Universidad Católica del Norte
Antofagasta - Chile

Jordan product and fixed points preservers

M. Elhodaibi
Labo LIABM, Morocco
and
S. Elouazzani
Labo LIABM, Morocco
Received : March 2022. Accepted : August 2022

Abstract

Let $\mathcal{B}(X)$ be the space of all bounded linear operators on complex Banach space X. For $A \in \mathcal{B}(X)$, we denote by $F(A)$ the subspace of all fixed points of A. In this paper, we study and characterize all surjective maps ϕ on $\mathcal{B}(X)$ satisfying

$$
F(\phi(T) \phi(A)+\phi(A) \phi(T))=F(T A+A T)
$$

for all $A, T \in B(X)$.

Keywords: Fixed points; Jordan product; Preserver.

Subject: 47A10, 47A11, 47B49.

1. Introduction

In the following, X is a complex Banach space, and $\mathcal{B}(X)$ denotes the space of all bounded linear operators on X . Let X^{*} be the dual space of X. Given a vector $x \in X$ and a linear functional $f \in X^{*}$, the rank at most one operator, $x \otimes f$, defined by $(x \otimes f) z=f(z) x$ for all $z \in X$. Note that

$$
\begin{equation*}
x \otimes f \text { is nilpotent if and only if } f(x)=0, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x \otimes f \text { is idempotent if and only if } f(x)=1 . \tag{1.2}
\end{equation*}
$$

We denote by $\mathcal{F}_{1}(X)$ and $\mathcal{N}_{1}(X)$ the set of all rank at most one operators and the set of all rank one nilpotent operators, respectively. For any subspace $Y \subset X$, the dimension of Y will be denoted by $\operatorname{dim} Y$. For every operator $T \in \mathcal{B}(X)$, let $N(T)$ be the kernel of T, and $R(T)$ be its range. For an operator $A \in \mathcal{B}(X)$, a vector $x \in X$ is a fixed point of A if $A x=x$. Let $F(A)$ be the set of all fixed points of A. The lattice of $A, \operatorname{Lat}(A)$, is the set of all invariant subspaces of A. Recall that $F(A) \in \operatorname{Lat}(A)$ for every $A \in \mathcal{B}(X)$. Recall also that the set of fixed points of rank one operator is given by

$$
F(x \otimes f)= \begin{cases}\operatorname{span}\{x\} & \text { if } x \otimes f \text { is idempotent } \\ \{0\} & \text { if } x \otimes f \text { is not idempotent. }\end{cases}
$$

The study of maps on operators or matrices that leave some properties invariant, is the most active problems in the last decades, see for instance $[1,3,5,6,8]$.

Recently, many authors have studied the subspace of fixed points preservers. For example, in [9] A. Taghavi and R. Hosseinzadeh characterized all surjective maps on $\mathcal{B}(X)$ preserving the dimension of the vector space containing of all fixed points of products of operators, they showed that if X is a complex Banach space with $\operatorname{dim} X \geq 3$ and $\phi: \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ is a surjective map satisfies

$$
\operatorname{dim} F(\phi(A) \phi(B))=\operatorname{dim} F(A B)
$$

for all $A, B \in \mathcal{B}(X)$, then there exists an invertible operator $S \in \mathcal{B}(X)$ such that $\phi(A)= \pm S A S^{-1}$ for all $A \in \mathcal{B}(X)$. In [10] A. Taghavi, R. Hosseinzadeh and V. Darvish described the forms of surjective maps ϕ on $\mathcal{B}(X)$ satisfying

$$
F(\phi(A) \phi(B) \phi(A))=F(A B A)
$$

for all $A, B \in \mathcal{B}(X)$, where X is a complex Banach space with $\operatorname{dim} X \geq 3$, they proved that there exists a nonzero scalar $\alpha \in \mathbf{C}$ with $\alpha^{3}=1$ such that $\phi(A)=\alpha A$ for every $A \in \mathcal{B}(X)$. In [2] Y. Bouramdane et al. proved the previous result for the generalized product of operators.

This paper is motivated by the ideas from [2], but the proofs of our main results require new agruments. The statements of our main result can be stated as follows.

Theorem 1. Let X be a complex Banach space with $\operatorname{dim} X \geq 4$ and $\phi: \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ be a surjective map. Then the following assertions are equivalent.
(i) For all $T, S \in \mathcal{B}(X)$, we have

$$
\begin{equation*}
F(\phi(T) \phi(S)+\phi(S) \phi(T))=F(T S+S T) \tag{1.3}
\end{equation*}
$$

(ii) There exists a nonzero scalar $\alpha \in \mathbf{C}$ with $\alpha^{2}=1$ such that $\phi(T)=\alpha T$ for all $T \in \mathcal{B}(X)$.

2. Preliminaries and Notations

To formulate the next lemma, we use this notation

$$
\mathcal{F}_{1, \sqrt{2}}(X):=\left\{x \otimes f: x \in X \text { and } f \in X^{*} \text { with } f(x)=\frac{1}{\sqrt{2}}\right\} .
$$

In the following lemma, we will give a condition for two operators to be the same.

Lemma 1. Let A and B be non-scalar operators. The following statements are equivalent.
(i) $A=B$.
(ii) $F(A T+T A)=F(B T+T B)$ for all $T \in \mathcal{F}_{1, \sqrt{2}}(X)$.

Proof. Since $(i) \Longrightarrow(i i)$ is obvious, we need only to prove the implication $(i i) \Longrightarrow(i)$. Let us set $R=A T+T A$ and $S=B T+T B$. Assume that $A \neq B$, so we shall distinguish two cases.

Case 1. $x, A x$ and $B x$ are linearly independent for certain nonzero vector $x \in X$. We will discuss two cases.

Case 1.1. If $x, A x$ and $A^{2} x$ are linearly independent. It follows that there exists $f \in X^{*}$ such that $f(x)=f\left(A^{2} x\right)=\frac{1}{\sqrt{2}}$ and $f(A x)=1-\frac{1}{\sqrt{2}}$. Hence we get that $x+A x \in F(R)=F(S) \subset \operatorname{span}\{x, B x\}$, this is a contradiction.

Case 1.2. If not, then there exist $a, b \in \mathbf{C}$ such that $A^{2} x=a A x+b x$. Let $f \in X^{*}$ such that $f(x)=\frac{1}{\sqrt{2}}$ and $f(A x)=\mu$ with $-\sqrt{2} \mu^{2}+(a+2 \sqrt{2}) \mu+$ $\left(\frac{b}{\sqrt{2}}-\sqrt{2}\right)=0$. Consider an operator $T \in \mathcal{B}(X)$ such that $T=x \otimes f$. Hence we have

$$
\begin{align*}
R(\sqrt{2}(1-\mu) x+A x) & =\left(-\sqrt{2} \mu^{2}+(a+\sqrt{2}) \mu+\frac{b}{\sqrt{2}}\right) x+A x \tag{2.1}\\
& =\sqrt{2}(1-\mu) x+A x
\end{align*}
$$

Thus by (2.1) we obtain that $\sqrt{2}(1-\mu) x+A x \in F(R)=F(S) \subset \operatorname{span}\{x, B x\}$, a contradiction.

Case 2. $x, A x$ and $B x$ are linearly dependent for all $x \in X$. Lemma 2.4 in [7] tell us that there exist $\alpha, \lambda \in \mathbf{C}$ such that $B=\lambda A+\alpha I$. By hypothesis, A is a non-scalar operator, there exists a nonzero vector $x \in X$ such that $A x$ and x are linearly independent. On the other hand we have

$$
\left\{\begin{array} { l }
{ R x = f (A x) x + f (x) A x } \\
{ R A x = f (A ^ { 2 } x) x + f (A x) A x }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
S x=\lambda R x+2 \alpha f(x) x \\
S A x=\lambda R A x+2 \alpha f(A x) x
\end{array}\right.\right.
$$

We discuss two cases.
Case 2.1. If $x, A x$ and $A^{2} x$ are linearly independent for certain $x \in X$. Then there exists $f \in X^{*}$ such that $f(x)=f\left(A^{2} x\right)=\frac{1}{\sqrt{2}}$ and $f(A x)=$ $1-\frac{1}{\sqrt{2}}$. Hence we get that $x+A x \in F(R)=F(S)$. Since

$$
\begin{aligned}
S(x+A x) & =\lambda(x+A x)+2 \alpha x \\
& =x+A x
\end{aligned}
$$

we obtain $\lambda=1$ and $\alpha=0$.

Case 2.2. If $x, A x$ and $A^{2} x$ are linearly dependent for all $x \in X$. It follows that there exist $a, b \in \mathbf{C}$ such that $A^{2} x=a A x+b x$. As in the Case 1.2, we can get that $\sqrt{2}(1-\mu) x+A x \in F(R)=F(S)$. On the other hand we have

$$
\begin{align*}
S(\sqrt{2}(1-\mu) x+A x) & =\lambda(\sqrt{2}(1-\mu) x+A x)+2 \alpha x \tag{2.2}\\
& =\sqrt{2}(1-\mu) x+A x
\end{align*}
$$

Hence by (2.2) we obtain that $\lambda=1$ and $\alpha=0$, as desired. This finishes the proof.

In the next lemma, we characterize rank one non-nilpotent operators by the dimension of fixed points of Jordan porduct of operators.

Lemma 2. For a nonzero operator $A \in \mathcal{B}(X)$. The following statements are equivalent.
(i) $A \in \mathcal{F}_{1}(X) \backslash \mathcal{N}_{1}(X)$.
(ii) $\operatorname{dim} F(A T+T A) \leq 1$ for all $T \in \mathcal{B}(X)$.

Proof. $\quad(i) \Longrightarrow(i i)$ Let $T \in \mathcal{B}(X)$ be an arbitrary operator, and consider a non-nilpotent operator $A=x \otimes f$ where $x \in X$ and $f \in X^{*}$. Note that

$$
\left\{\begin{array}{l}
(A T+T A) x=f(T x) x+f(x) T x \\
(A T+T A) T x=f\left(T^{2} x\right) x+f(T x) T x
\end{array}\right.
$$

Now, if $T x$ and x are linearly independent, then we have $x \notin F(A T+T A) \subset$ $\operatorname{span}\{x, T x\}$. If not, we get that $F(A T+T A) \subset \operatorname{span}\{x\}$. Hence in both cases, we obtain that $\operatorname{dimF}(A T+T A) \leq 1$, as desired.
$(i i) \Longrightarrow(i)$ Suppose that there exists a vector $x \in X$ such that $x, A x$ and $A^{2} x$ are linearly independent. Let $T \in \mathcal{B}(X)$ such that

$$
T x=0, \quad T A x=x \text { and } T A^{2} x=0 .
$$

Then

$$
\begin{array}{ll}
(A T+T A) x & =x \\
(A T+T A) A x & =A x
\end{array}
$$

which implies that $\operatorname{span}\{x, A x\} \subseteq F(A T+T A)$, a contradiction. Hence x, $A x$ and $A^{2} x$ are linearly dependent for all $x \in X$. It follows from lemma 2.4 in [7] that there exists a complex minimal polynomial Q of degree less than 2 such that $Q(A)=0$. We will distinguish two cases.

Case 1. If $d^{\circ}(Q)=1$, then $A=\lambda I$ where λ is a nonzero scalar. Consider an operator $T=\frac{1}{2 \lambda} I$, it follows that $A T+T A=I$, hence $F(A T+T A)=X$, a contradiction.

Case 2. If $d^{\circ}(Q)=2$, then we discuss the following points.

- If Q admits two single nonzero roots $\lambda_{1}, \lambda_{2} \in \mathbf{C}$, then
$Q(A)=\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)$. It follows that there exist $x_{1}, x_{2} \in X$ linearly independent vectors such that $A x_{1}=\lambda_{1} x_{1}$ and $A x_{2}=\lambda_{2} x_{2}$. We choose $T \in \mathcal{B}(X)$ to be an operator satisfying

$$
T x_{1}=\frac{1}{2 \lambda_{1}} x_{1} \text { and } T x_{2}=\frac{1}{2 \lambda_{2}} x_{2}
$$

Then

$$
\left\{\begin{array}{l}
(A T+T A) x_{1}=x_{1} \tag{2.3}\\
(A T+T A) x_{2}=x_{2}
\end{array}\right.
$$

Hence by (2.3) we get $\operatorname{span}\left\{x_{1}, x_{2}\right\} \subset F(A T+T A)$, a contradiction.

- If Q has a single nonzero root $\lambda \in \mathbf{C}$, it follows that $Q(A)=$ $A(A-\lambda I)$. If $\operatorname{dim} N(A-\lambda I)=1$, then, since $R(A) \subset N(A-\lambda I)$, we have $A \in \mathcal{F}_{1}(X) \backslash \mathcal{N}_{1}(X)$, because if $A \in \mathcal{N}_{1}(X)$, we obtain that $\lambda=0$. Now, if $\operatorname{dim} N(A-\lambda I) \geq 2$, then there exist $x_{1}, x_{2} \in X$ linearly independent vectors such that $A x_{1}=\lambda x_{1}$ and $A x_{2}=\lambda x_{2}$. Just as before we can get a contradiction.
- If Q admits a double nonzero root $\lambda \in \mathbf{C}$, then $Q(A)=(A-$ $\lambda I)^{2}$, and so there exist $x_{1}, x_{2} \in X$ linearly independent vectors such that $A x_{1}=\lambda x_{1}$ and $A x_{2}=x_{1}+\lambda x_{2}$. Let $T \in \mathcal{B}(X)$ satisfying $T x_{1}=\frac{1}{2 \lambda} x_{1}$ and $T x_{2}=-\frac{1}{2 \lambda^{2}} x_{1}+\frac{1}{2 \lambda} x_{2}$. Hence, we get that $\operatorname{span}\left\{x_{1}, x_{2}\right\} \subset F(A T+T A)$, which is a contradiction.
- If zero is a double root of Q, hence $Q(A)=A^{2}$. If $\operatorname{dim} N(A)=1$, then, since $R(A) \subset N(A)$, we have $A \in \mathcal{N}_{1}(X)$. Let $A=y \otimes f$ where $y \in X, f \in X^{*}$ and $f(y)=0$. Consider an operator $T \in \mathcal{B}(X)$ such that
$\left(y, T y, T^{2} y\right)$ are linearly independent, $f(T y)=1$ and $f\left(T^{2} y\right)=0$. Hence we obtain that $\operatorname{span}\{y, T y\} \subset F(A T+T A)$, this is a contradiction. Now, if $\operatorname{dim} N(A) \geq 2$ and $\operatorname{dim} R(A) \geq 2$, then there exist $x_{1}, x_{2}, x_{3}, x_{4} \in X$ linearly independent vectors such that $A x_{1}=0, A x_{2}=0, A x_{3}=x_{1}$ and $A x_{4}=x_{2}$. Take an operator $T \in \mathcal{B}(X)$ satisfying

$$
T x_{1}=x_{3}, T x_{2}=x_{4}, T x_{3}=0 \text { and } T x_{4}=0
$$

Thus we get that $\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subset F(A T+T A)$, a contradiction. This ends the proof.

3. Proof of Theorem 1

The implication $(i i) \Longrightarrow(i)$ is obvious. We only need to show that $(i) \Longrightarrow$ (ii). Let us discuss the several steps.

Step 1. For every $A \in \mathcal{B}(X)$, we have $\phi(A)=0$ if and only if $A=0$.
If $\phi(0)=\alpha I$, then $F(2 \alpha T)=\{0\}$ for all $T \in \mathcal{B}(X)$, thus $\alpha=0$. Assume that $\phi(0) \neq 0$. Let $x \in X$ be a nonzero vector such that $\phi(0) x$ and x are linearly independent. It follows that there is a linear functional $f \in X^{*}$ such that $f(x)=0$ and $f(\phi(0) x)=1$. Since ϕ is surjective, we take an operator $T \in \mathcal{B}(X)$ such that $\phi(T)=x \otimes f$. This implies that

$$
\begin{aligned}
\{0\} & =F(0 T+T 0) \\
& =F(\phi(0) \phi(T)+\phi(T) \phi(0)) \\
& =F(\phi(0) x \otimes f+x \otimes f \phi(0)) .
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
(\phi(0) x \otimes f+x \otimes f \phi(0)) x & =f(x) \phi(0) x+f(\phi(0) x) x \\
& =x,
\end{aligned}
$$

and so $x \in F(\phi(0) x \otimes f+x \otimes f \phi(0))$, a contradiction. Thus $\phi(0)=0$.

Next, assume that $\phi(A)=0$ for certain $A \in \mathcal{B}(X)$. If $A=\beta I$, then we have $F(2 \beta T)=\{0\}$ for all $T \in \mathcal{B}(X)$, hence $\beta=0$. Suppose that $A \neq 0$, it follows that there is a nonzero vector $x \in X$ such that $A x$ and x are linearly independent. Then there exists $f \in X^{*}$ such that $f(x)=0$ and $f(A x)=1$. For $T=x \otimes f$, we have

$$
\begin{align*}
\{0\} & =F(\phi(x \otimes f) \phi(A)+\phi(A) \phi(x \otimes f)) \tag{3.1}\\
& =F(x \otimes f A+A x \otimes f) .
\end{align*}
$$

Since

$$
\begin{align*}
(x \otimes f A+A x \otimes f) x & =f(x) A x+f(A x) x \tag{3.2}\\
& =x
\end{align*}
$$

Hence by (3.1) and (3.2) we get a contradiction. Therefore $A=0$.

Step 2. For every operator $R \in \mathcal{B}(X)$, we have $\phi(R) \in \mathcal{F}_{1}(X) \backslash \mathcal{N}_{1}(X)$ if and only if $R \in \mathcal{F}_{1}(X) \backslash \mathcal{N}_{1}(X)$.

By using lemma 2 and the surjectivity of ϕ, we can easly get that ϕ preserves non-nilpotent rank one operators in both directions.

Step 3. There exists a nonzero scalar $\alpha \in \mathbf{C}$ with $\alpha^{2}=1$ such that $\phi(A)=\alpha A$ for every $A \in \mathcal{F}_{1, \sqrt{2}}(X)$.

Let $x \in X$ and $f \in X^{*}$ such that $f(x)=\frac{1}{\sqrt{2}}$. From Step 2, there exist $y \in X$ and $g \in X^{*}$ such that $\phi(x \otimes f)=y \otimes g$. Hence we have

$$
\begin{aligned}
\operatorname{span}\{x\} & =F\left(\frac{2}{\sqrt{2}} x \otimes f\right) \\
& =F(x \otimes f x \otimes f+x \otimes f x \otimes f) \\
& =F(\phi(x \otimes f) \phi(x \otimes f)+\phi(x \otimes f) \phi(x \otimes f)) \\
& =F(y \otimes g y \otimes g+y \otimes g y \otimes g) \\
& =F(2 g(y) y \otimes g)
\end{aligned}
$$

Thus we get that $2 g(y)^{2}=1$ and $\operatorname{span}\{x\}=\operatorname{span}\{y\}$.
Without loss of generality, we may assume that $\phi(x \otimes f)=x \otimes g_{x, f}$ where $g_{x, f} \in X^{*}$.

Now, suppose that f and $g_{x, f}$ are linearly independent. Let $z \in X$ be a nonzero vector such that x and z are linearly independent with $f(z)=\frac{1}{\sqrt{2}}$ and $g_{x, f}(z)=0$, then $x+z \in F(x \otimes f z \otimes f+z \otimes f x \otimes f)$. On the other hand we have

$$
\begin{aligned}
F(x \otimes f z \otimes f+z \otimes f x \otimes f) & =F(\phi(x \otimes f) \phi(z \otimes f)+\phi(z \otimes f) \phi(x \otimes f)) \\
& =F\left(x \otimes g_{x, f} z \otimes g_{z, f}+z \otimes g_{z, f} x \otimes g_{x, f}\right) \\
& =F\left(g_{z, f}(x) z \otimes g_{x, f}\right) \\
& =\{0\},
\end{aligned}
$$

which is a contradiction. Hence $g_{x, f}$ and f are linearly dependent, thus $\phi(x \otimes f)=\lambda_{x, f} x \otimes f$ for some nonzero scalar $\lambda_{x, f}$. Therefore, there exists
a nonzero scalar $\lambda_{A} \in \mathbf{C}$ such that $\phi(A)=\lambda_{A} A$ for all $A \in \mathcal{F}_{1, \sqrt{2}}(X)$. It follows from this that

$$
\begin{align*}
F(A A+A A) & =F(\phi(A) \phi(A)+\phi(A) \phi(A)) \\
& =F\left(\lambda_{A}^{2}(A A+A A)\right) \tag{3.3}
\end{align*}
$$

by (3.3) and the fact that $F(A A+A A) \neq\{0\}$, we obtain that $\lambda_{A}^{2}=1$. Now, let $x \in X$ be a nonzero vector and pick $f \in X^{*}$ such that $f(x)=\frac{1}{\sqrt{2}}$. For $A=x \otimes f$, we have

$$
\left(\frac{1}{\sqrt{2}} I A+\frac{1}{\sqrt{2}} A I\right) x=x
$$

and so

$$
\begin{equation*}
\left(\lambda_{A} \phi\left(\frac{1}{\sqrt{2}} I\right) A+\lambda_{A} A \phi\left(\frac{1}{\sqrt{2}} I\right)\right) x=x \tag{3.4}
\end{equation*}
$$

This proves that $\phi\left(\frac{1}{\sqrt{2}} I\right) x$ and x are linearly dependent for all $x \in X$. Hence $\phi\left(\frac{1}{\sqrt{2}} I\right)$ and I are linearly dependent. Thus, from (3.4) we easily get that there exists a nonzero scalar $\alpha \in \mathbf{C}$ such that $\phi\left(\frac{1}{\sqrt{2}} I\right)=\alpha \frac{1}{\sqrt{2}} I$ and we have $\lambda_{A}=\alpha$. We conclude that $\phi(A)=\alpha A$ for every $A \in \mathcal{F}_{1, \sqrt{2}}(X)$ with $\alpha^{2}=1$, as desired.

Step 4. ϕ takes the desired form.
Let α be the nonzero scalar in Step 3. For every $A \in \mathcal{F}_{1, \sqrt{2}}(X)$ and $T \in \mathcal{B}(X) \backslash \mathbf{C} . I$, we have

$$
\begin{aligned}
F(T A+A T) & =F(\phi(T) \phi(A)+\phi(A) \phi(T)) \\
& =F(\alpha \phi(T) A+\alpha A \phi(T))
\end{aligned}
$$

Lemma 1 ensures that $\phi(T)=\alpha T$ for all $T \in \mathcal{B}(X) \backslash \mathbf{C . I}$.
Now, if $T=\gamma I$ where γ is a nonzero scalar. Consider an operator $A=x \otimes f$ such that $f(x)=\frac{1}{2 \gamma}$. Since A is a non-scalar operator, then $\phi(A)=\alpha A$. Just as in Step 3 when $\gamma=\frac{1}{\sqrt{2}}$, we obtain that $\phi(\gamma I)=\alpha \gamma I$.

Therefore, we conclude that $\phi(T)=\alpha T$ for every $T \in \mathcal{B}(X)$.

Acknowledgement. The authors would like to thank the referee for carefully reading this paper and the helpful comments.

References

[1] A. Achchi, " M aps preserving the inner local spectral radius zero of generalized product of operators", Rendiconti del Circolo M atematico di Palermo Series 2, vol. 68, no. 2, pp. 355-362, 2018. doi: 10.1007/s12215-018-0363-9
[2] Y. Bouramdane, M . Ech-cherif El K ettani, A. Elhiri, and A. Iahssaini, "M aps preserving fixed points of generalized product of operators", Proyecciones (Antofagasta), vol. 39, no 5, pp. 1157-1165, 2020. doi: 10.22199/issn.0717-6279-2020-05-0071
[3] G. Dolinar, S. Du, J. Hou, and P. Legia, "General preservers of invariant subspace lattices", Linear algebra and its applications, vol. 429, no 1, pp. 100-109, 2008. doi: 10.1016/j.laa.2008.02.007
[4] M . Elhodaibi and S. Elouazzani, "Jordan product and inner local spectral radius", Preprint.
[5] A. Guterman, C.-K. Li, and P. Semrl, "Some general techniques on linear preserver problems", Linear Algebra and its A pplications, vol. 315, no 1-3, pp. 61-81, 2000. doi: 10.1016/s0024-3795(00)00119-1
[6] A. A. Jafarian and A. R. Sourour, "Linear maps that preserve the com-mutant, double commutant or the lattice of invariant subspaces", Linear and multilinear algebra, vol. 38, no. 1-2, pp. 117-129, 1994. doi: 10.1080/03081089508818345
[7] C. K. Li, P. Semrl and N. S. Sze, "M aps preserving the nilpotency of products of operators", Linear algebra and its applications, vol. 424, no 1, pp. 222-239, 2007. doi: 10.1016/j.laa.2006.11013
[8] C. K. Li, and N. K. Tsing, "Linear preserver problems: A brief introduction and some special techniques", Linear algebra and its applications, vol. 162, pp. 217-235, 1992. doi: 10.1016/0024-3795(92) 90377-m
[9] A. Taghavi and R. H osseinzadeh, "M aps preserving the dimension of fixed points of products of operators", Linear and multilinear algebra, vol. 62, no. 10, pp. 1285-1292, 2013. doi: 10.1080/03081087.2013.823680
[10] A. Taghavi, R. Hosseinzadeh, and V. Darvish, "M aps preserving the fixed points of triple Jordan products of operators", Indagationes mathematicae, vol. 27, no. 3, pp. 850-854, 2016. doi: 10.1016/j.indag.2016.03.003

M. Elhodaibi

Departement of Mathematics, Labo LIABM,
Faculty of Sciences, 60000 Oujda,
Morocco
e-mail: elhodaibi@ump.ac.ma
Corresponding author
and
S. Elouazzani

Departement of Mathematics,
Labo LIABM,
Faculty of Sciences, 60000 Oujda,
Morocco
e-mail: elouazzani.soufiane@ump.ac.ma

