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Universidad Católica del Norte
Antofagasta - Chile

Abstract

For a connected graph G of order at least two, a set S of vertices
in a graph G is said to be an outer connected geodetic set if S is
a geodetic set of G and either S = V or the subgraph induced by
V − S is connected. The minimum cardinality of an outer connected
geodetic set of G is the outer connected geodetic number of G and is
denoted by goc(G). The number of extreme vertices in G is its extreme
order ex(G). A graph G is said to be an extreme outer connected
geodesic graph if goc(G) = ex(G). It is shown that for every pair a, b
of integers with 0 ≤ a ≤ b and b ≥ 2, there exists a connected graph
G with ex(G) = a and goc(G) = b. Also, it is shown that for positive
integers r, d and k ≥ 2 with r < d ≤ 2r, there exists an extreme
outer connected geodesic graph G of radius r, diameter d and outer
connected geodetic number k.
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1. Introduction

By a graph G we mean a simple finite undirected connected graph with
vertex set V (G) = V and edge set E(G) = E. The order and size of G
are denoted by p = |V | and q = |E| respectively. For basic graph theoretic
terminology we refer to Harary [1, 12]. The distance d(x, y) between two
vertices x and y in G is the length of a shortest x − y path in G. A x − y
path of length d(x, y) is called x − y geodesic. For any vertex u of G, the
eccentricity of u is defined as e(u) = max{d(u, v) : v ∈ V (G)}. The radius
rad(G) of G is the minimum eccentricity among the vertices of G and
diameter diam(G) of G is the maximum eccentricity among the vertices of
G. The degree of a vertex x in graph G is the number of edges incident
with x. A vertex v of G is called an endvertex of G if its degree is 1. The
neighborhood of a vertex v is the set N(v) consisting of all vertices u which
are adjacent with v. A vertex v is an extreme vertex if the subgraph induced
by its neighbors is complete. The number of extreme vertices in G is its
extreme order ex(G). Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs,
then the sum G1 + G2 is a graph G = (V,E), where V = V1 ∪ V2 and
E = E1 ∪ E2 together with all vertices in V1 is adjacent to all the vertices
in V2. In this paper, miKj denotes mi-copies of the complete graph Kj .

The closed interval I[x, y] consists of all vertices lying on some x − y
geodesic of G, while for S ⊆ V, I[S] =

S
x,y∈S

I[x, y]. A set S of vertices ofG is

a geodetic set if I[S] = V , and the minimum cardinality of a geodetic set of
G is the geodetic number g(G) of G. The geodetic number of a graph and its
variants have been studied by several authors in [2, 3, 4, 5, 6, 13, 14, 16, 17].
These concepts have many applications in location theory and convexity
theory. There are interesting applications of these concepts to the problem
of designing the route for a shuttle and communication network design. A
set S of vertices in a graph G is said to be an outer connected geodetic
set if S is a geodetic set of G and either S = V or the subgraph induced
by V − S is connected. The minimum cardinality of an outer connected
geodetic set of G is the outer connected geodetic number of G and is denoted
by goc(G). The outer connected geodetic number of a graph was introduced
in [7] and further studied in [8, 9, 10, 11]. This concept can be mainly used
in fault-tolerance in communication networks [7].

The following theorems will be used in the sequel.

Theorem 1.1. [6] Each extreme vertex of a connected graph G belongs to
every geodetic set of G.



Extreme outer connected geodesic graphs 105

Theorem 1.2. [3] If G is a non-trivial connected graph of order p and
diameter diam(G), then g(G) ≤ p− diam(G) + 1.

Theorem 1.3. [7] Each extreme vertex of a connected graph G belongs to
every outer connected geodetic set of G.

Theorem 1.4. [7] For the complete graph Kp(p ≥ 2), goc(Kp) = p.

Theorem 1.5. [7] If T is a tree with k endvertices, then goc(T ) = k.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Main Results

Definition 2.1. A graphG is said to be an extreme outer connected geodesic
graph if goc(G) = ex(G).

Example 2.2. For the graph G1 given in Figure 2.1 of order 6, u1 and
u4 are the only two extreme vertices and so ex(G1) = 2. It is clear that
S = {u1, u4} is the unique minimum outer connected geodetic set of G1
so that goc(G1) = 2 = ex(G1). Hence the graph G1 is an extreme outer
connected geodesic graph. The graph G2 given in Figure 2.1 has only one
extreme vertex v1 and so ex(G2) = 1. It is clear that S1 = {v1, v4} is the
unique minimum outer connected geodetic set of G2, so that goc(G2) = 2 6=
ex(G2). Therefore G2 is not an extreme outer connected geodesic graph.
The graph G3 given in Figure 2.1 contains no extreme vertices and so it is
not an extreme outer connected geodesic graph.

Figure 2.1: Graphs G1, G2, G3

Marisol Martínez
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Remark 2.3. For any non-trivial tree T with k endvertices, ex(T ) = k
and by Theorem 1.5, goc(T ) = k = ex(T ). Thus any non-trivial tree
is an extreme outer connected geodesic graph. For the complete graph
Kp(p ≥ 2), ex(Kp) = p and by Theorem 1.4, goc(Kp) = p = ex(Kp). It
follows that Kp is an extreme outer connected geodesic graph.

Observation 2.4. Any graphG with no extreme vertices is not an extreme
outer connected geodesic graph.

Remark 2.5. Any cycle Cn(n ≥ 4) and the complete bipartite graph
Km,n(2 ≤ m ≤ n) contains no extreme vertices. Hence any cycle Cn(n ≥ 4)
and the complete bipartite graph Km,n(2 ≤ m ≤ n) are not extreme outer
connected geodesic graphs.

Theorem 2.6. For any connected graph G of order p (p ≥ 2), 0 ≤ ex(G) ≤
g(G) ≤ goc(G) ≤ p.

Proof. Any graph G may or may not contain extreme vertices and
so ex(G) ≥ 0. By Theorem 1.1, every geodetic set of G contains all the
extreme vertices of G and so g(G) ≥ ex(G). Since every outer connected
geodetic set of G is a geodetic set of G, g(G) ≤ goc(G). Also, V (G) induces
an outer connected geodetic set of G. It follows that goc(G) ≤ p. Hence,
we have 0 ≤ ex(G) ≤ g(G) ≤ goc(G) ≤ p. 2

Figure 2.2: Graph G

Remark 2.7. The bounds in Theorem 2.6 are sharp. For any cycle Cn(n ≥
4), ex(G) = 0 and for the complete graph Kp(p ≥ 2), goc(Kp) = p. Also,
all the inequalities in Theorem 2.6 can be strict. For the graph G given
in Figure 2.2 of order 6, v6 is the only one extreme vertex of G and so
ex(G) = 1. It is clear that no 2-element subset of V (G) is a geodetic set
of G. It is easily verified that S = {v1, v3, v6} is a geodetic set of G and so
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g(G) = 3. Since the subgraph induced by V − S is not connected, S is not
an outer connected geodetic set of G. It is clear that no 2-element subset
or 3-element subset of V (G) is an outer connected geodetic set of G. Since
S1 = {v1, v2, v3, v6} is an outer connected geodetic set of G, goc(G) = 4.
Thus, we have 0 < ex(G) < g(G) < goc(G) < p.

Theorem 2.8. If G = K2 +
S
miKj , where each mi is a positive integer

such that
P

mi ≥ 2 and j ≥ 1, then G is an extreme outer connected
geodesic graph with goc(G) = p− 2.

Proof. Let V (K2) = {x, y}. Since every vertex of G is an extreme
vertex except the vertices x and y, ex(G) = p − 2. It is clear that the
set S of all extreme vertices of G is a minimum geodetic set of G and the
subgraph induced by V − S is connected. Hence S is the unique minimum
outer connected geodetic set of G and so goc(G) = p− 2 = ex(G). Thus G
is an extreme outer connected geodesic graph with goc(G) = p− 2. 2

Remark 2.9. The converse of Theorem 2.8 need not be true. For the path
P4 : v1, v2, v3, v4 of order 4, S = {v1, v4} is the set of all extreme vertices
of P4 and so ex(P4) = 2. It is clear that S is the unique minimum outer
connected geodetic set of P4 and so goc(P4) = 2 = p − 2 = ex(P4). Thus
G is an extreme outer connected geodesic graph, and it is not in the form
G = K2 +

S
miKj .

Theorem 2.10. If G is a non-trivial connected graph of order p and di-
ameter diam(G), then ex(G) ≤ p− diam(G) + 1.

Proof. It follows from Theorems 1.2 and 2.6. 2

Remark 2.11. The bound in Theorem 2.10 is sharp. For the complete
graph Kp(p ≥ 2), ex(G) = p and diam(Kp) = 1 so that ex(G) = p −
diam(Kp)+1. Also, all the inequality in Theorem 2.10 can be strict. For the
graphG given in Figure 2.2 of order 6, v6 is the only one extreme vertex ofG
and so ex(G) = 1. It is easy to verify that 2 ≤ e(x) ≤ 3 for any vertex x in
G, e(v6) = 3. Then diam(G) = 3. Since ex(G) = 1 < p−diam(G)+1 = 4,
we have ex(G) < p− diam(G) + 1.

Theorem 2.12. For every pair k, p of integers with 2 ≤ k ≤ p, there
exists an extreme outer connected geodesic graph G of order p with outer
connected geodetic number k and ex(G) = k.
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Proof. For k = p, it follows from the Remark 2.3 by taking G = Kp.
For 2 ≤ k ≤ p − 1, the tree T given in Figure 2.3 has p vertices and it
follows from the Remark 2.3 that goc(T ) = k = ex(T ). As the graph T is a
tree, it is minimal with respect to edges. 2

Figure 2.3: Tree T

Theorem 2.13. For every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2,
there exists a connected graph G with ex(G) = a and goc(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1. a = 0 and b ≥ 2. Let P3 : x, y, z be a path of order 3. The graph G
in Figure 2.4 is obtained from P3 by adding b new vertices u1, v1, v2, ..., vb−1
and joining each vi(2 ≤ i ≤ b− 1) to the vertices x and z; and also joining
the vertices u1, v1 to the vertices x, y, z. Clearly, no vertex of G is an
extreme vertex and so ex(G) = 0. It is easy to observe that any subset
S ⊆ V (G) with cardinality |S| ≤ b− 1 is not an outer connected geodetic
set of G. Let S0 = {u1, v1, v2, ..., vb−1}. Since S0 is a geodetic set of G
and the subgraph induced by V −S0 is connected, S0 is an outer connected
geodetic set of G. It follows that goc(G) = |S0| = b.

Marisol Martínez
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Figure 2.4: Graph G

Case 2. a ≥ 1 and b ≥ 2. If a = b, then by Remark 2.3 that the
complete graph G = Ka has the desired properties. If a < b, then we
construct the required graph G as follows: let P3 : x, y, z be a path of
order 3 and let G be the graph obtained from P3 by adding b new vertices
v1, v2, . . . , vb−a, u1, u2, . . . , ua and joining each ui(1 ≤ i ≤ a) to the vertex y
of P3; and also joining each vi(1 ≤ i ≤ b−a) to both the vertices x, z of P3.
The graph G is shown in Figure 2.5. Since S = {u1, u2, . . . , ua} is the set
of all extreme vertices, ex(G) = a. By Theorem 1.3, every outer connected
geodetic set of G contains S. It is clear that S is not an outer connected
geodetic set of G. It is easy to observe that every minimum outer connected
geodetic set of G contains {v1, v2, . . . , vb−a}. Clearly, S ∪ {v1, v2, . . . , vb−a}
is a minimum outer connected geodetic set of G and so goc(G) = b. 2

Marisol Martínez
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Figure 2.5: Graph G

For every connected graph G, rad(G) ≤ diam(G) ≤ 2rad(G). Ostrand
[15] showed that every two positive integers a and b with a ≤ b ≤ 2a
are realizable as the radius and diameter respectively, of some connected
graph. Now, Ostrand’s theorem can be extended so that an extreme outer
connected geodesic graph can also be prescribed.

Theorem 2.14. For any three positive integers r, d and k ≥ 2 with r <
d ≤ 2r, there exists an extreme outer connected geodesic graph G such that
rad(G) = r, diam(G) = d and goc(G) = k.

Proof. If r = 1, then d = 2. By Theorem 1.5 and Remark 2.3, the star
K1,k has the desired property.

Now, let r ≥ 2 and r < d ≤ 2r. Let C2r : u1, u2, . . . , u2r, u1 be a cycle
of order 2r and let Pd−r+1 : v0, v1, . . . , vd−r be a path of length d− r. Let
H be the graph obtained from C2r and Pd−r+1 by identifying the vertex
v0 of Pd−r+1 and the vertex u1 of C2r; and also joining the vertex ur+2 to
the vertex ur. The graph G in Figure 2.6 is obtained from H by adding
k − 2 new vertices w1, w2, . . . , wk−2 and joining each wi(1 ≤ i ≤ k − 2) to
the vertex vd−r−1. It is easy to verify that r ≤ e(x) ≤ d for any vertex
x in G, e(u1) = r and e(vd−r) = d. Then rad(G) = r and diam(G) = d.
Since S = {ur+1, w1, w2, . . . , wk−2, vd−r} is the set of all extreme vertices

Marisol Martínez
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of G, ex(G) = k. By Theorem 1.3, every outer connected geodetic set of
G contains S. It is clear that S is the unique minimum outer connected
geodetic set of G and so goc(G) = k = ex(G). Thus G is an extreme
outer connected geodesic graph such that rad(G) = r, diam(G) = d and
goc(G) = k. 2

Figure 2.6: Graph G

Problem 2.15. For positive integers r, d and k ≥ 2 with r = d ≤ 2r, does
there exist an extreme outer connected geodesic graph G with rad(G) = r,
diam(G) = d and goc(G) = k?

Theorem 2.16. For each triple p, d and k of positive integers with k ≥ 2,
d ≥ 2 and p − d − k + 1 ≥ 0, there exists an extreme outer connected
geodesic graph G of order p such that diam(G) = d and goc(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p− d− 1
new vertices v1, v2, . . . , vk−2, w1, w2, . . . , wp−d−k+1 to Pd+1 and join each
wi(1 ≤ i ≤ p−d−k+1) to the vertices u1, u2 and u3; and join each vj(1 ≤
j ≤ k− 2) to the vertex u2; and also join each vertex wi(1 ≤ i ≤ p− d− k)
to the vertex wj(i+ 1 ≤ j ≤ p− d− k + 1). The graph G of order p with
diameter d is shown in Figure 2.7. Since S = {v1, v2, . . . , vk−2, u1, ud+1}
is the set of all extreme vertices of G, ex(G) = k. By Theorem 1.3, every
outer connected geodetic set of G contains S. It is clear that S is the
unique minimum outer connected geodetic set of G and so goc(G) = k =
ex(G). Thus G is an extreme outer connected geodesic graph of order p
with diam(G) = d and goc(G) = k. 2

Marisol Martínez
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Figure 2.7: Graph G

In the following theorem we construct a non-extreme outer connected
geodesic graph G of order p such that diam(G) = d and goc(G) = k.

Theorem 2.17. For each triple p, d and k of positive integers with k ≥ 2,
d ≥ 2 and p − d − k + 1 ≥ 0, there exists a non-extreme outer connected
geodesic graph G of order p such that diam(G) = d and goc(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p− d− 1
new vertices v1, v2, . . . , vk−2, w1, w2, . . . , wp−d−k+1 to Pd+1 and join each
wi(1 ≤ i ≤ p − d − k + 1) to the vertices u1, u2 and u3; and also join
each vj(1 ≤ j ≤ k − 2) to the vertex u2. The graph G of order p with
diameter d is shown in Figure 2.8. If d = 2, then S1 = {v1, v2, . . . , vk−2}
is the set of all extreme vertices of G, ex(G) = k − 2. By Theorem 1.3,
every outer connected geodetic set of G contains S1. It is clear that neither
S1 nor S1 ∪ {x}, where x /∈ S1, is an outer connected geodetic set of G.
Since S2 = S1 ∪ {u1, u3} is a minimum geodetic set of G and the subgraph
induced by V − S2 is connected, S2 is an outer connected geodetic set of
G and so goc(G) = k. If d ≥ 3, then S3 = {v1, v2, . . . , vk−2, ud+1} is the
set of all extreme vertices of G, ex(G) = k − 1. By Theorem 1.3, every
outer connected geodetic set of G contains S3. It is clear that S3 is not
an outer connected geodetic set of G. It is easily verified that S3

S{u1} is
the unique minimum outer connected geodetic set of G and so goc(G) = k.

Marisol Martínez
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Since goc(G) = k 6= ex(G), G is a non-extreme outer connected geodesic
graph of order p with diam(G) = d and goc(G) = k. 2

Figure 2.8: Graph G

Next, we analyse how the extreme outer connected geodesic graphs are
affected by the addition of a pendant edge.

Theorem 2.18. If G
0
is a graph obtained by adding l pendant edges to

an extreme outer connected geodesic graph G, then ex(G) ≤ ex(G
0
) ≤

ex(G) + l and G0 is an extreme outer connected geodesic graph.

Proof. Let G
0
be the graph obtained from an extreme outer connected

geodesic graph G by adding l pendant edges uivi(1 ≤ i ≤ l), where each
ui(1 ≤ i ≤ l) is a vertex of G and each vi(1 ≤ i ≤ l) is not a vertex of G. Let
S be a minimum outer connected geodetic set of G. Since G is an extreme
outer connected geodesic graph, S is the unique minimum outer connected
geodetic set ofG and S is the set of all extreme vertices ofG. Then it is clear
that S ∪ {v1, v2, . . . , vl} is an outer connected geodetic set of G

0
. Now, we

claim that ex(G
0
) ≤ ex(G)+l andG0 is an extreme outer connected geodesic

graph. If each ui(1 ≤ i ≤ l) is an extreme vertex ofG then each vi(1 ≤ i ≤ l)
is an extreme vertex of G

0
and each ui(1 ≤ i ≤ l) is not an extreme vertex

of G
0
. It is clear that S0 = (S − {u1, u2, . . . , ul}) ∪ {v1, v2, . . . , vl} is the

set of all extreme vertices of G
0
and so ex(G

0
) = |S0|. Hence, we have

ex(G
0
) = ex(G). If each ui(1 ≤ i ≤ l) is not an extreme vertex of G then

each vi(1 ≤ i ≤ l) is an extreme vertex of G
0
. It is clear that S0 = S ∪

{v1, v2, . . . , vl} is the set of all extreme vertices of G
0
and so ex(G

0
) = |S0|.

Marisol Martínez
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Hence, we have ex(G
0
) = ex(G) + l. Without loss of generality, if each

ui(1 ≤ i ≤ k, k < l) is an extreme vertex of G and each uj(k + 1 ≤ j ≤ l)
is not an extreme vertex of G, then {u1, u2, . . . , uk} ⊆ S. It is clear that
S0 = (S − {u1, u2, . . . , uk} ∪ {v1, v2, . . . , vk}) ∪ {vk+1, vk+2, . . . , vl} is the
set of all extreme vertices of G

0
and so ex(G0) = |S0|. Hence, we have

ex(G
0
) < ex(G) + l. Note that in all the above cases, it is easily verified

that S0 is the unique minimum outer connected geodetic set ofG
0
, goc(G

0
) =

|S0| = ex(G
0
). Thus G

0
is an extreme outer connected geodesic graph.

Next, we show that ex(G) ≤ ex(G
0
). Suppose that ex(G) > ex(G

0
).

Let S1 be a minimum outer connected geodetic set of G
0
. Since G

0
is an

extreme outer connected geodesic graph, S1 is the unique minimum outer
connected geodetic set of G

0
and S1 is the set of all extreme vertices of G

0
.

Then with |S1| = ex(G
0
) < ex(G). Since each vi(1 ≤ i ≤ l) is an extreme

vertex of G
0
, it follows from Theorem 1.3 that {v1, v2, ..., vl} ⊆ S1. Let

S2 = (S1 − {v1, v2, . . . , vl}) ∪ {u1, u2, . . . , ul}. Then S2 is a subset of V (G)
and |S2| = |S1| < ex(G). Now, we show that S2 is an outer connected
geodetic set of G. Let w ∈ V (G) − S2. Since S1 is an outer connected
geodetic set of G

0
, w lies on an x − y geodesic P in G

0
for some vertices

x, y ∈ S1. If neither x nor y is vi(1 ≤ i ≤ l), then x, y ∈ S2. If exactly one
of x, y is vi(1 ≤ i ≤ l), say x = vi, then w lies on the ui − y geodesic path
in G obtained from P by removing vi. If both x, y ∈ {v1, v2, . . . , vl}, then
let x = vi and y = vj where i 6= j. Hence w lies on the ui − uj geodesic in
G obtained from P by removing vi and vj . Thus S2 is a geodetic set of G.
By Theorem 1.1, every geodetic set of G contains all the extreme vertices
of G, ex(G) ≤ |S2|. Also, since G is an extreme outer connected geodesic
graph, ex(G) = goc(G). Hence ex(G) = goc(G) ≤ |S2| < ex(G), which is a
contradiction. 2

Figure 2.9: Graphs G and G0

Marisol Martínez
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Remark 2.19. The bounds in Theorem 2.18 are sharp. Consider a tree T
with number of endvertices k ≥ 2. Let S = {v1, v2, . . . , vk} be the set of all
endvertices of T . Then by Theorem 1.5, goc(T ) = k = ex(T ) and hence T
is an extreme outer connected geodesic graph. If we add a pendant edge
to an endvertex of T , then we obtain another tree T

0
with k endvertices.

Then by Theorem 1.5, goc(T
0
) = k = ex(T

0
). Hence ex(T ) = ex(T

0
).

On the otherhand, if we add l pendant edges to a cutvertex of T , then
we obtain another tree T

0
with k + l endvertices. Then by Theorem 1.5,

ex(T
0
) = k+ l = ex(T )+ l. In both cases, T

0
is an extreme outer connected

geodesic graph. Also, all the inequalities in Theorem 2.18 can be strict.
For the graph G given in Figure 2.9, it is clear that S = {u1, u3} is the
set of all extreme vertices of G and so ex(G) = 2. Since S is the unique
minimum outer connected geodetic set of G, goc(G) = 2 = ex(G). Thus
G is an extreme outer connected geodesic graph. The graph G

0
given in

Figure 2.9 is obtained from the graph G in Figure 2.9 by adding l = 2
pendant edges uivi(1 ≤ i ≤ 2). Since S1 = {v1, v2, u3} is the set of all
extreme vertices of G

0
, ex(G

0
) = 3. It is easy to see that S1 is the unique

minimum outer connected geodetic set of G
0
and so goc(G

0
) = 3 = ex(G

0
).

Thus G
0
is an extreme outer connected geodesic graph. Hence we have

ex(G) < ex(G
0
) < ex(G) + l.

Theorem 2.20. For each triple a, b and l of integers with 2 ≤ a ≤ b,
1 ≤ l ≤ b, and a + l − b ≥ 0, there exists a connected graph G with
goc(G) = a and goc(G

0
) = b, where G

0
is an extreme outer connected

geodesic graph obtained by adding l pendant edges to an extreme outer
connected geodesic graph G.

Proof. Let G be a tree with number of endvertices a. Let G
0
be a

graph obtained by adding b−a pendant edges to a cutvertex of G and also
adding a+ l − b pendant edges each with different endvertices of G. Then
G
0
is another tree with b endvertices. By Theorem 1.5, goc(G) = a and

goc(G
0
) = b. 2
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