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Abstract
Let G be a simple graph on n vertices and v1, v2, . . . , vn be the vertices
of G. We denote the degree of a vertex vi in G by dG(vi) = di. The
maximum degree matrix of G, denoted by M(G), is the real symmet-
ric matrix with its ijth entry equal to max{di, dj} if the vertices vi
and vj are adjacent in G, 0 otherwise. In analogous to the defini-
tions of Laplacian matrix and signless Laplacian matrix of a graph,
we consider Laplacian and signless Laplacian for the maximum degree
matrix, called the maximum degree Laplacian matrix and the maxi-
mum degree signless Laplacian matrix, respectively. Also, we intro-
duce maximum degree Laplacian energy and maximum degree signless
Laplacian energy of a graph. Then we determine the maximum de-
gree (signless) Laplacian energy of some graphs in terms of ordinary
energy, and (signless) Laplacian energy. We compute the maximum
degree (signless) Laplacian spectra of some graph compositions. A
lower and upper bound for the largest eigenvalue of the maximum de-
gree (signless) Laplacian matrix is established and also we determine
an upper bound for the second smallest eigenvalue of maximum degree
Laplacian matrix in terms of vertex connectivity. We also determine
bounds for the maximum degree (signless) Laplacian energy in terms
of first Zagreb index.
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1. Introduction

Let G be a simple graph on n vertices and m edges. Let
V (G) = {v1, v2, . . . , vn} be the vertex set of G. We use the notation vi ∼ vj
( i ∼ j) to denote that the vertices vi and vj are adjacent in G. Let
T (vi) =

P
vi∼vk max{dG(vi), dG(vk)} and T (G) =

Pn
i=1 T (vi). Let λ1(G) ≥

λ2(G) ≥ · · · ≥ λn−1(G) ≥ λn(G), µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥
µn(G) = 0 and q1(G) ≥ q2(G) ≥ · · · ≥ qn−1(G) ≥ qn(G) respectively,
denote the eigenvalues of the adjacency matrix A(G), Laplacian matrix
L(G) = D(G)−A(G) and signless Laplacian matrix Q(G) = D(G)+A(G),
where D(G) = diag(d1, d2, . . . , dn). Some studies and results on the spectra
of these matrices can be found in [21, 5, 4] and therein cited references.

The energy of a graph G, denoted by E(G), was defined by I. Gutman [10]
in the year 1978, as E(G) =Pn

i=1 |λi|. The motivation for the definition of
graph energy comes from Hückel theory, see [19] for details. Later in the
year 2006, B. Zho and I. Gutman [14] introduced the concept of Laplacian
energy LE(G) of a graph. It is defined as LE(G) = Pn

i=1 | µi − 2m
n |. In

analogous to the definition of Laplacian energy of a graph, N. Abreu et
al. [1] introduced the signless Laplacian energy QE(G) of a graph G, as
QE(G) = Pn

i=1 | qi − 2m
n |. The concept of energy of a graph has slowly

attracted many mathematicians and in recent years many papers on this
topic are published. In fact there are more than 50 graph energies defined
in literature, see [13, 11]. Studies on graph energy and (signless) Laplacian
energy can be found in [19, 7, 8] and therein cited references.

Recently, several degree based graph matrices are introduced and there
energies were studied. Some examples of degree based graph energies are
Randić energy, harmonic energy, extended adjacency energy, Zagreb en-
ergy, arithmetic-geometric energy, etc, see [6, 18, 15] for more details.
The maximum degree matrix of a graph was defined by C. Adiga and
M. Smitha [3], recently. It is denoted by M(G) and its ij-th entry is
equal to max{di, dj} if vi and vj are adjacent in G, 0 otherwise. Moti-
vated by the definitions of Laplacian matrix and signless Laplacian matrix,
we introduce maximum degree Laplacian matrix LM(G) and maximum
degree signless Laplacian matrix QM(G). These matrices are defined as
LM(G) = D(G) −M(G) and QM(G) = D(G) +M(G), where D(G) =
diag(T (v1), T (v2), . . . , T (vn)). We denote the eigenvalues of LM(G) and
QM(G) respectively, as ∂

L
1 (G) ≥ ∂L2 (G) ≥ · · · ≥ ∂Ln−1(G) ≥ ∂Ln (G) = 0

and ∂Q1 (G) ≥ ∂Q2 (G) ≥ · · · ≥ ∂Qn−1(G) ≥ ∂Qn (G). The maximum degree
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Laplacian energy LEM(G) and maximum degree signless Laplacian energy
QEM(G) of a graph G are defined as

LEM(G) =
nX
i=1

|∂Li (G)−
T (G)

n
| and QEM(G) =

nX
i=1

|∂Qi (G)−
T (G)

n
|.

One of the well studied degree based topological index is the first Zagreb
index. For a graph G the first Zagreb index, denoted by M1(G), is defined
as M1(G) =

Pn
i=1 d

2
G(vi). Details about Zagreb indices can be found in

[12].

In Section 2 of the paper, we determine the maximum degree (signless)
Laplacian energy of some graphs in terms of ordinary energy and (signless)
Laplacian energy. In Section 3, we compute the maximum degree (signless)
Laplacian spectra of some graph compositions. In Section 4, a lower and
upper bound for the largest eigenvalue of the (signless) Laplacian matrix is
established and also we determine an upper bound for the second smallest
eigenvalue of maximum degree Laplacian matrix in terms of vertex con-
nectivity. We also determine bounds for the maximum degree (signless)
Laplacian energy in terms of first Zagreb index.

2. Maximum degree (signless) Laplacian energy of some graphs

In this section, we determine the maximum degree (signless) Laplacian
energy of some graphs in terms of ordinary energy and (signless) Laplacian
energy. Also some basic results are presented.

The following definitions and lemmas will be used in this section.

Definition 2.1. [22] The identity duplication of a graph G, denoted by
ID(G), is the graph obtained by taking two copies of the vertex set V (G)
and then joining a vertex in the first copy of V (G) to a vertex in the second
copy of V (G) whenever they are adjacent in G.

Definition 2.2. [17] The double graphDG is the graph obtained by taking
two copies of G and then joining a vertex in the first copy of G to a vertex
in the second copy of G whenever they are adjacent in G.

Lemma 2.3. [4] Let A =

Ã
A0 A1
A1 A0

!
be a symmetric 2×2 block matrix.

Then the spectrum of A is the union of spectrum of A0+A1 and A0 −A1.
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Remark 2.4. The matrices LM(G) and QM(G) are positive semidefinite,
because for any vector X = (x1, x2, . . . , xn), we have
XTLM(G)X =

P
i∼j max{di, dj}(xi − xj)

2 ≥ 0 and
XTQM(G)X =

P
i∼j max{di, dj}(xi + xj)

2 ≥ 0.

For a vertex v of G, the neighborhood set of v is denoted by NG(v) and is
defined as NG(v) = {u ∈ V (G) : u ∼ v}. The neighborhood degree sum of
v is the sum of all degrees of vertices in NG(v) and is denoted by Nd(v).
We denote the maximum degree and minimum degree of a vertex in G by
∆(G) = ∆ and δ(G) = δ, respectively.

Proposition 2.5. Let G be a graph. Suppose u and v are any two vertices
of G such that dG(u) = dG(v) = ∆ and NG(u)\{v} = NG(v)\{u}. Then
∆2 is a maximum degree (signless) Laplacian eigenvalue of G if u and v
are not adjacent in G, and if u and v are adjacent in G, then ∆2 + ∆ is
a maximum degree Laplacian eigenvalue of G and ∆2 −∆ is a maximum
degree signless Laplacian eigenvalue of G.

Proof. Suppose the vertices u and v are not adjacent in G. Since
dG(u) = dG(v) = ∆ and NG(u)\{v} = NG(v)\{u}, the matrices LM(G)−
∆2In and QM(G) − ∆2In have two identical rows, namely the rows cor-
responding to the vertices u and v. Thus their determinants are zero,
proving that ∆2 is a maximum degree (signless) Laplacian eigenvalue of
G. Similarly, if u and v are adjacent in G, then ∆2 + ∆ is a maximum
degree Laplacian eigenvalue of G and ∆2−∆ is a maximum degree signless
Laplacian eigenvalue of G. 2

The proof of the following proposition is similar to Proposition 2.5.

Proposition 2.6. Let G be a graph on n vertices. Suppose u and v are
any two vertices of G such that dG(u) = dG(v) = δ and NG(u)\{v} =
NG(v)\{u}. Then Nd(u) is a maximum degree (signless) Laplacian eigen-
value of G if u and v are not adjacent in G, and if u and v are adjacent
in G, then Nd(u) + δ is a maximum degree Laplacian eigenvalue of G and
Nd(u)− δ is a maximum degree signless Laplacian eigenvalue of G.

The following corollary follows from Proposition 2.6.

Corollary 2.7. Let G be a graph. LetG∗ be the graph obtained by attach-
ing p ≥ 2 pendant vertices to a vertex u of G. Then dG(u) is a maximum
degree (signless) Laplacian eigenvalue of G∗ with multiplicity at least p−1.
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Theorem 2.8. Let G be an r regular graph of order n. Then LEM(G) =
QEM(G) = rE(G).

Proof. Since G is r regular, LM(G) = r(rIn−A(G)), QM(G) = r(rIn+
A(G)) and T (G) =

Pn
i=1

P
i∼jmax{di, dj} = nr2. Thus for 1 ≤ i ≤ n,

the eigenvalues of LM(G) and QM(G) are respectively, ∂
L
i (G) = r(r −

λn−i+1(G)) and ∂Qi (G) = r(r + λi(G)). Hence, LEM(G) =
nP
i=1
|∂Li (G) −

T (G)

n
| =

nP
i=1
|rλi(G)| = rE(G) and QEM(G) =

nP
i=1
|∂Qi (G) −

T (G)

n
| =

nP
i=1
|rλi(G)| = rE(G). This completes the proof. 2

Let Kn, Cn, Q2,n and Hn,n respectively, denote the complete graph on
n vertices, the cycle graph on n vertices, the cocktail party graph on 2n
vertices and crown graph on 2n vertices.

In the following corollary, we give the maximum degree (signless) Laplacian
energy of some standard graphs.

Corollary 2.9. We have

LEM(G) = QEM(G) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(n− 1)2 if G = Kn,

2
nX

j=1

| cos
µ
2πj

n

¶
| if G = Cn,

8(n− 1)2 if G = Q2,n,
4(n− 1)2 if G = Hn,n.

Proof. We have E(Kn) = 2(n − 1), E(Cn) =
nX

j=1

| cos

µ
2πj

n

¶
|,

E(KQ2,n) = 4(n−1) and E(Hn,n) = 4(n−1), see [4]. Therefore the corollary
follows immediately from the above theorem. 2

Theorem 2.10. Let G be a bi-regular graph such that no two vertices of
degree δ are adjacent in G. Then LEM(G) = ∆LE(G) and QEM(G) =
∆QE(G).

Proof. Since G is a bi-regular graph such that no two vertices of degree
δ are adjacent, LM(G) = ∆L(G), QM(G) = ∆Q(G) and T (G) = 2m∆.
Thus the spectrum of LM(G) is {∆µ1,∆µ2, . . . ,∆µn} and the spectrum of
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QM(G) is {∆q1,∆q2, . . . ,∆qn}. Therefore, LEM(G) =
nX
i=1

|∆µi−
T (G)

n
| =

∆
nX
i=1

|µi −
2m

n
| = ∆LE(G). Similarly, we have QEM(G) = ∆QE(G). 2

The following corollary is immediate from the above theorem.

Corollary 2.11. Let Pn be the path graph on n vertices. Then LEM(Pn) =
QEM(Pn) = 2LE(Pn) = 2QE(Pn).

Theorem 2.12. Let G be a graph on n vertices and ID(G) be the identity
duplication graph of G. Then LEM(ID(G)) = QEM(ID(G)) = LEM(G)+
QEM(G).

Proof. The graph ID(G) is of order 2n with vertex set V(ID(G))=V (G)∪
V (G) (disjoint union) and for any vertex v ∈ V (ID(G)), we have dID(G)(v) =
dG(v). Therefore with suitable labeling of the vertices of ID(G), the ma-
trices LM(ID(G)) and QM(ID(G)) can be written as

LM(ID) =

Ã
D(G) −M(G)
−M(G) D(G)

!
and QM(ID) =

Ã
D(G) M(G)
M(G) D(G)

!
.

Thus from Lemma 2.3, the spectrum of LM(ID(G)) consists of the

union of spectrum of LM(G) and the spectrum ofQM(G). Since
T (ID(G))

2n
=

T (G)

n
, we get LEM(ID(G)) = LEM(G) + QEM(G). Similarly, we get

QEM(ID(G)) = LEM(G) +QEM(G). 2

The following corollary follows from Theorems 2.8 and 2.12.

Corollary 2.13. Let G be an r-regular graph. Then LEM(ID(G)) =
QEM(ID(G)) = 2rE(G).

Theorem 2.14. Let G be a graph of order n and DG be its double graph.
Then
(i) Spectrum of LM(DG) is {4∂L1 (G), . . . , 4∂Ln (G), 4TG(v1), . . . , 4TG(vn)}.
(ii) Spectrum of QM(DG) is {4∂Q1 (G), . . . , 4∂Qn (G), 4TG(v1), . . . , 4TG(vn)}.
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Proof. The graph DG is of order 2n with vertex set V (DG) = V (G) ∪
V (G) (disjoint union) and for any vertex v ∈ V (DG), dDG(v) = 2dG(v).
Therefore with suitable labeling of the vertices of DG, we obtain

LM(DG) =

⎛⎜⎝ 4D(G)− 2M(G) −2M(G)

−2M(G) 4D(G)− 2M(G)

⎞⎟⎠
and

QM(DG) =

⎛⎜⎝ 4D(G) + 2M(G)) 2M(G)

2M(G) 4D(G) + 2M(G))

⎞⎟⎠ .

By Lemma 2.3, the spectrum of LM(DG) is the union of the spectrum of
4LM(G) and the spectrum of 4D(G), and the spectrum of QM(DG) is the
union of spectrum of 4QM(G) and the spectrum of 4D(G). 2

The following corollary can be easily deduced from the above theorem.

Corollary 2.15. Let G be an r-regular graph. Then
LEM(DG) = QEM(DG) = 4rE(G).

3. (Signless) Laplacian spectra of some composition of graphs

In this section, we give the (signless) Laplacian spectra of composition of
graphs, namely, the complete product of two regular graphs and corona
product of two regular graphs.

Definition 3.1. [4] The complete product G15G2 of two graphs G1 and
G2 is the graph obtained by joining every vertex of G1 with every vertex
of G2

Definition 3.2. [9] The corona product of two graphs G1 and G2 is ob-
tained by taking |V (G1)| copies of G2 and joining each vertex of G1 with
every vertices of the corresponding copy of G2 .

In the following lemma we give an upper bound for the graph parameter
T (G) in terms of first Zagreb index.

Lemma 3.3. Let G be a graph on n vertices with m edges. If d1 ≥ d2 ≥
. . . ≥ dn is the degree sequence of G. Then

M1(G) ≤ T (G) ≤M1(G) + 2mn− n2δ.
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Proof. We have

T (G) =
nX
i=1

X
vi∼vj

max{di, dj}

=
Pn

i=1

³
d2i +

P
i>kvi∼vk(dk − di)

´
≤

nX
i=1

Ã
d2i +

i−1X
k=1

(dk − di)

!(3.1)

=
nX
i=1

d2i +
nX
i=1

i−1X
k=1

(dk − di)

=M1(G) + n
Pn

i=1 di −
Pn

i=1(2i− 1)di
=M1(G) + 2nm−

Pn
i=1(2i− 1)di

≤M1(G) + 2nm− δ
Pn

i=1(2i− 1)
=M1(G) + 2nm− n2δ.

Thus, T (G) ≤M1(G) + 2nm−n2δ. Proving the right inequality. From
equation (3.1) the left inequality follows directly. 2

In the following theorem we give an upper bound for the maximum degree
(signless) Laplacian energy of disjoint union of graphs in terms of maximum
degree (signless) Laplacian energy of parent graphs, first Zagreb index,
order and size of the parent graphs.

Theorem 3.4. For 1 ≤ i ≤ k, let Gi be a graph of order ni and size mi.
Suppose G is a disjoint union of graphs Gi, 1 ≤ i ≤ k. Then

(i) LEM (G) ≤
kX
i=1

µ
LEM(Gi) + 2[M1(Gi) + 2nimi − n2i δ(Gi)]

¶
.

(ii) QEM (G) ≤
kX
i=1

µ
QEM(Gi) + 2[M1(Gi) + 2nimi − n2i δ(Gi)]

¶
.

Proof. Let n = n1 + n2 + · · ·+ nk. Since G =
k[
i=1

Gi, we have,

LEM (G) =

⎛⎜⎜⎜⎜⎝
LM(G1) 0 · · · 0
0 LM(G2) · · · 0
...

...
. . . 0

0 0 · · · LM(Gk)

⎞⎟⎟⎟⎟⎠
.
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Therefore the spectrum of LEM (G) is the disjoint union of the spectrum
of each LM(Gi). Let µij (1 ≤ j ≤ ni) be the eigenvalues of LM(Gi).
Suppose T (G) = T and T (Gi) = Ti for 1 ≤ i ≤ k. Then

LEM (G) =
n1X
j=1

¯̄̄̄
¯µ1j − T

n

¯̄̄̄
¯+

n2X
j=1

¯̄̄̄
¯µ2j − T

n

¯̄̄̄
¯+ · · ·+

nkX
j=1

¯̄̄̄
¯µkj − T

n

¯̄̄̄
¯

=
n1X
j=1

¯̄̄̄
¯µ1j − T1

n1
+

T1
n1
− T

n

¯̄̄̄
¯+ · · ·+

nkX
j=1

¯̄̄̄
¯µkj − Tk

nk
+

Tk
nk
− T

n

¯̄̄̄
¯

≤
kX
i=1

LEM(Gi) + T + (n1 + n2 + · · ·+ nk)
T

n

(by triangular inequality)

=
kX
i=1

LEM(Gi) + 2T =
kX
i=1

³
LEM(Gi) + 2Ti

´
≤

kX
i=1

µ
LEM(Gi) + 2[M1(Gi) + 2nimi − n2i δ(Gi)]

¶
(by Lemma 3.3).

By a similar argument, the upper bound for QEM (G) also follows. 2

From the proof of the above theorem and from Theorem 2.8, we obtain the
following corollary.

Corollary 3.5. If Gi is an ri regular on ni vertices for 1 ≤ i ≤ k. Let

G =
k[
i=1

Gi. Then LEM (G) ≤
kX
i=1

ri

µ
2niri + E(Gi)

¶
and QEM (G) ≤

kX
i=1

ri

µ
2niri + E(Gi)

¶
.

A matrix of order n1×n2 with all its entries equal to 1 is denoted by Jn1×n2
or simply, Jn1 if n1 = n2. The column vector of size n with all its entries
equal to 1 is denoted by 1n.

Lemma 3.6. [2] For i = 1, 2, letMi be a normal matrix of order ni having
all its row sums equal to ri. Suppose ri, θi2, θi3, . . . , θini are the eigenvalues
of Mi, then for any two constants a and b, the eigenvalues of

M :=

Ã
M1 aJn1×n2

bJn2×n1 M2

!
are θij for i = 1, 2, j = 2, 3, . . . , ni and

the two roots of the quadratic equation (x− r1)(x− r2)− abn1n2 = 0.

The following theorem gives the maximum degree (signless) Laplacian spec-
trum of the complete product of two regular graphs.
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Theorem 3.7. Let Gi be an ri regular graph on ni vertices for i = 1, 2.
Suppose r1 + n2 ≥ r2 + n1. Then
(i) the spectrum of LM(G1 5 G2) consists of (r1 + n2)(n1 + n2); 0; (r1 +
n2)(r1+n2−λi(G1)) for 2 ≤ i ≤ n1; n1(r1+n2)+(r2+n1)(r2−λi(G2)) for 2 ≤
i ≤ n2.

(ii) the spectrum ofQM(G15G2) consists of (r1+n2)(r1+n2+λi(G1)) for 2 ≤
i ≤ n1; n1(r1+n2)+(r2+n1)(r2+λi(G2)) for 2 ≤ i ≤ n2 and the two roots of
the polynomial (x− (r1 + n2) (2 r1 + n2)) (x− n1 (r1 + n2)− 2 r2 (r2 + n1))−
(r1 + n2)

2 n1n2.

Proof. Let V (G1 5 G2) = {v1, v2, . . . , vn1 , u1, u2, . . . , un2} such that
V (G1) = {v1, v2, . . . , vn1} and V (G2) = {u1, u2, . . . , un2}. Then dG15G2(vi) =
r1+n2 and dG15G2(uj) = r2+n1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Therefore
the matrix LM(G15G2) is equal to

⎛⎜⎜⎝
(r1 + n2)

³
(r1 + n2)In1 −A(G1)

´
−(r1 + n2)Jn1×n2

−(r1 + n2)Jn2×n1

³
n1(r1 + n2) + r2(r2 + n1)

´
In2 − (r2 + n1)A(G2)

⎞⎟⎟⎠ .

Now, set M1 = (r1 + n2)((r1 + n2)In1 − A(G1)), M2 = (n1(r1 + n2) +
r2(r2+n1))In2−(r2+n1)A(G2) and a = b = −(r1+n2) in Lemma 3.6. Since
the spectrum of M1 and M2 are respectively, {n2(r1 + n2), (r1 + n2)(r1 +
n2 − λi(G1)), 1 ≤ i ≤ n1} and {n1(r1 + n2), n1(r1 + n2) + (r2 + n1)(r2 −
λi(G2)), 1 ≤ i ≤ n2}, the theorem for LM(G1 5G2) follows. Similarly, we
obtain the spectrum of QM(G15G2). 2

Corollary 3.8. Let G1 and G2 be two integral regular graphs. Then the
maximum degree Laplacian spectrum of G15G2 is integral.

Let P = (pij) and Q be two matrices. The Kronecker product of P and Q
is denoted by P ⊗ Q, and is obtained from P by replacing each entry pij
by pijQ. For matrices P , Q, R and S, (P ⊗Q)(R⊗ S) = PR⊗QS. More
details on Kronecker product of matrices can be found in [16].

Let A = (aij) be a real symmetric matrix of order p. Let Bi (1 ≤ i ≤ p) be
a real symmetric matrix of order n such that Bi1n = r1n. Define

S = S[A,B, a, b] =
"
A⊗ aJn +B Ip ⊗ b1n

Ip ⊗ b1Tn A

#
, where B is a bock

diagonal matrix given by B = diag(B1, B2, . . . , Bp) and a, b are real con-
stants. Let θi1 = r, θi2, . . . , θin be the eigenvalues of Bi (1 ≤ i ≤ p) and let
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γ1, γ2, . . . , γp be the eigenvalues of A.

In the following lemma we give the spectrum of the matrix S = S[A,B, a, b]
as defined above.

Lemma 3.9. The spectrum of the matrix S consists of θij for 1 ≤ i ≤ p
and 2 ≤ j ≤ n; r + anγi + bαi1 and r + anγi + bαi2 (1 ≤ i ≤ p), where αi1
and αi2 are the two roots of the polynomial bx

2 + (anγi − γi + r)x− bn.

Proof. Let Xi1 =
1√
n
1n,Xi2, . . . ,Xin be a set of orthonormal eigenvec-

tors of the matrix Bi corresponding to the eigenvalues θi1 = r, θi2, . . . , θin,
respectively. Let Y1, Y2, . . . , Yp be a set of orthonormal eigenvectors of the
matrix A corresponding to the eigenvalues γ1, γ2, . . . , γp, respectively. For
1 ≤ i ≤ p and 2 ≤ j ≤ n, define

Zij =

"
ei ⊗Xij

0p

#
, where ei is the i-th vector of the canonical basis of

Rp. Then SZij = θijZij . Thus, θij is an eigenvalue of S corresponding to
the eigenvector Zij . Let

Zi1 =

"
Yi ⊗ 1n
αiYi

#
, where αi is any non-zero real number. Then

SZi1 =

"
(r + anγi + bαi)Yi ⊗ 1n

(bn+ γiαi)Yi

#
. Therefore Zi1 is an eigenvector of

S corresponding to the eigenvalue r+ anγi+ bαi if and only if bn+ γiαi =
αi(r+ anγi+ bαi). Thus, r+ anγi+ bαi is an eigenvalue of S if and only if
αi is a root of the polynomial fi(x) := bx2+(anγi−γi+ r)x− bn. Hence if
αi1 and αi2 are the two roots of the polynomial fi(x), then r+ anγi+ bαi1
and r + anγi + bαi2 are the eigenvalues of S. Thus we have listed all the
eigenvalues of S. This completes the proof. 2

Theorem 3.10. Let G1 be an r1 regular graph on p vertices and G2 be
an r2 regular graph on n vertices. Then the maximum degree Laplacian
spectrum of the corona product G1 ◦G2 consists of (r2+1)(r2−λi(G2)) +
r1+n with multiplicity p for 2 ≤ i ≤ n; 0; n2+nr1+n+r1; (r1+n)(αi1+1)
and (r1 + n)(αi2 + 1), where αi1 and αi2 are the roots of the polynomial
(r1 + n)x2 + (r1 + n− (r1 + n)(r1 − λi(G1))− n(r1 + n))x− (r1 + n)n for
2 ≤ i ≤ p.

Proof. The maximum degree Laplacian matrix LM(G1 ◦ G2) of graph
G1 ◦G2 is
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"
Ip ⊗

£
(r2 + 1)(r2In −A(G2)) + (r1 + n)In

¤
−Ip ⊗ (r1 + n)1n

−Ip ⊗ (r1 + n)1Tn (r1 + n)(r1Ip −A(G1)) + n(r1 + n)Ip

#
.

Let Bi = (r2 + 1)(r2In −A(G2)) + (r1 + n)In for 1 ≤ i ≤ p, A = (r1 +
n)(r1Ip−A(G1))+n(r1+n)Ip, a = 0 and b = r1+n. Then LM(G1 ◦G2) =
S[A,B, a, b]. Therefore the theorem follows from Lemma 3.9. 2

Theorem 3.11. Let G1 be an r1 regular graph on p vertices and G2 be
an r2 regular graph on n vertices. Then the maximum degree signless
Laplacian spectrum of the corona product G1 ◦G2 consists of (r2+1)(r2+
λi(G2)) + r1 + n with multiplicity p for 2 ≤ i ≤ n; (r1 + n)(αi1 + 1)
and (r1 + n)(αi2 + 1), where αi1 and αi2 are the roots of the polynomial
(r1 + n)x2 + (r1 + n− (r1 + n)(r1 + λi(G1))− n(r1 + n))x− (r1 + n)n for
1 ≤ i ≤ p.

Proof. The maximum degree signless Laplacian matrix QM(G1 ◦G2) of
graph G1 ◦G2 is"
Ip ⊗ (r2 + 1)(r2In +A(G2)) + (r1 + n)In Ip ⊗ (r1 + n)1n

Ip ⊗ (r1 + n)1Tn (r1 + n)(r1Ip +A(G1)) + n(r1 + n)Ip

#
.

Let Bi = (r2 + 1)(r2In +A(G2)) + (r1 + n)In for 1 ≤ i ≤ p, A = (r1 +
n)(r1Ip+A(G1))+n(r1+n)Ip, a = 0 and b = r1+n. Then QM(G1 ◦G2) =
S[A,B, a, b]. Therefore the theorem follows from Lemma 3.9. 2

4. Bounds for the eigenvalue and energy of maximum degree
(signless) Laplacian matrix

In this section, we give some bounds for the eigenvalues of maximum de-
gree (signless) Laplacian matrix. Also some bounds for the maximum de-
gree (signless) Laplacian energy are presented. We denote the ith largest
eigenvalue of an Hermitian matrix H by θi(H).

4.1. Eigenvalue bounds

Let A = (aij) and B = (bij) be real matrices of same order. We denote by
A+ the matrix obtained from A by taking the absolute value of each entries
in A. The notation A ≤ B implies that aij ≤ bij for all i and j. We need
the following lemmas to achieve our bounds.
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Lemma 4.1. [16] Let M = N + P , where N and P are Hermitian ma-
trices of order n. Then for 1 ≤ i, j ≤ n, we have (i) θi(N) + θj(P ) ≤
θi+j−n(M) (i+ j > n) and (ii) θi+j−1(M) ≤ θi(N) + θj(P ) (i+ j − 1 ≤ n).

Lemma 4.2. [20] Let H be a Hermitian matrix of order n with diagonal
elements d1, d2, . . . , dn and eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θn. Then

Pk
i=1 di ≤Pk

i=1 θi.

Lemma 4.3. [16] Let A and B be two real matrices of order n such that
A+ ≤ B. Let ρ(A) and ρ(B) be the spectral radius of A and B. Then
ρ(A) ≤ ρ(B).

Lemma 4.4. [16] Let M = (mij) be an n × n irreducible non-negative

matrix with spectral radius θ1. Let Ri(M) =
nX

j=1

mij . Then

min{Ri(M) : 1 ≤ i ≤ n} ≤ θ1 ≤ max{Ri(M) : 1 ≤ i ≤ n}.

Lemma 4.5. [16] Let M be a symmetric matrix of order n and let θ1 ≥
θ2 ≥ . . . ≥ θn be the eigenvalues of M. Then for any non zero vector X

in Rn, θn ≤
XTMX

XTX
. Moreover the equality holds if and only if X is an

eigenvector corresponding to the eigenvalue θn.

Theorem 4.6. Let G be a graph of order n. Then
2M1(G)

n
≤ ∂Q1 (G) ≤

2∆2(G).

Proof. Left inequality: Let X be a non-zero column vector of order n.

Then by Rayleigh principle, ∂Q1 (G) ≥
XTQMX

XTX
. Set X = (1, 1, . . . , 1)T .

Then ∂Q1 (G) ≥
2T (G)

n
. Therefore, ∂Q1 (G) ≥

2M1(G)

n
by Lemma 3.3.

Right inequality: By Lemma 4.4, we get ∂Q1 (G) ≤ max
vi∈V (G)

{2T (vi)} =

2∆2(G). 2

In the following theorem we give an upper and lower bound for largest
maximum degree Laplacian eigenvalue in terms of maximum degree only.

Theorem 4.7. Let G be a graph on n vertices. Then ∆2(G) ≤ ∂L1 (G) ≤
2∆2(G).
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Proof. Note that ∆2(G) ≥ T (u) for all u ∈ V (G). Now let v be a vertex
of G such that dG(v) = ∆. Then T (v) = ∆2(G). Therefore from Lemma
4.2, we must ∆2(G) ≤ ∂L1 (G). Since LM(G)

+ = QM(G), the upper bound
follows from Lemma 4.3 and Theorem 4.6. 2

The following theorem gives an upper bound for the second smallest eigen-
value of the maximum degree Laplacian matrix in terms of vertex connec-
tivity.

Theorem 4.8. Let G be a graph on n vertices and let k be the vertex
connectivity of G. Then ∂Ln−1(G) ≤ k(n− 1).

Proof. Let Vk = {v1, v2, . . . , vk} be a vertex cut set of G. Let G[Vk]
and G[V c

k ] be the subgraphs of G induced by the vertex sets Vk and V c
k =

V \Vk, respectively. The maximum degree Laplacian matrix of the graph
G1 = Kk 5G[V c

k ] is

LM(G1) =

"
(n− 1)((nIk − Jk) −(n− 1)Jk×(n−k)
−(n− 1)J(n−k)×k LM(G[V

c
k ]) + kL(G[V c

k ]) + (n− 1)kIn−k

#
.

SinceG[V c
k ] is disconnected, 0 is an eigenvalue of LM(G[V

c
k ])+kL(G[V

c
k ])

with multiplicity at least 2. Thus there exists an eigenvector X corre-
sponding to the eigenvalue 0 such that 1Tn−kX = 0, because LM(G[V

c
k ]) +

kL(G[V c
k ]) has n− k orthogonal eigenvectors and 1n−k is an eigenvector of

LM(G[V
c
k ]) + kL(G[V c

k ]) corresponding to the eigenvalue 0. Let

Y =

"
0k
X

#
. Then LM(G1)Y = (n − 1)kY . Therefore, (n − 1)k is an

eigenvalue of LM(G1). Since LM(G1) is positive semidefinite having 0 as
one of its eigenvalue, we have ∂Ln−1(G1) ≤ (n− 1)k. Now from Lemma 4.1,
we get

θn(LM(G1)− LM(G)) + ∂Ln−1(LM(G)) ≤ ∂Ln−1(LM(G1)).

Since LM(G1)−LM(G) is positive semidefinite with 0 as its eigenvalue,
we have θn(LM(G1)− LM(G)) = 0. Thus, ∂

L
n−1(LM(G)) ≤ (n− 1)k. This

completes the proof. 2

Since the vertex connectivity of a graph G is less than or equal to δ(G),
the following corollary follows.

Corollary 4.9. Let G be a graph on n vertices. Then
∂Ln−1(G) ≤ δ(G)(n− 1).
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Proposition 4.10. Let G be a graph on n vertices and V (G) = {v1, v2, . . . , vn}.
Suppose vk is a vertex in G such that Nd(vk) = min{Nd(vi) : vi ∈ V (G) and
dG(v) = δ(G)}. Then ∂Qn (G) ≤ Nd(vk).

Proof. Let X = (x1, x2, . . . , xn) be a unit vector of size n. Then from
Lemma 4.5, we get ∂Qn (G) ≤ XTQM(G)X =

X
i∼j
(xi+xj)

2max{di, dj}. Let

xi = 0 for all i 6= k and xk = 1. Then
X
i∼j
(xi + xj)

2max{di, dj} =
X
i∼k

di =

Nd(vk). Therefore, ∂
Q
n (G) ≤ XTQM(G)X = Nd(vk). 2

4.2. Bounds for maximum degree (signless) Laplacian energy

Let Θi(G) = ∂Li (G)−
T (G)

n
. The following lemma will be used to give an

upper bound for the maximum degree (signless) Laplacian energy.

Lemma 4.11. Let G be a graph of order n. Then

(i)
nX
i=1

µ
∂Li (G)

¶2
= T (G)2 − 2a2(G).

(ii)
nX
i=1

Θ2i (G) =

µ
n− 1
n

¶
T (G)2 − 2a2(G)

where a2(G) is the coefficient of x
n−2 in det(xIn − LM(G)).

Proof. We haveÃ
nX
i=1

∂Li (G)

!2
=

nX
i=1

µ
∂Li (G)

¶2
+ 2

X
1≤i<j≤n

∂Li (G)∂
L
j (G) =

nX
i=1

µ
∂Li (G)

¶2
+

2a2(G). Therefore, T (G)
2 =

Pn
i=1

µ
∂Li (G)

¶2
+ 2a2(G). Proving (i).

Also,

nX
i=1

Θ2i (G) =
nX
i=1

µ
∂Li (G)−

T (G)

n

¶2
=

nX
i=1

µ
∂Li (G)

¶2
− 1

n
T (G)2.

Therefore,
nX
i=1

Θ2i (G) =

µ
n− 1
n

¶
T (G)2 − 2a2(G). Proving (ii). 2

In the following theorem we give an upper bound for the maximum degree
Laplacian energy.
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Theorem 4.12. Let G be a graph of order n with m edges. Then

LEM(G) ≤

vuut(n− 1)(M1(G) + 2mn− n2δ)2 − n

Ã
M2
1 (G)−

nX
i=1

d4i − 2
nX
i=1

xid
2
i

!
,

where xi is the number of vertices in the neighborhood of vi whose degree
is less than or equal to di.

Proof. By Cauchy-Schwarz inequality and from Lemma 4.11,

LEM(G)2 =

Ã
nX
i=1

| Θi(G) |
!2

≤ n

Ã
nX
i=1

Θ2i (G)

!
= (n− 1)T (G)2 − 2na2(G),

(4.1)

where a2(G) is the coefficient of x
n−2 in det(xIn − LM(G)).

Since a2(G) is the sum of all principal minors of order 2 in LM(G), we
have

a2(G) =
X

1≤i<j≤n
γi(G)γj(G)

=
X

1≤i<j≤n
det

Ã
T (vi)−max{di, dj}
−max{di, dj}T (vj)

!

=
X

1≤i<j≤n
T (vi)T (vj)−

nX
i=1

(xi)d
2
i ,

andX
1≤i<j≤n

T (vi)T (vj) ≥
X

1≤i<j≤n
d2i d

2
j

=
1

2

nX
i=1

nX
i6=jj=1

d2i d
2
j

=
1

2

nX
i=1

d2i (M1(G)− d2i )

=
1

2

Ã
M2
1 (G)−

nX
i=1

d4i

!
.

Thus,

a2 ≥
1

2

Ã
M2
1 (G)−

nX
i=1

d4i

!
−

nX
i=1

xid
2
i .(4.2)

Using equation (4.2) and Lemma 3.3 in (4.1), we get the desired result. 2
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Note that the above upper bound for the maximum degree Laplacian energy
also holds for the maximum degree signless Laplacian energy. The following
theorem gives a lower bound for the maximum degree Laplacian energy.

Theorem 4.13. Let G be a graph on n vertices. Then LEM(G) ≥
2M1(G)

n
.

Proof. We have

LEM(G) =
Pn

i=1 |∂Li (G)−
T (G)

n
|

≥ ∂L1 (G) +
Pn−1

i=2 |∂Li (G)−
T (G)

n
|

≥ ∂L1 (G) +
¯̄̄ Pn−1

i=2 (∂
L
i (G)−

T (G)

n
)
¯̄̄
( by triangular inequality)

= ∂L1 (G) +
¯̄̄
T (G)− ∂L1 (G)−

(n− 2)T (G)
n

¯̄̄
≥ 2T (G)

n

≥ 2M1(G)

n
( by Lemma 3.3).

Thus, LEM(G) ≥
2M1(G)

n
. 2

Theorem 4.14. Let G be a graph on n vertices. ThenQEM(G) ≥
2M1(G)

n
.

Proof. Let γi = ∂Qi (G) −
T (G)

n
. Then

Pn
i=1 γi = 0 and so QEM(G) =

nX
i=1

|γi| = 2
sX

i=1

γi, where s is the largest integer such that γs ≥ 0. Therefore,

QEM(G) ≥ 2(∂Q1 (G) −
T (G)

n
). From the proof of Theorem 4.6, we get

∂Q1 (G) ≥
2T (G)

n
. Therefore from Lemma 3.3, we get, QEM(G) ≥

2M1(G)

n
.

2
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