Proyecciones Journal of Mathematics Vol. 43, N^o 1, pp. 103-117, February 2024. Universidad Católica del Norte Antofagasta - Chile

Extreme outer connected geodesic graphs

K. Ganesamoorthy Coimbatore Institute of Technology, India and D. Jayanthi Coimbatore Institute of Technology, India Received : April 2022. Accepted : April 2023

Abstract

For a connected graph G of order at least two, a set S of vertices in a graph G is said to be an outer connected geodetic set if S is a geodetic set of G and either S = V or the subgraph induced by V - S is connected. The minimum cardinality of an outer connected geodetic set of G is the outer connected geodetic number of G and is denoted by $g_{oc}(G)$. The number of extreme vertices in G is its extreme order ex(G). A graph G is said to be an extreme outer connected geodesic graph if $g_{oc}(G) = ex(G)$. It is shown that for every pair a, b of integers with $0 \le a \le b$ and $b \ge 2$, there exists a connected graph G with ex(G) = a and $g_{oc}(G) = b$. Also, it is shown that for positive integers r, d and $k \ge 2$ with $r < d \le 2r$, there exists an extreme outer connected geodesic graph G of radius r, diameter d and outer connected geodetic number k.

Key Words: *Outer connected geodetic set; outer connected geodetic number; extreme order; extreme outer connected geodesic graph.*

AMS Subject Classification: 05C12.

1. Introduction

By a graph G we mean a simple finite undirected connected graph with vertex set V(G) = V and edge set E(G) = E. The order and size of G are denoted by p = |V| and q = |E| respectively. For basic graph theoretic terminology we refer to Harary [1, 12]. The distance d(x, y) between two vertices x and y in G is the length of a shortest x - y path in G. A x - ypath of length d(x, y) is called x - y geodesic. For any vertex u of G, the eccentricity of u is defined as $e(u) = max\{d(u, v) : v \in V(G)\}$. The radius rad(G) of G is the minimum eccentricity among the vertices of G and diameter diam(G) of G is the maximum eccentricity among the vertices of G. The degree of a vertex x in graph G is the number of edges incident with x. A vertex v of G is called an *endvertex* of G if its degree is 1. The *neighborhood* of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an *extreme vertex* if the subgraph induced by its neighbors is complete. The number of extreme vertices in G is its extreme order ex(G). Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs, then the sum $G_1 + G_2$ is a graph G = (V, E), where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$ together with all vertices in V_1 is adjacent to all the vertices in V_2 . In this paper, $m_i K_i$ denotes m_i -copies of the complete graph K_i .

The closed interval I[x, y] consists of all vertices lying on some x - y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup_{x,y \in S} I[x, y]$. A set S of vertices of G is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set of G is the geodetic number g(G) of G. The geodetic number of a graph and its variants have been studied by several authors in [2, 3, 4, 5, 6, 13, 14, 16, 17]. These concepts have many applications in location theory and convexity theory. There are interesting applications of these concepts to the problem of designing the route for a shuttle and communication network design. A set S of vertices in a graph G is said to be an outer connected geodetic set if S is a geodetic set of G and either S = V or the subgraph induced by V - S is connected. The minimum cardinality of an outer connected geodetic by $g_{oc}(G)$. The outer connected geodetic number of a graph was introduced in [7] and further studied in [8, 9, 10, 11]. This concept can be mainly used in fault-tolerance in communication networks [7].

The following theorems will be used in the sequel.

Theorem 1.1. [6] Each extreme vertex of a connected graph G belongs to every geodetic set of G.

Theorem 1.2. [3] If G is a non-trivial connected graph of order p and diameter diam(G), then $g(G) \leq p - diam(G) + 1$.

Theorem 1.3. [7] Each extreme vertex of a connected graph G belongs to every outer connected geodetic set of G.

Theorem 1.4. [7] For the complete graph $K_p(p \ge 2)$, $g_{oc}(K_p) = p$.

Theorem 1.5. [7] If T is a tree with k endvertices, then $g_{oc}(T) = k$.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Main Results

Definition 2.1. A graph G is said to be an *extreme outer connected geodesic* graph if $g_{oc}(G) = ex(G)$.

Example 2.2. For the graph G_1 given in Figure 2.1 of order 6, u_1 and u_4 are the only two extreme vertices and so $ex(G_1) = 2$. It is clear that $S = \{u_1, u_4\}$ is the unique minimum outer connected geodetic set of G_1 so that $g_{oc}(G_1) = 2 = ex(G_1)$. Hence the graph G_1 is an extreme outer connected geodesic graph. The graph G_2 given in Figure 2.1 has only one extreme vertex v_1 and so $ex(G_2) = 1$. It is clear that $S_1 = \{v_1, v_4\}$ is the unique minimum outer connected geodetic set of G_2 , so that $g_{oc}(G_2) = 2 \neq ex(G_2)$. Therefore G_2 is not an extreme outer connected geodesic graph. The graph G_3 given in Figure 2.1 contains no extreme vertices and so it is not an extreme outer connected geodesic graph.

Figure 2.1: Graphs G_1, G_2, G_3

Remark 2.3. For any non-trivial tree T with k endvertices, ex(T) = kand by Theorem 1.5, $g_{oc}(T) = k = ex(T)$. Thus any non-trivial tree is an extreme outer connected geodesic graph. For the complete graph $K_p(p \ge 2)$, $ex(K_p) = p$ and by Theorem 1.4, $g_{oc}(K_p) = p = ex(K_p)$. It follows that K_p is an extreme outer connected geodesic graph.

Observation 2.4. Any graph G with no extreme vertices is not an extreme outer connected geodesic graph.

Remark 2.5. Any cycle $C_n (n \ge 4)$ and the complete bipartite graph $K_{m,n}(2 \le m \le n)$ contains no extreme vertices. Hence any cycle $C_n (n \ge 4)$ and the complete bipartite graph $K_{m,n}(2 \le m \le n)$ are not extreme outer connected geodesic graphs.

Theorem 2.6. For any connected graph G of order $p (p \ge 2), 0 \le ex(G) \le g(G) \le g_{oc}(G) \le p$.

Proof. Any graph G may or may not contain extreme vertices and so $ex(G) \ge 0$. By Theorem 1.1, every geodetic set of G contains all the extreme vertices of G and so $g(G) \ge ex(G)$. Since every outer connected geodetic set of G is a geodetic set of G, $g(G) \le g_{oc}(G)$. Also, V(G) induces an outer connected geodetic set of G. It follows that $g_{oc}(G) \le p$. Hence, we have $0 \le ex(G) \le g(G) \le g_{oc}(G) \le p$.

Figure 2.2: Graph G

Remark 2.7. The bounds in Theorem 2.6 are sharp. For any cycle $C_n (n \ge 4)$, ex(G) = 0 and for the complete graph $K_p (p \ge 2)$, $g_{oc}(K_p) = p$. Also, all the inequalities in Theorem 2.6 can be strict. For the graph G given in Figure 2.2 of order 6, v_6 is the only one extreme vertex of G and so ex(G) = 1. It is clear that no 2-element subset of V(G) is a geodetic set of G. It is easily verified that $S = \{v_1, v_3, v_6\}$ is a geodetic set of G and so

g(G) = 3. Since the subgraph induced by V - S is not connected, S is not an outer connected geodetic set of G. It is clear that no 2-element subset or 3-element subset of V(G) is an outer connected geodetic set of G. Since $S_1 = \{v_1, v_2, v_3, v_6\}$ is an outer connected geodetic set of G, $g_{oc}(G) = 4$. Thus, we have $0 < ex(G) < g(G) < g_{oc}(G) < p$.

Theorem 2.8. If $G = K_2 + \bigcup m_i K_j$, where each m_i is a positive integer such that $\sum m_i \geq 2$ and $j \geq 1$, then G is an extreme outer connected geodesic graph with $g_{oc}(G) = p - 2$.

Proof. Let $V(K_2) = \{x, y\}$. Since every vertex of G is an extreme vertex except the vertices x and y, ex(G) = p - 2. It is clear that the set S of all extreme vertices of G is a minimum geodetic set of G and the subgraph induced by V - S is connected. Hence S is the unique minimum outer connected geodetic set of G and so $g_{oc}(G) = p - 2 = ex(G)$. Thus G is an extreme outer connected geodesic graph with $g_{oc}(G) = p - 2$.

Remark 2.9. The converse of Theorem 2.8 need not be true. For the path $P_4: v_1, v_2, v_3, v_4$ of order 4, $S = \{v_1, v_4\}$ is the set of all extreme vertices of P_4 and so $ex(P_4) = 2$. It is clear that S is the unique minimum outer connected geodetic set of P_4 and so $g_{oc}(P_4) = 2 = p - 2 = ex(P_4)$. Thus G is an extreme outer connected geodesic graph, and it is not in the form $G = K_2 + \bigcup m_i K_j$.

Theorem 2.10. If G is a non-trivial connected graph of order p and diameter diam(G), then $ex(G) \le p - diam(G) + 1$.

Proof. It follows from Theorems 1.2 and 2.6.

Remark 2.11. The bound in Theorem 2.10 is sharp. For the complete graph $K_p(p \ge 2)$, ex(G) = p and $diam(K_p) = 1$ so that $ex(G) = p - diam(K_p)+1$. Also, all the inequality in Theorem 2.10 can be strict. For the graph G given in Figure 2.2 of order 6, v_6 is the only one extreme vertex of G and so ex(G) = 1. It is easy to verify that $2 \le e(x) \le 3$ for any vertex x in G, $e(v_6) = 3$. Then diam(G) = 3. Since ex(G) = 1 ,we have <math>ex(G) .

Theorem 2.12. For every pair k, p of integers with $2 \le k \le p$, there exists an extreme outer connected geodesic graph G of order p with outer connected geodetic number k and ex(G) = k.

Proof. For k = p, it follows from the Remark 2.3 by taking $G = K_p$. For $2 \le k \le p - 1$, the tree *T* given in Figure 2.3 has *p* vertices and it follows from the Remark 2.3 that $g_{oc}(T) = k = ex(T)$. As the graph *T* is a tree, it is minimal with respect to edges.

Figure 2.3: Tree T

Theorem 2.13. For every pair a, b of integers with $0 \le a \le b$ and $b \ge 2$, there exists a connected graph G with ex(G) = a and $g_{oc}(G) = b$.

Proof. We prove this theorem by considering two cases.

Case 1. a = 0 and $b \ge 2$. Let $P_3 : x, y, z$ be a path of order 3. The graph G in Figure 2.4 is obtained from P_3 by adding b new vertices $u_1, v_1, v_2, ..., v_{b-1}$ and joining each $v_i(2 \le i \le b-1)$ to the vertices x and z; and also joining the vertices u_1, v_1 to the vertices x, y, z. Clearly, no vertex of G is an extreme vertex and so ex(G) = 0. It is easy to observe that any subset $S \subseteq V(G)$ with cardinality $|S| \le b-1$ is not an outer connected geodetic set of G. Let $S' = \{u_1, v_1, v_2, ..., v_{b-1}\}$. Since S' is a geodetic set of G and the subgraph induced by V - S' is connected, S' is an outer connected geodetic geodetic set of G. It follows that $g_{oc}(G) = |S'| = b$.

Figure 2.4: Graph G

Case 2. $a \ge 1$ and $b \ge 2$. If a = b, then by Remark 2.3 that the complete graph $G = K_a$ has the desired properties. If a < b, then we construct the required graph G as follows: let $P_3 : x, y, z$ be a path of order 3 and let G be the graph obtained from P_3 by adding b new vertices $v_1, v_2, \ldots, v_{b-a}, u_1, u_2, \ldots, u_a$ and joining each $u_i(1 \le i \le a)$ to the vertex y of P_3 ; and also joining each $v_i(1 \le i \le b-a)$ to both the vertices x, z of P_3 . The graph G is shown in Figure 2.5. Since $S = \{u_1, u_2, \ldots, u_a\}$ is the set of all extreme vertices, ex(G) = a. By Theorem 1.3, every outer connected geodetic set of G contains S. It is clear that S is not an outer connected geodetic set of G contains $\{v_1, v_2, \ldots, v_{b-a}\}$. Clearly, $S \cup \{v_1, v_2, \ldots, v_{b-a}\}$ is a minimum outer connected geodetic set of G and so $g_{oc}(G) = b$.

Figure 2.5: Graph G

For every connected graph G, $rad(G) \leq diam(G) \leq 2rad(G)$. Ostrand [15] showed that every two positive integers a and b with $a \leq b \leq 2a$ are realizable as the radius and diameter respectively, of some connected graph. Now, Ostrand's theorem can be extended so that an extreme outer connected geodesic graph can also be prescribed.

Theorem 2.14. For any three positive integers r, d and $k \ge 2$ with $r < d \le 2r$, there exists an extreme outer connected geodesic graph G such that rad(G) = r, diam(G) = d and $g_{oc}(G) = k$.

Proof. If r = 1, then d = 2. By Theorem 1.5 and Remark 2.3, the star $K_{1,k}$ has the desired property.

Now, let $r \ge 2$ and $r < d \le 2r$. Let $C_{2r} : u_1, u_2, \ldots, u_{2r}, u_1$ be a cycle of order 2r and let $P_{d-r+1} : v_0, v_1, \ldots, v_{d-r}$ be a path of length d-r. Let H be the graph obtained from C_{2r} and P_{d-r+1} by identifying the vertex v_0 of P_{d-r+1} and the vertex u_1 of C_{2r} ; and also joining the vertex u_{r+2} to the vertex u_r . The graph G in Figure 2.6 is obtained from H by adding k-2 new vertices $w_1, w_2, \ldots, w_{k-2}$ and joining each $w_i(1 \le i \le k-2)$ to the vertex v_{d-r-1} . It is easy to verify that $r \le e(x) \le d$ for any vertex x in G, $e(u_1) = r$ and $e(v_{d-r}) = d$. Then rad(G) = r and diam(G) = d. Since $S = \{u_{r+1}, w_1, w_2, \ldots, w_{k-2}, v_{d-r}\}$ is the set of all extreme vertices of G, ex(G) = k. By Theorem 1.3, every outer connected geodetic set of G contains S. It is clear that S is the unique minimum outer connected geodetic set of G and so $g_{oc}(G) = k = ex(G)$. Thus G is an extreme outer connected geodesic graph such that rad(G) = r, diam(G) = d and $g_{oc}(G) = k$.

Figure 2.6: Graph G

Problem 2.15. For positive integers r, d and $k \ge 2$ with $r = d \le 2r$, does there exist an extreme outer connected geodesic graph G with rad(G) = r, diam(G) = d and $g_{oc}(G) = k$?

Theorem 2.16. For each triple p, d and k of positive integers with $k \ge 2$, $d \ge 2$ and $p - d - k + 1 \ge 0$, there exists an extreme outer connected geodesic graph G of order p such that diam(G) = d and $g_{oc}(G) = k$.

Proof. Let $P_{d+1}: u_1, u_2, \ldots, u_{d+1}$ be a path of length d. Add p - d - 1new vertices $v_1, v_2, \ldots, v_{k-2}, w_1, w_2, \ldots, w_{p-d-k+1}$ to P_{d+1} and join each $w_i(1 \le i \le p - d - k + 1)$ to the vertices u_1, u_2 and u_3 ; and join each $v_j(1 \le j \le k - 2)$ to the vertex u_2 ; and also join each vertex $w_i(1 \le i \le p - d - k)$ to the vertex $w_j(i + 1 \le j \le p - d - k + 1)$. The graph G of order p with diameter d is shown in Figure 2.7. Since $S = \{v_1, v_2, \ldots, v_{k-2}, u_1, u_{d+1}\}$ is the set of all extreme vertices of G, ex(G) = k. By Theorem 1.3, every outer connected geodetic set of G contains S. It is clear that S is the unique minimum outer connected geodetic set of G and so $g_{oc}(G) = k = ex(G)$. Thus G is an extreme outer connected geodesic graph of order p with diam(G) = d and $g_{oc}(G) = k$.

Figure 2.7: Graph G

In the following theorem we construct a non-extreme outer connected geodesic graph G of order p such that diam(G) = d and $g_{oc}(G) = k$.

Theorem 2.17. For each triple p, d and k of positive integers with $k \ge 2$, $d \ge 2$ and $p - d - k + 1 \ge 0$, there exists a non-extreme outer connected geodesic graph G of order p such that diam(G) = d and $g_{oc}(G) = k$.

Proof. Let $P_{d+1}: u_1, u_2, \ldots, u_{d+1}$ be a path of length d. Add p - d - 1new vertices $v_1, v_2, \ldots, v_{k-2}, w_1, w_2, \ldots, w_{p-d-k+1}$ to P_{d+1} and join each $w_i(1 \leq i \leq p - d - k + 1)$ to the vertices u_1, u_2 and u_3 ; and also join each $v_i(1 \leq j \leq k-2)$ to the vertex u_2 . The graph G of order p with diameter d is shown in Figure 2.8. If d = 2, then $S_1 = \{v_1, v_2, \ldots, v_{k-2}\}$ is the set of all extreme vertices of G, ex(G) = k - 2. By Theorem 1.3, every outer connected geodetic set of G contains S_1 . It is clear that neither S_1 nor $S_1 \cup \{x\}$, where $x \notin S_1$, is an outer connected geodetic set of G. Since $S_2 = S_1 \cup \{u_1, u_3\}$ is a minimum geodetic set of G and the subgraph induced by $V - S_2$ is connected, S_2 is an outer connected geodetic set of G and so $g_{oc}(G) = k$. If $d \geq 3$, then $S_3 = \{v_1, v_2, \dots, v_{k-2}, u_{d+1}\}$ is the set of all extreme vertices of G, ex(G) = k - 1. By Theorem 1.3, every outer connected geodetic set of G contains S_3 . It is clear that S_3 is not an outer connected geodetic set of G. It is easily verified that $S_3 \cup \{u_1\}$ is the unique minimum outer connected geodetic set of G and so $g_{oc}(G) = k$.

Since $g_{oc}(G) = k \neq ex(G)$, G is a non-extreme outer connected geodesic graph of order p with diam(G) = d and $g_{oc}(G) = k$.

Figure 2.8: Graph G

Next, we analyse how the extreme outer connected geodesic graphs are affected by the addition of a pendant edge.

Theorem 2.18. If G' is a graph obtained by adding l pendant edges to an extreme outer connected geodesic graph G, then $ex(G) \leq ex(G') \leq ex(G) + l$ and G' is an extreme outer connected geodesic graph.

Proof. Let G' be the graph obtained from an extreme outer connected geodesic graph G by adding l pendant edges $u_i v_i (1 \le i \le l)$, where each $u_i(1 \le i \le l)$ is a vertex of G and each $v_i(1 \le i \le l)$ is not a vertex of G. Let S be a minimum outer connected geodetic set of G. Since G is an extreme outer connected geodesic graph, S is the unique minimum outer connected geodetic set of G and S is the set of all extreme vertices of G. Then it is clear that $S \cup \{v_1, v_2, \ldots, v_l\}$ is an outer connected geodetic set of G'. Now, we claim that $ex(G') \leq ex(G) + l$ and G' is an extreme outer connected geodesic graph. If each $u_i (1 \le i \le l)$ is an extreme vertex of G then each $v_i (1 \le i \le l)$ is an extreme vertex of G' and each $u_i (1 \le i \le l)$ is not an extreme vertex of G'. It is clear that $S' = (S - \{u_1, u_2, \dots, u_l\}) \cup \{v_1, v_2, \dots, v_l\}$ is the set of all extreme vertices of G' and so ex(G') = |S'|. Hence, we have ex(G') = ex(G). If each $u_i(1 \le i \le l)$ is not an extreme vertex of G then each $v_i (1 \leq i \leq l)$ is an extreme vertex of G'. It is clear that $S' = S \cup$ $\{v_1, v_2, \ldots, v_l\}$ is the set of all extreme vertices of G' and so ex(G') = |S'|. Hence, we have ex(G') = ex(G) + l. Without loss of generality, if each $u_i(1 \le i \le k, k < l)$ is an extreme vertex of G and each $u_j(k + 1 \le j \le l)$ is not an extreme vertex of G, then $\{u_1, u_2, \ldots, u_k\} \subseteq S$. It is clear that $S' = (S - \{u_1, u_2, \ldots, u_k\} \cup \{v_1, v_2, \ldots, v_k\}) \cup \{v_{k+1}, v_{k+2}, \ldots, v_l\}$ is the set of all extreme vertices of G' and so ex(G') = |S'|. Hence, we have ex(G') < ex(G) + l. Note that in all the above cases, it is easily verified that S' is the unique minimum outer connected geodetic set of G', $g_{oc}(G') = |S'| = ex(G')$. Thus G' is an extreme outer connected geodesic graph.

Next, we show that $ex(G) \leq ex(G')$. Suppose that ex(G) > ex(G'). Let S_1 be a minimum outer connected geodetic set of G'. Since G' is an extreme outer connected geodesic graph, S_1 is the unique minimum outer connected geodetic set of G' and S_1 is the set of all extreme vertices of G'. Then with $|S_1| = ex(G') < ex(G)$. Since each $v_i (1 \le i \le l)$ is an extreme vertex of G', it follows from Theorem 1.3 that $\{v_1, v_2, ..., v_l\} \subseteq S_1$. Let $S_2 = (S_1 - \{v_1, v_2, \dots, v_l\}) \cup \{u_1, u_2, \dots, u_l\}$. Then S_2 is a subset of V(G)and $|S_2| = |S_1| < ex(G)$. Now, we show that S_2 is an outer connected geodetic set of G. Let $w \in V(G) - S_2$. Since S_1 is an outer connected geodetic set of G', w lies on an x - y geodesic P in G' for some vertices $x, y \in S_1$. If neither x nor y is $v_i (1 \le i \le l)$, then $x, y \in S_2$. If exactly one of x, y is $v_i (1 \le i \le l)$, say $x = v_i$, then w lies on the $u_i - y$ geodesic path in G obtained from P by removing v_i . If both $x, y \in \{v_1, v_2, \ldots, v_l\}$, then let $x = v_i$ and $y = v_j$ where $i \neq j$. Hence w lies on the $u_i - u_j$ geodesic in G obtained from P by removing v_i and v_j . Thus S_2 is a geodetic set of G. By Theorem 1.1, every geodetic set of G contains all the extreme vertices of G, $ex(G) \leq |S_2|$. Also, since G is an extreme outer connected geodesic graph, $ex(G) = g_{oc}(G)$. Hence $ex(G) = g_{oc}(G) \le |S_2| < ex(G)$, which is a contradiction.

Figure 2.9: Graphs G and G'

Remark 2.19. The bounds in Theorem 2.18 are sharp. Consider a tree Twith number of endvertices $k \geq 2$. Let $S = \{v_1, v_2, \ldots, v_k\}$ be the set of all endvertices of T. Then by Theorem 1.5, $g_{oc}(T) = k = ex(T)$ and hence T is an extreme outer connected geodesic graph. If we add a pendant edge to an endvertex of T, then we obtain another tree T' with k endvertices. Then by Theorem 1.5, $g_{oc}(T') = k = ex(T')$. Hence ex(T) = ex(T'). On the other hand, if we add l pendant edges to a cutvertex of T, then we obtain another tree T' with k + l endvertices. Then by Theorem 1.5, ex(T') = k + l = ex(T) + l. In both cases, T' is an extreme outer connected geodesic graph. Also, all the inequalities in Theorem 2.18 can be strict. For the graph G given in Figure 2.9, it is clear that $S = \{u_1, u_3\}$ is the set of all extreme vertices of G and so ex(G) = 2. Since S is the unique minimum outer connected geodetic set of G, $g_{oc}(G) = 2 = ex(G)$. Thus G is an extreme outer connected geodesic graph. The graph G' given in Figure 2.9 is obtained from the graph G in Figure 2.9 by adding l = 2pendant edges $u_i v_i (1 \leq i \leq 2)$. Since $S_1 = \{v_1, v_2, u_3\}$ is the set of all extreme vertices of G', ex(G') = 3. It is easy to see that S_1 is the unique minimum outer connected geodetic set of G' and so $g_{oc}(G') = 3 = ex(G')$. Thus G' is an extreme outer connected geodesic graph. Hence we have ex(G) < ex(G') < ex(G) + l.

Theorem 2.20. For each triple a, b and l of integers with $2 \le a \le b$, $1 \le l \le b$, and $a + l - b \ge 0$, there exists a connected graph G with $g_{oc}(G) = a$ and $g_{oc}(G') = b$, where G' is an extreme outer connected geodesic graph obtained by adding l pendant edges to an extreme outer connected geodesic graph G.

Proof. Let G be a tree with number of endvertices a. Let G' be a graph obtained by adding b-a pendant edges to a cutvertex of G and also adding a + l - b pendant edges each with different endvertices of G. Then G' is another tree with b endvertices. By Theorem 1.5, $g_{oc}(G) = a$ and $g_{oc}(G') = b$.

References

 F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, 1990.

- [2] F. Buckley and F. Harary, L.v. Quintas, Extremal results on the geodetic number of a graph, *Scientia* A2, pp. 17-26, 1998.
- [3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, *Networks*, Vol. 39 (1), pp. 1-6, 2002.
- [4] G. Chartrand, F. Harary, H. C. Swart and P. Zhang, Geodomination in graphs, *Bulletin of the ICA*, Vol. 31, pp. 51-59, 2001.
- [5] G. Chartrand, G. L.Johns, and P.Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combin., Vol. 72, pp. 3-15, 2004.
- [6] G. Chartrand, E. M. Palmer, P. Zhang, The geodetic number of a graph, A survey, *Congr.Numer.*, Vol. 156, pp. 37-58, 2002.
- [7] K. Ganesamoorthy and D. Jayanthi, The Outer Connected Geodetic Number of a Graph, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., Vol. 91 (2), pp. 195-200, 2021.
- [8] K. Ganesamoorthy and D. Jayanthi, On the Outer Connected Geodetic Number of a Graph, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics, Vol. 41 (1), pp. 78-84, 2021.
- [9] K. Ganesamoorthy and D. Jayanthi, Further Results on the Outer Connected Geodetic Number of a Graph, *Publications de l'Institut Mathematique*, Vol. 108 (122), pp. 79-89, 2020.
- [10] K. Ganesamoorthy and D. Jayanthi, The Upper and Forcing Connected Outer Connected Geodetic Numbers of a Graph, *Jour*nal of Interconnection Networks, Vol. 22, No. 01, 2142022, 2022. https://doi.org/10.1142/S0219265921420226.
- [11] K. Ganesamoorthy and D. Jayanthi, More on the outer connected geodetic number of a graph, *Discrete Mathematics, Algorithms and Applications*, 2022. https://doi.org/10.1142/S1793830922501282.
- [12] F. Harary, Graph Theory, Addision-Wesely, 1969.
- [13] F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modeling, Vol. 17 (11), pp. 89-95, 1993.
- [14] R. Muntean and P. Zhang, On geodomination in graphs, Congr. Numer., Vol. 143, pp. 161-174, 2000.

- [15] P. A. Ostrand, Graphs with specified radius and diameter, *Discrete Math.*, Vol. 4, pp. 71-75, 1973.
- [16] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, Extreme Restrained Geodesic Graphs, *Trans. Natl. Acad. Sci. Azerb. Ser. Phys.*-*Tech. Math. Sci. Mathematics*, Vol. 42 (1), pp. 172-178, 2022.
- [17] A. P. Santhakumaran and K. Ganesamoorthy, The restrained double geodetic number of a graph, *Discrete Mathematics, Algorithms and Applications*, 2022. https://doi.org/10.1142/S1793830922501002.

K. Ganesamoorthy

Department of Mathematics, Coimbatore Institute of Technology Coimbatore-641 014, India e-mail: kvgm_2005@yahoo.co.in Corresponding author

and

D. Jayanthi

Department of Mathematics, Coimbatore Institute of Technology Coimbatore-641 014, India e-mail: djayanthimahesh@gmail.com