be placed in an iteration
process of the form z 7→ z2 + c, where for reasons that will become clear
later on we always start at 0. In this line, for c = 0 we have an orbit

0 7→ 0 7→ 0 7→ . . . ,

for c = −1 we get
0 7→ −1 7→ 0 7→ −1 7→ . . . ,

while for c = 2 we obtain

0 7→ 2 7→ 6 7→ 38 7→

As you can see (and it can be rigorously proved) the orbit for c = 2 grows
much more rapidly than the other two. The question is whether we can
use this fact to our benefit in the task of finding the roots by an automatic
procedure.

The idea is to consider z 7→ z2 + x starting from 0 for all roots x of p
simultaneously. In this way, we get a sequence of polynomials

0 7→ x 7→ x2 + x 7→ (x2 + x)2 + x 7→ ((x2 + x)2 + x)2 + x 7→

It seems that the degree of the successive polynomials grow out of control,
but that is not so if we remember that p(x) is always 0. In other words,
if we work modulo p, or, more formally, if we follow this process in the
quotient ring R[x]/(p(x)), we have

0 7→ x 7→ x2 + x 7→ 241x2 + 241x 7→ 348486x2 + 348487x 7→ . . . ,

with only expressions of degree two to consider. Of course, if we plug in
x = 0,−1, 2 we recover the same results as before.

Next we divide 241x2+241x by its leading coefficient in order to obtain
x2+x, a polynomial whose roots are precisely 0 and −1, the two roots with
bounded orbit. Unfortunately this is not so simple: in the next step, the

Approximating roots by quadratic iteration 409

same process yields x2+348486/3484867x, where −1 is in this case only an
approximate root. However, if we keep working, we will always get better
and better approximations to the actual roots.

The bottom line is that one root of the polynomial has been lost some-
where. As we can determine –by elementary methods– which one it is,
this is tantamount of finding a root of the original polynomial. The reason
of this paper is to explain why these phenomena happen and to apply the
same procedure to arbitrary polynomials.

In Section 2 we introduce the necessary background material on Com-
plex Analysis. In Section 3 we recall basic ideas concerning the Vander-
monde matrix. In Section 4 we prove a result from Number Theory as mo-
tivation for the methods borrowed from elsewhere. In Section 5 we present
the main theorems needed as theoretical background for the construction
of our algorithm in the case of one escaping root. In Section 6 we lift the
restriction of a single escaping root. In Section 7 we tackle the case of no
escaping roots. In Section 8 we focus on repeated roots. In Section 9 we see
how to deal with conflicting leading roots. In Section 10 we wrap up our
work into a single algorithm. In Section 11 we hint possible modifications
and improvements.

The ideas behind this paper first appear in [4] and [5]. An implemen-
tation written in Python3 can be found following the link at the footnote1.

2. The Mandelbrot set

In this section we recall the basic features of the Mandelbrot set. Key
references for this material are [1] and [3].

Let us take a complex number c. We follow the iteration z 7→ z2 + c
starting from 0, the critical point. In the sequel we use f◦n(z0) to denote
the n-th iterate of z0; for most cases z0 will be 0 or c.

The critical orbit (of c) is the set of iterates f◦n(0) starting from 0.
We use Oc = {0, c, c2+ c, ...} for this set. Sometimes, stretching a little the
notation we may even consider them as ordered sets.

For example, if we take c to be equal to −1, we see that O−1 is composed
only of 0 and −1, a finite set. On the other hand, for c = 1, the orbit
O1 = {0, 1, 2, 5, ...} is infinite and is easy to see (by induction, for instance)
that the elements become bigger and bigger.

We say that c belongs to the Mandelbrot set if Oc, the orbit of c,
is a bounded set. The set of parameters c ∈ C for which the orbit Oc is

1https://github.com/Jestefano/ApproximatingRoots

410 Alfredo Poirier and Jesús Torres

bounded is by definition theMandelbrot setM.
We have already seen that −1 belongs to M. An easy computation

yields the same for 0,−2. On the other side, 1 does not belong to M as
the successive iterates escape to ∞.

We can repeat this exercise with multiple numbers to obtain the plot
of Figure 1. The shade is a way to measure how many iterations it takes
for the orbit reach 16.

Figure 1. The Mandelbrot set surrounded by equipotentials.

Now we state a theorem that is extremely useful to identify elements
that do not belong toM.

Theorem 2.1. A complex number c belongs toM if and only if the orbit
Oc is bounded by 2. Furthermore, if c is outsideM, then from some iterate
on the norm of its iterates is incremental and blows to infinity.

Proof. For an elementary proof we refer to [1] or [3]. 2

For us, more important than M is its complement. Thus, Theorem
2.1 states that once the orbit of a critical point goes beyond 2, there is no
way back and it keeps growing and growing. As a matter of fact, when
we add the point at infinity to this complement of M, it becomes simply
connected and thus can be uniformized: the complement of the Mandelbrot
set is analytically equivalent to the complement of the unitary complex unit
disk, and this mapping is “almost” explicit.

Theorem 2.2. The sets Ĉ−M and Ĉ−D are conformally equivalent. In
fact, the isomorphism is given by

ψ(c) = lim
k→∞

2k
q
f◦kc (c) = c+

a−1
c
+ . . . ,

pc
fu1

Approximating roots by quadratic iteration 411

so ψ is tangent to the identity at ∞.

The proof is beyond elementary methods and it can be found in [3].
For practical purposes, the theorem states that |f◦kc (c)| grows at a rate

A2
k
, for some A > 1 that depends on c.
The equipotential function (of the Mandelbrot set) is defined by

setting φ(c) = |ψ(c)| for c 6∈ M and φ(c) = 1 for c ∈ M. The level sets
of φ are then called equipotentials. (Its logarithm is what is named the
Green function.)

Notice that φ(c) is strictly greater than 1 for elements outsideM. We
use this function to compare the escape growth for different parameters.

Lemma 2.3. Whenever φ(c) > φ(c0) holds, then there exists λ < 1 such

that for k big enough

¯̄̄̄
¯f◦kc0 (c0)f◦kc (c)

¯̄̄̄
¯ is less than λ2

k
.

Proof. We first assume φ(c0) > 1. By assumption we can choose r sub-

ject to lim 2k
q
|f◦kc (c)/f◦kc0 (c0)| > r > 1. So, for k big we get |f◦kc (c)/f◦kc0 (c0)| >

r2
k
> 1. To establish the lemma we need λ = 1/r.
Applying the same ideas as in the last paragraph we can find λ < 1

so that |f◦kc (c)| > 1/λ2
k
. Since φ(c0) = 1 implies that c0 belongs to the

Mandelbot set, points in its orbit satisfy |f◦kc0 (c0)| ≤ 2. The expected result
is now an easy Calculus exercise. 2

Remark 2.4. That φ is tangent to the identity near ∞ has as a conse-
quence that as R increases, the equipotentials φ−1(R) start looking more
and more like true circles. This of course is not so for small values of R: the
closer we get to the Mandelbrot set, the more wiggling the equipotentials
behave.

3. The Vandermonde matrix

In this section we recall well known basic features of the Vandermonde
matrix. For extra details we refer the reader to [6].

Given x1, ..., xn, the Vandermonde matrix of x1, . . . , xn is by defini-
tion

V (x1, . . . , xn) =

⎡⎢⎢⎣
1 x1 . . . xn−11
...
...

. . .
...

1 xn . . . xn−1n

⎤⎥⎥⎦ .

412 Alfredo Poirier and Jesús Torres

This matrix will be helpful for switching coordinates from one space to
another. In that direction we need the following lemma.

Lemma 3.1. The determinant of the Vandermonde matrix V (x1, . . . , xn)
is given by

Q
i<j(xj − xi). As a consequence, the Vandermonde matrix is

invertible if and only if all xi are different.

Proof. See [6]. 2

4. A seemingly unrelated result

To justify our line of thought, we prove a Number Theory result applying
Complex Dynamics methods. We recall first without proof a truly elemen-
tary result.

Lemma 4.1. Consider two polynomials p(x) = anx
n+an−1xn−1+ . . .+a0

and d(x) = xm+ bm−1xm−1+ . . .+ b0 in Z[x], with d(x) monic. Then there
exist polynomials q(x) and r(x) in Z[x] so that p(x) = d(x)q(x)+r(x) with
deg(r) < deg(d) = m.

It is not hard to believe that if an algebraic integer α is such that it
and all its conjugates have complex norm less than or equal to 1, then α
must be a root of unity. However, the proof of this fact hardly appears in
any text. Curiously, using the ideas that we want to develop, we can carry
out a proof by an unorthodox method.

Lemma 4.2. Let α be an algebraic integer. If α and all its conjugates
have complex norm less than or equal to 1, then α is a root of unity.

Proof. Suppose p(x) = xn+an−1xn−1+...+a0 is the minimal polynomial
of α. Notice that p(x) has no repeated roots, since it is minimal. Consider
the orbit Oα = {α, α2, α4, ..., α2m , ...} under the iteration z 7→ z2. Given
an arbitrary element α2

m
of Oα, Lemma 4.1 yields

α2
m
= p(α)qm(α) + rm(α) = rm(α).

with rm(x) = rm0 + rm1x + . . . + rm(n−1)x
n−1 ∈ Z[x] of degree at most

n− 1. Also, because of |α2m | ≤ 1, we have |rm(α)| ≤ 1.

Approximating roots by quadratic iteration 413

On the other side, if c1, c2, ... cn are all the roots of p, then basic Galois
theory commands⎡⎢⎢⎣
1 c1 . . . cn−11
...
...

. . .
...

1 cn . . . cn−1n

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
rm0
rm1
...
rm(n−1)

⎤⎥⎥⎥⎥⎦=V (c1, c2, . . . , cn)

⎡⎢⎢⎢⎢⎣
rm0
rm1
...
rm(n−1)

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
rm(c1)
rm(c2)
...
rm(cn)

⎤⎥⎥⎥⎥⎦ .
However, as V (c1, . . . , cn) is invertible (because all ci are different), we

have ⎡⎢⎢⎢⎢⎣
rm0
rm1
...
rm(n−1)

⎤⎥⎥⎥⎥⎦ = V −1(c1, c2, ..., cn)

⎡⎢⎢⎢⎢⎣
rm(c1)
rm(c2)
...
rm(cn)

⎤⎥⎥⎥⎥⎦ .
Notice that all rm(ci) belong to a compact set (due to |rm(ci)| = |c2

m

i | ≤
1). Thus, under V −1(c1, c2, ..., cn), a linear transformation, this compact
set maps to a compact set. But then the n-tuples rmj do not only belong
to a fixed compact set but have integer entries. This is only possible if they
eventually repeat: we get rm(x) = rm̄(x) for some m̄ 6= m, which implies
α2

m
= α2

m̄
. This only happens for roots of unity. 2

5. One escaping root

We stress the fact that our goal has always been to factorize an arbitrary
polynomial, which without much ado we assume to be monic.

Formally, we work the process of iteration for polynomials modulo p
given by z 7→ z2+x ∈ C[x]/(p(x)), starting from 0. The result at the k-th
step is denoted by f◦k(x). The representative modulo p of smaller degree
(in practice the only representative of degree smaller than deg(p)) is the
k-th reduced polynomial (under iteration).

However –compare the introduction– the coefficients of f◦k(x) tend
to get huge really fast (cf. Lemma 5.1, below). Therefore, we choose
bk ∈ {bk1, . . . , bk(n−1), 1} subject to |bk| = maxi(|bki|, 1). For technical
reasons we introduce the normalized reduced polynomial as

Fk(x) =
f◦k(x)

bk
=

n−1X
j=0

bkj
bk

xj ,

Most times |bk| tends to ∞, but in revenge the coefficients of Fk belong to
the unit box, a compact set.

414 Alfredo Poirier and Jesús Torres

Lemma 5.1. Consider the k-th iterated polynomials f◦k(x) =
P

i bkix
i.

With the notation above, set |bk| = maxi(|bki|, 1). If the collection {|bk|}
is bounded, then all roots of p(x) lay inside the Mandelbrot set M. In
fact, when at least one root is outside the Mandelbrot set, then necessarily
|bk|→∞. If the roots of p(x) are different, the reciprocal is also true.

Proof. Let c1, c2, ..., cn be the roots of p(x). Each f◦k(ci) equalsP
j bkjc

j
i , so we can express this relationship in matrix form as⎡⎢⎣ f◦k(c1)

...
f◦k(cn)

⎤⎥⎦ =
⎡⎢⎢⎣
1 c1 . . . cn−11
...
...

. . .
...

1 cn . . . cn−1n

⎤⎥⎥⎦
⎡⎢⎣ bk0
...
bk(n−1)

⎤⎥⎦ .
Since the coefficients {bkj} are mapped to the actual iterations of the

critical points by a linear transformation, compact sets are mapped to com-
pact sets. Hence, when {bk} is bounded, by definition all ci belong to the
Mandelbrot set.

If all ci are distinct, the Vandermonde matrix turns out to be invertible,
and the reciprocal follows as when the f◦k(ci) belong to a compact set, and
so do their images. 2

To move forward, we fix p(x) = xn+an−1xn−1+...+a0 ∈ C[x] of degree
at least 2 with different roots. As a way to make our ideas transparent, we
assume that all but one root belong to the Mandelbrot set. We replicate the
method hinted in the introduction in the hope that we rescue the remaining
roots. The general case will be dealt in subsequent sections along this paper.

The normalized reduced polynomials Fk belong to a compact subset.
Any convergent limit of a subsequence is a polynomial of degree at most
n − 1. Its projective class, that is, any non trivial scalar multiple of it,
is referred to from now on as a horizon polynomial. When |bk| goes to
∞, by definition Fk has always at least one coefficient equal to 1, therefore
the same holds for any horizon polynomial. Thus horizon polynomials are
non-vanishing. The big question is what is the relation between roots of
the original polynomials and that of the horizons.

Lemma 5.2. Suppose p(x) has exactly one root off the Mandelbrot set
M. Then the other roots of p are also roots of the horizon polynomials.

As a consequence, if all roots are different and only one is escaping,
then the normalized reduced polynomials converge to a unique horizon
polynomial. This is a polynomial of degree n− 1 which divides p.

Approximating roots by quadratic iteration 415

Proof. Let the roots be c1, . . . , cn, with c1 escaping; we necessarily have
|bk| → ∞. As c2, . . . , cn are non escaping, Theorem 2.1 tells us that all
|f◦k(ci)| are bounded by 2. Therefore, for i = 2, 3, . . . , n we have

|Fk(ci)| =
|f◦k(ci)|
|bk|

≤ 2

|bk|
.

By construction, at least one coefficient of Fk(x) is 1. Since it has only
n coefficients, one index should repeat infinitely often. Hence, there is a
subsequence kl such that Fkl has only 1’s as its j-th coefficient. Working
along this subsequence, we can consider a limit F , a polynomial of degree
at most n−1, whose i-th coefficient is the limit of the i-th coefficient of Fkl .
Thus, the j-th coefficient of F is 1, where j is given above. It follows easily
from the displayed inequality that in the limit we get F (c2) = F (c3) =
. . . = F (cn) = 0. With these two conditions F is uniquely determined, and
indeed it is of degree n− 1.

Now, any horizon polynomial in sight has at least one coefficient equal
to 1 and c2, . . . , cn as roots. Therefore it must be a degree n−1 polynomial
whose projective class agrees with that of F .

Finally, this polynomial divides p as they share c2, . . . , cn as roots. 2

We remark that the rate of convergence to the horizon polynomial relays
on the speed of the escaping root. When the root is far from M the
polynomials will stabilize soon. In sharp contrast, if the escaping root is
close toM it might take a lot of iterations to find suitable approximations.

Take p(x) = x4 − 26.1534x3 − 50.8349x2 − 24.2565x − 1.6835, with
roots −1.1176, −0.6455, −0.0833 and 28. AsM ∩R, the real part of the
Mandelbrot set, is equal to [−2, 0.25], we conclude that only 28 escapes.

Let us see what happens with the first few iterations. We have dis-
played in Table 5.1 the iterated polynomial f◦k(x), since we are concerned
about the coefficients, together with f◦k(x)/bk(n−1). We are considering
this variant instead of the k-th reduced polynomial for computational rea-
sons. Monic polynomials are easier to handle computationally. In turn,
reduced polynomials are useful when we want to prove statements. We
only depict four decimal places in the table to fit the data, a programming
language, of course, can manage way more than that.

Notice that from the fifth iteration on the coefficients of f◦k(x) get un-
manageable. However, for f◦k(x)/bk(n−1), starting with the forth iteration
the coefficients do not change their first four decimal places.

416 Alfredo Poirier and Jesús Torres

Table 5.1: Data for x4 − 26.1534x3 − 50.8349x2 − 24.2565x− 1.6835.

Number of iterations f◦k(x)/bk(n−1) f◦k(x)
0 b00 = 0 d00 = 0

b10 = 0 d10 = 0
1 b11 = 1 d11 = 1

b20 = 0 d20 = 0
2 b21 = 1 d21 = 1

b22 = 1 d22 = 1

b30 = 0.0597 d30 = 1.6835
b31 = 0.8971 d31 = 25.2565

3 b32 = 1.8411 d32 = 51.8349
b33 = 1 d33 = 28.1534

b40 = 0.0601 d40 = 1116002.4067
b41 = 0.8684 d41 = 16119267.9435

4 b42 = 1.8465 d42 = 34273597.7652
b43 = 1 d43 = 18560881.8449

b50 = 0.0601 d50 = 4.8520 ∗ 1017
b51 = 0.8684 d51 = 7.0081 ∗ 1018

5 b52 = 1.8465 d52 = 1.4901 ∗ 1019
b53 = 1 d53 = 8.0697 ∗ 1018

The lost root is thus 26.1534− (−1.8465) which is equal to 27.9999, no
doubt a good approximation considering that we only needed five iterations
to grab correctly four decimal places.

As a second example, we consider a negative root. Take

p(x) = x4 + 4.1444x3 + 3.20668265x2 + 0.08227144975x− 0.262911670125,

with roots −3.14,−0.8125,−0.431, and 0.2391. Once again, the only root
outside [−2, 0.25] is −3.14.

We focus in small differences with respect to the previous example. We
see that it took longer this time for the polynomial to stabilize. This cannot
be otherwise as its leading root lays closer toM. Finally, again we recover
the lost root using the same method. We compute 1.0044− 4.1444, which
yields −3.1400.

Approximating roots by quadratic iteration 417

Table 5.2: Iterates for x4 + 4.14x3 + 3.20x2 + 0.082x− 0.26.

b20 = 0 d20 = 0
b21 = 1 d21 = 1
b22 = 1 d22 = 1

b30 = −0.1226 d30 = 0.2629116
b31 = −0.4279 d31 = 0.91772
b32 = 1.0290 d32 = −2.20668265
b33 = 1 d33 = −2.1444
b40 = −0.0837 d40 = 6.8912255
b41 = 0.0385 d41 = −3.1745610
b42 = 0.9902 d42 = −81.527683
b43 = 1 d43 = −82.3319018
b50 = −0.0837 d50 = 12200.3961
b51 = 0.0528 d51 = −7702.1686
b52 = 1.0044 d52 = −146351.2820
b53 = 1 d53 = −145710.0801
b60 = −0.0837 d60 = 37875472409.5000
b61 = 0.0528 d61 = −23914407973.3069
b62 = 1.0044 d62 = −454343737751.865
b63 = 1 d63 = −452353382871.255

6. Several escaping roots

It does not really matter whether we have one or one hundred roots outside
the Mandelbrot setM. As long as there is one leading root, we should not
worry. The following lemma explains this claim.

Lemma 6.1. If p(x) has two roots c1, c2 that satisfy f
◦k(c2)/f◦k(c1)→ 0,

then c2 is a root of any horizon polynomial.

Proof. Iteration evaluated at c1 has the expansion f
◦k(c1) =

Pn−1
j=0 bkjc

j
1.

By definition we have |bkj/bk| ≤ 1, thus the bound
¯̄̄̄
¯f◦k(c1)bk

¯̄̄̄
¯ ≤

n−1X
j=0

|cj1| = A

independent of k. Next we multiply both sides by |f◦k(c2)/f◦k(c1)| in order

418 Alfredo Poirier and Jesús Torres

to reach ¯̄̄̄
¯f◦k(c2)bk

¯̄̄̄
¯ ≤ A

¯̄̄̄
¯f◦k(c2)f◦k(c1)

¯̄̄̄
¯→ 0.

Therefore, f◦k(c2)/bk=
Pn−1

j=0 bkjc
j
2/bk tends to zero as well. 2

A couple of remarks regarding the statement. First, the hypothesis
might look a little bit far fetched, but this is not the case as long as we
remember Lemma 2.2. We only need one root to be in an equipotential
larger than the other for this to happen. Also notice that the stability of
the polynomial coefficients depends on the escape rate of the leading root.
The bottom line is that in comparison to the single root case, nothing has
changed but –perhaps– for the rate of convergence.

Table 6.1: Data for x4 + 10.9942x3 + 3.7174x2 − 6.7229x− 0.4461.

b30 = −0.0496 d30 = 0.4461
b31 = −0.8586 d31 = 7.7229
b32 = 0.3021 d32 = −2.7174
b33 = 1 d33 = −8.9942
b40 = −0.0421 d40 = 3930.1620
b41 = −0.6312 d41 = 58851.0545
b42 = 0.4108 d42 = −38301.74679
b43 = 1 d43 = −93222.6392
b50 = −0.0421 d50 = 414997230107.2569
b51 = −0.6312 d51 = 6214122130105.688
b52 = 0.4109 d52 = −4044916688845.686
b53 = 1 d53 = −9844041588843.117
b60 = −0.0421 d60 = 4.62750008344 ∗ 1027
b61 = −0.6312 d61 = 6.92916689302 ∗ 1028
b62 = 0.4109 d62 = −4.51035596319 ∗ 1028
b63 = 1 d63 = −1.097677284787 ∗ 1029

Consider

p(x) = x4 + 10.9942x3 + 3.7174x2 − 6.7229x− 0.4461,

with roots −1 and −0.0645 inside M, and −10.5833 and 0.6536 outside.
In Table 6.1 we present the behavior of the first few iterations.

Approximating roots by quadratic iteration 419

As expected, the terms do not change up to the fourth decimal place
after the first five iterations. Here, as in the previous section, it is easy to
recover the lost root. We do that by computing 0.4109 − 10.9942 which
amounts to −10.5833, exactly the escaping root. This information allows
us to conclude that φ(−10.5833) is at least as big as φ(0.6536), where here
φ is the equipotential function of the complement of the Mandelbrot set.

7. No escaping roots

Even if Theorem 2.1 helps us decide whether a point lives outside the
Mandelbrot set or not, it does not tells us when the threshold 2 is reached.
In other words, a parameter can be outside the Mandelbrot setM, yet take
1,000 steps for us to notice. Of course we cannot wait forever.

However, if after, say, ten iterates the coefficients of the iteration poly-
nomials remain small, then even under no evidence that the roots belong to
M, it is clear that they are too close toM for the algorithm in its present
state to be of any use.

As the Mandelbrot set is located in a vertical strip that spreads from
real part −2 to real part 1, what we can do is shift the roots several units
to the right or to the left. In our case it is enough to consider a shift of 3
units. Once this is performed, all roots that were close toM lay outside it
now.

Let us consider an example, for instance

p(x) = x4 + 1.5027x3 + 0.5618x2 + 1.5027x− 0.4381.

The first few iterations are listed below.

Table 7.1: Iterations for x4 + 1.5027x3 + 0.5618x2 + 1.5027x− 0.4381.

d20 = 0 d21 = 1 d22 = 1

d30 = 0.4381 d31 = −0.5027 d32 = 0.4381 d33 = 0.4973

d40 = −0.0460 d41 = 1.4041 d42 = 0.9539 d43 = 0.40411

d50 = 0.5118 d51 = −0.6471 d52 = 0.5118 d53 = 0.3528

d60 = 0.0313 d61 = 1.2046 d62 = 1.031 d63 = 0.2046

As we can see, the coefficients got stuck in a small set. Therefore it is
reasonable go ahead and shift the polynomial 3 units.

420 Alfredo Poirier and Jesús Torres

Now we proceed to compute the iterations once again but for the mod-
ified polynomial

p̂(x) = p(x+ 3) = x4 + 13.5027x3 + 68.0861x2 + 153.4465x+ 130.6992.

Table 7.2: Table for x4 + 13.502x3 + 68.086x2 + 153.446x+ 130.699.

b20 = 0 d20 = 0
b21 = 1 d21 = 1
b22 = 1 d22 = 1

b30 = 11.3624 d30 = −130.6992
b31 = 13.2531 d31 = −152.4465
b32 = 5.8322 d32 = −67.0861
b33 = 1 d33 = −11.5027
b40 = 25.3192 d40 = −281337.0308
b41 = 25.0834 d41 = −278717.1851
b42 = 8.5183 d42 = −94652.2830
b43 = 1 d43 = −11111.5966
b50 = 27.5395 d50 = −32594000193.6498
b51 = 26.5256 d51 = −31393997104.1491
b52 = 8.7540 d52 = −10360743821.7405
b53 = 1 d53 = −1183533802.8959
b60 = 27.5000 d60 = −3.1338 ∗ 1020
b61 = 26.5000 d61 = −3.0198 ∗ 1020
b62 = 8.7500 d62 = −9.9713 ∗ 1019
b63 = 1 d63 = −1.1395 ∗ 1019

We recover the lost root by computing 8.7500−13.5027, which amounts
to −4.7527. After that, we have to remember to undo the translation. So
we add 3 to our last answer. This renders −1.7527. Once we replace this
number in our original polynomial p(x) we conclude that, indeed, it is a
root.

As a final comment, we remark that we should only consider this case
once there is nothing else we can do. This presupposes that we have already
found all roots outsideM. Otherwise we might be reinstating roots inside
M that are truly outside. Fortunately, our algorithm has a natural prefer-
ence: it starts computing roots the farthest away from the Mandelbrot set

Approximating roots by quadratic iteration 421

and then proceeds inward. At the end we will have to deal anyway with
potential roots inM.

8. Repeated roots

Now we drop unnecessary hypothesis and see how some techniques can be
refined. We start by avoiding one of the strongest assumptions so far, the
fact that all roots are distinct.

In most algorithms dealing with factorization, multiple (i.e., repeated)
roots are a big concern. This algorithm is no exception.

In order to avoid such problem we consider p/gcd(p0, p), where p0 stands
for the derivative of p. In practice you may rather consider p0/n instead of
p0 in order to keep both polynomials monic.

Theorem 8.1. Suppose p(x), of degree n, has distinct roots c1, . . . , cm of
multiplicity α1, . . . , αm, respectively. If αi is 1, then p0 does not have ci
as root. Else, if αi is greater than 1, then ci is a root of p

0 of multiplicity
αi − 1.

As a consequence p/gcd(p0, p) has all ci as roots of multiplicity 1 (and
only them).

Proof. All this is trivial and well known. 2

Therefore we have switched our original polynomial for a polynomial
with no repeated roots. As a side note, notice that if all roots of p(x) are
simple, nothing changes at all.

Remark 8.2. In order to compute the greatest common divisor of two
polynomials we can apply the Euclidean algorithm and make use of the
identity gcd(a, b) = gcd(b, r), where r fits as “residue” in any expression of
the form a = d · b+ r.

Example 8.3. Take

p(x) = x4 + 8.05x3 − 32.2848x2 − 155.11392x+ 458.98085

with “normalized” derivative

p0(x)

4
= x3 + 6.0375x2 − 16.1424x− 38.77848.

422 Alfredo Poirier and Jesús Torres

We compute the gcd as shown:

gcd(p, p0/4) = gcd(p0/4, p(x)− xp0(x)/4)
= gcd(p0/4, x3 − 8.0211x2 − 57.8064x+ 228.0650)
= gcd(x3 − 8.0211x2 − 57.8064x+ 228.0650, x2 + 2.9636x− 18.9808)
= gcd(x2 + 2.9636x− 18.9808, x2 + 3.5345x− 20.7621)
= gcd(x2 + 3.5345x− 20.7621, x− 3.1199)
= gcd(x− 3.1199, x− 3.1200).

We can see that the last polynomial is x − 3.12, the greatest common
divisor of p and p0. Thus 3.12 is the only multiple root of p. Therefore,
in order to make our work comfortable we consider instead p/gcd(p0, p) =
x3 + 11.17x2 + 2.5656x− 147.109248.

The bottom line is that we must find the roots of p/gcd(p0, p) and af-
terwards by some means or another check the corresponding multiplicities.

9. Several leading roots in the same equipotential

In the previous section we focused on how to reinforce our algorithm to
prevent pitfalls when dealing with repeated roots. Now we focus on roots
that share an equipotential without being equal.

Before presenting methods that will help us understand the situation,
we explain how to detect if this were the case. As discussed previously, a
requisite for this to occur pops when iterations blow up but do not converge:
this because of Lemma 6.1.

Once we notice that this is happening, we split our original polynomial
in two: one that grabs leading roots, and one that takes care of the re-
maining ones. In order to achieve this we must first extract the greatest
common divisor between the horizon iteration and our polynomial, as this
conveys information about the slow growing roots. Then we divide p(x) by
this factor to have a hold on the leading roots.

Example 9.1. Consider

p(x) = x4 + 2.15241x3 + 2.44106x2 + 8.02121x− 4.79073.

First we check whether it has multiple roots or not. A simple inspection
shows that p and p0(x) = 4x3+6.45723x2+4.88212x+8.02121 are relatively
prime, which means that they do not share roots.

Now we are ready to proceed with the iterations.

Approximating roots by quadratic iteration 423

Table 9.1: Here p(x) = x4 + 2.1524x3 + 2.441x2 + 8.0212x− 4.7907.

b30 = −31.4321229016 d30 = 4.7907346029
b31 = 46.0663437705 d31 = −7.0212129108
b32 = 9.4548474058 d32 = −1.4410628507
b33 = 1 d33 = −0.1524152415
b40 = 3.7059136534 d40 = 38.867616982840666
b41 = −8.6820999959 d41 = −91.0578520738803
b42 = 2.3234825168 d42 = 24.368681241957834
b43 = 1 d43 = 10.487998539180962

b50 = 18.0901979472 d50 = −8910.701415741842
b51 = −23.7242681233 d51 = 11685.879290527198
b52 = −28.060787214 d52 = 13821.92152259368
b53 = 1 d53 = −492.5706972209647
b60 = −12.5472238187 d60 = 1082453609.542889
b61 = 22.6662248956 d61 = −1955423550.861008
b62 = 5.8686163529 d62 = −506287689.29195577
b63 = 1 d63 = −86270367.4680827
b70 = 4.9047943636 d70 = 3.1934222659758 ∗ 1018
b71 = −11.1761015126 d71 = −7.276556114574 ∗ 1018
b72 = 1.7830781105 d72 = 1.16092967776599 ∗ 1018
b73 = 1 d73 = 6.5108178431794 ∗ 1017
b80 = −8.141961013 d80 = −3.987589461369 ∗ 1037
b81 = 8.2155621576 d81 = 4.02363620099677 ∗ 1037
b82 = 16.9678211535 d82 = 8.3101239009331 ∗ 1037
b83 = 1 d83 = 4.89757867303324 ∗ 1036

424 Alfredo Poirier and Jesús Torres

We see that the coefficients are big and, therefore, we expect the itera-
tions to converge fast (see Lemma 6.1). But, surprise, the reader can check
by inspecting the table that this is not so. Hence something unexpected is
happening as there is more than one leading root.

Now we must factor this polynomial into the leading part and the non-
leading part. In order to do so we take the greatest common divisor between
p(x) and the horizon polynomial:

gcd(x4 + 2.1524x3 + 2.4410x2 + 8.0212x− 4.7907,
x3 + 16.9678x2 + 8.2155x− 8.1419)

= gcd(x3 + 16.967x2 + 8.215x− 8.149, x2 + 0.560x− 0.487)
= gcd(x2 + 0.560x− 0.487, x− 0.273)
= gcd(x− 0.273, x− 0.343) = 1.

This is annoying as it tells us that all the roots are leading ones. There-
fore we must somehow modify the algorithm (or the polynomial).

Mathematically, we have just verified that the roots of our polynomial
all lay in the same equipotential of the complement of the Mandelbrot set.
Going back to Remark 2.4 we can ask whether this equipotential is almost
round or not. Round here is subjective, so you better decide where big
starts. Peeking at Figure 1, we can accept that R = 2 is not a bad choice.

If all roots of a polynotmial lay in a “big equipotential”, then they
belong to the “same circle”, so all have more or less the same absolute
value. Since for a monic polynomial the product of all roots is (−1)np(0),
we conclude that the possible value for the equipotential is |p(0)|1/n.

Returning to our example, the possible value for the equipotential turns
out to be 4

√
4.7907 = 1.479. However, this is not what we agreed to call

small! In some sense –by contradiction if you wish– we have convinced
ourselves that the roots stand in a small equipotential. But small equipo-
tentials are not too far from the Mandelbrot set, so at the end we can apply
the same method as in Section 7: we shift 3 units the polynomial, in order
to work with

p̂(x) = p(x+ 3) = x4 + 14.1524x3 + 75.8126x2 + 188.782x+ 180.3567

instead.

Approximating roots by quadratic iteration 425

Table 9.2: Iterations for p̂, the shifted polynomial.

b20 = 0 d20 = 0
b21 = 1 d21 = 1
b22 = 1 d22 = 1

b30 = 14.8412412363 d30 = −180.3567
b31 = 15.4522563444 d31 = −187.782
b32 = 6.1561995984 d32 = −74.8126
b33 = 1.0 d33 = −12.1524
b40 = 32.5489481287 d40 = −474370.01130034815
b41 = 28.3951821834 d41 = −413832.81696078187
b42 = 8.6566754358 d42 = −126162.8243123506
b43 = 1.0 d43 = −14574.05042477287
b50 = 31.9639949993 d50 = −203288663938.84018
b51 = 27.7982865423 d51 = −176795063667.73987
b52 = 8.5132997602 d52 = −54143962105.17086
b53 = 1.0 d53 = −6359926659.462562
b60 = 31.9811487913 d60 = −4.317698063507066 ∗ 1022
b61 = 27.8041858956 d61 = −3.7537763381210383 ∗ 1022
b62 = 8.5129314405 d62 = −1.149310421433755 ∗ 1022
b63 = 1.0 d63 = −1.3500759749682811 ∗ 1021
b70 = 31.9811628657 d70 = −1.948893851813995 ∗ 1045
b71 = 27.8041964056 d71 = −1.6943545066541352 ∗ 1045
b72 = 8.5129333941 d72 = −5.1876798921494836 ∗ 1044
b73 = 1.0 d73 = −1.948893851813995 ∗ 1043

After some toiling (compare Table 9.2), we find that the roots of the
original polynomial are (from left to right) −2.6395, ±1.9304i, 0.4870 .

But what if the shared equipotential is big, say R ≥ 2? Then we can
rescale by means of the change of variables X = 1.33x/R (for example)
together with which the polynomial

P (X) =

µ
1.33

R

¶n
p(RX/1.33)

426 Alfredo Poirier and Jesús Torres

has all roots with absolute value close to R0 = 1.33, thus small. Since the
actual (Mandelbrot) equipotential por R = 1.33 is rather irregular to the
eye (as opposed to a round circle), we can apply our standard method to
this new polynomial with an almost certainty that the algorithm will work.

Remark 9.2 (A note on complex conjugate roots). When we deal
with real polynomials, more than often we finish up with complex conjugate
roots. Since the Mandelbrot set is symmetric by complex conjugation, a
pair of complex conjugated roots share equipotential.

Consider p(x) = x3 + 2x2 + 2x + 1, and let us see how the iterations
behave (compare Table 9.3). The quantities involved in the iterations take
longer to start growing. This is so because the roots are close to the Man-
delbrot set, but fear not, we can increase the number of iterations.

Table 9.3: Iterations for p(x) = x3 + 2x2 + 2x+ 1.

b30 = 0 d30 = 0
b31 = 0 d31 = 0
b32 = 1 d32 = −1
b40 = 1 d40 = 2
b41 = 2 d41 = 4
b42 = 1 d42 = 2

b50 = −4 d50 = −4
b51 = −3 d51 = −3
b52 = 0 d52 = 0

b60 = 1.77777 d60 = 16
b61 = 2.777777 d61 = 25
b62 = 1 d62 = 9

...
...

b90 = −1.1235 d90 = 853764348
b91 = −0.1235 d91 = 93916029
b92 = 1 d92 = −759848320
b10,0 = 13.3715 d10,0 = 2.0263 ∗ 1018
b10,1 = 14.3715 d10,1 = 2.1779 ∗ 1018
b10,2 = 1 d10,2 = 1.5154 ∗ 1017

Approximating roots by quadratic iteration 427

The iterations do not stabilize, even though the terms get wild. This
is reason enough to suspect that there are multiple roots in the leading
equipotential, since otherwise they should have already stabilized according
to Lemma 6.1.

As discussed earlier in this section, we must take the greatest common
divisor between the last iteration and the original polynomial:

gcd(x3 + 2x2 + 2x+ 1, x2 + 14.3715x+ 13.3715) =
= gcd(x2 + 14.3715x+ 13.3715, x2 + 0.9191x− 0.0808)
= gcd(x2 + 0.9191x− 0.0808, x+ 1)
= gcd(x+ 1, x+ 1).

As we can see, the polynomial associated with the roots off the leading
equipotential is x+1, the greatest common divisor between a big iteration
and the original polynomial.

We also learn that p(x)/(x+ 1) = x2 + x+ 1 is the polynomial tied to
the biggest equipotential. This polynomial happens to have two complex
conjugated roots (as discussed before). We now can easily get them by
elementary methods.

10. The complete algorithm at work

Let us consider

p(x) = x5 − 14.8592x4 + 135.3351x3 − 651.1201x2 − 411.0283x+ 13.8152.

As we have done previously, we start iterating to see in which category it
falls.

As there is growth but not convergence, there are, one way or the other,
multiple leading roots. According to the algorithm, we work through the
greatest common divisor first:

gcd(x5 − 14.8592x4 + 135.3351x3 − 651.1201x2 − 411.0283x+ 13.8152,
x4 + 2.7623x3 − 92.4231x2 + 52.2895x+ 1.7678)

= gcd(x4 + 2.7623x3 − 92.4231x2 + 52.2895x+ 1.7678,
x3 − 8.0578x2 − 4.8265x+ 0.1626)

= x3 − 8.0212x2 − 4.8060736x+ 0.161975296

Hence, the true horizon polynomial, given by this greatest common
divisor, permits us recover the leading roots as those of x2 − 6.838x +
85.29223364, the quotient. You are invited to check that 3.419 ± 8.5792i
are in fact roots of p.

428 Alfredo Poirier and Jesús Torres

Table 10.1: For x5 − 14.85x4 + 135.33x3 − 651.12x2 − 411.02x+ 13.81.

b40 = 1.8657 d40 = −4794.2190
b41 = −54.6984 d41 = 140553.0443
b42 = −111.9700 d42 = 287717.9737
b43 = −22.9715 d42 = 59027.7072
b44 = 1 d42 = −2569.5982
b50 = −0.6523 d50 = −4794.2190
b51 = 19.4435 d51 = 15039216632779.37
b52 = 29.7448 d52 = 23007106140498.695
b53 = −8.0276 d53 = −6209252417808.318
b54 = 1 d54 = 773482515899.5808

b60 = 0.2500 d60 = 4.8959 ∗ 1026
b61 = −7.3211 d61 = −1.4332 ∗ 1028
b62 = −15.3365 d62 = −3.0024 ∗ 1028
b63 = −3.1546 d63 = −6.1758 ∗ 1027
b64 = 1 d64 = 1.9577 ∗ 1027
b70 = −4.6913 d70 = 4.5268 ∗ 1058
b71 = 139.4187 d71 = −1.3452 ∗ 1060
b72 = 225.8715 d72 = −2.1794 ∗ 1060
b73 = −39.9329 d73 = 3.8532 ∗ 1059
b74 = 1 d74 = −9.6492 ∗ 1057
b80 = 1.7678 d80 = −7.3706 ∗ 10120
b81 = 52.2895 d81 = 2.1801 ∗ 10122
b82 = −92.4231 d82 = 3.8534 ∗ 10122
b83 = 2.7623 d83 = −1.1517 ∗ 10121
b84 = 1 d84 = −4.1693 ∗ 10120

Approximating roots by quadratic iteration 429

Now we should continue our discussion with x3−8.0212x2−4.8060736x+
0.161975296. Of course, we iterate it.

Table 10.2: The process for p(x) = x3 − 8.02x2 − 4.80x+ 0.16.
b30 = −0.0188 d30 = −1.6231
b31 = 0.5685 d31 = 49.0006
b32 = 1 d32 = 86.1881

b40 = −0.0188 d40 = −11016.7342
b41 = 0.5580 d41 = 325601.5213
b42 = 1 d42 = 583514.2898

b50 = −0.0188 d50 = −503802575865.4391
b51 = 0.5580 d51 = 14889927824837.625
b52 = 1 d52 = 26684458467449.418

We see that already at the fifth iteration we get convergence, so we have
here one leading root: namely 0.558 + 8.0212 = 8.5792.

The roots of the leftover polynomial x2+0.558x− 0.0188 can be easily
found, either by this algorithm or any other.

11. Final remarks

All our ideas relay on the fact that the complement of the Mandelbrot set
has level sets that can be (rigorously) approximated dynamically. However,
you can try your luck with any other similar process, either in the parameter
space (like ours along this work) or in the dynamical space.

Fix for instance C ∈ C. Then in the iteration process z 7→ z2 + C, for
some seeds z0 the succesive iterates

z0 7→ z1 = z20 + C 7→ z2 7→ . . .

remain bounded, while for some they will be attracted to ∞. Again here
you can play with the fact that some are attracted faster to∞ than others
(if attracted at all).

For instance we can take z 7→ z2, who has circular equipotentials and
is easy to implement, for the polynomial

x4 + 2.1524x3 + 2.4410x2 + 8.0212x− 4.7907,

an old friend from Example 9.1. (Recall that for this polynomial each
root is as far from the Mandelbrot set as the others are, when measured

430 Alfredo Poirier and Jesús Torres

Table 11.1: Squaring p(x) = x4 + 2.15x3 + 2.4x2 + 8.02x− 4.79.
b20 = 0 d20 = 0
b21 = 0 d21 = 0
b22 = 1 d22 = 1

b30 = −2.2257483178 d30 = 4.7907346029
b31 = 3.7266103474 d31 = −8.0212129108
b32 = 1.1341040537 d32 = −2.4410628507
b33 = 1 d33 = −2.1524152415
b40 = −1.9588963031 d40 = 157.21097271448988
b41 = 3.7266103474 d41 = −299.0786376473024
b42 = 0.1192166276 d42 = −9.567715225644205
b43 = 1 d43 = −80.25487232886249
b50 = −1.8283009781 d50 = 306929.39197400087
b51 = 3.7266103474 d51 = −625611.571489818
b52 = −0.4311493973 d52 = 72379.99867829758
b53 = 1 d53 = −167876.84066154412
b60 = −1.8151306293 d60 = 1672127163290.7983
b61 = 3.7266103473 d61 = −3433012637344.8604
b62 = −0.4866697847 d62 = 448327934906.6706
b63 = 1 d63 = −921215881823.9551
b70 = −1.8151306292 d70 = 5.148943959513387 ∗ 1025
b71 = 3.7266103473 d71 = −1.0571722902933055 ∗ 1026
b72 = −0.4870487048 d72 = 1.3816694766192075 ∗ 1025
b73 = 1 d73 = −2.836820036863101 ∗ 1025

with respect to the canonical equipotentials of the complement of M.)
The squaring process now takes advantage that root with biggest norm is
attracted faster to ∞ than the rest.

From the data on Table 11.1 we can read that one root is −0.48705−
2.1524 = −2.63945 like before. For the others, help yourself.

Approximating roots by quadratic iteration 431

References

[1] L. Carleson and T. Gamelin, Complex Dynamics. Springer, 2013.

[2] S. Lang, Complex Analysis. Addison-Wesley, 1977.

[3] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures. Vieweg, 2000.

[4] A. Poirier, “Approximating square roots”. ProMathematica, vol. 9, no. 17-18,
pp. 95-98, 1995. [On line]. Available: https://bit.ly/3l1rCIE

[5] J. Torres, “Approximating roots of polynomials”, Tesis de Licenciatura.
Pontificia Universidad Católica del Perú, 2021.

[6] L. R. Turner, Inverse of the Vandermonde matrix with applications. National
Aeronautics and Space Administration, 1966. [On line]. Available:
https://go.nasa.gov/3mDqlIn

Alfredo Poirier
Departamento de Ciencias
Sección Matemáticas
Pontificia Universidad Católica del Perú
Perú
e-mail: apoirie@pucp.edu.pe
Corresponding author

and

Jesús Torres
Facultad de Ciencias e Ingenieŕıa
Pontificia Universidad Católica del Perú
Perú
e-mail: jstorres@pucp.pe

