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Abstract

A total labeling ξ is defined to be an edge irregular total absolute
difference k-labeling of the graph G if for every two different edges e
and f of G there is wt(e) 6= wt(f) where weight of an edge e = xy
is defined as wt(e) = |ξ(e)− ξ(x)− ξ(y)|. The minimum k for which
the graph G has an edge irregular total absolute difference labeling
is called the total absolute difference edge irregularity strength of the
graph G, tades(G). In this paper, we determine the total absolute
difference edge irregularity strength of the precise values for Tp-tree
related graphs.
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1. Introduction

Here, we consider a simple graph G with vertex set V and the edge set
E. The total edge irregular strength of graphs was introduced by Baca et
al. [2]. The basic idea came from irregular assignments and the irregular
strength of graphs introduced by Chartrand et al. [3]. The total edge
irregular k-labeling of a graph G = (V,E) namely the labeling ξ : V

S
E →

{1, 2, . . . , k} such that all edge weights are distinct. The weight wt(uv) of
an edge uv is defined as wtξ(uv) = ξ(u) + ξ(uv) + ξ(v). The total edge
irregularity strength G denoted by tes(G), is the smallest k for which G
has a total edge irregular k-labeling. In the year 2006, Ivanco and Jendrol
stated a conjecture that ,

tes(G) = max

½»
E(G) + 2

3

¼
,

»
∆(G) + 1

2

¼¾
for an arbitrary graph G different from K5.

This conjecture has been verified for all trees in [5]. The Ivanco and
Jendrol’s conjecture has been verified for Kn and Km,n in [6], for cartesian
product of two paths in [8], for the corona product of a path with certain
graphs in [9], for categorical product of cycle and path in [11], for a subdi-
vision of stars in [12] and for hexagonal grid in [1].

In [10] we find the details for total absolute difference edge irregular-
ity strength which we described here:“Ramalakshmi and Kathiresan intro-
duced the concept of total absolute difference edge irregularity strength of
graphs to reduce the edge weights. For a graph G = (V (G), E(G)), the
weight of e = xy under a total labeling ξ is wt(e) = |ξ(e) − ξ(x) − ξ(y)|.
We define a labeling ξ : V (G)

S
E(G) → {1, 2, . . . , k} as an edge irregular

total absolute difference k-labeling of a graph G if for every two different
edges e = xy and f = x0y0 we have wt(e) 6= wt(f). The total absolute
difference edge irregular strength, tades(G), is the minimum k such that G
posses an edge irregular total absolute difference k-labeling”. In [10], we
find the following conjectures,

1. tades(T ) = max
n
p
2 ,

∆+1
2

o
for a tree T on p vertices,

2. tes(G) ≤ tades(G).

Theorem 1.1. Let G = (V,E) be a graph. Then
l
|E|
2

m
≤ tades(G) ≤

|E|+ 1.
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Lourdusamy et al. [7] have computed the tades(G) for snake related
graphs, wheel related graphs, lotus inside the circle and double fan graph.
Here, we investigate the total absolute difference edge irregularity strength
of TP -tree related graphs.

Definition 1.2. [4] Let T be a tree and u0 and v0 be two adjacent vertices
in T . Let there be two pendant vertices u and v in T such that the length of
u0−u path is equal to the length of v0−v path. If the edge u0v0 is deleted
from T and u, v are joined by an edge uv, then such a transformation of
T is called an elementary parallel transformation (or an ept) and the edge
u0v0 is called transformable edge.

If by the sequence of ept’s, T can be reduced to a path, then T is called
a Tp-tree (transformed tree) and such a sequence regarded as a composition
of mappings (ept’s) denoted by P , is called a parallel transformation of T .
The path, the image of T under P is denoted as P (T ). We use the notation
d(u, v) to denote the distance between the vertices of u and v.

Figure 1. A Tp-tree and a sequence of two ept’s reducing it to a path

Definition 1.3. Let G1 be a graph with p vertices and G2 be any graph.
A graph G1 bOG2 is obtained from G1 and p copies of G2 by identifying one
vertex of ith copy of G2 with ith vertex of G1.

Definition 1.4. The coronaG1¯G2 of two graphsG1(p1, q1) andG2(p2, q2)
is defined as the graph obtained by taking one copy of G1 and p1 copies of
G2 and joining the i

th vertex of G1 with an edge to every vertex in the i
th

copy of G2.

Marisol Martínez
f-1
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2. Main Results

Theorem 2.1. Let T be a Tp-tree on m vertices. Then tades(T bOPn) =l
mn−1
2

m
.

Proof. Consider T be a Tp-tree with m vertices. Applying the definition
of a transformed tree we can find a parallel transformation P of T which
will satisfy (i) V (P (T )) = V (T ) and (ii) E(P (T )) = (E(T ) − Ed)

S
Ep,

where P (T ) is the path, Ed is the set of edges removed from T and Ep is
the set of edges newly introduced using the sequence P = (P1, P2, · · · , Pk)
of the epts P used to arrive at the path P (T ). Obviously, we have the same
number of edges for Ed and Ep. We use the label α1, α2, · · · , αm succes-
sively starting from one pendant vertex of P (T ) and proceed in the right
direction up to the other pendant vertex to denote the vertices of P (T ). Let
βs1, β

s
2, · · · , βsn(1 ≤ s ≤ m) be the vertices in sth copy of Pn with βs1 = αs.

Then V (T bOPn) = {αs, βsr : 1 ≤ r ≤ n, 1 ≤ s ≤ m with βs1 = αs} and
E(T bOPn) = E(T )

S{βsrβsr+1 : 1 ≤ r ≤ n− 1, 1 ≤ s ≤ m}.

By Theorem 1.1, we have tades(T bOPn) ≥ l
mn−1
2

m
. To prove the re-

verse inequality, we define the labeling ξ : V
S
E → {1, 2, 3, . . . ,

l
mn−1
2

m
}

as follows:

Case 1. m is even, n is odd or even and m is odd, n is even.
When s is odd, 1 ≤ s ≤ m and 1 ≤ r ≤ n,

ξ(βsr) =

(
n(s−1)
2 + r+1

2 if r is odd
n(s−1)
2 + r

2 if r is even ;
When s is even, 1 ≤ s ≤ m and 1 ≤ r ≤ n,

ξ(βsr) =

(
ns
2 −

r−1
2 if r is odd

ns
2 −

r
2 + 1 if r is even ;

and
ξ(βsrβ

s
r+1) = 2, 1 ≤ s ≤ m, 1 ≤ r ≤ n− 1;

ξ(αsαs+1) = 2, 1 ≤ s ≤ m− 1.

Case 2. m and n are odd.
When s is odd,
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ξ(βsr) =

(
(s−1)n
2 + r+1

2 if r is odd and 1 ≤ s ≤ m− 1, 1 ≤ r ≤ n
(s−1)n
2 + r

2 if r is even and 1 ≤ s ≤ m− 1, 1 ≤ r ≤ n ;

ξ(βmr ) =

⎧⎪⎨⎪⎩
(m−1)n

2 + r+1
2 if r is odd and 1 ≤ r ≤ n− 1

(m−1)n
2 + r

2 if r is even and 1 ≤ r ≤ n− 1
nm−1
2 if r = n ;

ξ(βsrβ
s
r+1) = 2, 1 ≤ s ≤ m− 1, 1 ≤ r ≤ n− 1;

ξ(βmr βmr+1) =

(
2 if 1 ≤ r ≤ n− 2
1 if r = n− 1 ;

when s is even, 1 ≤ s ≤ m and 1 ≤ r ≤ n,

ξ(βsr) =

(
nj
2 −

r−1
2 if r is odd

ns
2 −

r
2 + 1 if r is even ;

ξ(βsrβ
s
r+1) = 2, 1 ≤ r ≤ n− 1;

and
ξ(αsαs+1) = 2, 1 ≤ s ≤ m− 1.

Take αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and take P1
be the ept derived by removing the edge αrαs and introducing the edge
αr+tαs−t where t = d(αr, αr+t) = d(αs, αs−t). Consider P to be a parallel
transformation of T that contains P1 as one of the constituent epts.

Note that αr+tαs−t is an edge in the path P (T ). So r + t + 1 = s − t
which implies s = r + 2t+ 1. Therefore, r and s are of opposite parity.
The weight of edge αrαs is defined as

wt(αrαs) = wt(αrαr+2t+1)
= |ξ(αrαr+2t+1)− ξ(αr)− ξ(αr+2t+1)|
= n(r + t)− 1.

The weight of edge αr+tαs−t is defined as
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= |ξ(αr+tαr+t+1)− ξ(αr+t)− ξ(αr+t+1)|
= n(r + t)− 1.

Therefore, wt(αrαs) = wt(αr+tαs−t).
The edge weights are as follows:

wt(αsαs+1) = ns− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ r ≤ n− 1 and 1 ≤ s ≤ m,

wt(βsrβ
s
r+1) = (s− 1)n+ r − 1, s is odd;

wt(βsrβ
s
r+1) = sn− r − 1, s is even.
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It is a routine matter to verify that all vertex and edge labels are at mostl
mn−1
2

m
and the edge weights are distinct. Hence tades(T bOPn) = l

mn−1
2

m
.

2

Figure 2 illustrates a total absolute difference edge irregularity strength
of T bOP5, for a Tp-tree T with 11 vertices.

Figure 2.

Theorem 2.2. For a Tp-tree T onm vertices, tades(T bOK1,n) =
l
(n+1)m−1

2

m
.

Proof. By hypothesis, T is a Tp-tree with m vertices. Then there is a
parallel transformation P of T with the property that for the path P (T ),
the following are true

1. V (P (T )) = V (T ) and

2. E(P (T )) = (E(T ) − Ed)
S
Ep, where Ed is the set of edges deleted

from T and Ep stands for edges newly added through the sequence
P = (P1, P2, · · · , Pk) of the epts P which is used to arrive at the path
P (T ).

Clearly, |Ed| = |Ep|. Let us denote the successive vertices of P (T ) to
be α1, α2, · · · , αm starting from one pendant vertex of P (T ) right up to the
other. Let βs0, β

s
1, · · · , βsn(1 ≤ s ≤ m) to be the vertices of rth copy of K1,n

with βs1 = αs. The vertex set of V (T bOK1,n) = {αs, βs0, βsr : 1 ≤ r ≤ n, 1 ≤
s ≤ m with αs = βs1}. The edge set of E(T bOK1,n) = E(T )

S{βs0βsr : 1 ≤
s ≤ m, 1 ≤ r ≤ n}.

Marisol Martínez
f-2
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By Theorem 1.1, we have tades(T bOK1,n) ≥
l
m(n+1)−1

2

m
. We now prove

that tades(T bOK1,n) ≤
l
m(n+1)−1

2

m
. Define

ξ : V
S
E →

n
1, 2, 3, . . . ,

l
(n+1)m−1

2

mo
as follows:

Case 1. m is even; n is odd or even.

ξ(αs) =
(s−1)(n+1)

2 + 1 if s is odd and 1 ≤ s ≤ m
s(n+1)
2 if s is even and 1 ≤ s ≤ m ;

ξ(βs0) =
(s−1)(n+1)

2 + 1 if s is odd and 1 ≤ s ≤ m
s(n+1)
2 if s is even and 1 ≤ s ≤ m ;

ξ(βsr) =
(s−1)(n+1)

2 + r if s is odd and 1 ≤ s ≤ m, 2 ≤ r ≤ n
s(n+1)
2 − r + 1 if s is even and 1 ≤ s ≤ m, 2 ≤ r ≤ n;

ξ(αsαs+1) = 2, 1 ≤ s ≤ m− 1;
ξ(αsβ

s
0) = 2, 1 ≤ s ≤ m;

ξ(βs0β
s
r) = 2, 1 ≤ s ≤ m, 2 ≤ r ≤ n.

Case 2. m is odd; n is odd or even.

ξ(αs) =

(
(s−1)(n+1)

2 + 1 if s is odd and 1 ≤ s ≤ m
s(n+1)
2 if s is even and 1 ≤ s ≤ m ;

ξ(βs0) =

⎧⎪⎨⎪⎩
(s−1)(n+1)

2 + 1 if s is odd and 1 ≤ s ≤ m− 1
s(n+1)
2 if s is even and 1 ≤ s ≤ m− 1

(n+1)(m−1)
2 +

§n
2

¨
if s = m;

ξ(βsr) =

(
(s−1)(n+1)

2 + r if s is odd and 1 ≤ s ≤ m− 1, 2 ≤ r ≤ n
s(n+1)
2 − r + 1 if s is even and 1 ≤ s ≤ m− 1, 2 ≤ r ≤ n;

ξ(βmr ) =

(
(m−1)(n+1)

2 + r
2 if r is even and 2 ≤ r ≤ n,

(m−1)(n+1)
2 + r+1

2 if r is odd and 2 ≤ r ≤ n;
ξ(αsαs+1) = 2, 1 ≤ s ≤ m− 1;
ξ(αsβ

s
0) = 2, 1 ≤ s ≤ m− 1;

ξ(αmβ
m
0 ) =

§
n
2

¨
+ 1;

ξ(βs0β
s
r) = 2, 1 ≤ s ≤ m− 1, 2 ≤ r ≤ n;

ξ(βm0 β
m
r ) =

( §n
2

¨
− r−2

2 if r is even and 2 ≤ r ≤ n§n
2

¨
− r−3

2 if r is odd and 2 ≤ r ≤ n.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be the
ept obtained by removing the edge αrαs and including the edge αr+tαs−t
where t = d(αr, αr+t) = d(αs, αs−t). Take P to be a parallel transformation
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of T containing P1 as one of the constituent epts. Obviously αr+tαs−t is
an edge in the path P (T ). So r + t + 1 = s − t and thus s = r + 2t + 1.
Clearly, s and t are of opposite parity.
The weight of the edge αrαs is

wt(αrαs) = wt(αrαr+2t+1)
= |ξ(αrαr+2t+1)− ξ(αr)− ξ(αr+2t+1)|
= (n+ 1)(r + t)− 1.

The weight of the edge αr+tαs−t is
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= |ξ(αr+tαr+t+1)− ξ(αr+t)− ξ(αr+t+1)|
= (n+ 1)(r + t)− 1.

The above argument implies that wt(αrαs) = wt(αr+tαs−t).
The edge weights are:

wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ s ≤ m,

wt(αsβ
s
0) =

(
(s− 1)(n+ 1) if s is odd
s(n+ 1)− 2 if s is even;

wt(βs0β
s
r) =

(
(s− 1)(n+ 1) + r − 1 if s is odd and 2 ≤ r ≤ n
s(n+ 1)− r − 1 if s is even and 2 ≤ r ≤ n.

Clearly, tades(T bOK1,n) ≤
l
(n+1)m−1

2

m
. Note that the edge weights are

distinct. Hence tades(T bOK1,n) =
l
(n+1)m−1

2

m
. 2

Figure 3 illustrates a total absolute difference edge irregularity strength
of T bOK1,3 for a Tp-tree T with 11 vertices.
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Figure 3.

Theorem 2.3. Let T be a Tp-tree onm vertices, tades(T bOCn) =
l
mn+m−1

2

m
.

Proof. Consider T to be a Tp-tree with m vertices. By the definition of
a transformed tree there exists a parallel transformation P of T for which
for the path P (T ), the following two results will hold,

1. V (P (T )) = V (T ) and

2. E(P (T )) = (E(T )−Ed)
S
Ep, where Ed is the set of edges removed

from T and Ep is the set of edges newly introduced through the
sequence P = (P1, P2, · · · , Pk) of the epts P used to arrive at the
path P (T ).

Clearly, |Ed| = |Ep|. We denote the vertices of P (T ) successively as
α1, α2, · · · , αm starting from one pendant vertex of P (T ) right up to the
other. Let βs1, β

s
2, · · · , βsn (1 ≤ s ≤ m) be the vertices in the sth copy of

Cn with βs1 = αs. Then V (T bOCn) = {βsr : 1 ≤ r ≤ n, 1 ≤ s ≤ m} and
E(T bOCn) = E(T )

S
E(Cn).

By Theorem 1.1, we have tades(T bOCn) ≥
l
mn+m−1

2

m
. For the reverse

inequality, it is enough to show that tades(T bOCn) ≤
l
mn+m−1

2

m
.

Marisol Martínez
f-3
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Case 1. Let n ≡ 0 (mod 4).
Choose s is odd and 1 ≤ s ≤ m,

ξ(βs1) =
s(n+1)−1

2 ;

ξ(βsr) =

(
(s−1)(n+1)

2 + r
2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n

(s−1)(n+1)
2 + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;
ξ(βs1β

s
2) =

n
2 ; ξ(βs2β

s
3) = 2;

ξ(βsnβ
s
1) = 1 = ξ(βsrβ

s
r+1), 3 ≤ r ≤ n− 1;

choose s is even and 1 ≤ s ≤ m,
ξ(βs1) =

(n+1)(s−1)+1
2 ;

ξ(βsr) =

⎧⎪⎨⎪⎩
(s−1)(n+1)−1

2 + r
2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n

2
(s−1)(n+1)+1

2 + r
2 if r ≡ 0 (mod 2) and n

2 + 1 ≤ r ≤ n
(s−1)(n+1)+1

2 + r−1
2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;

ξ(βsnβ
s
1) = 1 = ξ(βsrβ

s
r+1), 1 ≤ r ≤ n− 1;

and ξ(αsαs+1) = 1, 1 ≤ s ≤ m− 1.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be the
ept derived by deleting the edge αrαs and including the edge αr+tαs−t where
t = d(αr, αr+t) = d(αs, αs−t). Consider P to be a parallel transformation
of T that contains P1 as one of the constituent epts.

Note that αr+tαs−t is an edge in the path P (T ), it follows that r+t+1 =
s− t which implies s = r+2t+1. Therefore, s and r are of opposite parity.

The weight of the edge αrαs is
wt(αrαs) = wt(αrαr+2t+1)

= (n+ 1)(r + t)− 1.
The weight of the edge αr+tαs−t is
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= (n+ 1)(r + t)− 1.
Therefore, wt(αrαs) = wt(αr+tαs−t).

The edge weights are caculated as follows:
wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;

for 1 ≤ s ≤ m and 1 ≤ r ≤ n− 1,

wt(βsrβ
s
r+1) =

⎧⎪⎨⎪⎩
(s− 1)(n+ 1) + r if r = 1 and s is odd
(s− 1)(n+ 1) + r − 2 if r = 2 and s is odd
(s− 1)(n+ 1) + r − 1 if r ≥ 3 and s is odd ;

wt(βsrβ
s
r+1) =

(
(s− 1)(n+ 1) + r − 1 if 1 ≤ r ≤ n

2 and s is even
(s− 1)(n+ 1) + r if n

2 + 1 ≤ r ≤ n− 1 and s is even ;
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wt(βsnβ
s
1) =

(
(s− 1)(n+ 1) + n− 1 if s is odd
(s− 1)(n+ 1) + n

2 if s is even.

Case 2. Let n ≡ 2 (mod 4).
Choose s to be odd and 1 ≤ s ≤ m,

ξ(βs1) =
s(n+1)−1

2 ;

ξ(βsr) =

(
(s−1)(n+1)

2 + r
2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n

(s−1)(n+1)
2 + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;
ξ(βs1β

s
2) =

n
2 ; ξ(βs2β

s
3) = 2;

ξ(βsnβ
s
1) = 1 = ξ(βsrβ

s
r+1), 3 ≤ r ≤ n− 1;

choose s to be even and 1 ≤ s ≤ m,
ξ(βs1) =

(s−1)(n+1)+1
2 ;

ξ(βsr) =

⎧⎪⎨⎪⎩
(s−1)(n+1)−1

2 + r
2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n

2 − 1
(s−1)(n+1)+1

2 + r
2 if r ≡ 0 (mod 2) and n

2 ≤ r ≤ n
(s−1)(n+1)+1

2 + r−1
2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;

ξ(βsnβ
s
1) = 2; ξ(β

s
rβ

s
r+1) = 1, 1 ≤ r ≤ n− 1;

and ξ(αsαs+1) = 1, 1 ≤ s ≤ m− 1.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be the
ept obtained by removing the edge αrαs and including the edge αr+tαs−t
where t = d(αr, αr+t) = d(αs, αs−t). Take P to be a parallel transformation
of T that contains P1 as one of the constituent epts.

Since αr+tvs−t is an edge in the path P (T ). Clearly, r + t + 1 = s − t
gives s = r + 2t+ 1. Therefore, r and s are of opposite parity.

The weight of edge αrαs is
wt(αrαs) = wt(αrαr+2t+1)

= (n+ 1)(r + t)− 1.
The weight of edge αr+tαs−t is
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= (n+ 1)(r + t)− 1.
Therefore, wt(αrαs) = wt(αr+tαs−t).

The edge weights are obtained as follows:

wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ s ≤ m and 1 ≤ r ≤ n− 1,
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wt(βsrβ
s
r+1) =

⎧⎪⎨⎪⎩
(s− 1)(n+ 1) + r if r = 1 and s is odd
(s− 1)(n+ 1) + r − 2 if r = 2 and s is odd
(s− 1)(n+ 1) + r − 1 if r ≥ 3 and s is odd ;

wt(βsrβ
s
r+1) =

(
(s− 1)(n+ 1) + r − 1 if 1 ≤ r ≤ n

2 − 1 and s is even
(s− 1)(n+ 1) + r if n

2 ≤ r ≤ n− 1 and s is even ;

wt(βsnβ
s
1) =

(
(s− 1)(n+ 1) + n− 1 if s is odd
(s− 1)(n+ 1) + n

2 − 1 if s is even .

Case 3. Let n ≡ 3 (mod 4).
Choose s is odd and 1 ≤ s ≤ m,

ξ(βs1) =
§n
2

¨
s;

ξ(βsr) =

( §n
2

¨
(s− 1) + r

2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n§n
2

¨
(s− 1) + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;

ξ(βs1β
s
2) =

§
n
2

¨
; ξ(βs2β

s
3) = 2;

ξ(βsnβ
s
1) = 1 = ξ(βsrβ

s
r+1), 3 ≤ r ≤ n− 1;

choose s is even and 1 ≤ s ≤ m,
ξ(βs1) =

§
n
2

¨
(s− 1);

ξ(βs1) =

⎧⎪⎨⎪⎩
§
n
2

¨
(s− 1) + r

2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n§
n
2

¨
(s− 1) + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤
§
n
2

¨§n
2

¨
(s− 1) + r−1

2 + 1 if r ≡ 1 (mod 2) and
§
n
2

¨
+ 1 ≤ r ≤ n ;

ξ(βsnβ
s
1) = 1; ξ(β

s
rβ

s
r+1) = 1, 1 ≤ r ≤ n− 1;

and ξ(αsαs+1) = 1, 1 ≤ s ≤ m− 1.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be the
ept obtained by removing the edge αrαs and including the edge αr+tαs−t
where t = d(αr, αr+t) = d(αs, αs−t). Let P be a parallel transformation of
T that contains P1 as one of the constituent epts.

Clearly, αr+tαs−t is an edge in the path P (T ). So r + t + 1 = s − t
which implies s = r + 2t+ 1. Therefore, r and s are of opposite parity.

The weight of edge αrαs is given by
wt(αrαs) = wt(αrαr+2t+1)

= (n+ 1)(r + t)− 1.
The weight of edge αr+tαs−t is given by
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= (n+ 1)(r + t)− 1.

Therefore, wt(αrαs) = wt(αr+tαs−t).
The edge weights are computed as follows:



Total absolute difference edge irregularity strength of Tp-tree ... 1609

wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ s ≤ m and 1 ≤ r ≤ n− 1,

wt(βsrβ
s
r+1) =

⎧⎪⎨⎪⎩
(s− 1)(n+ 1) + r if r = 1 and s is odd
(s− 1)(n+ 1) + r − 2 if r = 2 and s is odd
(s− 1)(n+ 1) + r − 1 if r ≥ 3 and s is odd ;

wt(βsrβ
s
r+1) =

(
(s− 1)(n+ 1) + r − 1 if 1 ≤ r ≤ n−1

2 and s is even
(s− 1)(n+ 1) + r if n+1

2 ≤ r ≤ n− 1 and s is even ;

wt(βsnβ
s
1) =

(
(s− 1)(n+ 1) + n− 1 if s is odd
(s− 1)(n+ 1) + n−1

2 if s is even .

Case 4.Let n ≡ 1 (mod 4).
Choose s is odd and 1 ≤ s ≤ m,

ξ(βs1) =
§n
2

¨
s;

ξ(βsr) =

( §n
2

¨
(s− 1) + r

2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n§n
2

¨
(s− 1) + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤ n ;

ξ(βs1β
s
2) =

§n
2

¨
; ξ(βs2β

s
3) = 2;

ξ(βsnβ
s
1) = 1 = ξ(βsrβ

s
r+1), 3 ≤ r ≤ n− 1;

choose s is even and 1 ≤ s ≤ m,
ξ(βs1) =

§n
2

¨
(s− 1);

ξ(βsr) =

⎧⎪⎨⎪⎩
§
n
2

¨
(s− 1) + r

2 if r ≡ 0 (mod 2) and 2 ≤ r ≤ n§
n
2

¨
(s− 1) + r−1

2 if r ≡ 1 (mod 2) and 2 ≤ r ≤
¥
n
2

¦§n
2

¨
(s− 1) + r−1

2 + 1 if r ≡ 1 (mod 2) and
¥n
2

¦
+ 1 ≤ r ≤ n ;

ξ(βsnβ
s
1) = 2; ξ(β

s
rβ

s
r+1) = 1, 1 ≤ r ≤ n− 1;

and ξ(αsαs+1) = 1, 1 ≤ s ≤ m− 1.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be
the ept obtained by removing the edge αrv = αs and including the edge
αr+tαs−t where t = d(αr, αr+t) = d(αs, αs−t). Take P to be a parallel
transformation of T containing P1 as one of the constituent epts.

Since αr+tαs−t is an edge in the path P (T ). So r + t + 1 = s − t and
thus s = r + 2t+ 1. Therefore, r and s are of opposite parity.

The weight of edge αrαs is
wt(αrαs) = wt(αrαr+2t+1)

= (n+ 1)(r + t)− 1.
The weight of edge αr+tαs−t is
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wt(αr+tαs−t) = wt(αr+tαr+t+1)
= (n+ 1)(r + t)− 1.

Therefore, wt(αrαs) = wt(αr+tαs−t).

The edge weights are determined as follows:

wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ s ≤ m and 1 ≤ r ≤ n− 1,

wt(βsrβ
s
r+1) =

⎧⎪⎨⎪⎩
(s− 1)(n+ 1) + r if r = 1 and s is odd
(s− 1)(n+ 1) + r − 2 if r = 2 and s is odd
(s− 1)(n+ 1) + r − 1 if r ≥ 3 and s is odd ;

wt(βsrβ
s
r+1) =

(
(s− 1)(n+ 1) + r − 1 if 1 ≤ r ≤ n−3

2 and s is even
(s− 1)(n+ 1) + r if n−1

2 ≤ r ≤ n− 1 and s is even ;

wt(βsnβ
s
1) =

(
(s− 1)(n+ 1) + n− 1 if s is odd
(s− 1)(n+ 1) + n−3

2 if s is even .

Clearly, tades(T bOCn) ≤
l
mn+m−1

2

m
and the edge weights are distinct.

Hence tades(T bOCn) =
l
mn+m−1

2

m
. 2

A total absolute difference edge irregularity strength of T bOC7 where T
is a Tp-tree with 8 vertices is shown in Figure 4.

Figure 4.

Marisol Martínez
f-4
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Theorem 2.4. For a Tp-tree T with even number of vertices, tades(T ¯
nK1) =

l
mn+m−1

2

m
.

Proof. By hypothesis, the Tp-tree T has m vertices where m is even.
Applying the definition of Tp-tree there is a parallel transformation P of T
with the property that for the path P (T ), we have

1. V (P (T )) = V (T ) and

2. E(P (T )) = (E(T )−Ed)
S
Ep, where Ed is the set of edges removed

from T and Ep is the set of edges newly introduced through the
sequence P = (P1, P2, · · · , Pk) of the epts P used to arrive at the
path P (T ).

Clearly, |Ed| = |Ep|. Let us denote the vertices of P (T ) successively as
α1, α2, · · · , αm starting from one pendant vertex of P (T ) right up to the
other. Let βs1, β

s
2, · · · , βsn(1 ≤ s ≤ m) be the pendant vertices joined with

αs(1 ≤ s ≤ m) by an edge. Then V (T ¯ nK1) = {αs, βsr : 1 ≤ r ≤ n, 1 ≤
s ≤ m} and E(T ¯ nK1) = E(T )

S{αsβsr : 1 ≤ s ≤ m, 1 ≤ r ≤ n}.

By Theorem 1.1, we have tades(T¯nK1) ≥
l
mn+m−1

2

m
. For the reverse

inequality, we define the labeling ξ : V
S
E → {1, 2, 3, . . . ,

l
mn+m−1

2

m
} as

follows:

For 1 ≤ s ≤ m,

ξ(αs) =

(
(s−1)(n+1)

2 + 1 if s is odd
s(n+1)
2 if s is even ;

ξ(βsr) =

(
(s−1)(n+1)

2 + r if s is odd 1 ≤ r ≤ n
(s−2)(n+1)

2 + r + 1 if s is even 1 ≤ r ≤ n ;
ξ(αsαs+1) = 2, 1 ≤ s ≤ m− 1;
ξ(βsrαs) = 2, 1 ≤ s ≤ m, 1 ≤ r ≤ n.

Let αrαs be a transformed edge in T , 1 ≤ r < s ≤ m and let P1 be the
ept obtained by removing the edge αrαs and including the edge αr+tαs−t
where t is the distance of αr from αr+t and the distance of αs from αs−t.
Take P to be a parallel transformation of T that contains P1 as one of the
constituent epts.
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Note that αr+tαs−t is an edge in the path P (T ). So r + t + 1 = s − t
which implies s = r + 2t+ 1. Therefore, r and s are of opposite parity.

The weight of edge αrαs is
wt(αrαs) = wt(αrαr+2t+1)

= |ξ(αrαr+2t+1)− ξ(αr)− ξ(αr+2t+1)|
= (n+ 1)(r + t)− 1.

The weight of edge αr+tαs−t is
wt(αr+tαs−t) = wt(αr+tαr+t+1)

= |ξ(αr+tαr+t+1)− ξ(αr+t)− ξ(αr+t+1)|
= (n+ 1)(r + t)− 1.

Therefore, wt(αrαs) = wt(αr+tαs−t).
The edge weights are obtained as follows:

wt(αsαs+1) = s(n+ 1)− 1, 1 ≤ s ≤ m− 1;
for 1 ≤ s ≤ m,

wt(αsβ
s
r) = (s− 1)(n+ 1) + r − 1, 1 ≤ r ≤ n.

Thus the edge weights are distinct. Hence tades(T ¯ nK1) =
l
mn+m−1

2

m
.

2

Figure 5 illustrates a total absolute difference edge irregularity strength
of T ¯ 5K1 where T is a Tp-tree with 10 vertices .

Figure 5.

Marisol Martínez
f-5
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