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Abstract

Entire functions whose coefficients are polynomials having real and
negative roots are built from Touchard polynomials. The particular set
of polynomials

nX
j=0

µ
n

j

¶
(z + 2j − 2n+ 1)(z + 2j − 2n+ 3) · · · (z + 2j − 1), (1 ≤ n)

is shown to have purely complex roots, where we show a connection of
these polynomials with certain approximations of the Riemann’s zeta
function. Also a certain class of Fourier transforms is shown to have
only real roots.
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1. Introduction and results

The aim of this note is to prove some results about the zeros of certain
polynomials and Fourier transforms. We add an appendix showing the
connection of some of our results to certain approximations in number
theory. Each section is independent to read.

The location of roots of polynomials and entire functions is an old sub-
ject. Classical texts are [9], [12]. The reader may consult [6] for an abundant
bibliography up to 2011 on zeros of Fourier transforms.

We recall that an entire function f(z) is said to be in the Laguerre-
Pólya class if it is the uniform limit on compact sets of polynomials with
real roots. This is known [6] to be equivalent to the fact that there exists
β, α, αn real, 0 ≤ α with

P∞
n=1 α

2
n <∞ and

f(z) = e−αz
2+βz

∞Y
n=1

(1 + zαn) e
−zαn .

We will use Hurwtiz theorem in its simplest form: if fn(z), f(z) are
entire functions and fn(z)→ f(z) uniformly on compact sets of the complex
plane where the roots of fn(z) are real then either f(z) is identically zero
or it has only real roots.

2. Use of Touchard polynomials.

Theorem 1. i) Assume that f(z) is in the Laguerre-Pólya class and that

exp
³
x
n
e{et−1} − 1

o´
= 1 + x

∞X
n=1

pn−1(x)t
n,

f
³
x
n
e{et−1} − 1

o´
=

∞X
n=0

qfn(x)t
n.

Then pn−1(x), n = 1, 2, . . . , is a polynomial with positive coefficients of
n− 1 degree with only real negative roots.

Also the polynomials qfn(x), n = 0, 1, 2, . . . , have only real roots.
ii) Set

exp

⎛⎝x
⎧⎨⎩e
n
e(e

t−1)−1
o
− 1

⎫⎬⎭
⎞⎠ = 1 + x

∞X
n=1

p∗n−1(x)t
n,

Then p∗n−1(x), n = 1, 2, . . . , is a polynomial with positive coefficients of
n− 1 degree with only real negative roots.
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Proof. i) The Touchard polynomials Tn(x) have only real roots. These
roots are all negative except a simple root at x = 0. They can be defined
using the generating function (see [8])

∞X
n=0

Tn(x)

n!
tn = exp

n
x(et − 1)

o
.

Next observe that by Laguerre’s theorem ([12] (II), problem 67, part V)
and Hurwitz theorem if a polynomial p(x) = a0 + a1x+ a2x

2 + · · ·+ akx
k

has only real roots then

a0Tm(0)+a1Tm(1)x+· · ·+akTm(k)xk =
m!

2πi

Z
γ

Pk
n=0 anx

nexp
©
n(et − 1)

ª
tm+1

dt,

(2.1)

has real roots. Here the equality follows from Cauchy’s formula where γ is
a curve enclosing the origin.

If fact from careful examination of the proof given in [12] if a polynomial
p(z) has real and negative roots then (2.1) has only real and non positive
roots (or more simply observe that ai > 0, Tm(i) > 0 if i = 1, 2, . . . , and
Tm(0) = 0).

Now taking p(x) = (1 + x/k)k yields that m!
2πi

R
γ

µ
1 + xee

t−1

k

¶k
1

tm+1
dt

has only real and non positive roots. Letting k → ∞ in this last formula
and writing

exp(xee
t−1) =

∞X
n=0

qn(x)t
n,

yields that the function

qm(x) =
1

2πi

Z
γ
exp(xee

t−1)
1

tm+1
dt,

has only real and non positive roots.

Finally observe that ee
t−1 − 1 = c1t + c2t

2 + . . . with ci > 0 for all i.
This implies that

exp
³
x
n
ee

t−1 − 1
o´
= 1 + x

∞X
n=1

pn−1(x)t
n,

where pn−1(x) is a polynomial of n− 1 degree with real and negative roots
(observe that exxpn−1(x) = qn(x)).
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If f(z) is in the Laguerre-Pólya class then it can be approximated on
compact sets by polynomials p(x) = a0 + a1x+ a2x

2 + · · ·+ akx
k and the

proof is exactly the same.

ii) Again by Laguerre’s theorem if a polynomial p(x) = a0 + a1x+ a2x
2 +

· · ·+ akx
k has real and negative roots then similarly as in (i)

a1pm−1(1)x+ a22pm−1(2)x2 + · · · = 1
2πi

R
γ

Pk

n=0
anxnexp

³
n

n
ee
t−1−1

o´
tm+1 dt,

has real and non positive roots.

Now taking p(x) = (1 + x/k)k, writing

exp

µ
xee

et−1−1
¶
=

∞X
n=0

rn(x)t
n,

and making k →∞ yields that the function

rm(x) =
1

2πi

Z
γ
exp(xee

t−1)
1

tm+1
dt,

has only real and non positive roots. But then it can be proved in a similar
way as before that

exp

µ
x

½
ee

et−1−1 − 1
¾¶

= 1 + x
∞X
n=1

p∗n−1(x)t
n,

where p∗n−1(x) is a polynomial with positive coefficients (and therefore with
negative roots). The proof is complete. 2

Iterated exponentials have been studied by Bell [1] and also by Ramanu-
jan ([2] see Chapter 4 and bibliography therein).

3. On the zeros of a class of polynomials

The main result of this section is the following theorem.

Theorem 2. Let 1 ≤ n. The polynomials

nX
j=0

Ã
n

j

!
(z + 2j − 2n+ 1)(z + 2j − 2n+ 3) · · · (z + 2j − 1),(3.1)

have all its roots on the line z = it, t ∈ R.
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Proof. Given a function f(z), we define the operator Tf(z) := f(z +
1) + f(z − 1) and let gm(z) be a polynomial of m+ 1 degree defined by

gm(z) := (z −m)(z −m+ 2) · · · (z +m− 2)(z +m).

It is understood that g0(z) = z.
Then Tngn−1(z) is equal to (3.1).
The following lemma is the key to the proof.

Lemma 1. Assume that

f(z) := gm(z)
rY

j=1

(z2 +∆j),

with m a non negative integer, ∆j > 0 and 0 ≤ r (in case r = 0 the last
product is set equal to 1).

If m = 0 or m = 1 then Tf(z) and T 2f(z) have all their roots on the
line z = it.

If m ≥ 2 then T 2f(z) is of the form

4gm−2(z)
r+1Y
j=1

(z2 +∆∗j)

with ∆∗j > 0.

In order to prove Lemma 1 we shall need the following lemma (compare
with Lemma 1 in [4]).

Lemma 2. Let ∆ ≥ 0. If <(z) > 0 then

|(z + 1)2 +∆| > |(z − 1)2 +∆|.

For <(z) < 0, the reverse inequality holds.

Proof. The lemma readily follows by observing that, for z = x + iy,
x ∈ R, y ∈ R,

|(z + 1)2 +∆|2 − |(z − 1)2 +∆|2 = 8x(x2 + y2 +∆+ 1).

2

We shall prove Lemma 1 for m ≥ 2 (the proof for cases m = 0, 1 is
implicitly contained in what follows).
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We have that

Tf(z) = gm−1(z)E(z),

where

E(z) = (z +m+ 1)
rY

j=1

((z + 1)2 +∆j) + (z −m− 1)
rY

j=1

((z − 1)2 +∆j).

We will show that all the roots of E(z) are on the line it, t ∈ R. In fact, if
E(z) = 0, then

|(z +m+ 1)
rY

j=1

((z + 1)2 +∆j)| = |(z −m− 1)
rY

j=1

((z − 1)2 +∆j)|.

Thus, it cannot be <(z) > 0 since then |(z +m+ 1)| > |(z −m− 1)| and,
by Lemma 2, the same happens to each term in the product. A similar
reasoning for the case <(z) < 0 yields that all the roots of E(z) are on the
line it, t ∈ R.

As E(z) has degree 2r + 1, E(0) = 0, E0(0) 6= 0 and E(z̄) = E(z), we
have that E(z) = 2z

Qr
j=1(z

2 +∆
0
j) with ∆

0
j > 0.

Applying T one more time, one gets

T 2f(z) = gm−2(z)E
∗(z),

where

E∗(z) = (z −m)E(z − 1) + (z +m)E(z + 1).

Since E∗(z) = 0 implies

|(z +m)2(z +1)
rY

j=1

((z +1)2 +∆
0
j)| = |(z −m)2(z − 1)

rY
j=1

((z − 1)2 +∆0
j)|,

then the same argument using Lemma 2 yields that all the roots of E∗(z)
are on the line it, t ∈ R. As E∗(z) has degree 2r + 2, E∗(0) 6= 0 and
E∗(z̄) = E∗(z), then E∗(z) = 4

Qr+1
j=1(z

2+∆∗j ) with ∆
∗
j > 0. This ends the

proof of the Lemma 1.

The theorem follows using Lemma 1 repeatedly with f(z) = gn−1(z).
2
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4. Remarks on the zeros of certain Fourier transforms

Lemma 3. Assume that
PN

k=0 ak,Nz
k is a family of polynomials with its

roots on |z| = 1. Furthermore assume that there is a continuous function
b(x) : [0, 1] → R such that |b(k/N) − ak,N | can be made arbitrarily small
for sufficiently large N , uniformly in k.

If p(z) is a real polynomial with only real roots thenZ 1

−1
b

µ
u+ 1

2

¶
p(z + iu)du

has only real zeros or it is identically equal to zero.

Proof. In fact one knows that qN,λ(z) :=
PN

k=0 ak,Np(z + (2k −N)iλ)
has real roots, Theorem 4 pg. 201 [4]. Note that as N →∞

1

N
qN,1/N(z) =

1

N

NX
k=0

ak,Np(z + (2k/N − 1)i)→
Z 1

0
b(τ)p(z + (2τ − 1)i)dτ.

The result follows changing variables 2τ − 1 = u 2

Lemma 4. Assume that b(x) is as in the last lemma. ThenZ 1

−1
b

µ
u+ 1

2

¶
eizudu(4.1)

has only real roots.

Proof. By the last lemma the integral I(z) =
R 1
−1 b

³
u+1
2

´
(z + iu)ndu

has real roots as does znI(1/z) =: J(z). Now J(z/n) tends to the integral
(4.1) as n→∞. 2

Theorem 3. Assume that b(x) satisfies one of the following two conditions:
i) b(x) := f(x)+ f(1−x) where f(x) : [0, 1]→ R is non-negative, bounded
and non-decreasing function.

ii) b(x) : [0, 1]→ R, b(x) is non-negative and b(x) = b(1− x). Furthermore
there exists 0 < α < 1/2 such that b(x) is non-increasing on [0, α], b(x) is
non-decreasing on [α, 1] with b(1/2) ≤ 2b(α).

If the function (4.1) is not identically zero then it has only real roots.
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Proof. i) Assume for the moment that f(x) is continuous. As 0 ≤ f(x)
is non-decreasing by the Eneström-Kakeya theorem the polynomial q(z) =PN

k=0 f(k/N)z
k has its roots in |z| ≤ 1. Then by a theorem of Schur

[13] we know that q(z) + zNq(1/z) =
PN

k=0 {f(k/N) + f(1− k/N)} zk has
its roots on |z| = 1. We are in the conditions of the last lemma with
b(x) = f(x) + f(1− x) and then (4.1) has real roots.

The general theorem follows using a limiting argument and Hurwitz’s
theorem.

ii) Again assume that b(x) is continuous and that 0 < α = k0/N0 <
1/2 for some positive integers k0,N0. By Theorem 3 of [5] the polyno-
mial q(z) =

PN0
k=0 b(k/N0)z

k has its roots in |z| = 1 as does qM(z) =P2MN0
k=0 b(k/(2MN0))z

k with M = 1, 2, 3, . . . (diadic subdivision). Thus us-
ing the above lemmas then the function (4.1) has real roots.

Again a limit argument yields the general result. 2

5. Appendix

Here we show a connection between the polynomials given in Theorem
2 with some results proved in [11] about certain approximations of the
Riemann’s zeta function (see [14] or [7]). For the sake of completeness, we
provide ad-hoc proofs, correct a minor error that appear in [11] and we add
some new results.

It is known (see Lemma 6) that if ζ(s) =
P∞

n=1
1
ns is the Riemann’s zeta

function, then in the strip 0 < <(s) < 1,

ζ(s)
π(1− 21−s)
sin(πs)

=

Z ∞
0

f(λ)λ−sdλ,(5.1)

where

f(λ) :=

Z 1

0

1

1 + x
xλdx =

1

1 + λ
− 1

2 + λ
+

1

3 + λ
− · · · .

Set

g(s) := ζ(s)
π(1− 21−s)
sin(πs)

.(5.2)

As it is shown below, the function g(s) is approximated in the strip 0 <
<(s) < 1 by

− gn(s) := −
Z ∞
0

An(λ)

Bn(λ)
λ−sdλ,(5.3)
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where, for λ ≥ 0 and n ≥ 0, An(λ) and Bn(λ) are defined in terms of the
(Jacobi) polynomials

Fn(x) = Fn(x, λ) :=
nX

j=0

(−1)n−jxj (j + λ+ 1)n
(n− j)!j!

,(5.4)

as

An(λ) :=

Z 1

0

Fn(x)− Fn(−1)
1 + x

xλdx,(5.5)

Bn(λ) := Fn(−1) = (−1)n
nX

j=0

(j + λ+ 1)n
(n− j)!j!

.(5.6)

Here (α)n stands for α(α+ 1) · · · (α+ n− 1) and (α)0 = 1.
The key observation is that, if we set z = 2λ, then

2nn!(−1)nBn(λ−n−1/2) =
nX

j=0

Ã
n

j

!
(z+2j−2n+1)(z+2j−2n+3) · · · (z+2j−1),

which is the polynomial appearing in Theorem 2.
It turns out that An and Bn satisfy a three-term recurrence relation

(Theorem 5). Since polynomials Bn(λ) appear in these formulas as denom-
inators, we state some of their properties in Theorem 6. In Theorem 7 we
give a closed form formula for gm(s) using Bn(λ).

The two main ingredients of the proof below are the Euler’s hypergeo-
metric formula and the orthogonality of the Fn(x) with respect to a power
weight (see Lemma 5). Although orthogonality of Jacobi polynomials Fn(x)
is well known, we provide a simple proof that only uses Cauchy’s residue
theorem, following the lines of [3, Ch. 3].

6. Statement of the results

With the definitions and notation given we have the following results.

Theorem 4. Let 0 < � < 1/2 and s = σ + it such as � ≤ σ ≤ 1− � then

|gn(s) + g(s)| ≤ 2
�

(
√
2− 1)2n¡2n

n

¢ ∼ 2
√
π

�

√
n 0.04289n.

Note: a constant 1
2π� was stated in [11] instead of the correct

2
� .
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Theorem 5. For n ≥ 2, An(λ) and Bn(λ) satisfy the recurrence relation

Xn + (βn − αn)Xn−1 + γnXn−2 = 0,(6.1)

where

αn(λ) = − (2n+λ)(2n−1+λ)n(n+λ) ,

βn(λ) = (2n− 1 + λ)− (2n+λ)(2n−1+λ)(n−1+λ)(n−1)
n(n+λ)(2n−2+λ) ,

γn(λ) = (n−1)(n+λ−1)(n+λ/2)
n(n+λ)(n+λ/2−1) .

(6.2)

Furthermore

A0(λ) = 0, A1(λ) =
2 + λ

1 + λ
,

B0(λ) = 1, B1(λ) = −3− 2λ.

The next result gives some information about the polynomials Bn(λ).

Theorem 6. Bn(λ) is a polynomial of n degree in λ such that,

1. (−1)nBn(λ) is positive and increasing on [0,+∞).

2. (−1)nBn(λ) ≥
¡2n
n

¢
, λ ∈ [0,+∞).

3. All the roots of Bn(λ) are located on the line −n− 1
2 + it, t ∈ R.

4. If n is even, Bn(λ) =
2n

n!

Qn/2
j=1((λ+ n+ 1/2)2 +∆j), with ∆j > 0.

5. If n is odd, Bn(λ) = −2
n

n! (λ+n+1/2)
Q(n−1)/2

j=1 ((λ+n+1/2)2+∆j),
with ∆j > 0.

We give an alternative formula for (5.3).

Theorem 7. Let s be in the strip 0 < <(s) < 1, then if m = 1, 2, . . . there
exists a real polynomial Qm−1(λ) of degree ≤ m− 1 so that

gm(s) =
R∞
0

³Pm
n=1

(2n+λ)
n(n+λ)

1
Bn(λ)Bn−1(λ)

´
λ−sdλ

=
R∞
0

³³Pm
n=1

(−1)n
n+λ

´
+ Qm−1(λ)

Bm(λ)

´
λ−sdλ.
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Remark 1. The values of Qm−1(λ)
Bm(λ)

if m = 1, 2, 3, 4, 5 are given respectively
by

1
3+2λ ,

− (5+2λ)
2(13+10λ+2λ2) ,
4

5(7+2λ) +
(7+2λ)

10(27+14λ+2λ2)
,

− (423+256λ+54λ2+4λ3)
4(963+792λ+250λ2+36λ3+2λ4)) ,
64

89(11+2λ) +
(20273+9736λ+1650λ2+100λ3)

356(2295+1496λ+378λ2+44λ3+2λ4)
.

If one sets hm(1/2 + it) := gm(1/2 + it) + gm(1/2− it) then one knows
by Theorem 4 that

−hm(1/2+it)→
π

cosh(πt)

³
ζ(1/2 + it)(1− 21/2−it) + ζ(1/2− it)(1− 21/2+it)

´
,

if m→∞ in the strip |=t| < 1/2.
Using thatZ ∞

0

1

z + λ
λ−1/2

³
λit + λ−it

´
dλ =

π

cosh(πt)
(1 + z2it)z−1/2−it,

one gets, for example, that if |=t| < 1/2 then

h1(1/2 + it) = 6−1/2−it
³
22it − 23/2+it31/2+it + 32it

´ π

cosh(πt)
,

and h2(1/2 + it) = π2−2−itsech(πt)√
13

C, where C :=³
5
169 +

i
169

´it
(5− i)

1
2
+2it +

√
5 + i(5− i)it +

³
5
169 −

i
169

´it
(5 + i)

1
2
+2it

+
√
5− i(5 + i)it +

√
1323+it −

√
132

3
2
+2it − 2

√
26.

7. Previous lemmas

The next two lemmas will be used in the proof of Theorem 4 and 5. The
first one is about the polynomials Fn(x) defined in (5.4).

Lemma 5. Let n ≥ 1 and λ ≥ 0. Fn(x) are orthogonal to 1, x, x2, · · · , xn−1
in [0, 1] respect to the measure xλ, that isZ 1

0
Fn(x)x

k+λdx = 0,
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for k = 0, · · · , n− 1. Also we haveZ 1

0
Fn(x)x

λ+n+jdx =
(j + 1)n

(λ+ n+ j + 1)n+1
,

for j = 0, 1, 2, · · ·.

Proof. Using residues one easily gets

Fn(x) =
1

2πi

Z
γ

(t+ λ+ 1)(t+ λ+ 2) · · · (t+ λ+ n)

t(t− 1) · · · (t− n)
xtdt,

where γ is a curve enclosing 0, 1, ..., n. By taking γ to be contained in
<(t) > −1/2 we can applied Fubini’s Theorem to obtainR 1

0Fn(x)x
λ+kdx = 1

2πi

R 1
0

R
γ
(t+λ+1)(t+λ+2)···(t+λ+n)

t(t−1)···(t−n) xt+λ+kdtdx

= 1
2πi

R
γ
(t+λ+1)···(t+λ+n)

t(t−1)···(t−n)
dt

(t+λ+k+1) = 0

for k = 0, · · · , n − 1. The last integral is zero since, after simplifying the
fraction, γ can be changed by a circumference of arbitrary large radius.

Also, taking γ as above, we have, for j ≥ 0,Z 1

0
Fn(x)x

λ+n+jdx =
1

2πi

Z
γ

(t+ λ+ 1) · · · (t+ λ+ n)

t(t− 1) · · · (t− n)

dt

(t+ λ+ n+ j + 1)
,

which turns out to be (j+1)n
(λ+n+j+1)n+1

since the integrand has residue 0 at
infinity. 2

For λ ≥ 0 we define

f(λ) :=

Z 1

0

1

1 + x
xλdx =

1

1 + λ
− 1

2 + λ
+

1

3 + λ
− · · · .

Then we have the following lemma.

Lemma 6. Let s be in the strip 0 < <(s) < 1, then, with the above
definition,

g(s) := ζ(s)
π(1− 21−s)
sin(πs)

=

Z ∞
0

f(λ)λ−sdλ.

Proof. One may prove this formula by making the change of variable
t = λ/n in Z ∞

0

t−s

1 + t
dt =

π

sin(πs)
,

which is valid for 0 < <(s) < 1, and adding in n. 2
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8. Proof of Theorem 4

Let 0 < � < 1/2 and s = σ + it with � ≤ σ ≤ 1− �. First we observe that

gn(s) are well defined since the rational functions
An(λ)
Bn(λ)

are continuous on

[0,+∞) and
An(λ)

Bn(λ)
= O(λ−1),

as λ→ +∞.
By Lemma 6 we have to estimate

|gn(s) + g(s)| =

¯̄̄̄ R∞
0

³
An(λ)
Bn(λ)

+ f(λ)
´
λ−sdλ

¯̄̄̄
≤ 1

|Bn(0)|
R∞
0 |An(λ) +Bn(λ)f(λ)|λ−σdλ,

(8.1)

where we have used that |Bn(λ)| is increasing on [0,+∞), which follows
from (5.6).

Now recalling formulas (5.4), (5.5), (5.6) the key observation is that

R 1
0

Fn(x)
1+x xλdx =

R 1
0

Fn(x)−Fn(−1)
1+x xλdx+

R 1
0

Fn(−1)
1+x xλdx

= An(λ) +Bn(λ)f(λ),

which will allow us to prove

|An(λ) +Bn(λ)f(λ)| ≤
(
√
2− 1)2n
λ+ 1

.(8.2)

The proof of this inequality is as follows. From Lemma 5, and recall-
ing the Euler’s formula for the hypergeometric function 2F1(a, b, c, z), with
<(c) > <(b) > 0,

∞X
m=0

(a)m(b)m
(c)mm!

zm =
Γ(c)

Γ(c− b)Γ(b)

Z 1

0
τ b−1(1− τ)c−b−1(1− τz)−adτ,

we have

±
R 1
0

Fn(x)
1+x xλdx =

R 1
0 Fn(x)

n
xλ+n − xλ+n+1 + xλ+n+2 − · · ·

o
dx

= (1)n
(λ+n+1)n+1

− (2)n
(λ+n+2)n+1

+ (3)n
(λ+n+3)n+1

−· · ·
= n!

(λ+n+1)n+1

P∞
m=0(−1)m

(1+n)m(n+λ+1)m
(2n+2+λ)mm!

=
R 1
0 τ

n+λ(1− τ)n(1 + τ)−n−1dτ.
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Now (8.2) follows immediately since the above expression can be esti-
mated by

Ã
max
τ∈[0,1]

τ(1− τ)

1 + τ

!n Z 1

0
τλ(1 + τ)−1dτ ≤ (

√
2− 1)2n
λ+ 1

.

Finally, from (8.1) and (8.2) we have

|gn(s) + g(s)| ≤ (
√
2− 1)2n
|Bn(0)|

Z ∞
0

λ−σ

λ+ 1
dλ,

and the theorem follows since
¡2n
n

¢
≤ |Bn(0)| and

Z ∞
0

λ−σ

λ+ 1
dλ ≤

Z 1

0
λ−σdλ+

Z ∞
1

λ−σ−1dλ ≤ 2/�.

9. Proof of Theorem 5

Observe that the coefficient xn of Fn(x) is non-zero. Therefore one can
find constants αn, βn so that Fn(x)+ (αnx+βn)Fn−1(x) is a polynomial of
degree at most n−2, which in turn can be written as a linear combination of
Fn−2(x), . . . , F0(x). If this equality is multiplied by xk+λ, k = 0, · · · , n− 3,
and orthogonality (Lemma 5) is used, then only the coefficient of Fn−2(x)
survives. This yields that, for n ≥ 2, there exist αn, βn, γn such that

Hn(x) := Fn(x) + (αnx+ βn)Fn−1(x) + γnFn−2(x) ≡ 0.(9.1)

Coefficients αn, βn, γn can be calculated equating the coefficients of
xn, xn−1, xn−2 and using (5.4). This yields (6.2).

By letting x = −1 in (9.1) we obtain that Bn verify (6.1).

To prove that An also verify (6.1) we observe that

0 =
R 1
0

Hn(x)−Hn(−1)
1+x xλdx

= An + (βn − αn)An−1 + γn−1An−2 + αn
R 1
0 Fn−1(x)x

λdx.

The last integral above is zero for n ≥ 2 by Lemma 5. This completes
the proof.
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10. Proof of Theorem 6

We shall only prove Item 3 as the others are easy to check.
Observe that, if we set z = 2λ, then 2nn!(−1)nBn(λ− n− 1/2) equals

to
nX

j=0

Ã
n

j

!
(z + 2j − 2n+ 1)(z + 2j − 2n+ 3) · · · (z + 2j − 1).

Therefore, to prove Item 3, it is enough to show that this polynomial
has all its roots on the line z = it, t ∈ R. But this is the content of Theorem
2.

11. Proof of Theorem 7

Observe that if ∆n := Bn−1An −An−1Bn then, from Theorem 5, one gets
∆n = γn∆n−1 (Hint: multiply the recurrence relation for An by Bn−1 and
the one for Bn by An−1 and subtract). Then,

∆n = γnγn−1 · · · γ2∆1 = 2
(n+ λ/2)

n(n+ λ)

where the last equality follows from the fact that γn =
(n−1)(n+λ−1)(n+λ/2)
n(n+λ)(n+λ/2−1)

and ∆1 =
2+λ
1+λ . Therefore

gn(s)− gn−1(s) =
R∞
0

An(λ)
Bn(λ)

λ−sds−
R∞
0

An−1(λ)
Bn−1(λ)

λ−sdλ

=
R∞
0

∆n
Bn(λ)Bn−1(λ)

λ−sdλ,

and the first formula of Theorem 7 follows.
To prove the second formula set

mX
n=1

(2n+ λ)

n(n+ λ)

1

Bn(λ)Bn−1(λ)
+

mX
n=1

(−1)n−1
n+ λ

=
P1(λ)

P2(λ)

where P2(λ) := (1+λ) · · · (m+λ)B1(λ) · · ·Bm(λ) and P1(λ) is a real poly-
nomial whose degree is less than the degree of P2(λ). Recall that the roots
of Bn(λ) are on the line −n− 1/2+ it with t real, so that it has no root in

common with Bj(λ) if j 6= n. We look at the singularities of P1(λ)
P2(λ)

.

i) Due to the definition (5.6) then one has that Bn−1(−n) = 1, Bn(−n) =
(−1)n if n = 1, 2, . . . (all terms are zero except one) and therefore

Bn−1(−n)Bn(−n) = (−1)n,
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which yields that 2n+λ
n(n+λ) + (−1)n−1

Bn−1(λ)Bn(λ)
n+λ is a real polynomial or, in

other words, that

(2n+ λ)

n(n+ λ)

1

Bn−1(λ)Bn(λ)
+ (−1)n−1 1

n+ λ
,

is analytic around λ = −n. Therefore (n+ λ)|P1(λ).
ii) The recurrence relation for Bn given by (6.1) can be written (divide by
BnBn−1Bn−2) as

(2n−2+λ)
(n−1)(n−1+λ)

1
Bn−1(λ)Bn−2(λ)

+ (2n+λ)
n(n+λ)

1
Bn(λ)Bn−1(λ)

= − (βn(λ)−αn(λ)) (2n−2+λ)
(n−1)(n−1+λ)Bn(λ)Bn−2(λ)

.

The right hand side of this expression is an analytic function in a
neighbourhood of any root of Bn−1(λ). This yields that Bn−1(λ)|P1(λ)
if n = 1, . . . ,m.

Steps (i-ii) yield that we can write

P1(λ)

P2(λ)
=

Qm−1(λ)

Bm(λ)
,

with Qm−1(λ) a polynomial of degree less than m.
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