# On maximum degree (signless) Laplacian matrix of a graph 

R. Rangarajan<br>University of Mysore, India<br>Raghu V. D.<br>University of Mysore, India<br>Rakshith B. R.<br>Manipal Institute of Technology, India<br>Received: April 2022. Accepted : September 2022


#### Abstract

Let $G$ be a simple graph on $n$ vertices and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $G$. We denote the degree of a vertex $v_{i}$ in $G$ by $d_{G}\left(v_{i}\right)=d_{i}$. The maximum degree matrix of $G$, denoted by $M(G)$, is the real symmetric matrix with its ijth entry equal to $\max \left\{d_{i}, d_{j}\right\}$ if the vertices $v_{i}$ and $v_{j}$ are adjacent in $G, 0$ otherwise. In analogous to the definitions of Laplacian matrix and signless Laplacian matrix of a graph, we consider Laplacian and signless Laplacian for the maximum degree matrix, called the maximum degree Laplacian matrix and the maximum degree signless Laplacian matrix, respectively. Also, we introduce maximum degree Laplacian energy and maximum degree signless Laplacian energy of a graph. Then we determine the maximum degree (signless) Laplacian energy of some graphs in terms of ordinary energy, and (signless) Laplacian energy. We compute the maximum degree (signless) Laplacian spectra of some graph compositions. A lower and upper bound for the largest eigenvalue of the maximum degree (signless) Laplacian matrix is established and also we determine an upper bound for the second smallest eigenvalue of maximum degree Laplacian matrix in terms of vertex connectivity. We also determine bounds for the maximum degree (signless) Laplacian energy in terms of first Zagreb index.


Keywords: Maximum degree matrix, maximum degree Laplacian matrix, maximum degree signless Laplacian matrix.

AMS subject classification : 05C50.

## 1. Introduction

Let $G$ be a simple graph on $n$ vertices and $m$ edges. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of $G$. We use the notation $v_{i} \sim v_{j}$ ( $i \sim j$ ) to denote that the vertices $v_{i}$ and $v_{j}$ are adjacent in $G$. Let $T\left(v_{i}\right)=\sum_{v_{i} \sim v_{k}} \max \left\{d_{G}\left(v_{i}\right), d_{G}\left(v_{k}\right)\right\}$ and $T(G)=\sum_{i=1}^{n} T\left(v_{i}\right)$. Let $\lambda_{1}(G) \geq$ $\lambda_{2}(G) \geq \cdots \geq \lambda_{n-1}(G) \geq \lambda_{n}(G), \mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n-1}(G) \geq$ $\mu_{n}(G)=0$ and $q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n-1}(G) \geq q_{n}(G)$ respectively, denote the eigenvalues of the adjacency matrix $A(G)$, Laplacian matrix $L(G)=D(G)-A(G)$ and signless Laplacian matrix $Q(G)=D(G)+A(G)$, where $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Some studies and results on the spectra of these matrices can be found in $[21,5,4]$ and therein cited references.
The energy of a graph $G$, denoted by $\mathcal{E}(G)$, was defined by I. Gutman [10] in the year 1978 , as $\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. The motivation for the definition of graph energy comes from $H$ ückel theory, see [19] for details. Later in the year 2006, B. Zho and I. Gutman [14] introduced the concept of Laplacian energy $\mathcal{L E}(G)$ of a graph. It is defined as $\mathcal{L E}(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|$. In analogous to the definition of Laplacian energy of a graph, N. Abreu et al. [1] introduced the signless Laplacian energy $\mathcal{Q E}(G)$ of a graph $G$, as $\mathcal{Q} \mathcal{E}(G)=\sum_{i=1}^{n}\left|q_{i}-\frac{2 m}{n}\right|$. The concept of energy of a graph has slowly attracted many mathematicians and in recent years many papers on this topic are published. In fact there are more than 50 graph energies defined in literature, see $[13,11]$. Studies on graph energy and (signless) Laplacian energy can be found in $[19,7,8]$ and therein cited references.

Recently, several degree based graph matrices are introduced and there energies were studied. Some examples of degree based graph energies are Randić energy, harmonic energy, extended adjacency energy, Zagreb energy, arithmetic-geometric energy, etc, see $[6,18,15]$ for more details. The maximum degree matrix of a graph was defined by C. Adiga and M. Smitha [3], recently. It is denoted by $M(G)$ and its $i j$-th entry is equal to $\max \left\{d_{i}, d_{j}\right\}$ if $v_{i}$ and $v_{j}$ are adjacent in $G, 0$ otherwise. Motivated by the definitions of Laplacian matrix and signless Laplacian matrix, we introduce maximum degree Laplacian matrix $L_{M}(G)$ and maximum degree signless Laplacian matrix $Q_{M}(G)$. These matrices are defined as $L_{M}(G)=D(G)-M(G)$ and $Q_{M}(G)=D(G)+M(G)$, where $D(G)=$ $\operatorname{diag}\left(T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right)$. We denote the eigenvalues of $L_{M}(G)$ and $Q_{M}(G)$ respectively, as $\partial_{1}^{L}(G) \geq \partial_{2}^{L}(G) \geq \cdots \geq \partial_{n-1}^{L}(G) \geq \partial_{n}^{L}(G)=0$ and $\partial_{1}^{Q}(G) \geq \partial_{2}^{Q}(G) \geq \cdots \geq \partial_{n-1}^{Q}(G) \geq \partial_{n}^{Q}(G)$. The maximum degree

Laplacian energy $\mathcal{L E} \mathcal{E}_{M}(G)$ and maximum degree signless Laplacian energy $\mathcal{Q E}_{M}(G)$ of a graph $G$ are defined as

$$
\mathcal{L E}{ }_{M}(G)=\sum_{i=1}^{n}\left|\partial_{i}^{L}(G)-\frac{T(G)}{n}\right| \text { and } \mathcal{Q} \mathcal{E}_{M}(G)=\sum_{i=1}^{n}\left|\partial_{i}^{Q}(G)-\frac{T(G)}{n}\right|
$$

One of the well studied degree based topological index is the first Zagreb index. For a graph $G$ the first Zagreb index, denoted by $M_{1}(G)$, is defined as $M_{1}(G)=\sum_{i=1}^{n} d_{G}^{2}\left(v_{i}\right)$. Details about Zagreb indices can be found in [12].

In Section 2 of the paper, we determine the maximum degree (signless) Laplacian energy of some graphs in terms of ordinary energy and (signless) Laplacian energy. In Section 3, we compute the maximum degree (signless) Laplacian spectra of some graph compositions. In Section 4, a lower and upper bound for the largest eigenvalue of the (signless) Laplacian matrix is established and also we determine an upper bound for the second smallest eigenvalue of maximum degree Laplacian matrix in terms of vertex connectivity. We also determine bounds for the maximum degree (signless) Laplacian energy in terms of first Zagreb index.

## 2. Maximum degree (signless) Laplacian energy of some graphs

In this section, we determine the maximum degree (signless) Laplacian energy of some graphs in terms of ordinary energy and (signless) Laplacian energy. Also some basic results are presented.

The following definitions and lemmas will be used in this section.
Definition 2.1. [22] The identity duplication of a graph $G$, denoted by $I D(G)$, is the graph obtained by taking two copies of the vertex set $V(G)$ and then joining a vertex in the first copy of $V(G)$ to a vertex in the second copy of $V(G)$ whenever they are adjacent in $G$.

Definition 2.2. [17] The double graph $D G$ is the graph obtained by taking two copies of $G$ and then joining a vertex in the first copy of $G$ to a vertex in the second copy of $G$ whenever they are adjacent in $G$.

Lemma 2.3. [4] Let $A=\left(\begin{array}{cc}A_{0} & A_{1} \\ A_{1} & A_{0}\end{array}\right)$ be a symmetric $2 \times 2$ block matrix. Then the spectrum of $A$ is the union of spectrum of $A_{0}+A_{1}$ and $A_{0}-A_{1}$.

Remark 2.4. The matrices $L_{M}(G)$ and $Q_{M}(G)$ are positive semidefinite, because for any vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we have
$X^{T} L_{M}(G) X=\sum_{i \sim j} \max \left\{d_{i}, d_{j}\right\}\left(x_{i}-x_{j}\right)^{2} \geq 0$ and $X^{T} Q_{M}(G) X=\sum_{i \sim j} \max \left\{d_{i}, d_{j}\right\}\left(x_{i}+x_{j}\right)^{2} \geq 0$.

For a vertex $v$ of $G$, the neighborhood set of $v$ is denoted by $N_{G}(v)$ and is defined as $N_{G}(v)=\{u \in V(G): u \sim v\}$. The neighborhood degree sum of $v$ is the sum of all degrees of vertices in $N_{G}(v)$ and is denoted by $N_{d}(v)$. We denote the maximum degree and minimum degree of a vertex in $G$ by $\Delta(G)=\Delta$ and $\delta(G)=\delta$, respectively.

Proposition 2.5. Let $G$ be a graph. Suppose $u$ and $v$ are any two vertices of $G$ such that $d_{G}(u)=d_{G}(v)=\Delta$ and $N_{G}(u) \backslash\{v\}=N_{G}(v) \backslash\{u\}$. Then $\Delta^{2}$ is a maximum degree (signless) Laplacian eigenvalue of $G$ if $u$ and $v$ are not adjacent in $G$, and if $u$ and $v$ are adjacent in $G$, then $\Delta^{2}+\Delta$ is a maximum degree Laplacian eigenvalue of $G$ and $\Delta^{2}-\Delta$ is a maximum degree signless Laplacian eigenvalue of $G$.

Proof. Suppose the vertices $u$ and $v$ are not adjacent in $G$. Since $d_{G}(u)=d_{G}(v)=\Delta$ and $N_{G}(u) \backslash\{v\}=N_{G}(v) \backslash\{u\}$, the matrices $L_{M}(G)-$ $\Delta^{2} I_{n}$ and $Q_{M}(G)-\Delta^{2} I_{n}$ have two identical rows, namely the rows corresponding to the vertices $u$ and $v$. Thus their determinants are zero, proving that $\Delta^{2}$ is a maximum degree (signless) Laplacian eigenvalue of $G$. Similarly, if $u$ and $v$ are adjacent in $G$, then $\Delta^{2}+\Delta$ is a maximum degree Laplacian eigenvalue of $G$ and $\Delta^{2}-\Delta$ is a maximum degree signless Laplacian eigenvalue of $G$.
The proof of the following proposition is similar to Proposition 2.5.
Proposition 2.6. Let $G$ be a graph on $n$ vertices. Suppose $u$ and $v$ are any two vertices of $G$ such that $d_{G}(u)=d_{G}(v)=\delta$ and $N_{G}(u) \backslash\{v\}=$ $N_{G}(v) \backslash\{u\}$. Then $N_{d}(u)$ is a maximum degree (signless) Laplacian eigenvalue of $G$ if $u$ and $v$ are not adjacent in $G$, and if $u$ and $v$ are adjacent in $G$, then $N_{d}(u)+\delta$ is a maximum degree Laplacian eigenvalue of $G$ and $N_{d}(u)-\delta$ is a maximum degree signless Laplacian eigenvalue of $G$.

The following corollary follows from Proposition 2.6.
Corollary 2.7. Let $G$ be a graph. Let $G^{*}$ be the graph obtained by attaching $p \geq 2$ pendant vertices to a vertex $u$ of $G$. Then $d_{G}(u)$ is a maximum degree (signless) Laplacian eigenvalue of $G^{*}$ with multiplicity at least $p-1$.

Theorem 2.8. Let $G$ be an $r$ regular graph of order $n$. Then $\mathcal{L E}{ }_{M}(G)=$ $\mathcal{Q E}_{M}(G)=r \mathcal{E}(G)$.

Proof. $\quad$ Since $G$ is $r$ regular, $L_{M}(G)=r\left(r I_{n}-A(G)\right), Q_{M}(G)=r\left(r I_{n}+\right.$ $A(G))$ and $T(G)=\sum_{i=1}^{n} \sum_{i \sim j} \max \left\{d_{i}, d_{j}\right\}=n r^{2}$. Thus for $1 \leq i \leq n$, the eigenvalues of $L_{M}(G)$ and $Q_{M}(G)$ are respectively, $\partial_{i}^{L}(G)=r(r-$ $\left.\lambda_{n-i+1}(G)\right)$ and $\partial_{i}^{Q}(G)=r\left(r+\lambda_{i}(G)\right)$. Hence, $\mathcal{L} \mathcal{E}_{M}(G)=\sum_{i=1}^{n} \mid \partial_{i}^{L}(G)-$ $\left.\frac{T(G)}{n}\left|=\sum_{i=1}^{n}\right| r \lambda_{i}(G) \right\rvert\,=r \mathcal{E}(G)$ and $\mathcal{Q} \mathcal{E}_{M}(G)=\sum_{i=1}^{n}\left|\partial_{i}^{Q}(G)-\frac{T(G)}{n}\right|=$ $\sum_{i=1}^{n}\left|r \lambda_{i}(G)\right|=r \mathcal{E}(G)$. This completes the proof.

Let $K_{n}, C_{n}, Q_{2, n}$ and $H_{n, n}$ respectively, denote the complete graph on $n$ vertices, the cycle graph on $n$ vertices, the cocktail party graph on $2 n$ vertices and crown graph on $2 n$ vertices.

In the following corollary, we give the maximum degree (signless) Laplacian energy of some standard graphs.

Corollary 2.9. We have

$$
\mathcal{L} \mathcal{E}_{M}(G)=\mathcal{Q E}_{M}(G)= \begin{cases}2(n-1)^{2} & \text { if } G=K_{n} \\ 2 \sum_{j=1}^{n}\left|\cos \left(\frac{2 \pi j}{n}\right)\right| & \text { if } G=C_{n} \\ 8(n-1)^{2} & \text { if } G=Q_{2, n} \\ 4(n-1)^{2} & \text { if } G=H_{n, n}\end{cases}
$$

Proof. We have $\mathcal{E}\left(K_{n}\right)=2(n-1), \mathcal{E}\left(C_{n}\right)=\sum_{j=1}^{n}\left|\cos \left(\frac{2 \pi j}{n}\right)\right|$, $\mathcal{E}\left(K_{Q_{2, n}}\right)=4(n-1)$ and $\mathcal{E}\left(H_{n, n}\right)=4(n-1)$, see [4]. Therefore the corollary follows immediately from the above theorem.

Theorem 2.10. Let $G$ be a bi-regular graph such that no two vertices of degree $\delta$ are adjacent in $G$. Then $\mathcal{L E} \mathcal{E}_{M}(G)=\Delta \mathcal{L E}(G)$ and $\mathcal{Q E}_{M}(G)=$ $\Delta \mathcal{Q} \mathcal{E}(G)$.

Proof. Since $G$ is a bi-regular graph such that no two vertices of degree $\delta$ are adjacent, $L_{M}(G)=\Delta L(G), Q_{M}(G)=\Delta Q(G)$ and $T(G)=2 m \Delta$. Thus the spectrum of $L_{M}(G)$ is $\left\{\Delta \mu_{1}, \Delta \mu_{2}, \ldots, \Delta \mu_{n}\right\}$ and the spectrum of
$Q_{M}(G)$ is $\left\{\Delta q_{1}, \Delta q_{2}, \ldots, \Delta q_{n}\right\}$. Therefore, $\mathcal{L} \mathcal{E}_{M}(G)=\sum_{i=1}^{n}\left|\Delta \mu_{i}-\frac{T(G)}{n}\right|=$ $\Delta \sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|=\Delta \mathcal{L} \mathcal{E}(G)$. Similarly, we have $\mathcal{Q E}_{M}(G)=\Delta \mathcal{Q E}(G)$.

The following corollary is immediate from the above theorem.

Corollary 2.11. Let $P_{n}$ be the path graph on $n$ vertices. Then $\mathcal{L E}{ }_{M}\left(P_{n}\right)=$ $\mathcal{Q E}_{M}\left(P_{n}\right)=2 \mathcal{L E}\left(P_{n}\right)=2 \mathcal{Q} \mathcal{E}\left(P_{n}\right)$.

Theorem 2.12. Let $G$ be a graph on $n$ vertices and $I D(G)$ be the identity duplication graph of $G$. Then $\mathcal{L E}_{M}(I D(G))=\mathcal{Q E}_{M}(I D(G))=\mathcal{L E} \mathcal{E}_{M}(G)+$ $\mathcal{Q} \mathcal{E}_{M}(G)$.

Proof. The graph $I D(G)$ is of order $2 n$ with vertex set $\mathrm{V}(\operatorname{ID}(\mathrm{G}))=V(G) \cup$ $V(G)$ (disjoint union) and for any vertex $v \in V(I D(G))$, we have $d_{I D(G)}(v)=$ $d_{G}(v)$. Therefore with suitable labeling of the vertices of $I D(G)$, the matrices $L_{M}(I D(G))$ and $Q_{M}(I D(G))$ can be written as

$$
L_{M}(I D)=\left(\begin{array}{cc}
D(G) & -M(G) \\
-M(G) & D(G)
\end{array}\right) \text { and } Q_{M}(I D)=\left(\begin{array}{cc}
D(G) & M(G) \\
M(G) & D(G)
\end{array}\right)
$$

Thus from Lemma 2.3, the spectrum of $L_{M}(I D(G))$ consists of the union of spectrum of $L_{M}(G)$ and the spectrum of $Q_{M}(G)$. Since $\frac{T(I D(G))}{2 n}=$ $\frac{T(G)}{n}$, we get $\mathcal{L} \mathcal{E}_{M}(I D(G))=\mathcal{L} \mathcal{E}_{M}(G)+\mathcal{Q} \mathcal{E}_{M}(G)$.
$\mathcal{Q} \mathcal{E}_{M}(I D(G))=\mathcal{L} \mathcal{E}_{M}(G)+\mathcal{Q} \mathcal{E}_{M}(G)$.

The following corollary follows from Theorems 2.8 and 2.12 .

Corollary 2.13. Let $G$ be an r-regular graph. Then $\mathcal{L E}_{M}(I D(G))=$ $\mathcal{Q E}_{M}(I D(G))=2 r \mathcal{E}(G)$.

Theorem 2.14. Let $G$ be a graph of order $n$ and $D G$ be its double graph. Then
(i) Spectrum of $L_{M}(D G)$ is $\left\{4 \partial_{1}^{L}(G), \ldots, 4 \partial_{n}^{L}(G), 4 T_{G}\left(v_{1}\right), \ldots, 4 T_{G}\left(v_{n}\right)\right\}$.
(ii) Spectrum of $Q_{M}(D G)$ is $\left\{4 \partial_{1}^{Q}(G), \ldots, 4 \partial_{n}^{Q}(G), 4 T_{G}\left(v_{1}\right), \ldots, 4 T_{G}\left(v_{n}\right)\right\}$.

Proof. The graph $D G$ is of order $2 n$ with vertex set $V(D G)=V(G) \cup$ $V(G)$ (disjoint union) and for any vertex $v \in V(D G), d_{D G}(v)=2 d_{G}(v)$. Therefore with suitable labeling of the vertices of $D G$, we obtain

$$
L_{M}(D G)=\left(\begin{array}{cc}
4 D(G)-2 M(G) & -2 M(G) \\
-2 M(G) & 4 D(G)-2 M(G)
\end{array}\right)
$$

and

$$
Q_{M}(D G)=\left(\begin{array}{cc}
4 D(G)+2 M(G)) & 2 M(G) \\
2 M(G) & 4 D(G)+2 M(G))
\end{array}\right)
$$

By Lemma 2.3, the spectrum of $L_{M}(D G)$ is the union of the spectrum of $4 L_{M}(G)$ and the spectrum of $4 D(G)$, and the spectrum of $Q_{M}(D G)$ is the union of spectrum of $4 Q_{M}(G)$ and the spectrum of $4 D(G)$.

The following corollary can be easily deduced from the above theorem.
Corollary 2.15. Let $G$ be an r-regular graph. Then
$\mathcal{L} \mathcal{E}_{M}(D G)=\mathcal{Q E}_{M}(D G)=4 r \mathcal{E}(G)$.

## 3. (Signless) Laplacian spectra of some composition of graphs

In this section, we give the (signless) Laplacian spectra of composition of graphs, namely, the complete product of two regular graphs and corona product of two regular graphs.

Definition 3.1. [4] The complete product $G_{1} \nabla G_{2}$ of two graphs $G_{1}$ and $G_{2}$ is the graph obtained by joining every vertex of $G_{1}$ with every vertex of $G_{2}$

Definition 3.2. [9] The corona product of two graphs $G_{1}$ and $G_{2}$ is obtained by taking $\left|V\left(G_{1}\right)\right|$ copies of $G_{2}$ and joining each vertex of $G_{1}$ with every vertices of the corresponding copy of $G_{2}$.

In the following lemma we give an upper bound for the graph parameter $T(G)$ in terms of first Zagreb index.

Lemma 3.3. Let $G$ be a graph on $n$ vertices with $m$ edges. If $d_{1} \geq d_{2} \geq$ $\ldots \geq d_{n}$ is the degree sequence of $G$. Then

$$
M_{1}(G) \leq T(G) \leq M_{1}(G)+2 m n-n^{2} \delta
$$

Proof. We have

$$
\begin{gather*}
T(G)=\sum_{i=1}^{n} \sum_{v_{i} \sim v_{j}} \max \left\{d_{i}, d_{j}\right\} \\
=\sum_{i=1}^{n}\left(d_{i}^{2}+\sum_{i>k v_{i} \sim v_{k}}\left(d_{k}-d_{i}\right)\right)  \tag{3.1}\\
\leq \sum_{i=1}^{n}\left(d_{i}^{2}+\sum_{k=1}^{i-1}\left(d_{k}-d_{i}\right)\right) \\
=\sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} \sum_{k=1}^{i-1}\left(d_{k}-d_{i}\right) \\
=M_{1}(G)+n \sum_{i=1}^{n} d_{i}-\sum_{i=1}^{n}(2 i-1) d_{i} \\
=M_{1}(G)+2 n m-\sum_{i=1}^{n}(2 i-1) d_{i} \\
\leq M_{1}(G)+2 n m-\delta \sum_{i=1}^{n}(2 i-1) \\
=M_{1}(G)+2 n m-n^{2} \delta .
\end{gather*}
$$

Thus, $T(G) \leq M_{1}(G)+2 n m-n^{2} \delta$. Proving the right inequality. From equation (3.1) the left inequality follows directly.

In the following theorem we give an upper bound for the maximum degree (signless) Laplacian energy of disjoint union of graphs in terms of maximum degree (signless) Laplacian energy of parent graphs, first Zagreb index, order and size of the parent graphs.

Theorem 3.4. For $1 \leq i \leq k$, let $G_{i}$ be a graph of order $n_{i}$ and size $m_{i}$. Suppose $G$ is a disjoint union of graphs $G_{i}, 1 \leq i \leq k$. Then
(i) $\mathcal{L E}_{M}(G) \leq \sum_{i=1}^{k}\left(\mathcal{L E} \mathcal{E}_{M}\left(G_{i}\right)+2\left[M_{1}\left(G_{i}\right)+2 n_{i} m_{i}-n_{i}^{2} \delta\left(G_{i}\right)\right]\right)$.
(ii) $\mathcal{Q E}_{M}(G) \leq \sum_{i=1}^{k}\left(\mathcal{Q E}_{M}\left(G_{i}\right)+2\left[M_{1}\left(G_{i}\right)+2 n_{i} m_{i}-n_{i}^{2} \delta\left(G_{i}\right)\right]\right)$.

Proof. Let $n=n_{1}+n_{2}+\cdots+n_{k}$. Since $G=\bigcup_{i=1}^{k} G_{i}$, we have,

$$
L E_{M}(G)=\left(\begin{array}{cccc}
L_{M}\left(G_{1}\right) & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & L_{M}\left(G_{2}\right) & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & L_{M}\left(G_{k}\right)
\end{array}\right)
$$

Therefore the spectrum of $L E_{M}(G)$ is the disjoint union of the spectrum of each $L_{M}\left(G_{i}\right)$. Let $\mu_{i j}\left(1 \leq j \leq n_{i}\right)$ be the eigenvalues of $L_{M}\left(G_{i}\right)$. Suppose $T(G)=T$ and $T\left(G_{i}\right)=T_{i}$ for $1 \leq i \leq k$. Then

$$
\begin{aligned}
\mathcal{L} \mathcal{E}_{M}(G) & =\sum_{j=1}^{n_{1}}\left|\mu_{1 j}-\frac{T}{n}\right|+\sum_{j=1}^{n_{2}}\left|\mu_{2 j}-\frac{T}{n}\right|+\cdots+\sum_{j=1}^{n_{k}}\left|\mu_{k j}-\frac{T}{n}\right| \\
& =\sum_{j=1}^{n_{1}}\left|\mu_{1 j}-\frac{T_{1}}{n_{1}}+\frac{T_{1}}{n_{1}}-\frac{T}{n}\right|+\cdots+\sum_{j=1}^{n_{k}}\left|\mu_{k j}-\frac{T_{k}}{n_{k}}+\frac{T_{k}}{n_{k}}-\frac{T}{n}\right| \\
& \leq \sum_{i=1}^{k} \mathcal{L} \mathcal{E}_{M}\left(G_{i}\right)+T+\left(n_{1}+n_{2}+\cdots+n_{k}\right) \frac{T}{n} \\
& \text { (by triangular inequality) } \\
& =\sum_{i=1}^{k} \mathcal{L} \mathcal{E}_{M}\left(G_{i}\right)+2 T=\sum_{i=1}^{k}\left(\mathcal{L} \mathcal{E}_{M}\left(G_{i}\right)+2 T_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\mathcal{L} \mathcal{E}_{M}\left(G_{i}\right)+2\left[M_{1}\left(G_{i}\right)+2 n_{i} m_{i}-n_{i}^{2} \delta\left(G_{i}\right)\right]\right) \\
& \text { (by Lemma 3.3). }
\end{aligned}
$$

By a similar argument, the upper bound for $\mathcal{Q E}_{M}(G)$ also follows.
From the proof of the above theorem and from Theorem 2.8, we obtain the following corollary.

Corollary 3.5. If $G_{i}$ is an $r_{i}$ regular on $n_{i}$ vertices for $1 \leq i \leq k$. Let $G=\bigcup_{i=1}^{k} G_{i} . \quad$ Then $\mathcal{L E} \mathcal{E}_{M}(G) \leq \sum_{i=1}^{k} r_{i}\left(2 n_{i} r_{i}+\mathcal{E}\left(G_{i}\right)\right)$ and $\mathcal{Q} \mathcal{E}_{M}(G) \leq$ $\sum_{i=1}^{k} r_{i}\left(2 n_{i} r_{i}+\mathcal{E}\left(G_{i}\right)\right)$.

A matrix of order $n_{1} \times n_{2}$ with all its entries equal to 1 is denoted by $J_{n_{1} \times n_{2}}$ or simply, $J_{n_{1}}$ if $n_{1}=n_{2}$. The column vector of size $n$ with all its entries equal to 1 is denoted by $1_{n}$.

Lemma 3.6. [2] For $i=1,2$, let $M_{i}$ be a normal matrix of order $n_{i}$ having all its row sums equal to $r_{i}$. Suppose $r_{i}, \theta_{i 2}, \theta_{i 3}, \ldots, \theta_{i n_{i}}$ are the eigenvalues of $M_{i}$, then for any two constants $a$ and $b$, the eigenvalues of

$$
M:=\left(\begin{array}{cc}
M_{1} & a J_{n_{1} \times n_{2}} \\
b J_{n_{2} \times n_{1}} & M_{2}
\end{array}\right) \text { are } \theta_{i j} \text { for } i=1,2, \quad j=2,3, \ldots, n_{i} \text { and }
$$

the two roots of the quadratic equation $\left(x-r_{1}\right)\left(x-r_{2}\right)-a b n_{1} n_{2}=0$.
The following theorem gives the maximum degree (signless) Laplacian spectrum of the complete product of two regular graphs.

Theorem 3.7. Let $G_{i}$ be an $r_{i}$ regular graph on $n_{i}$ vertices for $i=1,2$. Suppose $r_{1}+n_{2} \geq r_{2}+n_{1}$. Then
(i) the spectrum of $L_{M}\left(G_{1} \nabla G_{2}\right)$ consists of $\left(r_{1}+n_{2}\right)\left(n_{1}+n_{2}\right) ; 0 ;\left(r_{1}+\right.$ $\left.n_{2}\right)\left(r_{1}+n_{2}-\lambda_{i}\left(G_{1}\right)\right)$ for $2 \leq i \leq n_{1} ; n_{1}\left(r_{1}+n_{2}\right)+\left(r_{2}+n_{1}\right)\left(r_{2}-\lambda_{i}\left(G_{2}\right)\right)$ for $2 \leq$ $i \leq n_{2}$.
(ii) the spectrum of $Q_{M}\left(G_{1} \nabla G_{2}\right)$ consists of $\left(r_{1}+n_{2}\right)\left(r_{1}+n_{2}+\lambda_{i}\left(G_{1}\right)\right)$ for $2 \leq$ $i \leq n_{1} ; n_{1}\left(r_{1}+n_{2}\right)+\left(r_{2}+n_{1}\right)\left(r_{2}+\lambda_{i}\left(G_{2}\right)\right)$ for $2 \leq i \leq n_{2}$ and the two roots of the polynomial $\left(x-\left(r_{1}+n_{2}\right)\left(2 r_{1}+n_{2}\right)\right)\left(x-n_{1}\left(r_{1}+n_{2}\right)-2 r_{2}\left(r_{2}+n_{1}\right)\right)-$ $\left(r_{1}+n_{2}\right)^{2} n_{1} n_{2}$.

Proof. Let $V\left(G_{1} \nabla G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}, u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$ such that $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. Then $d_{G_{1} \nabla G_{2}}\left(v_{i}\right)=$ $r_{1}+n_{2}$ and $d_{G_{1} \nabla G_{2}}\left(u_{j}\right)=r_{2}+n_{1}$ for $1 \leq i \leq n_{1}$ and $1 \leq j \leq n_{2}$. Therefore the matrix $L_{M}\left(G_{1} \nabla G_{2}\right)$ is equal to

$$
\left(\begin{array}{c|c}
\left(r_{1}+n_{2}\right)\left(\left(r_{1}+n_{2}\right) I_{n_{1}}-A\left(G_{1}\right)\right) & -\left(r_{1}+n_{2}\right) J_{n_{1} \times n_{2}} \\
\hline-\left(r_{1}+n_{2}\right) J_{n_{2} \times n_{1}} & \left(n_{1}\left(r_{1}+n_{2}\right)+r_{2}\left(r_{2}+n_{1}\right)\right) I_{n_{2}}-\left(r_{2}+n_{1}\right) A\left(G_{2}\right)
\end{array}\right) .
$$

Now, set $M_{1}=\left(r_{1}+n_{2}\right)\left(\left(r_{1}+n_{2}\right) I_{n_{1}}-A\left(G_{1}\right)\right), M_{2}=\left(n_{1}\left(r_{1}+n_{2}\right)+\right.$ $\left.r_{2}\left(r_{2}+n_{1}\right)\right) I_{n_{2}}-\left(r_{2}+n_{1}\right) A\left(G_{2}\right)$ and $a=b=-\left(r_{1}+n_{2}\right)$ in Lemma 3.6. Since the spectrum of $M_{1}$ and $M_{2}$ are respectively, $\left\{n_{2}\left(r_{1}+n_{2}\right),\left(r_{1}+n_{2}\right)\left(r_{1}+\right.\right.$ $\left.\left.n_{2}-\lambda_{i}\left(G_{1}\right)\right), 1 \leq i \leq n_{1}\right\}$ and $\left\{n_{1}\left(r_{1}+n_{2}\right), n_{1}\left(r_{1}+n_{2}\right)+\left(r_{2}+n_{1}\right)\left(r_{2}-\right.\right.$ $\left.\left.\lambda_{i}\left(G_{2}\right)\right), 1 \leq i \leq n_{2}\right\}$, the theorem for $L_{M}\left(G_{1} \nabla G_{2}\right)$ follows. Similarly, we obtain the spectrum of $Q_{M}\left(G_{1} \nabla G_{2}\right)$.

Corollary 3.8. Let $G_{1}$ and $G_{2}$ be two integral regular graphs. Then the maximum degree Laplacian spectrum of $G_{1} \nabla G_{2}$ is integral.

Let $P=\left(p_{i j}\right)$ and $Q$ be two matrices. The Kronecker product of $P$ and $Q$ is denoted by $P \otimes Q$, and is obtained from $P$ by replacing each entry $p_{i j}$ by $p_{i j} Q$. For matrices $P, Q, R$ and $S,(P \otimes Q)(R \otimes S)=P R \otimes Q S$. More details on Kronecker product of matrices can be found in [16].
Let $A=\left(a_{i j}\right)$ be a real symmetric matrix of order $p$. Let $B_{i}(1 \leq i \leq p)$ be a real symmetric matrix of order $n$ such that $B_{i} 1_{n}=r 1_{n}$. Define

$$
\mathcal{S}=\mathcal{S}[A, B, a, b]=\left[\begin{array}{cc}
A \otimes a J_{n}+B & I_{p} \otimes b 1_{n} \\
I_{p} \otimes b 1_{n}^{T} & A
\end{array}\right], \text { where } B \text { is a bock }
$$

diagonal matrix given by $B=\operatorname{diag}\left(B_{1}, B_{2}, \ldots, B_{p}\right)$ and $a, b$ are real constants. Let $\theta_{i 1}=r, \theta_{i 2}, \ldots, \theta_{i n}$ be the eigenvalues of $B_{i}(1 \leq i \leq p)$ and let
$\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ be the eigenvalues of $A$.
In the following lemma we give the spectrum of the matrix $\mathcal{S}=\mathcal{S}[A, B, a, b]$ as defined above.

Lemma 3.9. The spectrum of the matrix $\mathcal{S}$ consists of $\theta_{i j}$ for $1 \leq i \leq p$ and $2 \leq j \leq n ; r+a n \gamma_{i}+b \alpha_{i 1}$ and $r+a n \gamma_{i}+b \alpha_{i 2}(1 \leq i \leq p)$, where $\alpha_{i 1}$ and $\alpha_{i 2}$ are the two roots of the polynomial $b x^{2}+\left(a n \gamma_{i}-\gamma_{i}+r\right) x-b n$.

Proof. Let $X_{i 1}=\frac{1}{\sqrt{n}} 1_{n}, X_{i 2}, \ldots, X_{i n}$ be a set of orthonormal eigenvectors of the matrix $B_{i}$ corresponding to the eigenvalues $\theta_{i 1}=r, \theta_{i 2}, \ldots, \theta_{i n}$, respectively. Let $Y_{1}, Y_{2}, \ldots, Y_{p}$ be a set of orthonormal eigenvectors of the matrix $A$ corresponding to the eigenvalues $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$, respectively. For $1 \leq i \leq p$ and $2 \leq j \leq n$, define
$Z_{i j}=\left[\begin{array}{c}e_{i} \otimes X_{i j} \\ \mathbf{0}_{p}\end{array}\right]$, where $e_{i}$ is the $i$-th vector of the canonical basis of $R^{p}$. Then $\mathcal{S} Z_{i j}=\theta_{i j} Z_{i j}$. Thus, $\theta_{i j}$ is an eigenvalue of $\mathcal{S}$ corresponding to the eigenvector $Z_{i j}$. Let

$$
\begin{aligned}
& Z_{i 1}=\left[\begin{array}{c}
Y_{i} \otimes 1_{n} \\
\alpha_{i} Y_{i}
\end{array}\right], \text { where } \alpha_{i} \text { is any non-zero real number. Then } \\
& \mathcal{S} Z_{i 1}=\left[\begin{array}{c}
\left(r+a n \gamma_{i}+b \alpha_{i}\right) Y_{i} \otimes 1_{n} \\
\left(b n+\gamma_{i} \alpha_{i}\right) Y_{i}
\end{array}\right] . \text { Therefore } Z_{i 1} \text { is an eigenvector of }
\end{aligned}
$$

$\mathcal{S}$ corresponding to the eigenvalue $r+a n \gamma_{i}+b \alpha_{i}$ if and only if $b n+\gamma_{i} \alpha_{i}=$ $\alpha_{i}\left(r+a n \gamma_{i}+b \alpha_{i}\right)$. Thus, $r+a n \gamma_{i}+b \alpha_{i}$ is an eigenvalue of $\mathcal{S}$ if and only if $\alpha_{i}$ is a root of the polynomial $f_{i}(x):=b x^{2}+\left(a n \gamma_{i}-\gamma_{i}+r\right) x-b n$. Hence if $\alpha_{i 1}$ and $\alpha_{i 2}$ are the two roots of the polynomial $f_{i}(x)$, then $r+a n \gamma_{i}+b \alpha_{i 1}$ and $r+a n \gamma_{i}+b \alpha_{i 2}$ are the eigenvalues of $\mathcal{S}$. Thus we have listed all the eigenvalues of $\mathcal{S}$. This completes the proof.

Theorem 3.10. Let $G_{1}$ be an $r_{1}$ regular graph on $p$ vertices and $G_{2}$ be an $r_{2}$ regular graph on $n$ vertices. Then the maximum degree Laplacian spectrum of the corona product $G_{1} \circ G_{2}$ consists of $\left(r_{2}+1\right)\left(r_{2}-\lambda_{i}\left(G_{2}\right)\right)+$ $r_{1}+n$ with multiplicity $p$ for $2 \leq i \leq n ; 0 ; n^{2}+n r_{1}+n+r_{1} ;\left(r_{1}+n\right)\left(\alpha_{i 1}+1\right)$ and $\left(r_{1}+n\right)\left(\alpha_{i 2}+1\right)$, where $\alpha_{i 1}$ and $\alpha_{i 2}$ are the roots of the polynomial $\left(r_{1}+n\right) x^{2}+\left(r_{1}+n-\left(r_{1}+n\right)\left(r_{1}-\lambda_{i}\left(G_{1}\right)\right)-n\left(r_{1}+n\right)\right) x-\left(r_{1}+n\right) n$ for $2 \leq i \leq p$.

Proof. The maximum degree Laplacian matrix $L_{M}\left(G_{1} \circ G_{2}\right)$ of graph $G_{1} \circ G_{2}$ is

$$
\left[\begin{array}{ll}
I_{p} \otimes\left[\left(r_{2}+1\right)\left(r_{2} I_{n}-A\left(G_{2}\right)\right)+\left(r_{1}+n\right) I_{n}\right] & -I_{p} \otimes\left(r_{1}+n\right) 1_{n} \\
-I_{p} \otimes\left(r_{1}+n\right) 1_{n}^{T} & \left(r_{1}+n\right)\left(r_{1} I_{p}-A\left(G_{1}\right)\right)+n\left(r_{1}+n\right) I_{p}
\end{array}\right]
$$

Let $B_{i}=\left(r_{2}+1\right)\left(r_{2} I_{n}-A\left(G_{2}\right)\right)+\left(r_{1}+n\right) I_{n}$ for $1 \leq i \leq p, A=\left(r_{1}+\right.$ $n)\left(r_{1} I_{p}-A\left(G_{1}\right)\right)+n\left(r_{1}+n\right) I_{p}, a=0$ and $b=r_{1}+n$. Then $L_{M}\left(G_{1} \circ G_{2}\right)=$ $\mathcal{S}[A, B, a, b]$. Therefore the theorem follows from Lemma 3.9.

Theorem 3.11. Let $G_{1}$ be an $r_{1}$ regular graph on $p$ vertices and $G_{2}$ be an $r_{2}$ regular graph on $n$ vertices. Then the maximum degree signless Laplacian spectrum of the corona product $G_{1} \circ G_{2}$ consists of $\left(r_{2}+1\right)\left(r_{2}+\right.$ $\left.\lambda_{i}\left(G_{2}\right)\right)+r_{1}+n$ with multiplicity $p$ for $2 \leq i \leq n ;\left(r_{1}+n\right)\left(\alpha_{i 1}+1\right)$ and $\left(r_{1}+n\right)\left(\alpha_{i 2}+1\right)$, where $\alpha_{i 1}$ and $\alpha_{i 2}$ are the roots of the polynomial $\left(r_{1}+n\right) x^{2}+\left(r_{1}+n-\left(r_{1}+n\right)\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)-n\left(r_{1}+n\right)\right) x-\left(r_{1}+n\right) n$ for $1 \leq i \leq p$.

Proof. The maximum degree signless Laplacian matrix $Q_{M}\left(G_{1} \circ G_{2}\right)$ of graph $G_{1} \circ G_{2}$ is
$\left[\begin{array}{ll}I_{p} \otimes\left(r_{2}+1\right)\left(r_{2} I_{n}+A\left(G_{2}\right)\right)+\left(r_{1}+n\right) I_{n} & I_{p} \otimes\left(r_{1}+n\right) 1_{n} \\ I_{p} \otimes\left(r_{1}+n\right) 1_{n}^{T} & \left(r_{1}+n\right)\left(r_{1} I_{p}+A\left(G_{1}\right)\right)+n\left(r_{1}+n\right) I_{p}\end{array}\right]$.
Let $B_{i}=\left(r_{2}+1\right)\left(r_{2} I_{n}+A\left(G_{2}\right)\right)+\left(r_{1}+n\right) I_{n}$ for $1 \leq i \leq p, A=\left(r_{1}+\right.$ $n)\left(r_{1} I_{p}+A\left(G_{1}\right)\right)+n\left(r_{1}+n\right) I_{p}, a=0$ and $b=r_{1}+n$. Then $Q_{M}\left(G_{1} \circ G_{2}\right)=$ $\mathcal{S}[A, B, a, b]$. Therefore the theorem follows from Lemma 3.9.

## 4. Bounds for the eigenvalue and energy of maximum degree (signless) Laplacian matrix

In this section, we give some bounds for the eigenvalues of maximum degree (signless) Laplacian matrix. Also some bounds for the maximum degree (signless) Laplacian energy are presented. We denote the $i$ th largest eigenvalue of an Hermitian matrix $H$ by $\theta_{i}(H)$.

### 4.1. Eigenvalue bounds

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be real matrices of same order. We denote by $A^{+}$the matrix obtained from $A$ by taking the absolute value of each entries in $A$. The notation $A \leq B$ implies that $a_{i j} \leq b_{i j}$ for all $i$ and $j$. We need the following lemmas to achieve our bounds.

Lemma 4.1. [16] Let $M=N+P$, where $N$ and $P$ are Hermitian matrices of order $n$. Then for $1 \leq i, j \leq n$, we have (i) $\theta_{i}(N)+\theta_{j}(P) \leq$ $\theta_{i+j-n}(M)(i+j>n)$ and (ii) $\theta_{i+j-1}(M) \leq \theta_{i}(N)+\theta_{j}(P)(i+j-1 \leq n)$.

Lemma 4.2. [20] Let $H$ be a Hermitian matrix of order $n$ with diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$ and eigenvalues $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$. Then $\sum_{i=1}^{k} d_{i} \leq$ $\sum_{i=1}^{k} \theta_{i}$.

Lemma 4.3. [16] Let $A$ and $B$ be two real matrices of order $n$ such that $A^{+} \leq B$. Let $\rho(A)$ and $\rho(B)$ be the spectral radius of $A$ and $B$. Then $\rho(A) \leq \rho(B)$.

Lemma 4.4. [16] Let $M=\left(m_{i j}\right)$ be an $n \times n$ irreducible non-negative matrix with spectral radius $\theta_{1}$. Let $R_{i}(M)=\sum_{j=1}^{n} m_{i j}$. Then

$$
\min \left\{R_{i}(M): 1 \leq i \leq n\right\} \leq \theta_{1} \leq \max \left\{R_{i}(M): 1 \leq i \leq n\right\}
$$

Lemma 4.5. [16] Let $M$ be a symmetric matrix of order $n$ and let $\theta_{1} \geq$ $\theta_{2} \geq \ldots \geq \theta_{n}$ be the eigenvalues of $M$. Then for any non zero vector $X$ in $R^{n}, \theta_{n} \leq \frac{X^{T} M X}{X^{T} X}$. Moreover the equality holds if and only if $X$ is an eigenvector corresponding to the eigenvalue $\theta_{n}$.

Theorem 4.6. Let $G$ be a graph of order $n$. Then $\frac{2 M_{1}(G)}{n} \leq \partial_{1}^{Q}(G) \leq$ $2 \Delta^{2}(G)$.

Proof. Left inequality: Let $X$ be a non-zero column vector of order $n$. Then by Rayleigh principle, $\partial_{1}^{Q}(G) \geq \frac{X^{T} Q_{M} X}{X^{T} X}$. Set $X=(1,1, \ldots, 1)^{T}$. Then $\partial_{1}^{Q}(G) \geq \frac{2 T(G)}{n}$. Therefore, $\partial_{1}^{Q}(G) \geq \frac{2 M_{1}(G)}{n}$ by Lemma 3.3.

Right inequality: By Lemma 4.4, we get $\partial_{1}^{Q}(G) \leq \max _{v_{i} \in V(G)}\left\{2 T\left(v_{i}\right)\right\}=$ $2 \Delta^{2}(G)$.

In the following theorem we give an upper and lower bound for largest maximum degree Laplacian eigenvalue in terms of maximum degree only.

Theorem 4.7. Let $G$ be a graph on $n$ vertices. Then $\Delta^{2}(G) \leq \partial_{1}^{L}(G) \leq$ $2 \Delta^{2}(G)$ 。

Proof. Note that $\Delta^{2}(G) \geq T(u)$ for all $u \in V(G)$. Now let $v$ be a vertex of $G$ such that $d_{G}(v)=\Delta$. Then $T(v)=\Delta^{2}(G)$. Therefore from Lemma 4.2, we must $\Delta^{2}(G) \leq \partial_{1}^{L}(G)$. Since $L_{M}(G)^{+}=Q_{M}(G)$, the upper bound follows from Lemma 4.3 and Theorem 4.6.

The following theorem gives an upper bound for the second smallest eigenvalue of the maximum degree Laplacian matrix in terms of vertex connectivity.

Theorem 4.8. Let $G$ be a graph on $n$ vertices and let $k$ be the vertex connectivity of $G$. Then $\partial_{n-1}^{L}(G) \leq k(n-1)$.

Proof. Let $V_{k}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a vertex cut set of $G$. Let $G\left[V_{k}\right]$ and $G\left[V_{k}^{c}\right]$ be the subgraphs of $G$ induced by the vertex sets $V_{k}$ and $V_{k}^{c}=$ $V \backslash V_{k}$, respectively. The maximum degree Laplacian matrix of the graph $G_{1}=K_{k} \nabla G\left[V_{k}^{c}\right]$ is
$L_{M}\left(G_{1}\right)=\left[\begin{array}{cc}(n-1)\left(\left(n I_{k}-J_{k}\right)\right. & -(n-1) J_{k \times(n-k)} \\ -(n-1) J_{(n-k) \times k} & L_{M}\left(G\left[V_{k}^{c}\right]\right)+k L\left(G\left[V_{k}^{c}\right]\right)+(n-1) k I_{n-k}\end{array}\right]$.
Since $G\left[V_{k}^{c}\right]$ is disconnected, 0 is an eigenvalue of $L_{M}\left(G\left[V_{k}^{c}\right]\right)+k L\left(G\left[V_{k}^{c}\right]\right)$ with multiplicity at least 2 . Thus there exists an eigenvector $X$ corresponding to the eigenvalue 0 such that $1_{n-k}^{T} X=0$, because $L_{M}\left(G\left[V_{k}^{c}\right]\right)+$ $k L\left(G\left[V_{k}^{c}\right]\right)$ has $n-k$ orthogonal eigenvectors and $1_{n-k}$ is an eigenvector of $L_{M}\left(G\left[V_{k}^{c}\right]\right)+k L\left(G\left[V_{k}^{c}\right]\right)$ corresponding to the eigenvalue 0 . Let
$Y=\left[\begin{array}{c}\mathbf{0}_{k} \\ X\end{array}\right]$. Then $L_{M}\left(G_{1}\right) Y=(n-1) k Y$. Therefore, $(n-1) k$ is an eigenvalue of $L_{M}\left(G_{1}\right)$. Since $L_{M}\left(G_{1}\right)$ is positive semidefinite having 0 as one of its eigenvalue, we have $\partial_{n-1}^{L}\left(G_{1}\right) \leq(n-1) k$. Now from Lemma 4.1, we get

$$
\theta_{n}\left(L_{M}\left(G_{1}\right)-L_{M}(G)\right)+\partial_{n-1}^{L}\left(L_{M}(G)\right) \leq \partial_{n-1}^{L}\left(L_{M}\left(G_{1}\right)\right)
$$

Since $L_{M}\left(G_{1}\right)-L_{M}(G)$ is positive semidefinite with 0 as its eigenvalue, we have $\theta_{n}\left(L_{M}\left(G_{1}\right)-L_{M}(G)\right)=0$. Thus, $\partial_{n-1}^{L}\left(L_{M}(G)\right) \leq(n-1) k$. This completes the proof.
Since the vertex connectivity of a graph $G$ is less than or equal to $\delta(G)$, the following corollary follows.

Corollary 4.9. Let $G$ be a graph on $n$ vertices. Then $\partial_{n-1}^{L}(G) \leq \delta(G)(n-1)$.

Proposition 4.10. Let $G$ be a graph on $n$ vertices and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose $v_{k}$ is a vertex in $G$ such that $N_{d}\left(v_{k}\right)=\min \left\{N_{d}\left(v_{i}\right): v_{i} \in V(G)\right.$ and $\left.d_{G}(v)=\delta(G)\right\}$. Then $\partial_{n}^{Q}(G) \leq N_{d}\left(v_{k}\right)$.

Proof. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a unit vector of size $n$. Then from Lemma 4.5, we get $\partial_{n}^{Q}(G) \leq X^{T} Q_{M}(G) X=\sum_{i \sim j}\left(x_{i}+x_{j}\right)^{2} \max \left\{d_{i}, d_{j}\right\}$. Let $x_{i}=0$ for all $i \neq k$ and $x_{k}=1$. Then $\sum_{i \sim j}\left(x_{i}+x_{j}\right)^{2} \max \left\{d_{i}, d_{j}\right\}=\sum_{i \sim k} d_{i}=$ $N_{d}\left(v_{k}\right)$. Therefore, $\partial_{n}^{Q}(G) \leq X^{T} Q_{M}(G) X=N_{d}\left(v_{k}\right)$.

### 4.2. Bounds for maximum degree (signless) Laplacian energy

Let $\Theta_{i}(G)=\partial_{i}^{L}(G)-\frac{T(G)}{n}$. The following lemma will be used to give an upper bound for the maximum degree (signless) Laplacian energy.

Lemma 4.11. Let $G$ be a graph of order $n$. Then
(i) $\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)\right)^{2}=T(G)^{2}-2 a_{2}(G)$.
(ii) $\sum_{i=1}^{n} \Theta_{i}^{2}(G)=\left(\frac{n-1}{n}\right) T(G)^{2}-2 a_{2}(G)$
where $a_{2}(G)$ is the coefficient of $x^{n-2}$ in $\operatorname{det}\left(x I_{n}-L_{M}(G)\right)$.

Proof. We have
$\left(\sum_{i=1}^{n} \partial_{i}^{L}(G)\right)^{2}=\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)\right)^{2}+2 \sum_{1 \leq i<j \leq n} \partial_{i}^{L}(G) \partial_{j}^{L}(G)=\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)\right)^{2}+$ $2 a_{2}(G)$. Therefore, $T(G)^{2}=\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)\right)^{2}+2 a_{2}(G)$. Proving (i).
Also,

$$
\sum_{i=1}^{n} \Theta_{i}^{2}(G)=\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)-\frac{T(G)}{n}\right)^{2}=\sum_{i=1}^{n}\left(\partial_{i}^{L}(G)\right)^{2}-\frac{1}{n} T(G)^{2}
$$

Therefore, $\sum_{i=1}^{n} \Theta_{i}^{2}(G)=\left(\frac{n-1}{n}\right) T(G)^{2}-2 a_{2}(G)$. Proving (ii).
In the following theorem we give an upper bound for the maximum degree Laplacian energy.

Theorem 4.12. Let $G$ be a graph of order $n$ with $m$ edges. Then
$\mathcal{L E} \mathcal{E}_{M}(G) \leq \sqrt{(n-1)\left(M_{1}(G)+2 m n-n^{2} \delta\right)^{2}-n\left(M_{1}^{2}(G)-\sum_{i=1}^{n} d_{i}^{4}-2 \sum_{i=1}^{n} x_{i} d_{i}^{2}\right)}$,
where $x_{i}$ is the number of vertices in the neighborhood of $v_{i}$ whose degree is less than or equal to $d_{i}$.

Proof. By Cauchy-Schwarz inequality and from Lemma 4.11,

$$
\begin{align*}
\mathcal{L} \mathcal{E}_{M}(G)^{2} & =\left(\sum_{i=1}^{n}\left|\Theta_{i}(G)\right|\right)^{2}  \tag{4.1}\\
& =(n-1) T(G)^{2}-2 n a_{2}(G),
\end{align*}
$$

where $a_{2}(G)$ is the coefficient of $x^{n-2}$ in $\operatorname{det}\left(x I_{n}-L_{M}(G)\right)$.

Since $a_{2}(G)$ is the sum of all principal minors of order 2 in $L_{M}(G)$, we have

$$
\begin{aligned}
a_{2}(G) & =\sum_{1 \leq i<j \leq n} \gamma_{i}(G) \gamma_{j}(G) \\
& =\sum_{1 \leq i<j \leq n} \operatorname{det}\binom{T\left(v_{i}\right)-\max \left\{d_{i}, d_{j}\right\}}{-\max \left\{d_{i}, d_{j}\right\} T\left(v_{j}\right)} \\
& =\sum_{1 \leq i<j \leq n} T\left(v_{i}\right) T\left(v_{j}\right)-\sum_{i=1}^{n}\left(x_{i}\right) d_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{1 \leq i<j \leq n}^{\text {and }} T\left(v_{i}\right) T\left(v_{j}\right) & \geq \sum_{1 \leq i<j \leq n} d_{i}^{2} d_{j}^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{i \neq j j=1}^{n} d_{i}^{2} d_{j}^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} d_{i}^{2}\left(M_{1}(G)-d_{i}^{2}\right) \\
& =\frac{1}{2}\left(M_{1}^{2}(G)-\sum_{i=1}^{n} d_{i}^{4}\right)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
a_{2} \geq \frac{1}{2}\left(M_{1}^{2}(G)-\sum_{i=1}^{n} d_{i}^{4}\right)-\sum_{i=1}^{n} x_{i} d_{i}^{2} \tag{4.2}
\end{equation*}
$$

Using equation (4.2) and Lemma 3.3 in (4.1), we get the desired result.

Note that the above upper bound for the maximum degree Laplacian energy also holds for the maximum degree signless Laplacian energy. The following theorem gives a lower bound for the maximum degree Laplacian energy.
Theorem 4.13. Let $G$ be a graph on $n$ vertices. Then $\mathcal{L E}{ }_{M}(G) \geq \frac{2 M_{1}(G)}{n}$.
Proof. We have

$$
\begin{aligned}
& \mathcal{L E}_{M}(G)=\sum_{i=1}^{n}\left|\partial_{i}^{L}(G)-\frac{T(G)}{n}\right| \\
& \geq \partial_{1}^{L}(G)+\sum_{i=2}^{n-1}\left|\partial_{i}^{L}(G)-\frac{T(G)}{n}\right| \\
& \geq \partial_{1}^{L}(G)+\left|\sum_{i=2}^{n-1}\left(\partial_{i}^{L}(G)-\frac{T(G)}{n}\right)\right|(\text { by triangular inequality }) \\
&=\partial_{1}^{L}(G)+\left|T(G)-\partial_{1}^{L}(G)-\frac{(n-2) T(G)}{n}\right| \\
& \geq \frac{2 T(G)}{n} \\
& \geq \frac{2 M_{1}(G)}{n}(\text { by Lemma 3.3). } \\
& \text { Thus, } \mathcal{L E _ { M } ( G )} \geq \frac{2 M_{1}(G)}{n} .
\end{aligned}
$$

Theorem 4.14. Let $G$ be a graph on $n$ vertices. Then $\mathcal{Q} \mathcal{E}_{M}(G) \geq \frac{2 M_{1}(G)}{n}$.
Proof. Let $\gamma_{i}=\partial_{i}^{Q}(G)-\frac{T(G)}{n}$. Then $\sum_{i=1}^{n} \gamma_{i}=0$ and so $\mathcal{Q} \mathcal{E}_{M}(G)=$ $\sum_{i=1}^{n}\left|\gamma_{i}\right|=2 \sum_{i=1}^{s} \gamma_{i}$, where $s$ is the largest integer such that $\gamma_{s} \geq 0$. Therefore, $\mathcal{Q E} \mathcal{E}_{M}(G) \geq 2\left(\partial_{1}^{Q}(G)-\frac{T(G)}{n}\right)$. From the proof of Theorem 4.6, we get $\partial_{1}^{Q}(G) \geq \frac{2 T(G)}{n}$. Therefore from Lemma 3.3, we get, $\mathcal{Q E} \mathcal{E}_{M}(G) \geq \frac{2 M_{1}(G)}{n}$.

## Acknowledgement

The authors are grateful to the anonymous referee for careful reading of this paper and providing helpful comments and suggestions, which have considerably improved the presentation of this paper. The first and second authors are thankful to University Grants Commission (UGC), India for financial support under the grant UGC-SAP-DRS-II, NO.F.510/12/DRS-II/2018(SAP-I) dated: $9^{\text {th }}$ April 2018.

## References

[1] N. Abreu, D. M. Cardoso, I. Gutman, E. A. M artins, and M. Robbiano, "Bounds for the signless Laplacian Energy", Linear A lgebra and its A pplications, vol. 435, no. 10, pp. 2365-2374, 2011 doi: 10.1016/j.laa.2010.10.021
[2] C. Adiga and B. R. Rakshith, "U pper Bounds for the extended energy of graphs and some extended equienergetic graphs", Opuscula M athematica, vol. 38, no. 1, p. 5-13, 2018. doi: 10.7494/opmath.2018.38.15
[3] C. Adiga and M. Smitha, "On maximum degree energy of a graph", International Journal of Contemporary M athematical Sciences, vol. 4, pp. 385-396, 2009. [On line]. A vailable: https://bit.ly/3N v3G qN
[4] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and A pplication. N ew York: Academic Press, 1980.
[5] D. Cvetković and S. Simić, "T ow ards a spectral theory of graphs based on the signless Laplacian, III", A pplicable A nalysis and Discrete M athematics, vol. 4, no. 1, pp. 156-166, 2010. doi: 10.2298/aadm1000001c
[6] K. C. Das, I. Gutman, I. Milovanović, E. Milovanović, and B. Furtula, "Degree-based energies of graphs", Linear Algebra and its A pplications, vol. 554, pp. 185-204, 2018. doi: 10.1016/j.Iaa.2018.05.027
[7] K. Das and S. A. M ojalal, "On energy and Laplacian energy of graphs", The Electronic Journal of Linear Algebra, vol. 31, pp. 167-186, 2016. doi: 10.13001/1081-3810.3272
[8] K. C. Das and S. A. M ojallal, "Relation betw een signless Laplacian Energy, energy of graph and its line graph", Linear A lgebra and its A pplications, vol. 493, pp. 91-107, 2016. doi: 10.1016/j.laa.2015.12.006
[9] R. Frucht and F. Harary, "On the corona of two graphs", Aequationes M athematicae, vol. 4, no. 3, pp. 322-325, 1970. doi: 10.1007/bf01844162
[10] I. Gutman, "The energy of a graph", Ber. M ath.-Statist. Sekt. Forschungsz. Graz, vol. 103, pp. 1-22, 1978.
[11] I. Gutman and B. Furtula, "Survey of graph energies", Mathematics Interdisciplinary Research, vol. 2, pp. 85-129, 2017. [On line]. Available: https://bit.ly/3fxW K gb
[12] I. Gutman, E. M ilovanović, and I. M ilovanović, "Beyond the Zagreb indices", A K CE International Journal of Graphs and Combinatorics, vol. 17, no. 1, pp. 74-85, 2020. doi: 10.1016/j.akcej.2018.05.002
[13] I. Gutman and H. S. Ramane, "R esearch on graph energies in 2019", M A TCH Communications in Mathematical and in Computer Chemistry, vol. 84, pp. 277-292, 2020. [On line]. Available: https://bit.ly/3W CNzM e
[14] I. Gutman and B. Zhou, "Laplacian energy of a graph", Linear Algebra and its A pplications, vol. 414, no. 1, pp. 29-37, 2006. doi: 10.1016/j.laa.2005.09.008
[15] H. Hatefi, H. A. Ahangar, R. Khoeilar, and S. M. Sheikholeslami, "On the inverse sum indeg energy of trees", A sian-E uropean Journal of $M$ athematics, vol. 15, no. 09, 2021 doi: 10.1142/s1793557122501765
[16] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge U niversity Press, 2012.
[17] G. Indulal, A. Vijayakumar, "On a pair of equienergetic graphs", MATCH Communications in Mathematical and in Computer Chemistry, vol. 55, pp. 83-90, 2006. [On line]. A vailable: https://bit.ly/3E50Q nT
[18] A. Jahanbani, R. Khoeilar, and H. Shooshtari, "On the Zagreb matrix and Z agreb Energy," A sian-E uropean Journal of M athematics, vol. 15, no. 01, 2022. doi: 10.1142/s179355712250019x
[19] X. Li, Y. Shi and I. Gutman, Graph Energy. N ew York: Springer, 2012.
[20] A. W . M arshall and I. Olkin, Inequalities: Theory of M ajorization and its A pplications. N ew York: Academic Press, 1979.
[21] R. M erris, "Laplacian matrices of graphs: A survey", Linear Algebra and its A pplications, vol. 197-198, pp. 143-176, 1994. doi: 10.1016/0024-3795(94)90486-3
[22] E. Sampathkumar, "On duplicate graphs", Journal of the Indian M athematical Society, vol. 37, pp. 285-293, 1973. [On line]. A vailable: https://bit.ly/3haZ v7m

## R. Rangarajan

Department of Studies in Mathematics
University of Mysore,
Manasagangothri
Mysuru 570 006,
India
e-mail: rajra63@gmail.com
Raghu V. D.
Department of Studies in Mathematics University of Mysore, Manasagangothri Mysuru 570 006, India
e-mail: vdr111992@gmail.com
and

## Rakshith B. R.

Department of Mathematics, Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal 576 104,
India
e-mail: ranmsc08@yahoo.co.in
Corresponding author

