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Abstract

In this article, we are concerned by existence and uniqueness of
a fixed point for the sum of two operators A and B, defined on a
closed convex subset of an ordered Banach space, where the order is
induced by a normal and minihedral cone. In such a structure, an
absolute value function is generated by the order and this provide the
ability to introduce new versions of the concepts of lipschitzian and
expansive mappings. Therefore we prove that if A is expansive and B
is contractive, then the sum A+B has a unique fixed point.
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1. Introduction

In this paper, we are concerned by existence of a solution to the fixed point
equation:

x = Ax+Bx, x ∈ Ω(1.1)

where Ω is a closed convex set (a ball of radius r in practice), of a Banach
space X and A,B : Ω→ X are two continuous mapping.

The Krasnoselskii’s theorem (1958) is the first and the most famous
fixed-point principle solving Equation (1.1), see [20]. His result states that
if

(a) A is a contraction,

(b) B is compact and

(c) for all x, y ∈ Ω, Ax+By ∈ Ω,

then the sum of operators A+B has at least one fixed point.
The proof of this result is based on the following three facts. Under

Condition (a), the inverse map of I−A exists and is continuous. Condition
(b) implies that the mapping (I −A)−1B is compact and Condition (c)
leads to (I −A)−1B(Ω) ⊂ Ω. Since Ω is closed and convex, and fixed
points of (I −A)−1B are also fixed points of A + B, the author of [20]
used Schauder’s fixed point theorem to conclude that the sum of operators
A+B has at least one fixed point in Ω.

Because of the lack of compactness in infinite dimensional Banach spaces
and in order to measure how a set is not compact, Kuratowsky introduced
in 1930 his measure of noncompactness, see [21]. This new measure has
been used by Darbo, see [11], to introduce a new version of contraction
hypothesis. He calls A a k-set contraction mapping if

α (A(D)) ≤ kα (D) for all D ⊂ Ω bounded,

where α denotes Kuratowsky’s measure of noncompactness and k ∈ [0, 1) .
Then he proved that any k-set contraction mapping which maps continu-
ously Ω into itself, has at least a fixed point. Since the sum of a contraction
and a completely continuous mapping turned out to be a k-set contraction,
Darbo’s theorem is considered an extension of Krasnoselskii’s fixed point
theorem. Since then, the existence of fixed points for the sum of two opera-
tors has attracted tremendous interest and many forms and improvements
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of Krasnoselskii’s fixed point theorem, have been established in the liter-
ature by modifying the above assumptions, see, for example, [2], [7], [14],
[15], [16], [24], [23] and references therein.

Recently, in [6] and [5] a new version of hypothesis of contraction is
introduced. In these works, authors consider the case where X is an or-
dered Banach space and the order is induced by a normal and minihédral
cone. It is well known that in such a framework an absolute value function
|·| is defined. Hence the authors of [6] and [5] replaced the condition of
contraction on A by

⎧⎪⎨⎪⎩
there exists a positive operator L in L(X)
and k ≥ 0, such that kr(L) < 1 and
|Ax−Ay| ¹ kL (|x− y|) for all x, y ∈ Ω,

(1.2)

where r(L) is the spectral radius of L. Then they proved that any operator
T mapping continuously the closed and convex set Ω into itself and satisfy-
ing Hypothesis (1.2) under hypothesis if the contraction mapping T maps
continuously the closed convex set Ω into itself, has a unique fixed point.
In [5], the author considered the case of Equation (1.1) in such an ordered
Banach space X. Assuming that the mappings A and B satisfy Hypotheses
(1.2), (b) and (c), he proved that the sum A+B admits at least one fixed
point in Ω.

Motivated by the work in [5], we consider in this paper Equation (1.1)
in the same framework of [6] and [5]. In this contribution, we introduce a
new version of expansivity, we say that T : Ω ⊂ X → X is (k, L)-expansive
if

|Tx− Ty| º kL (|x− y|) for all x, y ∈ Ω,

where L ∈ L(X) is positive and k > 0. Therefore, we prove that if A
is (α,LA)-expansive, B is (β,LB)-lipschtizian (ie B satisfies (1.2) without
βr(LB) < 1), and A(Ω) ⊂ (I −B) (Ω) and if x = Ax + By with y ∈ Ω
implies x ∈ Ω, then the sum of operators A + B has a unique fixed point
in Ω.

This work is ended by two applications of our main result. The first
application concerns algebraic equations and the second one concerns the
integral equations of Urysohn-type posed on unbounded interval.
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2. Abstract background

In all this section we let (E, k·k) be a real Banach space. The standard
notation L (E) refers to the set of all linear bounded self-mapping defined
on E. For L ∈ L (E) the notations σ(L) and r(L) are commonly used and
refer respectively to the spectrum of L and the spectral radius of L. We
recall below their definitions,

σ(L) = {µ ∈ C : (µI − L) is not invertible} ,

r(L) = sup {|µ| : µ ∈ σ (L)} .
Now let us recall some basic facts related to cones and positivity.

Definition 2.1. A nonempty closed and convex set K of E is said to be a
cone in E if, (tK) ⊂ K for all t ≥ 0 and K ∩ (−K) = {0E} .

It is well known that if K is a cone in E, then K induces a partial order
on the Banach space E. We write for all x, y ∈ E : x ¹K y (or y ºK x) if
y−x ∈ K and x ≺K y (or y ÂK x) if y− x ∈ K {0E}. Thus, vectors lying
in K {0E} are said to be positive.

Definition 2.2. Let Ω be a nonempty set in E. Then

a) u ∈ E is said to be an upper bound of Ω if v ¹K u for all v ∈ Ω;

b) u ∈ E is said to be a lower bound of Ω if v ºK u for all v ∈ Ω;

c) u ∈ E is said to be the least upper bound of Ω and we write u = supΩ,
if u is an upper bound of Ω and v ¹K w for all v ∈ Ω implies u ¹K w;

d) u ∈ E is said to be the greatest lower bound of Ω and we write u = inf Ω,
if u is a lower bound of Ω and v ºK w for all v ∈ Ω implies u ºK w.

Definition 2.3. Let K be a cone in E. The cone K is said to be

a) normal, if there is a positive constant nK such that for all u, v ∈ E,
0E ¹K u ¹K v implies k ≤ nK kvk,

b) minihedral if sup (x, y) exists for all x, y ∈ E.

Remark 2.4. Notice that if a cone K is minihedral then inf (x, y) exists
for all x, y ∈ E. Moreover, we have inf(x, y) = − sup(−x,−y).
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Remark 2.5. It is well known that if K is a minihedral cone inducing the
order ¹K on E, then (E,¹K) is a Riesz space or a Banach lattice in the
sence given in [22]..

Definition 2.6. Let K be a minihedral cone in E inducing the order ¹K

on E. For x ∈ E, we define the positive part, the negative part and the
absolute value of the vector x respectively by

x+ = sup(x, 0), x− = sup(−x, 0) and |x| = x+ + x−.

Proposition 2.7. ([22]) Let K be a minihedral cone in E inducing the
order ¹K on E. Then the absolute value define then a self-mapping on E
and it has the following properties:

i) |x| ºK 0E for all x ∈ E,

ii) |x| = 0E ⇒ x = 0E,

iii) |tx| = |t| |x| for all x ∈ E and t ∈ R,

iv) |x+ y| ¹K |x|+ |y| for all x, y ∈ E,

v) ||x|− |y|| ¹K |x− y| for all x, y ∈ E.

Proposition 2.8. ([5])LetK be a minihedral cone in E, then the following
assertions are equivalents.

i) The mapping |·| : E → K is continuous.

ii) The mapping |·| : E → K is continuous at 0E.

iii) There exists η > 0 such that k|u|k ≤ η kuk for all u ∈ E.

iv) supkuk=1 k|u|k <∞.

Definition 2.9. Let K be a cone in E, a mapping L ∈ L (E) is said to be
positive, if L (K) ⊂ K.

Throughout the notation LK (E) will refer to the subset of L (E) of
positive operators.

For detailled presentations on cones and positivity we refer the reader to
[13] and [17]. The reader will observe that the definition of the minihedrality
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given here is that of [13]. In [17], a cone C is said to be minihedral if
sup(x, y) exists for all pair (x, y) ∈ E2 having an upper bounded. To
ensure the existence of sup(x, y) for all x, y ∈ E when such is the definition
of the minihedrality, one may assume that the cone C is generating (i.e.
E = K − K). Indeed, for all x, y ∈ E there exist x1, x2, y1, y2 ∈ K such
that x = x1 − x2 and y = y1 − y2. Therefore, we have x ¹K x1 + y1 and
y ¹K x1 + y1.

3. Main results

In all this section, we let (E, k·k) be a real Banach space and we let K be
a normal and minihedral cone in E, inducing the order ¹ and the absolute
function |·| on E. All the notations of this section are that introduced in
Section 2 and we suppose throughout that the absolute value function

|·| : E → K is continuous.(3.1)

We introduce below two new concepts.

Definition 3.1. Let k ≥ 0 and L ∈ LK (E). A mapping T : Ω ⊂ E → E
is said (k,L)-lipschitzian if,

|Tu− Tv| ¹ kL (|u− v|) , for all u, v ∈ Ω.

Definition 3.2. Let k > 0 and L ∈ LK (E). A mapping T : Ω ⊂ E → E
is said (k,L)-expansive if,

|Tu− Tv| º kL (|u− v|) , for all u, v ∈ Ω.

We will use in the proof of the main result of this work, the following
theorem which is a cosequence of Corollary 2 and Remark 4 in [6]. It pro-
vides a variant of Banach contraction principle in ordered Banach spaces.

Theorem 3.3. Let Ω is nonempty closed convex subset in E and T : Ω→
Ω (k, L)-lipschitzian mapping, where k ≥ 0 and L ∈ LK (E). If the absolute
function |·| is continuous on E and kr(L) < 1, then T admits a unique fixed
point.

Let now Ω be a nonempty closed convex subset in E and T : E → E
and S : Ω→ E be two mappings such that
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S(Ω) ⊂ (I − T ) (Ω) ,(3.2)

v = Tv + Su, u ∈ Ω implies v ∈ Ω,(3.3)

The main result of this work consists in the following theorem.

Theorem 3.4. Assume that Hypotheses (3.1)-(3.3) hold true, the map-
ping T is (β,LT )-expansive and S is (α,LS)-lipschitzian, where, α ≥ 0, β >
0 and ÃLS, LT ∈ LK(E) are such that(

β−1 /∈ σ (LT ) , (βLT − I)−1 ∈ LK(E) and
αr((βLT − I)−1 LS) < 1.

(3.4)

Then the sum of operators, T + S has a unique fixed point in Ω.

Proof. For all u, v ∈ E we have

|(I − T ) (u)− (I − T ) (v)| = |(T (u)− T (v))− (u− v)|(3.5)

º |T (u)− T (v)|− |u− v|(3.6)

º (βLT − I) (|u− v|) .(3.7)

This shows that the mapping (I − T ) is one to one and the inverse-
mapping of (I − T ) : E → (I − T ) (E) exists. Moreover, since from Hy-
pothesis (3.4), (βLT − I)−1 is positive, the estimate (3.5) leads to

¯̄̄
(I − T )−1 (x)− (I − T )−1 (y)

¯̄̄
¹ (βLT − I)−1 (|x− y|) for all x, y ∈ (I − T ) (Ω) .

Therefore, Hypothesis (3.1) and the continuity of the mappings (βLT − I)−1

lead to that of the mapping (I − T )−1.
At this stage, since by Hypothesis (3.2), S(Ω) ⊂ (I − T ) (Ω) the map-

ping (I − T )−1 S : Ω→ E is well defined. Moreover, if v = (I − T )−1 S (u)
with u ∈ Ω, then Hypothesis (3.3) leads to v = Tv+Su ∈ Ω. Therefore we
have proved that (I − T )−1 S (Ω) ⊂ Ω.

Since x ∈ Ω is a fixed point of (I − T )−1 S if and only if x is a fixed
point of T +S, Theorem 3.4 will be proved once we prove that (I − T )−1 S
has a unique fixed in Ω. Thus, let us prove that the mapping (I − T )−1 S
has a unique fixed point in Ω.
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Since S is (α,LS)-lipschitzian and T is (β,LT )-expansive for all u, v ∈ Ω
we have

¯̄̄
(I − T )−1 S (u)− (I − T )−1 S (v)

¯̄̄
¹ (βLT − I)−1 (|S (u)− S (v)|)

¹ α (βLT − I)−1 LS (|u− v|) .(3.8)

Since the continuity of the absolute value function implies that there is
η > 0 such that k|u|k ≤ η kuk for all u ∈ E (see iii) in Proposition 2.8),
and taking in consideration the normality of the cone K, for all u, v ∈ Ω
we have from (3.8)

°°°(I − T )−1 S (u)− (I − T )−1 S (v)
°°° ≤ °°°¯̄̄(I − T )−1 S (u)− (I − T )−1 S (v)

¯̄̄°°°
≤ nK

°°°(βLT − I)−1 LS

°°° k|u− v|k

≤ nKη
°°°(βLT − I)−1 LS

°°° ku− vk .

This shows that the mapping (I − T )−1 S is continuous. At the end,

since (βLT − I)−1 LS ∈ LK(E) and αr
³
(βLT − I)−1 LS

´
< 1, we obtain

from Theorem 3.3 that (I − T )−1 S has a unique fixed point in Ω. The
proof is complete. 2

Since the condition αr((βLT − I)−1 LS) < 1 in Hypothesis (3.4) is diffi-
cult to verify when the Banach space E is of infinite dimension, we present
below particular situations of Theorem 3.4 where the verification of this
condition is less difficult.

Corollary 3.5. Assume that Hypotheses (3.1)-(3.3) hold true, the map-
ping T is (β, I)-expansive and S is (α,L)-lipschitzian, where, α ≥ 0, β > 0
are such that

β > 1 and α(β − 1)−1r(L) < 1.(3.9)

Then the sum of operators, T + S has a unique fixed point in Ω.

Corollary 3.6. Assume that Hypotheses (3.1)-(3.3) hold true, the map-
ping T is (β, I)-expansive and S is (α, I)-lipschitzian, where , α ≥ 0, β > 0
are such that

β > 1 and α(β − 1)−1 < 1.(3.10)

Then the sum of operators, T + S has a unique fixed point in Ω.
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The following corollary consider the particular case of Theorem 3.4
where LS = LT .

Corollary 3.7. Assume that Hypotheses (3.1)-(3.3) hold true, the map-
ping T is (β,L)-expansive and S is (α,L)-lipschitzian, where , α ≥ 0, β > 0
are such that

(βL− I)−1 ∈ LK(E) and (β − α) inf {|λ| : λ ∈ σ (L)} > 1.(3.11)

Then the sum of operators, T + S has a unique fixed point in Ω.

Proof. Set λ∗ = inf {|λ| : λ ∈ σ (L)} . It follows from Hypothesis (3.12)
that β−1 /∈ σ (L) and for all λ ∈ σ (L), β |λ| ≥ βλ∗ ≥ (β − α)λ∗ > 1. Let
� > 0 small enough such that (β − �)λ∗ > 1 and set r� = (β − �)−1 > β−1.
Therefore there exists r > 0 such that

σ (L) ⊂ C(0, r�, r) = {z ∈ C : r� < |z| < r}

and the function f(z) = αz
1−βz is holomorphic in C(0, r�, r). By the spec-

tral mapping theorem, (see [25], p. 227), we have σ
³
α (I − βL)−1 L

´
=

f(σ (L)) and

r
³
α (I − βL)−1 L

´
= sup

½
|f(λ)| =

¯̄̄̄
αλ

1− βλ

¯̄̄̄
: λ ∈ σ (L)

¾
.

Since for all λ ∈ σ (L) ,

|f(λ)| =
¯̄̄̄

αλ

βλ− 1

¯̄̄̄
=

α |λ|
|βλ− 1| ≤

α |λ|
β |λ|− 1

and the real function f(x) = αx
βx−1 is decreasing, we obtain from (3.12),

r
³
α (βL− I)−1 L

´
≤ αλ∗

βλ∗ − 1
< 1.

Therefore, Hypothesis (3.4) is satisfied and Theorem 3.4 guarantees the
existence and the uniqueness of a fixed point for the sum T + S. 2
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4. Applications

4.1. Fixed point equation in R2

Let a, b, α, β, θ, η, ξ and ε be real numbers with a, b, α, β, θ, η positive and
consider the functions T, S : R2 → R2 defined for all (x, y) ∈ R2 by:

T (x, y) = (ax3 + αx+ ξ, by5 + βy + ε) and S(x, y) = (θ sinx, η cos y).

We are concerned here by the existence and uniqueness in R2 of the
solution to the fixed point equation associated to the sum of operators
T + S,

(x, y) = T (x, y) + S(x, y).

Theorem 4.1. Assume thatµ
1−max

µ
θ

α
,
η

β

¶¶
min(α, β) > 1,

then the sum of operators T + S admits a unique fixed point.

Proof. Let K be the cone of R2 defined by

K =
n
(x, y) ∈ R2 : x ≥ 0 and y ≥ 0.

o
Clearly, the cone K is normal and minihedral and generates on R2 the

absolute value function |·|, where |(x, y)| = (|x| , |y|) for all (x, y) ∈ R2.
Straightforward computations lead to

|T (x, y)− T (u, v)| º L (|(x, y)− (u, v)|)

and

|S(x, y)− S(u, v)| ¹ max
µ
θ

α
,
η

β

¶
L (|(x, y)− (u, v)|)

for all (x, y), (u, v) ∈ R2, where L(x, y) = (αx, βy) .
Since α and β are positive real numbers, we have that L ∈ LK

¡
R2
¢
.

Moreover, since the assumption of Theorem 4.1 implies that α, β ∈ (1,+∞)
and for all (x, y) ∈ R2, we have (L− I)−1 (x, y) =

³
x

α−1 ,
y

β−1

´
, we obtain

that (L− I)−1 ∈ LK
¡
R2
¢
.
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At the end, all the conditions of Corollary 3.7 are satisfied since σ(L) =

{α, β} and
³
1−max

³
θ
α ,

η
β

´´
min(α, β) > 1. Therefore the sum of operators

T + S admits a unique fixed point. 2

4.2. Uniqueness of the positive solution for Urysohn-type integral
equation

The theory of integral equations is an important branch of nonlinear Anal-
ysis. Integral equations originate from numerous areas of science, such as
biology, transport theory, kinetic theory of gases and so on; see for in-
stance, [1], [8], [9] and [10]. Urysohn-type integral equations is one of the
most classes of nonlinear integral equations describing real word problems;
see [3], [4], [12], [18], [19] and references therein.

We are concerned in this section by uniqueness of the solution inBC (R)
to the integral equation of Urysohn-type,

u(t) = f(t, u(t)) +

Z
R
G(t, s)g(s, u(s))ds,(4.1)

where BC (R) denotes the set of all continuous bounded real functions
defined on R and G, f, g : R2 → R are continuous functions such that
G(t, s) ≥ 0 and g(t, s) ≥ 0 for all (t, s) ∈ R2. Throughout this section we
assume that there exist continuous functions φ, γ : R→ R+, h : R2 → R+

and nonnegative constants α and β such that

( R
R γ (s)φ (s) ds <∞, G(t, s) ≤ γ (s) for all t, s ∈ R and
G (t, s)φ(s) > 0 for all t, s ∈ [ξ, η] ⊂ R,(4.2)

(
for all R > 0 there exists MR > 0 such that
f(s, u) ≤MR for all s ∈ R and u ∈ [−R,R] ,(4.3)

u− f(t, u) = v, v ≥ 0 ⇒ u = h(t, v),(4.4)

⎧⎪⎨⎪⎩
R
R γ (s) g(s, 0)ds <∞,
|f(s, u)− f(s, v)| ≥ α |u− v| and
|g(s, u)− g(s, v)| ≤ βφ(s) |u− v| for all s ∈ R and u, v ∈ R+.

(4.5)

Let K denote the cone of nonnegative functions in BC(R). It is well
known that the cone K is normal and it generates a continuous absolute
value function |·|, where for u ∈ BC(R) |u| (t) = max(−u(t), u(t)).
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Lemma 4.2. Assume that Hypothesis (4.2) holds and let for u ∈ BC(R),

Lu(x) =

Z
R
G(x, s)φ (s)u(s)ds.

Then L is a linear operator belonging to LK (BC (R)) having a positive
spectral radius.

Proof. For any u ∈ BC(R) Hypothesis (4.2) leads to the following
estimates:

|Lu (t)| ≤
Z
R
G(t, s)φ(s) |u(s)| ds ≤

µZ
R
γ(s)φ(s)ds

¶
kuk∞ <∞, for all t ∈ R

(4.6)
and

|Lu (t1)− Lu (t2)| ≤
µZ +∞

−∞
|G(t1, s)−G(t2, s)|φ(s)ds

¶
kuk∞ for all t1, t2 ∈ R.

(4.7)

Estimate (4.6) shows that Lu(t) is defined for all t ∈ R. If (tn) ⊂ R is
a sequence converging to t∗, Estimates (4.6) and (4.7) lead to

|Lu (tn)− Lu (t∗)| ≤ |Lu (tn)|+|Lu (t∗)| ≤ 2
µZ
R
γ(s)φ(s)ds

¶
kuk∞ for all n ≥ 1

and

|Lu (tn)− Lu (t∗)| ≤
µZ +∞

−∞
|G(tn, s)−G(t∗, s)|φ(s)ds

¶
kuk∞ for all n ≥ 1.

Since G is continuous, we conclude by Lebesgue’s dominated conver-
gence theorem that Lu ∈ C (R) . Noticing that (4.6) provide a uniform
bound, we conclude that Lu ∈ BC (R) and the linear operator L is bounded.
Clearly the positivity of the functionGmakes of L an operator in LK (BC (R)) .

At the end, let us prove that r(L) > 0. Let u0 : R→ R+ be the function
defined by
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u0 (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if t ∈ (−∞, ξ]
4

η−ξ (t− ξ) , if t ∈
h
ξ, 3ξ+η4

i
1, if t ∈

h
3ξ+η
4 , ξ+3η4

i
4

η−ξ (η − t) , if t ∈
h
ξ+3η
4 , η

i
0, if t ∈ [η,+∞) ,

G0 = min {G2(t, s)φ (s) : t, s ∈ [ξ, η]} ,
θ0 =

R η
ξ u0 (s) ds =

3(η−ξ)G0
4 .

Therefore, we have

Lu0 (t) ≥ 0 = θ0u0 (t) for t ∈ (−∞, ξ] ∪ [η,+∞) and
Lu0 (t) ≥

R η
ξ G(t, s)φ (s)u0 (x) ds ≥ θ0 ≥ θ0u0 (t) for t ∈ [ξ, η] ,

leading to Lu0 ≥ θ0u0 and r(L) ≥ θ0 > 0. The proof is complete. 2
The following theorem is the main result of this section.

Theorem 4.3. Assume that Hypotheses (4.2)-(4.5) hold. If α > 1 and
(α− 1)−1 βr(L) < 1, then the integral equation (4.1) admit a unique solu-
tion lying in the cone K.

Proof. Let
Tu (t) = f(t, u(t)) for all u ∈ BC(R) and
Su(t) =

R
RG(t, s)g(s, u(s))ds for all u ∈ K.

Clearly, for any u ∈ BC(R), the continuity of the function f and Hy-
pothesis (4.3) lead to Tu ∈ BC(R) as well as to the continuity of the
operator T. Now for any u ∈ K, we have

Su (t ≤ β
R
RG(t, s)φ (s)u(s)ds+

R
RG(t, s)g(s, 0)ds

leq
R
R γ(s)φ(s)ds+

R
R γ(s)g(s, 0)ds <∞, for all t ∈ R,(4.8)

| Su (t1)− Su (t2) ≤ kuk
R
R |G(t1, s)−G(t2, s)|φ(s)ds

+
R
R |G(t1, s)−G(t2, s)| g(s, 0)ds for all t1, t2 ∈ R.

(4.9)

Arguing as in the proof of Lemma 4.2, we obtain from Estimates (4.8)
and (4.9) that for any u ∈ K, Su ∈ K.

Now for u, v ∈ K we obtain from Hypothesis (4.5),

|Tu(t)− Tv(t)| ≥ α |u(t)− v(t)|

and
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|Su(t)− Sv(t)| ≤
R
RG(t, s)φ(s) |g(s, u(s))− g(s, v(s))| ds

≤ β
R
RG(t, s)φ(s) |u(s)− v(s)| ds

= βL |u− v| (t) .

From all the above calculations, we see that all conditions of Corollary
3.5 are satisfied, hence the Urysohn integral equation (4.1) admits a unique
positive solution. 2
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