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Abstract

Let B(X) be the space of all bounded linear operators on complex
Banach space X. For A € B(X), we denote by F(A) the subspace
of all fixed points of A. In this paper, we study and characterize all
surjective maps ¢ on B(X) satisfying

F(o(T)p(A) + ¢(A)p(T)) = F(TA+ AT)
for all A, T € B(X).
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1. Introduction

In the following, X is a complex Banach space, and B(X) denotes the
space of all bounded linear operators on X. Let X™* be the dual space of X.
Given a vector z € X and a linear functional f € X*, the rank at most one
operator, z ® f, defined by (z ® f)z = f(z)z for all z € X. Note that

(1.1) z ® f is nilpotent if and only if f(z) =0,
and
(1.2) x ® f is idempotent if and only if f(z) = 1.

We denote by F7(X) and N7(X) the set of all rank at most one oper-
ators and the set of all rank one nilpotent operators, respectively. For any
subspace Y C X, the dimension of Y will be denoted by dimY. For every
operator T' € B(X), let N(T') be the kernel of T, and R(T') be its range.
For an operator A € B(X), a vector z € X is a fixed point of A if Ax = z.
Let F(A) be the set of all fixed points of A. The lattice of A, Lat(A), is the
set of all invariant subspaces of A. Recall that F(A) € Lat(A) for every
A € B(X). Recall also that the set of fixed points of rank one operator is
given by

| span{z} if z® f is idempotent,
Flza f)= { {0} if x ® f is not idempotent.

The study of maps on operators or matrices that leave some properties
invariant, is the most active problems in the last decades, see for instance
[1, 3,5, 6, 8.

Recently, many authors have studied the subspace of fixed points pre-
servers. For example, in [9] A. Taghavi and R. Hosseinzadeh characterized
all surjective maps on B(X) preserving the dimension of the vector space
containing of all fixed points of products of operators, they showed that if
X is a complex Banach space with dim X > 3 and ¢ : B(X) — B(X) is a
surjective map satisfies

dim F($(A)$(B)) = dim F(AB)

for all A, B € B(X), then there exists an invertible operator S € B(X)
such that ¢(A) = £SAS~! for all A € B(X). In [10] A. Taghavi, R.
Hosseinzadeh and V. Darvish described the forms of surjective maps ¢ on
B(X) satisfying

F(¢(A)p(B)p(A)) = F(ABA)
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for all A, B € B(X), where X is a complex Banach space with dim X > 3,
they proved that there exists a nonzero scalar o € C with o® = 1 such that
¢(A) = aA for every A € B(X). In [2] Y. Bouramdane et al. proved the
previous result for the generalized product of operators.

This paper is motivated by the ideas from [2], but the proofs of our
main results require new agruments. The statements of our main result
can be stated as follows.

Theorem 1. Let X be a complex Banach space with dim X > 4 and
¢ : B(X) — B(X) be a surjective map. Then the following assertions are
equivalent.

(i) For all T, S € B(X), we have

(1.3) F(o(T)p(S) + ¢(5)¢(T)) = F(T'S + ST).

(ii) There exists a nonzero scalar a € C with a? = 1 such that ¢(T) = T
for all T € B(X).

2. Preliminaries and Notations

To formulate the next lemma, we use this notation

FiaX)={z®f:ze X and f € X" with f(z) = %}

In the following lemma, we will give a condition for two operators to be
the same.

Lemma 1. Let A and B be non-scalar operators. The following statements
are equivalent.

(i) A= B.

(ii) F(AT +TA) = F(BT +TB) for all T € F| ;(X).
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Proof. Since (i) = (i) is obvious, we need only to prove the implica-
tion (i) = (7). Let us set R = AT +TA and S = BT 4+ TB. Assume
that A # B, so we shall distinguish two cases.

Case 1. x, Ax and Bz are linearly independent for certain nonzero vector
z € X. We will discuss two cases.

Case 1.1. If z, Az and A%z are linearly independent. It follows that there
exists f € X* such that f(z) = f (A%z) = % and f(Az)=1-— % Hence
we get that x + Az € F(R) = F(S) C span{z, Bx}, this is a contradiction.

Case 1.2. If not, then there exist a,b € C such that A%z = aAz + bx. Let
f € X* such that f(x) = % and f(Azx) = p with —v/2p? + (a +2v2)u +

(% —+/2) = 0. Consider an operator T € B(X) such that T = z ® f.

Hence we have
R(V2(1 — p)z + Ax) = (—2p%+ (a+V2)u + %)LE + Az

1) = V2(1 - p)x + Ax.

Thus by (2.1) we obtain that v/2(1—p)z+Az € F(R) = F(S) C span{z, Br},

a contradiction.

Case 2. z, Ax and Bz are linearly dependent for all z € X. Lemma 2.4 in
[7] tell us that there exist a, A € C such that B = AA+ «l. By hypothesis,
A is a non-scalar operator, there exists a nonzero vector x € X such that
Az and z are linearly independent. On the other hand we have

Rz = f(Az)x + f(z)Ax q Sz = ARz + 2af (x)x
RAz = f(A%z)x + f(Ax)Az an SAx = ARAz + 2a.f (Az)z.

We discuss two cases.

Case 2.1. If 2, Az and A%z are linearly independent for certain = € X.
Then there exists f € X* such that f(z) = f (A%z) = % and f(Ax) =
1-— % Hence we get that = + Az € F(R) = F(S). Since

S(x+ Az) = Mz + Az)+2ax
= x+ Ax,
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we obtain A =1 and a = 0.

Case 2.2. If 2, Az and A2z are linearly dependent for all € X. It follows
that there exist a,b € C such that A%z = aAxz + bx. As in the Case 1.2,
we can get that v/2(1 — u)x + Az € F(R) = F(S). On the other hand we
have

(2.2) S(V2(1 — )z + Az) = MV2(1 — )z + Az) + 20z

Hence by (2.2) we obtain that A = 1 and o = 0, as desired. This finishes
the proof.

O
In the next lemma, we characterize rank one non-nilpotent operators
by the dimension of fixed points of Jordan porduct of operators.

Lemma 2. For a nonzero operator A € B(X). The following statements
are equivalent.

(i) A€ Fi(X)\Wi(X).
(ii)) dimF(AT +TA) <1 for all T € B(X).

Proof. (i) = (ii) Let T € B(X) be an arbitrary operator, and consider
a non-nilpotent operator A = x ® f where x € X and f € X*. Note that

(AT +TA)x = f(Tx)x + f(x)Tx
(AT +TA)Tz = f(T?*z)x + f(Tz)Tx.

Now, if Tz and z are linearly independent, then we have z ¢ F(AT+TA) C
span{z,Tx}. If not, we get that F(AT + TA) C span{z}. Hence in both
cases, we obtain that dimF (AT + T A) < 1, as desired.

(#i) = (1) Suppose that there exists a vector x € X such that xz, Az and
A2z are linearly independent. Let T' € B(X) such that

Tz =0, TAx =z and TA%z = 0.
Then

(AT+TA)x ==
(AT +TA)Ax = Ax,
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which implies that span{z, Az} C F(AT + TA), a contradiction. Hence z,
Az and A%z are linearly dependent for all € X. It follows from lemma
2.4 in [7] that there exists a complex minimal polynomial @) of degree less
than 2 such that Q(A) = 0. We will distinguish two cases.

Case 1. If d°(Q) = 1, then A = A\I where ) is a nonzero scalar. Consider
an operator T = %I, it follows that AT+T A = I, hence F(AT+TA) = X,
a contradiction.

Case 2. If d°(Q) = 2, then we discuss the following points.

o If () admits two single nonzero roots A1, Ao € C, then

Q(A) = (A —X\I)(A— XoI). It follows that there exist z1, 29 € X linearly
independent vectors such that Axy = A\z1 and Azy = Asxe. We choose
T € B(X) to be an operator satisfying

1 1
Tx, = 2—/\1331 and Txg = 2—)\2332.
Then
(2 3) (AT + TA)$1 =T
’ (AT + TA).’EQ = T2,

Hence by (2.3) we get span {z1,z2} C F(AT + T A), a contradiction.

e If @ has a single nonzero root A € C, it follows that Q(A) =
A(A—XI). If dimN (A — XI) = 1, then, since R(A) C N(A — AI), we have
A e F(X)\N1(X), because if A € N1(X), we obtain that A = 0. Now,
if dimN(A — A\I[) > 2, then there exist z1,22 € X linearly independent
vectors such that Azq; = Az1 and Axo = Axo. Just as before we can get a
contradiction.

e If () admits a double nonzero root A € C, then Q(A) = (A —
M)2, and so there exist 21,72 € X linearly independent vectors such that
Az = Ax1 and Azxe = z1 + Aze. Let T' € B(X) satisfying Tx; = 2—1/\w1 and
Ty = —ﬁxl + %azg. Hence, we get that span {z1,z2} C F(AT +TA),
which is a contradiction.

e If zero is a double root of @, hence Q(A) = A% If dimN(A) = 1,
then, since R(A) C N(A), we have A € N1(X). Let A = y ® f where
ye X, fe X*and f(y) = 0. Consider an operator T' € B(X) such that
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(y, Ty, T?y) are linearly independent, f(Ty) =1 and f (T?y) = 0. Hence
we obtain that span{y, Ty} C F(AT + T A), this is a contradiction. Now,
if dimN(A) > 2 and dimR(A) > 2, then there exist 1, x2, 23,24 € X
linearly independent vectors such that Axzqy = 0, Az = 0, Axs = z1 and
Azy = xo. Take an operator T' € B(X) satisfying

Txry =x3,Txo =14, Tx3 =0 and Txzy = 0.

Thus we get that span {z1,za, 23,24} C F(AT 4+ T A), a contradiction.
This ends the proof. a

3. Proof of Theorem 1

The implication (it) = () is obvious. We only need to show that (i) =
(73). Let us discuss the several steps.

Step 1. For every A € B(X), we have ¢(A) =0 if and only if A = 0.

If $(0) = ad, then F'(2aT) = {0} for all T' € B(X), thus a = 0. Assume
that ¢(0) # 0. Let € X be a nonzero vector such that ¢(0)z and x are
linearly independent. It follows that there is a linear functional f € X*
such that f(z) = 0 and f(¢(0)x) = 1. Since ¢ is surjective, we take an
operator T' € B(X) such that ¢(7') = x ® f. This implies that

{0} =F(0T+T0)
= F(¢(0)o(T) + o(T)¢(0))
=F(#0)z® f+2® f¢(0)).
On the other hand we have
(0(0)z® f+z® f(0)z = f(z)p(0)x + f(¢(0)z)x

=z,
and so z € F(¢(0)z ® f+ 2 ® f¢(0)), a contradiction. Thus ¢(0) = 0.

Next, assume that ¢(A) = 0 for certain A € B(X). If A= I, then we
have F'(25T) = {0} for all T' € B(X), hence 5 = 0. Suppose that A # 0,
it follows that there is a nonzero vector x € X such that Ax and z are
linearly independent. Then there exists f € X* such that f(z) = 0 and
f(Az) =1. For T =z ® f, we have

(3.1) {0} =F(o(z @ f)o(A) + ¢(A)g(z @ f))
' =F(z® fA+ Az @ f).
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Since

(3.2) (z® fA+ Az flz = f(z)Az + f(Az)x

::L"

Hence by (3.1) and (3.2) we get a contradiction. Therefore A = 0.

Step 2. For every operator R € B(X), we have ¢(R) € F1(X)\N1(X) if
and only if R € F1(X)\WN1(X).

By using lemma 2 and the surjectivity of ¢, we can easly get that ¢
preserves non-nilpotent rank one operators in both directions.

Step 3. There exists a nonzero scalar a € C with o? = 1 such that
¢(A) = ad for every A € F; 5(X).

Let z € X and f € X* such that f(z) = % From Step 2, there exist
y € X and g € X* such that ¢(z ® f) = y ® g. Hence we have

“ij

2 s f)

NG

span{z} = F(
= Fafrof+rfzr®f)
= F(p(z® oz @ f) + ¢z @ folz @ f))
= Flygyeg+yQgy®g)
= F(29(y)y @ g).

Thus we get that 2¢(y)? = 1 and span{z} = span{y}.

Without loss of generality, we may assume that ¢(z @ f) = 2 ® gu r
where g, 5 € X*.

Now, suppose that f and g,  are linearly independent. Let z € X be a
nonzero vector such that  and z are linearly independent with f(z) = %
and g, f(2) =0, thenz+ 2 € F(z® f2® f+ 2 ® fr ® f). On the other

hand we have

Fefzf+20fzxxf) =

—

P(x@ flo(z@ f)+ oz @ flo(z @ f))
(T®Grf2®@Gaf+2@ G fT @ goy)
(92.1(7)2 @ ga 1)

which is a contradiction. Hence g, ; and f are linearly dependent, thus
d(x @ f) = Mg, fx ® f for some nonzero scalar A, . Therefore, there exists
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a nonzero scalar Ay € C such that ¢(A) = AsA for all A € F| 5(X). It
follows from this that

FAA+ AA) = F(6(A)p(A) + ¢(A)p(A))

(3:3) = F (AL (AA + AA)) .

by (3.3) and the fact that F(AA + AA) # {0}, we obtain that \% = 1.

L
7

Now, let 2 € X be a nonzero vector and pick f € X* such that f(x) =
For A=z ® f, we have

1 1
(EIA + ﬁAI)x =z
and so
1 1
(3.4) ()\A(,b(ﬁ])A + )\AA¢(EI)):B = 1.

This proves that d)(%[ )z and x are linearly dependent for all x € X.
Hence gb(%[ ) and I are linearly dependent. Thus, from (3.4) we easily get
that there exists a nonzero scalar a € C such that qﬁ(%[ )= a%[ and we

have A4 = a. We conclude that ¢(A) = aA for every A € F| 5(X) with
a? =1, as desired.

Step 4. ¢ takes the desired form.
Let a be the nonzero scalar in Step 3. For every A € F| 5(X) and
T € B(X) \ C.I, we have

F(TA+ AT) = F(¢(T)o(A) + ¢(A)o(T))
= F (ad(T)A + aAp(T)).

Lemma 1 ensures that ¢(T) = oT for all T € B(X) \ C.I.

Now, if T = ~I where y is a nonzero scalar. Consider an operator
A = x ® f such that f(x) = % Since A is a non-scalar operator, then
¢(A) = aA. Just as in Step 3 when v = %, we obtain that ¢(yI) = a~I.

Therefore, we conclude that ¢(T') = oT for every T € B(X).
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