Proyecciones Journal of Mathematics
Vol. 42, $\mathrm{N}^{o} 6$, pp. 1597-1614, December 2023.
Universidad Católica del Norte
Antofagasta - Chile

# Total absolute difference edge irregularity strength of $T_{p}$-tree graphs 

A. Lourdusamy<br>St. Xavier's College (Autonomous), India<br>F. Joy Beaula<br>St. Xavier's College (Autonomous), India<br>and<br>F. Patrick<br>St. Xavier's College (Autonomous), India<br>Received : April 2022. Accepted : May 2023


#### Abstract

A total labeling $\xi$ is defined to be an edge irregular total absolute difference $k$-labeling of the graph $G$ if for every two different edges $e$ and $f$ of $G$ there is $w t(e) \neq w t(f)$ where weight of an edge $e=x y$ is defined as $w t(e)=|\xi(e)-\xi(x)-\xi(y)|$. The minimum $k$ for which the graph $G$ has an edge irregular total absolute difference labeling is called the total absolute difference edge irregularity strength of the graph $G$, tades $(G)$. In this paper, we determine the total absolute difference edge irregularity strength of the precise values for $T_{p}$-tree related graphs.


## AMS Subject Classification 2010: 05C78.

Keywords: Edge irregularity strength, total absolute difference edge irregularity strength, $T_{p}$-tree.

## 1. Introduction

Here, we consider a simple graph $G$ with vertex set $V$ and the edge set $E$. The total edge irregular strength of graphs was introduced by Baca et al. [2]. The basic idea came from irregular assignments and the irregular strength of graphs introduced by Chartrand et al. [3]. The total edge irregular $k$-labeling of a graph $G=(V, E)$ namely the labeling $\xi: V \cup E \rightarrow$ $\{1,2, \ldots, k\}$ such that all edge weights are distinct. The weight $w t(u v)$ of an edge $u v$ is defined as $w t_{\xi}(u v)=\xi(u)+\xi(u v)+\xi(v)$. The total edge irregularity strength $G$ denoted by tes $(G)$, is the smallest $k$ for which $G$ has a total edge irregular $k$-labeling. In the year 2006, Ivanco and Jendrol stated a conjecture that,

$$
\operatorname{tes}(G)=\max \left\{\left\lceil\frac{E(G)+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\}
$$

for an arbitrary graph $G$ different from $K_{5}$.
This conjecture has been verified for all trees in [5]. The Ivanco and Jendrol's conjecture has been verified for $K_{n}$ and $K_{m, n}$ in [6], for cartesian product of two paths in [8], for the corona product of a path with certain graphs in [9], for categorical product of cycle and path in [11], for a subdivision of stars in [12] and for hexagonal grid in [1].

In [10] we find the details for total absolute difference edge irregularity strength which we described here:"Ramalakshmi and Kathiresan introduced the concept of total absolute difference edge irregularity strength of graphs to reduce the edge weights. For a graph $G=(V(G), E(G))$, the weight of $e=x y$ under a total labeling $\xi$ is $w t(e)=|\xi(e)-\xi(x)-\xi(y)|$. We define a labeling $\xi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ as an edge irregular total absolute difference $k$-labeling of a graph $G$ if for every two different edges $e=x y$ and $f=x_{0} y_{0}$ we have $w t(e) \neq w t(f)$. The total absolute difference edge irregular strength, $\operatorname{tades}(G)$, is the minimum $k$ such that $G$ posses an edge irregular total absolute difference $k$-labeling". In [10], we find the following conjectures,

1. $\operatorname{tades}(T)=\max \left\{\frac{p}{2}, \frac{\Delta+1}{2}\right\}$ for a tree $T$ on $p$ vertices,
2. $\operatorname{tes}(G) \leq \operatorname{tades}(G)$.

Theorem 1.1. Let $G=(V, E)$ be a graph. Then $\left\lceil\frac{|E|}{2}\right\rceil \leq \operatorname{tades}(G) \leq$ $|E|+1$.

Lourdusamy et al. [7] have computed the $\operatorname{tades}(G)$ for snake related graphs, wheel related graphs, lotus inside the circle and double fan graph. Here, we investigate the total absolute difference edge irregularity strength of $T_{P}$-tree related graphs.

Definition 1.2. [4] Let $T$ be a tree and $u_{0}$ and $v_{0}$ be two adjacent vertices in $T$. Let there be two pendant vertices $u$ and $v$ in $T$ such that the length of $u_{0}-u$ path is equal to the length of $v_{0}-v$ path. If the edge $u_{0} v_{0}$ is deleted from $T$ and $u, v$ are joined by an edge $u v$, then such a transformation of $T$ is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called transformable edge.

If by the sequence of ept's, $T$ can be reduced to a path, then $T$ is called a $T_{p}$-tree (transformed tree) and such a sequence regarded as a composition of mappings (ept's) denoted by $P$, is called a parallel transformation of $T$. The path, the image of $T$ under $P$ is denoted as $P(T)$. We use the notation $d(u, v)$ to denote the distance between the vertices of $u$ and $v$.

## A $T_{p}$-tree $T$



An ept $P_{1}(T)$


Second ept $P_{2}(T)$


Figure 1. A $T_{p}$-tree and a sequence of two ept's reducing it to a path
Definition 1.3. Let $G_{1}$ be a graph with $p$ vertices and $G_{2}$ be any graph. A graph $G_{1} \widehat{O} G_{2}$ is obtained from $G_{1}$ and $p$ copies of $G_{2}$ by identifying one vertex of $i^{\text {th }}$ copy of $G_{2}$ with $i^{\text {th }}$ vertex of $G_{1}$.

Definition 1.4. The corona $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ is defined as the graph obtained by taking one copy of $G_{1}$ and $p_{1}$ copies of $G_{2}$ and joining the $i^{\text {th }}$ vertex of $G_{1}$ with an edge to every vertex in the $i^{\text {th }}$ copy of $G_{2}$.

## 2. Main Results

Theorem 2.1. Let $T$ be a $T_{p}$-tree on $m$ vertices. Then $\operatorname{tades}\left(T \widehat{O} P_{n}\right)=$ $\left\lceil\frac{m n-1}{2}\right\rceil$.

Proof. Consider $T$ be a $T_{p}$-tree with $m$ vertices. Applying the definition of a transformed tree we can find a parallel transformation $P$ of $T$ which will satisfy $(i) V(P(T))=V(T)$ and $(i i) E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where $P(T)$ is the path, $E_{d}$ is the set of edges removed from $T$ and $E_{p}$ is the set of edges newly introduced using the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts $P$ used to arrive at the path $P(T)$. Obviously, we have the same number of edges for $E_{d}$ and $E_{p}$. We use the label $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ successively starting from one pendant vertex of $P(T)$ and proceed in the right direction up to the other pendant vertex to denote the vertices of $P(T)$. Let $\beta_{1}^{s}, \beta_{2}^{s}, \cdots, \beta_{n}^{s}(1 \leq s \leq m)$ be the vertices in $s^{t h}$ copy of $P_{n}$ with $\beta_{1}^{s}=\alpha_{s}$. Then $V\left(T \widehat{O} P_{n}\right)=\left\{\alpha_{s}, \beta_{r}^{s}: 1 \leq r \leq n, 1 \leq s \leq m\right.$ with $\left.\beta_{1}^{s}=\alpha_{s}\right\}$ and $E\left(T \widehat{O} P_{n}\right)=E(T) \bigcup\left\{\beta_{r}^{s} \beta_{r+1}^{s}: 1 \leq r \leq n-1,1 \leq s \leq m\right\}$.

By Theorem 1.1, we have $\operatorname{tades}\left(T \widehat{O} P_{n}\right) \geq\left\lceil\frac{m n-1}{2}\right\rceil$. To prove the reverse inequality, we define the labeling $\xi: V \cup E \rightarrow\left\{1,2,3, \ldots,\left\lceil\frac{m n-1}{2}\right\rceil\right\}$ as follows:

Case 1. $m$ is even, $n$ is odd or even and $m$ is odd, $n$ is even.
When $s$ is odd, $1 \leq s \leq m$ and $1 \leq r \leq n$,

$$
\xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{n(s-1)}{2}+\frac{r+1}{2} & \text { if } r \text { is odd } \\ \frac{n(s-1)}{2}+\frac{r}{2} & \text { if } r \text { is even } ;\end{cases}
$$

When $s$ is even, $1 \leq s \leq m$ and $1 \leq r \leq n$,

$$
\xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{\bar{n} s}{2}-\frac{r-1}{2} & \text { if } \bar{r} \text { is odd } \\ \frac{n s}{2}-\frac{r}{2}+1 & \text { if } r \text { is even } ;\end{cases}
$$

and

$$
\begin{aligned}
& \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=2,1 \leq s \leq m, 1 \leq r \leq n-1 ; \\
& \xi\left(\alpha_{s} \alpha_{s+1}\right)=2,1 \leq s \leq m-1 .
\end{aligned}
$$

Case 2. $m$ and $n$ are odd.
When $s$ is odd,

$$
\begin{aligned}
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1) n}{2}+\frac{r+1}{2} & \text { if } r \text { is odd and } 1 \leq s \leq m-1,1 \leq r \leq n \\
\frac{(s-1) n}{2}+\frac{r}{2} & \text { if } r \text { is even and } 1 \leq s \leq m-1,1 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{r}^{m}\right)= \begin{cases}\frac{(m-1) n}{2}+\frac{r+1}{2} & \text { if } r \text { is odd and } 1 \leq r \leq n-1 \\
\frac{(m-1) n}{2}+\frac{r}{2} & \text { if } r \text { is even and } 1 \leq r \leq n-1 \\
\frac{n m-1}{2} & \text { if } r=n ;\end{cases} \\
& \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=2,1 \leq s \leq m-1,1 \leq r \leq n-1 ; \\
& \xi\left(\beta_{r}^{m} \beta_{r+1}^{m}\right)= \begin{cases}2 & \text { if } 1 \leq r \leq n-2 \\
1 & \text { if } r=n-1 ;\end{cases}
\end{aligned}
$$

when $s$ is even, $1 \leq s \leq m$ and $1 \leq r \leq n$,
and

$$
\xi\left(\alpha_{s} \alpha_{s+1}\right)=2,1 \leq s \leq m-1
$$

Take $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and take $P_{1}$ be the ept derived by removing the edge $\alpha_{r} \alpha_{s}$ and introducing the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha_{s}, \alpha_{s-t}\right)$. Consider $P$ to be a parallel transformation of $T$ that contains $P_{1}$ as one of the constituent epts.

Note that $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$. So $r+t+1=s-t$ which implies $s=r+2 t+1$. Therefore, $r$ and $s$ are of opposite parity. The weight of edge $\alpha_{r} \alpha_{s}$ is defined as

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =\left|\xi\left(\alpha_{r} \alpha_{r+2 t+1}\right)-\xi\left(\alpha_{r}\right)-\xi\left(\alpha_{r+2 t+1}\right)\right| \\
& =n(r+t)-1 .
\end{aligned}
$$

The weight of edge $\alpha_{r+t} \alpha_{s-t}$ is defined as

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =\left|\xi\left(\alpha_{r+t} \alpha_{r+t+1}\right)-\xi\left(\alpha_{r+t}\right)-\xi\left(\alpha_{r+t+1}\right)\right| \\
& =n(r+t)-1 .
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=n s-1,1 \leq s \leq m-1 ;
$$

for $1 \leq r \leq n-1$ and $1 \leq s \leq m$,

$$
w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=(s-1) n+r-1, s \text { is odd; }
$$

$$
w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=s n-r-1, s \text { is even. }
$$

$$
\begin{aligned}
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{n j}{2}-\frac{r-1}{2} & \text { if } r \text { is odd } \\
\frac{n s}{2}-\frac{r}{2}+1 & \text { if } r \text { is even ; }\end{cases} \\
& \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=2,1 \leq r \leq n-1 ;
\end{aligned}
$$

It is a routine matter to verify that all vertex and edge labels are at most $\left\lceil\frac{m n-1}{2}\right\rceil$ and the edge weights are distinct. Hence $\operatorname{tades}\left(T \widehat{O} P_{n}\right)=\left\lceil\frac{m n-1}{2}\right\rceil$.

Figure 2 illustrates a total absolute difference edge irregularity strength of $T \widehat{O} P_{5}$, for a $T_{p}$-tree $T$ with 11 vertices.


Figure 2.
Theorem 2.2. For a $T_{p}$-tree $T$ on $m$ vertices, $\operatorname{tades}\left(T \widehat{O} K_{1, n}\right)=\left\lceil\frac{(n+1) m-1}{2}\right\rceil$.
Proof. By hypothesis, $T$ is a $T_{p}$-tree with $m$ vertices. Then there is a parallel transformation $P$ of $T$ with the property that for the path $P(T)$, the following are true

1. $V(P(T))=V(T)$ and
2. $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where $E_{d}$ is the set of edges deleted from $T$ and $E_{p}$ stands for edges newly added through the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts $P$ which is used to arrive at the path $P(T)$.

Clearly, $\left|E_{d}\right|=\left|E_{p}\right|$. Let us denote the successive vertices of $P(T)$ to be $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Let $\beta_{0}^{s}, \beta_{1}^{s}, \cdots, \beta_{n}^{s}(1 \leq s \leq m)$ to be the vertices of $r^{\text {th }}$ copy of $K_{1, n}$ with $\beta_{1}^{s}=\alpha_{s}$. The vertex set of $V\left(T \widehat{O} K_{1, n}\right)=\left\{\alpha_{s}, \beta_{0}^{s}, \beta_{r}^{s}: 1 \leq r \leq n, 1 \leq\right.$ $s \leq m$ with $\left.\alpha_{s}=\beta_{1}^{s}\right\}$. The edge set of $E\left(T \widehat{O} K_{1, n}\right)=E(T) \bigcup\left\{\beta_{0}^{s} \beta_{r}^{s}: 1 \leq\right.$ $s \leq m, 1 \leq r \leq n\}$.

By Theorem 1.1, we have $\operatorname{tades}\left(T \widehat{O} K_{1, n}\right) \geq\left\lceil\frac{m(n+1)-1}{2}\right\rceil$. We now prove that $\operatorname{tades}\left(T \widehat{O} K_{1, n}\right) \leq\left\lceil\frac{m(n+1)-1}{2}\right\rceil$. Define
$\xi: V \cup E \rightarrow\left\{1,2,3, \ldots,\left\lceil\frac{(n+1) m-1}{2}\right\rceil\right\}$ as follows:

Case 1. $m$ is even; $n$ is odd or even.

$$
\begin{aligned}
& \xi\left(\alpha_{s}\right)=\frac{(s-1)(n+1)}{2}+1 \\
& \frac{s(n+1)}{2} \\
& \begin{array}{ll}
\frac{(i f}{2} s \text { is odd and } 1 \leq s \leq m \\
& \text { if } s \text { is even and } 1 \leq s \leq m ; \\
\xi\left(\beta_{0}^{s}\right)=\frac{(s-1)(n+1)}{2}+1 & \text { if } s \text { is odd and } 1 \leq s \leq m \\
\frac{s(n+1)}{2} & \text { if } s \text { is even and } 1 \leq s \leq m ; \\
\xi\left(\beta_{r}^{s}\right)=\frac{\frac{(s-1)(n+1)}{2}+r}{} \quad \text { if } s \text { is odd and } 1 \leq s \leq m, 2 \leq r \leq n \\
\frac{s(n+1)}{2}-r+1 & \text { if } s \text { is even and } 1 \leq s \leq m, 2 \leq r \leq n ; \\
\xi\left(\alpha_{s} \alpha_{s+1}\right)=2,1 \leq s \leq m-1 ; \\
\xi\left(\alpha_{s} \beta_{0}^{s}\right)=2,1 \leq s \leq m ; \\
\xi\left(\beta_{0}^{s} \beta_{r}^{s}\right)=2,1 \leq s \leq m, 2 \leq r \leq n .
\end{array}
\end{aligned}
$$

Case 2. $m$ is odd; $n$ is odd or even.

$$
\left.\begin{array}{l}
\xi\left(\alpha_{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+1 & \text { if } s \text { is odd and } 1 \leq s \leq m \\
\frac{s(n+1)}{2} & \text { if } s \text { is even and } 1 \leq s \leq m ;\end{cases} \\
\xi\left(\beta_{0}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+1 & \text { if } s \text { is odd and } 1 \leq s \leq m-1 \\
\frac{s(n+1)}{2} & \text { if } s \text { is even and } 1 \leq s \leq m-1\end{cases} \\
\frac{(n+1)(m-1)}{2}+\left\lceil\frac{n}{2}\right\rceil \\
\text { if } s=m ;
\end{array}\right\} \begin{aligned}
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+r & \text { if } s \text { is odd and } 1 \leq s \leq m-1,2 \leq r \leq n \\
\frac{s(n+1)}{2}-r+1 & \text { if } s \text { is even and } 1 \leq s \leq m-1,2 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{r}^{m}\right)= \begin{cases}\frac{(m-1)(n+1)}{2}+\frac{r}{2} & \text { if } r \text { is even and } 2 \leq r \leq n, \\
\frac{(m-1)^{2}(n+1)}{2}+\frac{r+1}{2} & \text { if } r \text { is odd and } 2 \leq r \leq n ;\end{cases} \\
& \xi\left(\alpha_{s} \alpha_{s+1)}=2,1 \leq s \leq m-1 ;\right. \\
& \xi\left(\alpha_{s} \beta_{0}^{s}\right)=2,1 \leq s \leq m-1 ; \\
& \xi\left(\alpha_{m} \beta_{0}^{m}\right)=\left\lceil\frac{n}{2}\right\rceil+1 ; \\
& \xi\left(\beta_{0}^{s} \beta_{r}^{s}\right)=2,1 \leq s \leq m-1,2 \leq r \leq n ; \\
& \xi\left(\beta_{0}^{m} \beta_{r}^{m}\right)= \begin{cases}\left\lceil\frac{n}{n}\right\rceil-\frac{r-2}{2} & \text { if } r \text { is even and } 2 \leq r \leq n \\
\left\lceil\frac{n}{2}\right\rceil-\frac{r-3}{2} & \text { if } r \text { is odd and } 2 \leq r \leq n .\end{cases}
\end{aligned}
$$

Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept obtained by removing the edge $\alpha_{r} \alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha_{s}, \alpha_{s-t}\right)$. Take $P$ to be a parallel transformation
of $T$ containing $P_{1}$ as one of the constituent epts. Obviously $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$. So $r+t+1=s-t$ and thus $s=r+2 t+1$. Clearly, $s$ and $t$ are of opposite parity.
The weight of the edge $\alpha_{r} \alpha_{s}$ is

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =\left|\xi\left(\alpha_{r} \alpha_{r+2 t+1}\right)-\xi\left(\alpha_{r}\right)-\xi\left(\alpha_{r+2 t+1}\right)\right| \\
& =(n+1)(r+t)-1
\end{aligned}
$$

The weight of the edge $\alpha_{r+t} \alpha_{s-t}$ is

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =\left|\xi\left(\alpha_{r+t} \alpha_{r+t+1}\right)-\xi\left(\alpha_{r+t}\right)-\xi\left(\alpha_{r+t+1}\right)\right| \\
& =(n+1)(r+t)-1
\end{aligned}
$$

The above argument implies that $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1
$$

for $1 \leq s \leq m$,
$w t\left(\alpha_{s} \beta_{0}^{s}\right)= \begin{cases}(s-1)(n+1) & \text { if } s \text { is odd } \\ s(n+1)-2 & \text { if } s \text { is even; }\end{cases}$
$w t\left(\beta_{0}^{s} \beta_{r}^{s}\right)= \begin{cases}(s-1)(n+1)+r-1 & \text { if } s \text { is odd and } 2 \leq r \leq n \\ s(n+1)-r-1 & \text { if } s \text { is even and } 2 \leq r \leq n .\end{cases}$
Clearly, $\operatorname{tades}\left(T \widehat{O} K_{1, n}\right) \leq\left\lceil\frac{(n+1) m-1}{2}\right\rceil$. Note that the edge weights are distinct. Hence $\operatorname{tades}\left(T \widehat{O} K_{1, n}\right)=\left\lceil\frac{(n+1) m-1}{2}\right\rceil$.

Figure 3 illustrates a total absolute difference edge irregularity strength of $T \widehat{O} K_{1,3}$ for a $T_{p}$-tree $T$ with 11 vertices.


Figure 3.
Theorem 2.3. Let $T$ be a $T_{p}$-tree on $m$ vertices, tades $\left(T \widehat{O} C_{n}\right)=\left\lceil\frac{m n+m-1}{2}\right\rceil$.
Proof. Consider $T$ to be a $T_{p}$-tree with $m$ vertices. By the definition of a transformed tree there exists a parallel transformation $P$ of $T$ for which for the path $P(T)$, the following two results will hold,

1. $V(P(T))=V(T)$ and
2. $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{p}$, where $E_{d}$ is the set of edges removed from $T$ and $E_{p}$ is the set of edges newly introduced through the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts $P$ used to arrive at the path $P(T)$.

Clearly, $\left|E_{d}\right|=\left|E_{p}\right|$. We denote the vertices of $P(T)$ successively as $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Let $\beta_{1}^{s}, \beta_{2}^{s}, \cdots, \beta_{n}^{s}(1 \leq s \leq m)$ be the vertices in the $s^{t h}$ copy of $C_{n}$ with $\beta_{1}^{s}=\alpha_{s}$. Then $V\left(T \widehat{O} C_{n}\right)=\left\{\beta_{r}^{s}: 1 \leq r \leq n, 1 \leq s \leq m\right\}$ and $E\left(T \widehat{O} C_{n}\right)=E(T) \cup E\left(C_{n}\right)$.

By Theorem 1.1, we have $\operatorname{tades}\left(T \widehat{O} C_{n}\right) \geq\left\lceil\frac{m n+m-1}{2}\right\rceil$. For the reverse inequality, it is enough to show that $\operatorname{tades}\left(T \widehat{O} C_{n}\right) \leq\left\lceil\frac{m n+m-1}{2}\right\rceil$.

Case 1. Let $n \equiv 0(\bmod 4)$.
Choose $s$ is odd and $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\beta_{1}^{s}\right)=\frac{s(n+1)-1}{2} ; \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\
\frac{(s-1)(n+1)}{2}+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{1}^{s} \beta_{2}^{s}\right)=\frac{n}{2} ; \xi\left(\beta_{2}^{s} \beta_{3}^{s}\right)=2 ; \\
& \xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1=\xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right), 3 \leq r \leq n-1 ;
\end{aligned}
$$

choose $s$ is even and $1 \leq s \leq m$,
$\xi\left(\beta_{1}^{s}\right)=\frac{(n+1)(s-1)+1}{2} ;$
$\xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)-1}{(s-1)(2+1)+1}+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq \frac{n}{2} \\ \frac{(s)}{2} & \text { if } \equiv 0(\bmod 2) \text { and } \frac{n}{2}+1 \leq r \leq n \\ \frac{(s-1)(n+1)+1}{2}+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n ;\end{cases}$
$\xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1=\xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right), 1 \leq r \leq n-1 ;$
and $\xi\left(\alpha_{s} \alpha_{s+1}\right)=1,1 \leq s \leq m-1$.
Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept derived by deleting the edge $\alpha_{r} \alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha_{s}, \alpha_{s-t}\right)$. Consider $P$ to be a parallel transformation of $T$ that contains $P_{1}$ as one of the constituent epts.

Note that $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$, it follows that $r+t+1=$ $s-t$ which implies $s=r+2 t+1$. Therefore, $s$ and $r$ are of opposite parity.

The weight of the edge $\alpha_{r} \alpha_{s}$ is

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

The weight of the edge $\alpha_{r+t} \alpha_{s-t}$ is

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are caculated as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1 ;
$$

for $1 \leq s \leq m$ and $1 \leq r \leq n-1$,

$$
\begin{aligned}
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r & \text { if } r=1 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-2 & \text { if } r=2 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-1 & \text { if } r \geq 3 \text { and } s \text { is odd ; }\end{cases} \\
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r-1 & \text { if } 1 \leq r \leq \frac{n}{2} \text { and } s \text { is even } \\
(s-1)(n+1)+r & \text { if } \frac{n}{2}+1 \leq r \leq n-1 \text { and } s \text { is even ; }\end{cases}
\end{aligned}
$$

$$
w t\left(\beta_{n}^{s} \beta_{1}^{s}\right)= \begin{cases}(s-1)(n+1)+n-1 & \text { if } s \text { is odd } \\ (s-1)(n+1)+\frac{n}{2} & \text { if } s \text { is even. }\end{cases}
$$

Case 2. Let $n \equiv 2(\bmod 4)$.
Choose $s$ to be odd and $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\beta_{1}^{s}\right)=\frac{s(n+1)-1}{} ; \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\
\frac{(s-1)(n+1)}{2}+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{1}^{s} \beta_{2}^{s}\right)=\frac{n}{2} ; \xi\left(\beta_{2}^{s} \beta_{3}^{s}\right)=2 ; \\
& \xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1=\xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right), 3 \leq r \leq n-1 ;
\end{aligned}
$$

choose $s$ to be even and $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\beta_{1}^{s}\right)=\frac{(s-1)(n+1)+1}{2} ; \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)-1}{2}+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq \frac{n}{2}-1 \\
\frac{(s-1)(n+1)+1}{2}+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } \frac{n}{2} \leq r \leq n \\
\frac{(s-1)(n+1)+1}{2}+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n\end{cases}
\end{aligned}
$$

$$
\xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=2 ; \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=1,1 \leq r \leq n-1 ;
$$

and $\xi\left(\alpha_{s} \alpha_{s+1}\right)=1,1 \leq s \leq m-1$.
Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept obtained by removing the edge $\alpha_{r} \alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha_{s}, \alpha_{s-t}\right)$. Take $P$ to be a parallel transformation of $T$ that contains $P_{1}$ as one of the constituent epts.

Since $\alpha_{r+t} v_{s-t}$ is an edge in the path $P(T)$. Clearly, $r+t+1=s-t$ gives $s=r+2 t+1$. Therefore, $r$ and $s$ are of opposite parity.

The weight of edge $\alpha_{r} \alpha_{s}$ is

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

The weight of edge $\alpha_{r+t} \alpha_{s-t}$ is

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are obtained as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1 ;
$$

for $1 \leq s \leq m$ and $1 \leq r \leq n-1$,

$$
\begin{gathered}
w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r & \text { if } r=1 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-2 & \text { if } r=2 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-1 & \text { if } r \geq 3 \text { and } s \text { is odd } ;\end{cases} \\
w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=\left\{\begin{array}{lll}
(s-1)(n+1)+r-1 & \text { if } 1 \leq r \leq \frac{n}{2}-1 \text { and } s \text { is even } \\
(s-1)(n+1)+r & \text { if } \frac{n}{2} \leq r \leq n-1 \text { and } s \text { is even ; }
\end{array}\right. \\
w t\left(\beta_{n}^{s} \beta_{1}^{s}\right)= \begin{cases}(s-1)(n+1)+n-1 & \text { if } s \text { is odd } \\
(s-1)(n+1)+\frac{n}{2}-1 & \text { if } s \text { is even } .\end{cases}
\end{gathered}
$$

Case 3. Let $n \equiv 3(\bmod 4)$.
Choose $s$ is odd and $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\beta_{1}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil s ; \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\
\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{1}^{s} \beta_{2}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil ; \xi\left(\beta_{2}^{s} \beta_{3}^{s}\right)=2 ; \\
& \xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1=\xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right), 3 \leq r \leq n-1 ;
\end{aligned}
$$

choose $s$ is even and $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\beta_{1}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil(s-1) ; \\
& \xi\left(\beta_{1}^{s}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\
\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq\left\lceil\frac{n}{2}\right\rceil \\
\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2}+1 & \text { if } r \equiv 1(\bmod 2) \text { and }\left\lceil\frac{n}{2}\right\rceil+1 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1 ; \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=1,1 \leq r \leq n-1 ;
\end{aligned}
$$

and $\xi\left(\alpha_{s} \alpha_{s+1}\right)=1,1 \leq s \leq m-1$.
Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept obtained by removing the edge $\alpha_{r} \alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha_{s}, \alpha_{s-t}\right)$. Let $P$ be a parallel transformation of $T$ that contains $P_{1}$ as one of the constituent epts.

Clearly, $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$. So $r+t+1=s-t$ which implies $s=r+2 t+1$. Therefore, $r$ and $s$ are of opposite parity.

The weight of edge $\alpha_{r} \alpha_{s}$ is given by

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

The weight of edge $\alpha_{r+t} \alpha_{s-t}$ is given by

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are computed as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1 ;
$$

for $1 \leq s \leq m$ and $1 \leq r \leq n-1$,

$$
\begin{aligned}
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r & \text { if } r=1 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-2 & \text { if } r=2 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-1 & \text { if } r \geq 3 \text { and } s \text { is odd } ;\end{cases} \\
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r-1 & \text { if } 1 \leq r \leq \frac{n-1}{2} \text { and } s \text { is even } \\
(s-1)(n+1)+r & \text { if } \frac{n+1}{2} \leq r \leq n-1 \text { and } s \text { is even ; }\end{cases} \\
& w t\left(\beta_{n}^{s} \beta_{1}^{s}\right)= \begin{cases}(s-1)(n+1)+n-1 & \text { if } s \text { is odd } \\
(s-1)(n+1)+\frac{n-1}{2} & \text { if } s \text { is even } .\end{cases}
\end{aligned}
$$

Case 4.Let $n \equiv 1(\bmod 4)$.
Choose $s$ is odd and $1 \leq s \leq m$,

$$
\begin{aligned}
& \quad \xi\left(\beta_{1}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil s ; \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\
\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq n ;\end{cases} \\
& \xi\left(\beta_{1}^{s} \beta_{2}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil ; \xi\left(\beta_{2}^{s} \beta_{3}^{s}\right)=2 ; \\
& \xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=1=\xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right), 3 \leq r \leq n-1 ;
\end{aligned}
$$

choose $s$ is even and $1 \leq s \leq m$,

$$
\xi\left(\beta_{1}^{s}\right)=\left\lceil\frac{n}{2}\right\rceil(s-1) ;
$$

$$
\xi\left(\beta_{r}^{s}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r}{2} & \text { if } r \equiv 0(\bmod 2) \text { and } 2 \leq r \leq n \\ \left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2} & \text { if } r \equiv 1(\bmod 2) \text { and } 2 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor \\ \left\lceil\frac{n}{2}\right\rceil(s-1)+\frac{r-1}{2}+1 & \text { if } r \equiv 1(\bmod 2) \text { and }\left\lfloor\frac{n}{2}\right\rfloor+1 \leq r \leq n\end{cases}
$$

$$
\xi\left(\beta_{n}^{s} \beta_{1}^{s}\right)=2 ; \xi\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)=1,1 \leq r \leq n-1 ;
$$

and $\xi\left(\alpha_{s} \alpha_{s+1}\right)=1,1 \leq s \leq m-1$.
Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept obtained by removing the edge $\alpha_{r} v=\alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t=d\left(\alpha_{r}, \alpha_{r+t}\right)=d\left(\alpha s, \alpha_{s-t}\right)$. Take $P$ to be a parallel transformation of $T$ containing $P_{1}$ as one of the constituent epts.

Since $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$. So $r+t+1=s-t$ and thus $s=r+2 t+1$. Therefore, $r$ and $s$ are of opposite parity.

The weight of edge $\alpha_{r} \alpha_{s}$ is

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =(n+1)(r+t)-1 .
\end{aligned}
$$

The weight of edge $\alpha_{r+t} \alpha_{s-t}$ is

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =(n+1)(r+t)-1
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.

The edge weights are determined as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1
$$

for $1 \leq s \leq m$ and $1 \leq r \leq n-1$,

$$
\begin{aligned}
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r & \text { if } r=1 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-2 & \text { if } r=2 \text { and } s \text { is odd } \\
(s-1)(n+1)+r-1 & \text { if } r \geq 3 \text { and } s \text { is odd }\end{cases} \\
& w t\left(\beta_{r}^{s} \beta_{r+1}^{s}\right)= \begin{cases}(s-1)(n+1)+r-1 & \text { if } 1 \leq r \leq \frac{n-3}{2} \text { and } s \text { is even } \\
(s-1)(n+1)+r & \text { if } \frac{n-1}{2} \leq r \leq n-1 \text { and } s \text { is even }\end{cases} \\
& w t\left(\beta_{n}^{s} \beta_{1}^{s}\right)= \begin{cases}(s-1)(n+1)+n-1 & \text { if } s \text { is odd } \\
(s-1)(n+1)+\frac{n-3}{2} & \text { if } s \text { is even }\end{cases}
\end{aligned}
$$

Clearly, tades $\left(T \widehat{O} C_{n}\right) \leq\left\lceil\frac{m n+m-1}{2}\right\rceil$ and the edge weights are distinct. Hence $\operatorname{tades}\left(T \widehat{O} C_{n}\right)=\left\lceil\frac{m n+m-1}{2}\right\rceil$.

A total absolute difference edge irregularity strength of $T \widehat{O} C_{7}$ where $T$ is a $T_{p}$-tree with 8 vertices is shown in Figure 4.


Figure 4.

Theorem 2.4. For a $T_{p}$-tree $T$ with even number of vertices, tades $(T \odot$ $\left.n K_{1}\right)=\left\lceil\frac{m n+m-1}{2}\right\rceil$.

Proof. By hypothesis, the $T_{p}$-tree $T$ has $m$ vertices where $m$ is even. Applying the definition of $T_{p}$-tree there is a parallel transformation $P$ of $T$ with the property that for the path $P(T)$, we have

1. $V(P(T))=V(T)$ and
2. $E(P(T))=\left(E(T)-E_{d}\right) \bigcup E_{p}$, where $E_{d}$ is the set of edges removed from $T$ and $E_{p}$ is the set of edges newly introduced through the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts $P$ used to arrive at the path $P(T)$.

Clearly, $\left|E_{d}\right|=\left|E_{p}\right|$. Let us denote the vertices of $P(T)$ successively as $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Let $\beta_{1}^{s}, \beta_{2}^{s}, \cdots, \beta_{n}^{s}(1 \leq s \leq m)$ be the pendant vertices joined with $\alpha_{s}(1 \leq s \leq m)$ by an edge. Then $V\left(T \odot n K_{1}\right)=\left\{\alpha_{s}, \beta_{r}^{s}: 1 \leq r \leq n, 1 \leq\right.$ $s \leq m\}$ and $E\left(T \odot n K_{1}\right)=E(T) \bigcup\left\{\alpha_{s} \beta_{r}^{s}: 1 \leq s \leq m, 1 \leq r \leq n\right\}$.

By Theorem 1.1, we have $\operatorname{tades}\left(T \odot n K_{1}\right) \geq\left\lceil\frac{m n+m-1}{2}\right\rceil$. For the reverse inequality, we define the labeling $\xi: V \cup E \rightarrow\left\{1,2,3, \ldots,\left\lceil\frac{m n+m-1}{2}\right\rceil\right\}$ as follows:

For $1 \leq s \leq m$,

$$
\begin{aligned}
& \xi\left(\alpha_{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+1 & \text { if } s \text { is odd } \\
\frac{s(n+1)}{2} & \text { if } s \text { is even } ;\end{cases} \\
& \xi\left(\beta_{r}^{s}\right)= \begin{cases}\frac{(s-1)(n+1)}{2}+r & \text { if } s \text { is odd } 1 \leq r \leq n \\
\frac{(s-2)(n+1)}{2}+r+1 & \text { if } s \text { is even } 1 \leq r \leq n ;\end{cases} \\
& \xi\left(\alpha_{s} \alpha_{s+1}\right)=2,1 \leq s \leq m-1 ; \\
& \xi\left(\beta_{r}^{s} \alpha_{s}\right)=2,1 \leq s \leq m, 1 \leq r \leq n .
\end{aligned}
$$

Let $\alpha_{r} \alpha_{s}$ be a transformed edge in $T, 1 \leq r<s \leq m$ and let $P_{1}$ be the ept obtained by removing the edge $\alpha_{r} \alpha_{s}$ and including the edge $\alpha_{r+t} \alpha_{s-t}$ where $t$ is the distance of $\alpha_{r}$ from $\alpha_{r+t}$ and the distance of $\alpha_{s}$ from $\alpha_{s-t}$. Take $P$ to be a parallel transformation of $T$ that contains $P_{1}$ as one of the constituent epts.

Note that $\alpha_{r+t} \alpha_{s-t}$ is an edge in the path $P(T)$. So $r+t+1=s-t$ which implies $s=r+2 t+1$. Therefore, $r$ and $s$ are of opposite parity.

The weight of edge $\alpha_{r} \alpha_{s}$ is

$$
\begin{aligned}
w t\left(\alpha_{r} \alpha_{s}\right) & =w t\left(\alpha_{r} \alpha_{r+2 t+1}\right) \\
& =\left|\xi\left(\alpha_{r} \alpha_{r+2 t+1}\right)-\xi\left(\alpha_{r}\right)-\xi\left(\alpha_{r+2 t+1}\right)\right| \\
& =(n+1)(r+t)-1
\end{aligned}
$$

The weight of edge $\alpha_{r+t} \alpha_{s-t}$ is

$$
\begin{aligned}
w t\left(\alpha_{r+t} \alpha_{s-t}\right) & =w t\left(\alpha_{r+t} \alpha_{r+t+1}\right) \\
& =\left|\xi\left(\alpha_{r+t} \alpha_{r+t+1}\right)-\xi\left(\alpha_{r+t}\right)-\xi\left(\alpha_{r+t+1}\right)\right| \\
& =(n+1)(r+t)-1
\end{aligned}
$$

Therefore, $w t\left(\alpha_{r} \alpha_{s}\right)=w t\left(\alpha_{r+t} \alpha_{s-t}\right)$.
The edge weights are obtained as follows:

$$
w t\left(\alpha_{s} \alpha_{s+1}\right)=s(n+1)-1,1 \leq s \leq m-1
$$

for $1 \leq s \leq m$,

$$
w t\left(\alpha_{s} \beta_{r}^{s}\right)=(s-1)(n+1)+r-1,1 \leq r \leq n
$$

Thus the edge weights are distinct. Hence $\operatorname{tades}\left(T \odot n K_{1}\right)=\left\lceil\frac{m n+m-1}{2}\right\rceil$.
Figure 5 illustrates a total absolute difference edge irregularity strength of $T \odot 5 K_{1}$ where $T$ is a $T_{p}$-tree with 10 vertices .


Figure 5.

## References

[1] O. Al-M ushayt, A. Ahmad, and M. K. Siddiqui, "On the total edge irregularity strength of H exagonal Grid graphs", A usttralas.J. Combin., vol. 53, pp. 263-271, 2012.
[2] M. Baca, S. Jendrol, M. M iller and J. Ryan, "On irregular total labeling", DiscreteM ath., vol. 307, pp. 1378-1388, 2007. doi: 10.1016/j.disc.2005.11075
[3] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba, "Irregular netw orks", C ongr. N umer., vol. 64, pp. 187-192, 1988.
[4] S. M . Hegde and Sudhakar Shetty, "On G raceful Trees", A pplied M athematics E-N otes, vol. 2, pp. 192-197, 2002.
[5] J. Ivanco and S. Jendrol, "Total edge irregularity strength for trees", Discuss. M ath. G raph Theory, vol. 26, pp. 449-456, 2006. doi: 10.7151/dmgt. 1337
[6] S. Jendrol, J. M iskuf and R. Sotak, "Total edge irregularity strength of complete graphs and complete bipartite graphs", Discrete M ath., vol. 310, pp. 400-407, 2010. doi: 10.1016/j.disc.2009.03.006
[7] A. Lourdusamy and F. Joy Beaula, "Total absolute difference edge irregularity strength of some families of graphs", TWM S Journal of A pplied and EngineeringM athematics, vol. 13, no. 3, pp. 1005-1012, 2023.
[8] J. M iskuf and S. Jendrol, "On the total edge irregularity strength of the grids", Tatra M t. M ath Publ., vol. 36, pp. 147-151, 2007.
[9] Nurdin, A. N. M. Salman and E.T. Baskaro, "The total edge irregularity strength of the corona product of paths with some graphs", J.Combin. Math. Combin. Comput., vol. 65, pp. 163-175, 2008.
[10] M. Ramalakshmi and K. M. Kathiresan, "Total absolute difference edge irregularity strength of the graph", K ragujevac Journal of $M$ athematics, vol. 46, no. 6, pp. 895-903, 2022. doi: 10.1016/j.disc.2009.03.006
[11] M . K. Siddiqui, "O n total edge irregularity strength of categorical product of cycle and path", AK CE Int. J. Graphs Comb., vol. 9, no. 1, pp. 43-52, 2012. doi: 10.1080/09728600.2012.12088948.
[12] M . K. Siddiqui, "On Tes of subdivision of star", Int. J. of M ath and Soft Compu., vol. 2, no. 1, pp. 75-82, 2012.

## A. Lourdusamy

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002,
Tamil Nadu, India
e-mail: lourdusamy15@gmail.com
Corresponding author

## F. Joy Beaula

Reg. No : 20211282092004,
Research Scholar,
Center: PG and Research Department of Mathematics, St. Xavier's College (Autonomous),
Palayamkottai-627002,
Manonmaniam Sundaranar University,
Abisekapatti-627012,
Tamilnadu,
India
e-mail: joybeaula@gmail.com
and

## F. Patrick

Department of Mathematics,
St. Xavier's College (Autonomous), Palayamkottai-627002,
Tamil Nadu,
India
e-mail: patrick881990@gmail.com

