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Abstract

A total labeling & is defined to be an edge irregular total absolute
difference k-labeling of the graph G if for every two different edges e
and f of G there is wt(e) # wt(f) where weight of an edge e = xy
is defined as wt(e) = [£(e) — &(x) — E(y)|. The minimum k for which
the graph G has an edge irregular total absolute difference labeling
is called the total absolute difference edge irreqularity strength of the
graph G, tades(G). In this paper, we determine the total absolute
difference edge irreqularity strength of the precise values for T)-tree
related graphs.
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1. Introduction

Here, we consider a simple graph G with vertex set V' and the edge set
E. The total edge irregular strength of graphs was introduced by Baca et
al. [2]. The basic idea came from irregular assignments and the irregular
strength of graphs introduced by Chartrand et al. [3]. The total edge
irregular k-labeling of a graph G = (V| E) namely the labeling { : V E —
{1,2,...,k} such that all edge weights are distinct. The weight wt(uv) of
an edge uv is defined as wte(uv) = §(u) + £(uv) + &(v). The total edge
irregularity strength G denoted by tes(G), is the smallest k for which G
has a total edge irregular k-labeling. In the year 2006, Ivanco and Jendrol
stated a conjecture that ,

125(G) = maa { {E(Gg + 2} | {A(Gg) + 1} }

for an arbitrary graph G different from K.

This conjecture has been verified for all trees in [5]. The Ivanco and
Jendrol’s conjecture has been verified for K,, and K, , in [6], for cartesian
product of two paths in [8], for the corona product of a path with certain
graphs in [9], for categorical product of cycle and path in [11], for a subdi-
vision of stars in [12] and for hexagonal grid in [1].

In [10] we find the details for total absolute difference edge irregular-
ity strength which we described here: “Ramalakshmi and Kathiresan intro-
duced the concept of total absolute difference edge irregularity strength of
graphs to reduce the edge weights. For a graph G = (V(G), E(Q)), the
weight of e = zy under a total labeling £ is wt(e) = [£(e) — &(z) — &(y)]-
We define a labeling € : V(G)U E(G) — {1,2,...,k} as an edge irregular
total absolute difference k-labeling of a graph G if for every two different
edges e = zy and f = zoyo we have wi(e) # wt(f). The total absolute
difference edge irregular strength, tades(G), is the minimum k such that G
posses an edge irregular total absolute difference k-labeling”. In [10], we
find the following conjectures,

1. tades(T) = mazx {g, %} for a tree T on p vertices,

2. tes(G) < tades(G).

Theorem 1.1. Let G = (V,E) be a graph. Then Pﬁq < tades(G) <
|E|+ 1.



Total absolute difference edge irreqularity strength of T),-tree ... 1599

Lourdusamy et al. [7] have computed the tades(G) for snake related
graphs, wheel related graphs, lotus inside the circle and double fan graph.
Here, we investigate the total absolute difference edge irregularity strength
of Tp-tree related graphs.

Definition 1.2. [4] Let T’ be a tree and ug and vy be two adjacent vertices
inT. Let there be two pendant vertices w and v in I’ such that the length of
ug —w path is equal to the length of vg — v path. If the edge ugvg is deleted
from T and u,v are joined by an edge uv, then such a transformation of
T is called an elementary parallel transformation (or an ept) and the edge
ugvg is called transformable edge.

If by the sequence of ept’s, T' can be reduced to a path, then T is called
a T),-tree (transformed tree) and such a sequence regarded as a composition
of mappings (ept’s) denoted by P, is called a parallel transformation of 7.
The path, the image of T under P is denoted as P(T"). We use the notation
d(u,v) to denote the distance between the vertices of u and v.

AT tree T An ept B (T Second ept Fh(T"

u . V .

L p WV

%5 % 1

Figure 1. A T)-tree and a sequence of two ept’s reducing it to a path

Definition 1.3. Let G be a graph with p vertices and G be any graph.
A graph G10G; is obtained from G| and p copies of Gy by identifying one
vertex of it copy of Gy with it" vertex of Gy.

Definition 1.4. The corona G1©G2 of two graphs G1(p1,q1) and Ga(p2, g2)
is defined as the graph obtained by taking one copy of G and py copies of
G5 and joining the i*" vertex of G with an edge to every vertex in the it
copy of Ga.
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2. Main Results

Theorem 2.1. Let T' be a T),-tree on m vertices. Then tades(TOP,) =
=]

Proof.  Consider T be a T)-tree with m vertices. Applying the definition
of a transformed tree we can find a parallel transformation P of T" which
will satisfy (¢) V(P(T)) = V(T') and (i1) E(P(T)) = (E(T) — Eq) UEp,
where P(T') is the path, E; is the set of edges removed from T" and E, is
the set of edges newly introduced using the sequence P = (Py, Po, -+, Py)
of the epts P used to arrive at the path P(T"). Obviously, we have the same
number of edges for F4 and E,. We use the label ai, a9, -, oy, succes-
sively starting from one pendant vertex of P(T') and proceed in the right
direction up to the other pendant vertex to denote the vertices of P(T"). Let
B3, 85, -+, B35(1 < s < m) be the vertices in s copy of P, with 3 = as.
Then V(TOP,) = {as, 35 : 1 < r <n,1 <s < m with 8§ = a,} and
E(TOP,) = E(T)U{B:Bi1: 1 <r<n—1,1<s<m}.

By Theorem 1.1, we have tades(TOP,) > {%ﬁq To prove the re-

verse inequality, we define the labeling ¢ : VUE — {1,2,3,..., [%ﬁlh
as follows:

Case 1. m is even, n is odd or even and m is odd, n is even.
When sisodd, 1 <s<mand 1 <r <n,

£(87) = n(‘s;l) + I if risodd
" n(‘g;l) +5 if ris even ;
When siseven, 1 <s<mand 1<r <n,

ns —1 i i
o) B if r1is odd
£(67) { s +1 if riseven;

<

[\

and
g(ﬁfﬁﬁJrl):Z 1<s<m, 1<r<n—1;
(asasr1) =2, 1<s<m—1.

Case 2. m and n are odd.
When s is odd,
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—(831)n+%1 if risoddand1<s<m-1,1<r<n

on-{

(s=1)n +2 if risevenand 1<s<m-—-1, 1<r<n;
(m21)n+% if risoddand1<r<n-1
g = ¢ s 1)n+2 if risevenand1 <r<n-1
"ml if r=mn;

£(B7 T+1)—2 1<s<m-—1, 1<r<n—1

mam ) 2 i 1<r<n-2
§(/Br r+1){1 ifr:n—l;

when siseven, 1 <s<mand 1l <r <n,

nj _ r=1 if ris odd
o 5 5 I 1S O
§(67) = {%_§+1 if 7 is even ;
§8767 ) =2, 1<r<n—-1;

and
Elasast1) =2, 1 <s<m-—1.

Take «a,as be a transformed edge in T, 1 < r < s < m and take P,
be the ept derived by removing the edge a,cs and introducing the edge
aypias—y where t = d(ay, ap4y) = d(as, as—t). Consider P to be a parallel
transformation of 1" that contains P; as one of the constituent epts.

Note that a,4ias—; is an edge in the path P(T). Sor+t+1=s—1t
which implies s = r 4+ 2t 4+ 1. Therefore, r and s are of opposite parity.
The weight of edge ;a5 is defined as

wt(aras) = wt(oyarioir)
= [(araryatt1) — (o) — E(artatt)]
=n(r+t)— 1.
The weight of edge a5 is defined as
wt(otios—t) = wt(onpeorieq1)
= |§(rpearier1) — (o) — E(Qrper)]
=n(r+t)—1
Therefore, wt(a,as) = wt(pyios—t).
The edge weights are as follows:

wt(asasr1) =ns—1, 1 <s<m-—1;
forl1<r<n-—1land1l<s<m,
wt(BrBiy 1) = (s —1)n+r—1, sis odd;
wt(BiBi, 1) = sn—r—1, sis even.
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It is a routine matter to verify that all vertex and edge labels are at most

[%‘ﬂ and the edge weights are distinct. Hence tades(TOP,) = [mg_ﬂ .
O
Figure 2 illustrates a total absolute difference edge irregularity strength

of T@P5, for a T)-tree T with 11 vertices.

10 11 12

Figure 2.

Theorem 2.2. For aT)-treeT onm vertices, tades(T@Kl’n) = [7(7”1%"“11 .

Proof. By hypothesis, T" is a T)-tree with m vertices. Then there is a
parallel transformation P of T" with the property that for the path P(T),
the following are true

1. V(P(T)) =V(T) and

2. E(P(T)) = (E(T) — Eq) U Ep, where E; is the set of edges deleted
from T" and E, stands for edges newly added through the sequence
P = (P, Ps,---, Py) of the epts P which is used to arrive at the path
P(T).

Clearly, |Eq| = |Ep|. Let us denote the successive vertices of P(T") to
be a1, as, - - -, apy, starting from one pendant vertex of P(T) right up to the
other. Let 33,55, --, 8:(1 < s < m) to be the vertices of r'* copy of Ki,
with 87 = as. The vertex set of V(TéKLn) ={as 85,05 :1<r<n,1<
s < m with a; = 3§}. The edge set of E(TOK,,) = E(T)U{B56: : 1<
s<m, 1<r<n}.
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By Theorem 1.1, we have tades(TOK; ;) > [%W We now prove
that tades(TéKl,n) < [Mn_;lgw Define
E:VUE — {1,2,3,..., [%H as follows:

Case 1. m is even; n is odd or even.
£%—i—l if sisoddand1<s<m

(0% =
() 5”2—“1 if sisevenand 1 <s<m;
£(B3) = _1)2n+1)+1 if sisoddand1<s<m
0 gnQ—HZ if sisevenand 1 <s<m;

(8°) = %—i—r if sisoddand1<s<m, 2<r<n
%—r—kl if sisevenand 1 <s<m, 2<r <mn;

lasasyr) =2, 1<s<m-—1;

E(asfy) =2, 1 <s<my

&(

BiBr)=2,1<s<m, 2<r<n.

§

Case 2. m is odd; n is odd or even.

s—1)(n+1 . .
E(as)Z{ %4—1 if sisoddand1<s<m

s(nt1) if sisevenand 1 <s<m;

2
%%—1 if sisoddand 1 <s<m-—1
£(85) = s(njl) if sisevenand 1 <s<m-—1
gt 4 5] i s =m;
wjtr if sisoddand1<s<m-1,2<r<n
5( S): 12 — —_ ) — —
" {S(n;)—erl if sisevenand1 <s<m-1, 2<r<m;
(M) = %Q(nﬂ)—i-g if riseven and 2 <r <n,
' %Q(HH)—F% if risodd and 2 <r <m;
lasasyr) =2, 1 <s<m-—1;
ElasB) =2, 1<s<m—1;
E(amByt) = [%1 +1
BB =2, 1<s<m—1,2<r<mn;
(

%}—T if risevenand2<r<n
%]_T—g?’ if risodd and 2 <r <n.

Let a,as be a transformed edge in T', 1 < r < s < m and let P; be the
ept obtained by removing the edge a,a, and including the edge a;yras—¢
where t = d(ay, ap4¢) = d(as, as—¢). Take P to be a parallel transformation
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of T' containing P; as one of the constituent epts. Obviously a,qias—; is
an edge in the path P(T). Sor+t+1 = s —t and thus s = r + 2t + 1.
Clearly, s and t are of opposite parity.
The weight of the edge a,ay is
wt(aras) = wt(oyarioir)
= |{(arargair1) — E(ar) — E(ariaiy)]
=(n+1)(r+t)—1.
The weight of the edge oy yias—¢ is
Wt gt0s—t) = WAt Qrtt41)
= [§(rptariir1) — E(arit) — E(Qrti41)]
=(Mn+1)(r+t)—1

The above argument implies that wt(a,as) = wi(,ios—¢).
The edge weights are:
wt(asast1) =s(n+1)—1, 1 <s<m-—1;
for 1 <s<m,
s ) (s=1)(n+1) if sisodd
wh(esf5) = { s(n+1)—2 if sis even;

(s—=1(n+1)+r—1 if sisoddand2<r<n
s(n+1)—r—1 if sisevenand 2 <r <n.

wt(B7) = {
Clearly, tades(T@Klm) < [%W Note that the edge weights are
distinct. Hence tades(TOK) ) = [—(”“%m—lw' -

Figure 3 illustrates a total absolute difference edge irregularity strength
of TOK1 3 for a T)-tree T' with 11 vertices.
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Figure 3.

Theorem 2.3. Let T be aT),-tree on'm vertices, tades(TOC,,) = [%m_ﬂ .

Proof. Consider 7" to be a T),-tree with m vertices. By the definition of
a transformed tree there exists a parallel transformation P of T' for which
for the path P(T), the following two results will hold,

1. V(P(T)) =V(T) and

2. E(P(T)) = (E(T)— Eq)UE,, where E; is the set of edges removed
from T" and FE), is the set of edges newly introduced through the
sequence P = (P, Py, -+, P;) of the epts P used to arrive at the
path P(T).

Clearly, |E4| = |Ep|. We denote the vertices of P(T") successively as
a1, Q, -+, Qy starting from one pendant vertex of P(T') right up to the
other. Let 3§,/5,---,85 (1 < s < m) be the vertices in the s copy of
Cy, with 8] = a,. Then V(TOC,) = {5 :1<r<mn1<s<m}and
E(T0C,) = E(T) UE(Cy).

By Theorem 1.1, we have tades( TOC

> lrmn—‘rm 1
inequality, it is enough to show that tades(T'OC,,) < {—m”gm_q.

. For the reverse
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Case 1. Let n =0 (mod 4).
Choose s is odd and 1 < s < m,

§(8y) = L=
s (S—IM"—HZ—F% if r=0(mod2)and2<r<n
§:) = {(s—%n—ﬂl—i—r—zl if r=1(mod2)and2<r<n;
§(PiB3) = 5 &(B3P3) = 2;
§(BrAY) =1 =¢(B7B 1), 3<r<n—1L
choose s iseven and 1 < s < m,
£(5) = (Hle-1TE
(LQHH—% if =0 (mod?2)and2<r<5%
(B = %4—2 if =0 (mod2)and §+1<r<n
M—i—% if r=1(mod2)and2<r<n;

g(ﬁfzﬁf) =1= g(ﬁfr r+1)7 I<r<n-1

and {(asas41) =1, 1 <s<m-—1.

Let a,as be a transformed edge in T', 1 <r < s < m and let P; be the
ept derived by deleting the edge a5 and including the edge o1 s—¢ where
t = d(ay, arq¢) = d(as, as—¢). Consider P to be a parallel transformation
of T' that contains P; as one of the constituent epts.

Note that o, 4ras—¢ is an edge in the path P(T), it follows that r+t+1 =
s —t which implies s = r 4+ 2t + 1. Therefore, s and r are of opposite parity.

The weight of the edge «,ay is
wt(aras) = wt(apari2i41)
=n+1)(r+t)—1.

The weight of the edge 45—y is

wt(ort0s—t) = Wt Qrtt41)
—(n+1)(r+t)— 1.

Therefore, wt(a,as) = wi(opyios—t).

The edge weights are caculated as follows:
wt(asasy1) =s(n+1)—1, 1<s<m-—1;
forl<s<mand1<r<n-1,

(s—1)(n+1)+ if r=1and s is odd
wt(Bifr ) = (3—1)(n+1)+r—2 if r=2and s is odd
(s—1)(n+1)+r—1 1if r>3 and sisodd;

wt(B )= {(5—1)(n+1)+r—1 if 1<r <% andsiseven

PP (s=1(n+1)+r if $4+1<r<n—1andsiseven;
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sy ) (s=1)(n+1)+n—-1 if sisodd
wt(ﬁnﬁl){ (s=1(n+1)+35 if s is even.

Case 2. Let n =2 (mod 4).
Choose s to be odd and 1 < s < m,

£ = %—F— if =0 (mod?2)and2<r<mn
(s=1)(n+1) 1)2(n+)+T21 if r=1(mod?2)and2<r<mn;
§(BiB5) =55 &(B583) =2;
§(BRBT) =1 =&(BBr11), 3<r<n—1;
choose s to be even and 1 < s < m,
£(pp) = =GR

%2“)—14_% if r=0(mod2)and2<r<%—1
£(82) = wfl)ﬂ_‘_% if =0 (mod?2)and % <r<n

W"F% if r=1(mod2)and2<r<n;
EB350) =% €(BBL) =1, 1S T <n—1;

and £(asas41) =1, 1 <s<m-—1.

Let a,as be a transformed edge in 7', 1 <7 < s < m and let P; be the
ept obtained by removing the edge a,a; and including the edge oy yras—¢
where t = d(ay, apy¢) = d(as, as—¢). Take P to be a parallel transformation
of T that contains P; as one of the constituent epts.

Since a,41vs—¢ is an edge in the path P(T). Clearly, r +t+1=s—1t
gives s = r + 2t + 1. Therefore, r and s are of opposite parity.

The weight of edge o,y is
wt(aras) = wt(orarioir)
=n+1)(r+t)—1.
The weight of edge ayras—¢ is
wt(ort0s—t) = WAt Qrtt41)
=n+1)(r+t)—1.
Therefore, wt(ayas) = wt(ay4eas—¢)-
The edge weights are obtained as follows:

wt(asasr1) =s(n+1)—1, 1 <s<m-—1;
forl<s<mand1<r<n-1,
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(s—=1(n+1)+ if »=1 and s is odd
wt(BEPi) = (S—l)(n+1)+r—2 if =2 and sisodd

(s—=1)(n+1)+r—1 if r>3 and sisodd;
wi(B2 )= (s=1)(n+1)+r—-1 if 1<r<%—1andsiseven
rPre (s—1(n+1)+r if §<r<n-1andsiseven;

(s—=1)(n+1)+n—-1 if sisodd
S A8 —
Wt(ﬁnﬁl)—{ (s—=1)(n+1)+5 -1 if siseven.

Case 3. Let n =3 (mod 4).
Choose s is odd and 1 < s < m,

§B7) = (3]s
(3] (s—1)+% if r=0(mod2)and2<r<n
£087) = [l (s—1)+52 if r=1(mod2)and2<r<mn;
(5152):{%% §(B3055) = 2;
§(881) =1=¢(87B 1), 3<r<n-—1;
choose s is even and 1 < s < m,
§67) = [31 (s = 1);
2] (s—1)+3% if =0 (mod2)and2<r<n
€B5) =2 [2](s—1)+ 5 if 7=1(mod?2)and2<r <%
2] (s—1)+52+1 if r=1(mod2)and [2]+1<r<n;
§8nB1) =15 &8 B ) =1, 1<r<n—1

and {(asas+1) =1, 1 <s<m-—1.

Let a,as be a transformed edge in 7', 1 <7 < s < m and let P; be the
ept obtained by removing the edge a,a; and including the edge oy yras—+
where t = d(ay, apq¢) = d(as, as—¢). Let P be a parallel transformation of
T that contains P; as one of the constituent epts.

Clearly, a,4¢as—¢ is an edge in the path P(T). Sor+t+1=s—t
which implies s = r 4+ 2t + 1. Therefore,  and s are of opposite parity.

The weight of edge «a,.crs is given by
'LUt(OéTOZS) = wt(arar+2t+1)
=(n+1)(r+t)—1.
The weight of edge o415y is given by
wt(arthasft) :wt(ar+tar+t+l)
=n+1)(r+t)—1

Therefore, wt(a,as) = wt(ay4eas—¢).
The edge weights are computed as follows:
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wt(asast1) =s(n+1)—1, 1 <s<m-—1;

forl<s<mand1<r<n-1,
(s—=1(n+1)+r if =1 and sis odd
wt(Bifr) =4 (s=1)(n+1)+r—-2 if r=2and sis odd
(s—=Dn+1)+r—1 ifr>3andsisodd'
w(BSB5 ) = (s=1D(n+1)+r—1 if 1<r <221 andsiseven
P (s—=1)(n41) 4+ if 2l <pr<n—1andsiseven;
spsyv ) (s—1(n+1)+n—-1 if sisodd
wt(ﬁnﬁl)_{ (s—1)(n+1)+22  if siseven.

Case 4.Let n =1 (mod 4).
Choose s is odd and 1 < s < m,

J(s=1)+% if =0 (mod?2)and2<r<n
Ts—1)+5L if r=1(mod2)and 2 <7 <n;
§BiBs) =515 £(B3683)
g(ﬁfzﬁl) =1= g(ﬁfr r+1)7
choose siseven and 1 < s < m,

£087) = 5] (s — 1);

5l (s—=1)+3 if 7=0(mod2)and2<r<n
B =2 [2](s—1)+5E if 7=1 (mod?2)and2<r< %]

21 (s—1)+ 52 +1 if r=1(mod2)and [Z]|+1<r<n;
§(BRBT) =25 £(BrBr ) =1, 1<r<n-—1;

and £(asas41) =1, 1 <s<m-—1.

Let a,as be a transformed edge in T, 1 < r < s < m and let P; be
the ept obtained by removing the edge a,v = as and including the edge
sy where t = d(oy, ap4y) = d(as,as—¢). Take P to be a parallel
transformation of T' containing P; as one of the constituent epts.

Since a,yias—¢ is an edge in the path P(T). Sor +¢t+1=s—t and
thus s = r + 2t + 1. Therefore, r and s are of opposite parity.

The weight of edge a;.cr5 is
'LUt(OéTOZS) = wt(arar+2t+1)
=n+1)(r+t)—1.
The weight of edge a5y is
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U)t(ar+tas—t) :U)t(ar+tar+t+1)
=(m+1)(r+t)—1.

Therefore, wt(ayas) = wt(ay4eas—¢)-
The edge weights are determined as follows:

wt(asast1) =s(n+1)—1, 1 <s<m-—1;
Y (n+1)+r if »=1and s is odd
wt(BrBi,) = J(n+1)+r—2 if r=2and sisodd
n+1)+r—1 if r>3and sisodd;
)+r—1 iflgrgnT_‘?andsiseven
n+1)+r if”T_lgrgn—landsiseven;
(
(

n+1)+n—1 if sisodd
n+1)+ 553 if siseven .

Wt(ﬁf ﬁ+1) =

wt(B;51) =

»
|
—
~—
—_~

—N

Clearly, tades(TOC,,) < [%’”*q and the edge weights are distinct.
Hence tades(TOC,,) = [%’”71} O

A total absolute difference edge irregularity strength of TOCy; where T
is a T)-tree with 8 vertices is shown in Figure 4.

11 13

10 11 13 14

10

Figure 4.
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Theorem 2.4. For a T),-tree T' with even number of vertices, tades(T ®
TlKl) — "mngmfl-‘ .

Proof. By hypothesis, the T)-tree T' has m vertices where m is even.
Applying the definition of T),-tree there is a parallel transformation P of T
with the property that for the path P(T'), we have

1. V(P(T)) = V(T) and

2. E(P(T)) = (E(T)— Eq)UE,, where E is the set of edges removed
from T and E, is the set of edges newly introduced through the

sequence P = (P, Py, -+, P;) of the epts P used to arrive at the
path P(T).

Clearly, |Ey4| = |Ep|. Let us denote the vertices of P(T') successively as
a1, e, -, Quy starting from one pendant vertex of P(T) right up to the
other. Let 57,085, --,65(1 < s < m) be the pendant vertices joined with
as(l1 < s <m) by an edge. Then V(T © nKi) = {as, 5 : 1 <r<n,1<
s<m}and E(T©onK;)=E(T)Hasfi: 1<s<m, 1 <r<n}.

By Theorem 1.1, we have tades(T ©nkK;) > [%’HW . For the reverse

inequality, we define the labeling ¢ : VUE — {1,2,3,..., [%m_ﬂ} as
follows:

For 1 < s <m,

el 41 if sis odd

S if siseven ;
) 4y if sisodd1<r<n
f)+r+1 if sisevenl <r<n;

Let a,as be a transformed edge in 7', 1 < r < s < m and let P; be the
ept obtained by removing the edge a,a, and including the edge a;yras—¢
where t is the distance of «, from «,4; and the distance of a; from as_.
Take P to be a parallel transformation of 1" that contains P; as one of the
constituent epts.
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Note that a,4ias—; is an edge in the path P(T). Sor+t+1=s—1t
which implies s = r 4+ 2t 4+ 1. Therefore,  and s are of opposite parity.

The weight of edge o,y is
wt(aras) = wt(oyarioir)
= |{(arartori1) — E(ar) — E(ariartt)]
=(n+1)(r+t)—1.
The weight of edge ayras—¢ is
wt(otas—t) = WE(Qr Qi)
= [§(rptariir1) — E(arit) — E(Qrti41)]
=n+1)(r+t)—1.
Therefore, wt(ayas) = wt(ay4e0s—¢)-
The edge weights are obtained as follows:

wt(asase1) =s(n+1)—1, 1 <s<m-—1;
for 1 <s<m,
wt(asf) =(s—=1)(n+1)+r—1, 1 <r<n.
Thus the edge weights are distinct. Hence tades(T ® nKy) = [%’”‘ﬂ
O

Figure 5 illustrates a total absolute difference edge irregularity strength
of T'® 5K; where T is a T)-tree with 10 vertices .

4 14
0 15
13 16
14 17
15
14 16
g g 27 28
17 48 20
14 30
19
23 .l )
10 i 25
2024 iy | G
25 27
# 28
20 23 B
21 22 29

Figure 5.
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