Proyecciones Journal of Mathematics Vol. 42, N^o 1, pp. 53-63, February 2023. Universidad Católica del Norte Antofagasta - Chile

Jordan product and fixed points preservers

M. Elhodaibi Labo LIABM, Morocco and S. Elouazzani Labo LIABM, Morocco Received : March 2022. Accepted : August 2022

Abstract

Let $\mathcal{B}(X)$ be the space of all bounded linear operators on complex Banach space X. For $A \in \mathcal{B}(X)$, we denote by F(A) the subspace of all fixed points of A. In this paper, we study and characterize all surjective maps ϕ on $\mathcal{B}(X)$ satisfying

 $F(\phi(T)\phi(A) + \phi(A)\phi(T)) = F(TA + AT)$

for all $A, T \in B(X)$.

Keywords: Fixed points; Jordan product; Preserver.

Subject: 47A10, 47A11, 47B49.

1. Introduction

In the following, X is a complex Banach space, and $\mathcal{B}(X)$ denotes the space of all bounded linear operators on X. Let X^* be the dual space of X. Given a vector $x \in X$ and a linear functional $f \in X^*$, the rank at most one operator, $x \otimes f$, defined by $(x \otimes f)z = f(z)x$ for all $z \in X$. Note that

(1.1) $x \otimes f$ is nilpotent if and only if f(x) = 0,

and

(1.2)
$$x \otimes f$$
 is idempotent if and only if $f(x) = 1$.

We denote by $\mathcal{F}_1(X)$ and $\mathcal{N}_1(X)$ the set of all rank at most one operators and the set of all rank one nilpotent operators, respectively. For any subspace $Y \subset X$, the dimension of Y will be denoted by dim Y. For every operator $T \in \mathcal{B}(X)$, let N(T) be the kernel of T, and R(T) be its range. For an operator $A \in \mathcal{B}(X)$, a vector $x \in X$ is a fixed point of A if Ax = x. Let F(A) be the set of all fixed points of A. The lattice of A, Lat(A), is the set of all invariant subspaces of A. Recall that $F(A) \in Lat(A)$ for every $A \in \mathcal{B}(X)$. Recall also that the set of fixed points of rank one operator is given by

$$F(x \otimes f) = \begin{cases} span\{x\} & \text{if } x \otimes f \text{ is idempotent,} \\ \{0\} & \text{if } x \otimes f \text{ is not idempotent.} \end{cases}$$

The study of maps on operators or matrices that leave some properties invariant, is the most active problems in the last decades, see for instance [1, 3, 5, 6, 8].

Recently, many authors have studied the subspace of fixed points preservers. For example, in [9] A. Taghavi and R. Hosseinzadeh characterized all surjective maps on $\mathcal{B}(X)$ preserving the dimension of the vector space containing of all fixed points of products of operators, they showed that if X is a complex Banach space with dim $X \ge 3$ and $\phi : \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ is a surjective map satisfies

$$\dim F(\phi(A)\phi(B)) = \dim F(AB)$$

for all $A, B \in \mathcal{B}(X)$, then there exists an invertible operator $S \in \mathcal{B}(X)$ such that $\phi(A) = \pm SAS^{-1}$ for all $A \in \mathcal{B}(X)$. In [10] A. Taghavi, R. Hosseinzadeh and V. Darvish described the forms of surjective maps ϕ on $\mathcal{B}(X)$ satisfying

$$F(\phi(A)\phi(B)\phi(A)) = F(ABA)$$

for all $A, B \in \mathcal{B}(X)$, where X is a complex Banach space with dim $X \ge 3$, they proved that there exists a nonzero scalar $\alpha \in \mathbb{C}$ with $\alpha^3 = 1$ such that $\phi(A) = \alpha A$ for every $A \in \mathcal{B}(X)$. In [2] Y. Bouramdane et al. proved the previous result for the generalized product of operators.

This paper is motivated by the ideas from [2], but the proofs of our main results require new agruments. The statements of our main result can be stated as follows.

Theorem 1. Let X be a complex Banach space with dim $X \ge 4$ and $\phi : \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ be a surjective map. Then the following assertions are equivalent.

(i) For all $T, S \in \mathcal{B}(X)$, we have

(1.3)
$$F(\phi(T)\phi(S) + \phi(S)\phi(T)) = F(TS + ST).$$

(ii) There exists a nonzero scalar $\alpha \in \mathbf{C}$ with $\alpha^2 = 1$ such that $\phi(T) = \alpha T$ for all $T \in \mathcal{B}(X)$.

2. Preliminaries and Notations

To formulate the next lemma, we use this notation

$$\mathcal{F}_{1,\sqrt{2}}(X) := \{ x \otimes f : x \in X \text{ and } f \in X^* \text{ with } f(x) = \frac{1}{\sqrt{2}} \}.$$

In the following lemma, we will give a condition for two operators to be the same.

Lemma 1. Let A and B be non-scalar operators. The following statements are equivalent.

(i) A = B.

(ii)
$$F(AT + TA) = F(BT + TB)$$
 for all $T \in \mathcal{F}_{1,\sqrt{2}}(X)$.

Proof. Since $(i) \Longrightarrow (ii)$ is obvious, we need only to prove the implication $(ii) \Longrightarrow (i)$. Let us set R = AT + TA and S = BT + TB. Assume that $A \neq B$, so we shall distinguish two cases.

Case 1. x, Ax and Bx are linearly independent for certain nonzero vector $x \in X$. We will discuss two cases.

Case 1.1. If x, Ax and A^2x are linearly independent. It follows that there exists $f \in X^*$ such that $f(x) = f(A^2x) = \frac{1}{\sqrt{2}}$ and $f(Ax) = 1 - \frac{1}{\sqrt{2}}$. Hence we get that $x + Ax \in F(R) = F(S) \subset span\{x, Bx\}$, this is a contradiction.

Case 1.2. If not, then there exist $a, b \in \mathbb{C}$ such that $A^2x = aAx + bx$. Let $f \in X^*$ such that $f(x) = \frac{1}{\sqrt{2}}$ and $f(Ax) = \mu$ with $-\sqrt{2}\mu^2 + (a + 2\sqrt{2})\mu + (\frac{b}{\sqrt{2}} - \sqrt{2}) = 0$. Consider an operator $T \in \mathcal{B}(X)$ such that $T = x \otimes f$. Hence we have

(2.1)
$$R(\sqrt{2}(1-\mu)x + Ax) = (-\sqrt{2}\mu^2 + (a+\sqrt{2})\mu + \frac{b}{\sqrt{2}})x + Ax$$
$$= \sqrt{2}(1-\mu)x + Ax.$$

Thus by (2.1) we obtain that $\sqrt{2}(1-\mu)x + Ax \in F(R) = F(S) \subset span\{x, Bx\}$, a contradiction.

Case 2. x, Ax and Bx are linearly dependent for all $x \in X$. Lemma 2.4 in [7] tell us that there exist $\alpha, \lambda \in \mathbb{C}$ such that $B = \lambda A + \alpha I$. By hypothesis, A is a non-scalar operator, there exists a nonzero vector $x \in X$ such that Ax and x are linearly independent. On the other hand we have

$$\begin{cases} Rx = f(Ax)x + f(x)Ax \\ RAx = f(A^2x)x + f(Ax)Ax \end{cases} \text{ and } \begin{cases} Sx = \lambda Rx + 2\alpha f(x)x \\ SAx = \lambda RAx + 2\alpha f(Ax)x. \end{cases}$$

We discuss two cases.

Case 2.1. If x, Ax and A^2x are linearly independent for certain $x \in X$. Then there exists $f \in X^*$ such that $f(x) = f(A^2x) = \frac{1}{\sqrt{2}}$ and $f(Ax) = 1 - \frac{1}{\sqrt{2}}$. Hence we get that $x + Ax \in F(R) = F(S)$. Since

$$S(x + Ax) = \lambda(x + Ax) + 2\alpha x$$

= x + Ax,

we obtain $\lambda = 1$ and $\alpha = 0$.

Case 2.2. If x, Ax and A^2x are linearly dependent for all $x \in X$. It follows that there exist $a, b \in \mathbb{C}$ such that $A^2x = aAx + bx$. As in the *Case 1.2*, we can get that $\sqrt{2}(1-\mu)x + Ax \in F(R) = F(S)$. On the other hand we have

(2.2)
$$S(\sqrt{2}(1-\mu)x + Ax) = \lambda(\sqrt{2}(1-\mu)x + Ax) + 2\alpha x \\ = \sqrt{2}(1-\mu)x + Ax,$$

Hence by (2.2) we obtain that $\lambda = 1$ and $\alpha = 0$, as desired. This finishes the proof.

In the next lemma, we characterize rank one non-nilpotent operators by the dimension of fixed points of Jordan porduct of operators.

Lemma 2. For a nonzero operator $A \in \mathcal{B}(X)$. The following statements are equivalent.

- (i) $A \in \mathcal{F}_1(X) \setminus \mathcal{N}_1(X)$.
- (ii) $dimF(AT + TA) \leq 1$ for all $T \in \mathcal{B}(X)$.

Proof. $(i) \Longrightarrow (ii)$ Let $T \in \mathcal{B}(X)$ be an arbitrary operator, and consider a non-nilpotent operator $A = x \otimes f$ where $x \in X$ and $f \in X^*$. Note that

$$\begin{cases} (AT + TA)x = f(Tx)x + f(x)Tx\\ (AT + TA)Tx = f(T^2x)x + f(Tx)Tx. \end{cases}$$

Now, if Tx and x are linearly independent, then we have $x \notin F(AT+TA) \subset span\{x, Tx\}$. If not, we get that $F(AT+TA) \subset span\{x\}$. Hence in both cases, we obtain that $dimF(AT+TA) \leq 1$, as desired.

 $(ii) \Longrightarrow (i)$ Suppose that there exists a vector $x \in X$ such that x, Ax and A^2x are linearly independent. Let $T \in \mathcal{B}(X)$ such that

$$Tx = 0$$
, $TAx = x$ and $TA^2x = 0$.

Then

$$(AT + TA)x = x$$

(AT + TA)Ax = Ax,

which implies that $span\{x, Ax\} \subseteq F(AT + TA)$, a contradiction. Hence x, Ax and A^2x are linearly dependent for all $x \in X$. It follows from lemma 2.4 in [7] that there exists a complex minimal polynomial Q of degree less than 2 such that Q(A) = 0. We will distinguish two cases.

Case 1. If $d^{\circ}(Q) = 1$, then $A = \lambda I$ where λ is a nonzero scalar. Consider an operator $T = \frac{1}{2\lambda}I$, it follows that AT + TA = I, hence F(AT + TA) = X, a contradiction.

Case 2. If $d^{\circ}(Q) = 2$, then we discuss the following points.

• If Q admits two single nonzero roots $\lambda_1, \lambda_2 \in \mathbf{C}$, then

 $Q(A) = (A - \lambda_1 I) (A - \lambda_2 I)$. It follows that there exist $x_1, x_2 \in X$ linearly independent vectors such that $Ax_1 = \lambda_1 x_1$ and $Ax_2 = \lambda_2 x_2$. We choose $T \in \mathcal{B}(X)$ to be an operator satisfying

$$Tx_1 = \frac{1}{2\lambda_1}x_1$$
 and $Tx_2 = \frac{1}{2\lambda_2}x_2$.

Then

(2.3)
$$\begin{cases} (AT + TA)x_1 = x_1 \\ (AT + TA)x_2 = x_2, \end{cases}$$

Hence by (2.3) we get $span \{x_1, x_2\} \subset F(AT + TA)$, a contradiction.

• If Q has a single nonzero root $\lambda \in \mathbf{C}$, it follows that $Q(A) = A(A - \lambda I)$. If $dim N(A - \lambda I) = 1$, then, since $R(A) \subset N(A - \lambda I)$, we have $A \in \mathcal{F}_1(X) \setminus \mathcal{N}_1(X)$, because if $A \in \mathcal{N}_1(X)$, we obtain that $\lambda = 0$. Now, if $dim N(A - \lambda I) \geq 2$, then there exist $x_1, x_2 \in X$ linearly independent vectors such that $Ax_1 = \lambda x_1$ and $Ax_2 = \lambda x_2$. Just as before we can get a contradiction.

• If Q admits a double nonzero root $\lambda \in \mathbf{C}$, then $Q(A) = (A - \lambda I)^2$, and so there exist $x_1, x_2 \in X$ linearly independent vectors such that $Ax_1 = \lambda x_1$ and $Ax_2 = x_1 + \lambda x_2$. Let $T \in \mathcal{B}(X)$ satisfying $Tx_1 = \frac{1}{2\lambda}x_1$ and $Tx_2 = -\frac{1}{2\lambda^2}x_1 + \frac{1}{2\lambda}x_2$. Hence, we get that $span\{x_1, x_2\} \subset F(AT + TA)$, which is a contradiction.

• If zero is a double root of Q, hence $Q(A) = A^2$. If dim N(A) = 1, then, since $R(A) \subset N(A)$, we have $A \in \mathcal{N}_1(X)$. Let $A = y \otimes f$ where $y \in X, f \in X^*$ and f(y) = 0. Consider an operator $T \in \mathcal{B}(X)$ such that (y, Ty, T^2y) are linearly independent, f(Ty) = 1 and $f(T^2y) = 0$. Hence we obtain that $span\{y, Ty\} \subset F(AT + TA)$, this is a contradiction. Now, if $dimN(A) \geq 2$ and $dimR(A) \geq 2$, then there exist $x_1, x_2, x_3, x_4 \in X$ linearly independent vectors such that $Ax_1 = 0, Ax_2 = 0, Ax_3 = x_1$ and $Ax_4 = x_2$. Take an operator $T \in \mathcal{B}(X)$ satisfying

$$Tx_1 = x_3, Tx_2 = x_4, Tx_3 = 0$$
 and $Tx_4 = 0$.

Thus we get that span $\{x_1, x_2, x_3, x_4\} \subset F(AT + TA)$, a contradiction. This ends the proof.

3. Proof of Theorem 1

The implication $(ii) \Longrightarrow (i)$ is obvious. We only need to show that $(i) \Longrightarrow (ii)$. Let us discuss the several steps.

Step 1. For every $A \in \mathcal{B}(X)$, we have $\phi(A) = 0$ if and only if A = 0.

If $\phi(0) = \alpha I$, then $F(2\alpha T) = \{0\}$ for all $T \in \mathcal{B}(X)$, thus $\alpha = 0$. Assume that $\phi(0) \neq 0$. Let $x \in X$ be a nonzero vector such that $\phi(0)x$ and x are linearly independent. It follows that there is a linear functional $f \in X^*$ such that f(x) = 0 and $f(\phi(0)x) = 1$. Since ϕ is surjective, we take an operator $T \in \mathcal{B}(X)$ such that $\phi(T) = x \otimes f$. This implies that

$$\{0\} = F(0T + T0) = F(\phi(0)\phi(T) + \phi(T)\phi(0)) = F(\phi(0)x \otimes f + x \otimes f\phi(0)).$$

On the other hand we have

$$(\phi(0)x \otimes f + x \otimes f\phi(0))x = f(x)\phi(0)x + f(\phi(0)x)x$$

= x,

and so $x \in F(\phi(0)x \otimes f + x \otimes f\phi(0))$, a contradiction. Thus $\phi(0) = 0$.

Next, assume that $\phi(A) = 0$ for certain $A \in \mathcal{B}(X)$. If $A = \beta I$, then we have $F(2\beta T) = \{0\}$ for all $T \in \mathcal{B}(X)$, hence $\beta = 0$. Suppose that $A \neq 0$, it follows that there is a nonzero vector $x \in X$ such that Ax and x are linearly independent. Then there exists $f \in X^*$ such that f(x) = 0 and f(Ax) = 1. For $T = x \otimes f$, we have

(3.1)
$$\{0\} = F(\phi(x \otimes f)\phi(A) + \phi(A)\phi(x \otimes f))$$
$$= F(x \otimes fA + Ax \otimes f).$$

Since

(3.2)
$$(x \otimes fA + Ax \otimes f)x = f(x)Ax + f(Ax)x \\ = x,$$

Hence by (3.1) and (3.2) we get a contradiction. Therefore A = 0.

Step 2. For every operator $R \in \mathcal{B}(X)$, we have $\phi(R) \in \mathcal{F}_1(X) \setminus \mathcal{N}_1(X)$ if and only if $R \in \mathcal{F}_1(X) \setminus \mathcal{N}_1(X)$.

By using lemma 2 and the surjectivity of ϕ , we can easly get that ϕ preserves non-nilpotent rank one operators in both directions.

Step 3. There exists a nonzero scalar $\alpha \in \mathbf{C}$ with $\alpha^2 = 1$ such that $\phi(A) = \alpha A$ for every $A \in \mathcal{F}_{1,\sqrt{2}}(X)$.

Let $x \in X$ and $f \in X^*$ such that $f(x) = \frac{1}{\sqrt{2}}$. From Step 2, there exist $y \in X$ and $g \in X^*$ such that $\phi(x \otimes f) = y \otimes g$. Hence we have

$$span\{x\} = F(\frac{2}{\sqrt{2}}x \otimes f)$$

= $F(x \otimes fx \otimes f + x \otimes fx \otimes f)$
= $F(\phi(x \otimes f)\phi(x \otimes f) + \phi(x \otimes f)\phi(x \otimes f))$
= $F(y \otimes gy \otimes g + y \otimes gy \otimes g)$
= $F(2g(y)y \otimes g).$

Thus we get that $2g(y)^2 = 1$ and $span\{x\} = span\{y\}$.

Without loss of generality, we may assume that $\phi(x \otimes f) = x \otimes g_{x,f}$ where $g_{x,f} \in X^*$.

Now, suppose that f and $g_{x,f}$ are linearly independent. Let $z \in X$ be a nonzero vector such that x and z are linearly independent with $f(z) = \frac{1}{\sqrt{2}}$ and $g_{x,f}(z) = 0$, then $x + z \in F(x \otimes fz \otimes f + z \otimes fx \otimes f)$. On the other hand we have

$$F(x \otimes fz \otimes f + z \otimes fx \otimes f) = F(\phi(x \otimes f)\phi(z \otimes f) + \phi(z \otimes f)\phi(x \otimes f))$$

= $F(x \otimes g_{x,f}z \otimes g_{z,f} + z \otimes g_{z,f}x \otimes g_{x,f})$
= $F(g_{z,f}(x)z \otimes g_{x,f})$
= $\{0\},$

which is a contradiction. Hence $g_{x,f}$ and f are linearly dependent, thus $\phi(x \otimes f) = \lambda_{x,f} x \otimes f$ for some nonzero scalar $\lambda_{x,f}$. Therefore, there exists

a nonzero scalar $\lambda_A \in \mathbf{C}$ such that $\phi(A) = \lambda_A A$ for all $A \in \mathcal{F}_{1,\sqrt{2}}(X)$. It follows from this that

(3.3)
$$F(AA + AA) = F(\phi(A)\phi(A) + \phi(A)\phi(A))$$
$$= F(\lambda_A^2(AA + AA)).$$

by (3.3) and the fact that $F(AA + AA) \neq \{0\}$, we obtain that $\lambda_A^2 = 1$. Now, let $x \in X$ be a nonzero vector and pick $f \in X^*$ such that $f(x) = \frac{1}{\sqrt{2}}$. For $A = x \otimes f$, we have

$$\left(\frac{1}{\sqrt{2}}IA + \frac{1}{\sqrt{2}}AI\right)x = x$$

and so

(3.4)
$$(\lambda_A \phi(\frac{1}{\sqrt{2}}I)A + \lambda_A A \phi(\frac{1}{\sqrt{2}}I))x = x.$$

This proves that $\phi(\frac{1}{\sqrt{2}}I)x$ and x are linearly dependent for all $x \in X$. Hence $\phi(\frac{1}{\sqrt{2}}I)$ and I are linearly dependent. Thus, from (3.4) we easily get that there exists a nonzero scalar $\alpha \in \mathbf{C}$ such that $\phi(\frac{1}{\sqrt{2}}I) = \alpha \frac{1}{\sqrt{2}}I$ and we have $\lambda_A = \alpha$. We conclude that $\phi(A) = \alpha A$ for every $A \in \mathcal{F}_{1,\sqrt{2}}(X)$ with $\alpha^2 = 1$, as desired.

Step 4. ϕ takes the desired form.

Let α be the nonzero scalar in Step 3. For every $A \in \mathcal{F}_{1,\sqrt{2}}(X)$ and $T \in \mathcal{B}(X) \setminus \mathbf{C}.I$, we have

$$F(TA + AT) = F(\phi(T)\phi(A) + \phi(A)\phi(T))$$

= $F(\alpha\phi(T)A + \alpha A\phi(T)).$

Lemma 1 ensures that $\phi(T) = \alpha T$ for all $T \in \mathcal{B}(X) \setminus \mathbf{C}.I$.

Now, if $T = \gamma I$ where γ is a nonzero scalar. Consider an operator $A = x \otimes f$ such that $f(x) = \frac{1}{2\gamma}$. Since A is a non-scalar operator, then $\phi(A) = \alpha A$. Just as in Step 3 when $\gamma = \frac{1}{\sqrt{2}}$, we obtain that $\phi(\gamma I) = \alpha \gamma I$.

Therefore, we conclude that $\phi(T) = \alpha T$ for every $T \in \mathcal{B}(X)$.

Acknowledgement. The authors would like to thank the referee for carefully reading this paper and the helpful comments.

References

- A. Achchi, "Maps preserving the inner local spectral radius zero of generalized product of operators", *Rendiconti del Circolo Matematico di Palermo Series 2*, vol. 68, no. 2, pp. 355-362, 2018. doi: 10.1007/s12215-018-0363-9
- Y. Bouramdane, M. Ech-cherif El Kettani, A. Elhiri, and A. lahssaini, "Maps preserving fixed points of generalized product of operators", *Proyecciones (Antofagasta)*, vol. 39, no 5, pp. 1157-1165, 2020. doi: 10.22199/issn.0717-6279-2020-05-0071
- [3] G. Dolinar, S. Du, J. Hou, and P. Legia, "General preservers of invariant subspace lattices", *Linear algebra and its applications*, vol. 429, no 1, pp. 100-109, 2008. doi: 10.1016/j.laa.2008.02.007
- [4] M. Elhodaibi and S. Elouazzani, "Jordan product and inner local spectral radius", *Preprint*.
- [5] A. Guterman, C.-K. Li, and P. Semrl, "Some general techniques on linear preserver problems", *Linear Algebra and its Applications*, vol. 315, no 1-3, pp. 61-81, 2000. doi: 10.1016/s0024-3795(00)00119-1
- [6] A. A. Jafarian and A. R. Sourour, "Linear maps that preserve the com-mutant, double commutant or the lattice of invariant subspaces", *Linear and multilinear algebra*, vol. 38, no. 1-2, pp. 117-129, 1994. doi: 10.1080/03081089508818345
- [7] C. K. Li, P. Semrl and N. S. Sze, "Maps preserving the nilpotency of products of operators", *Linear algebra and its applications*, vol. 424, no 1, pp. 222-239, 2007. doi: 10.1016/j.laa.2006.11.013
- [8] C. K. Li, and N. K. Tsing, "Linear preserver problems: A brief introduction and some special techniques", *Linear algebra and its applications*, vol. 162, pp. 217-235, 1992. doi: 10.1016/0024-3795(92)90377-m
- [9] A. Taghavi and R. Hosseinzadeh, "Maps preserving the dimension of fixed points of products of operators", *Linear and multilinear algebra*, vol. 62, no. 10, pp. 1285-1292, 2013. doi: 10.1080/03081087.2013.823680
- [10] A. Taghavi, R. Hosseinzadeh, and V. Darvish, "Maps preserving the fixed points of triple Jordan products of operators", *Indagationes mathematicae*, vol. 27, no. 3, pp. 850-854, 2016. doi: 10.1016/j.indag.2016.03.003

M. Elhodaibi

Departement of Mathematics, Labo LIABM, Faculty of Sciences, 60000 Oujda, Morocco e-mail: elhodaibi@ump.ac.ma Corresponding author

and

S. Elouazzani

Departement of Mathematics, Labo LIABM, Faculty of Sciences, 60000 Oujda, Morocco e-mail: elouazzani.soufiane@ump.ac.ma