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Abstract

Let B(X) be the space of all bounded linear operators on complex
Banach space X. For A ∈ B(X), we denote by F (A) the subspace
of all fixed points of A. In this paper, we study and characterize all
surjective maps φ on B(X) satisfying

F (φ(T )φ(A) + φ(A)φ(T )) = F (TA+AT )

for all A, T ∈ B(X).
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1. Introduction

In the following, X is a complex Banach space, and B(X) denotes the
space of all bounded linear operators on X. Let X∗ be the dual space of X.
Given a vector x ∈ X and a linear functional f ∈ X∗, the rank at most one
operator, x⊗ f , defined by (x⊗ f)z = f(z)x for all z ∈ X. Note that

x⊗ f is nilpotent if and only if f(x) = 0,(1.1)

and
x⊗ f is idempotent if and only if f(x) = 1.(1.2)

We denote by F1(X) and N1(X) the set of all rank at most one oper-
ators and the set of all rank one nilpotent operators, respectively. For any
subspace Y ⊂ X, the dimension of Y will be denoted by dimY . For every
operator T ∈ B(X), let N(T ) be the kernel of T , and R(T ) be its range.
For an operator A ∈ B(X), a vector x ∈ X is a fixed point of A if Ax = x.
Let F (A) be the set of all fixed points of A. The lattice of A, Lat(A), is the
set of all invariant subspaces of A. Recall that F (A) ∈ Lat(A) for every
A ∈ B(X). Recall also that the set of fixed points of rank one operator is
given by

F (x⊗ f) =

(
span{x} if x⊗ f is idempotent,
{0} if x⊗ f is not idempotent.

The study of maps on operators or matrices that leave some properties
invariant, is the most active problems in the last decades, see for instance
[1, 3, 5, 6, 8].

Recently, many authors have studied the subspace of fixed points pre-
servers. For example, in [9] A. Taghavi and R. Hosseinzadeh characterized
all surjective maps on B(X) preserving the dimension of the vector space
containing of all fixed points of products of operators, they showed that if
X is a complex Banach space with dimX ≥ 3 and φ : B(X) −→ B(X) is a
surjective map satisfies

dimF (φ(A)φ(B)) = dimF (AB)

for all A,B ∈ B(X), then there exists an invertible operator S ∈ B(X)
such that φ(A) = ±SAS−1 for all A ∈ B(X). In [10] A. Taghavi, R.
Hosseinzadeh and V. Darvish described the forms of surjective maps φ on
B(X) satisfying

F (φ(A)φ(B)φ(A)) = F (ABA)
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for all A,B ∈ B(X), where X is a complex Banach space with dimX ≥ 3,
they proved that there exists a nonzero scalar α ∈ C with α3 = 1 such that
φ(A) = αA for every A ∈ B(X). In [2] Y. Bouramdane et al. proved the
previous result for the generalized product of operators.

This paper is motivated by the ideas from [2], but the proofs of our
main results require new agruments. The statements of our main result
can be stated as follows.

Theorem 1. Let X be a complex Banach space with dimX ≥ 4 and
φ : B(X) −→ B(X) be a surjective map. Then the following assertions are
equivalent.

(i) For all T, S ∈ B(X), we have

F (φ(T )φ(S) + φ(S)φ(T )) = F (TS + ST ).(1.3)

(ii) There exists a nonzero scalar α ∈ C with α2 = 1 such that φ(T ) = αT
for all T ∈ B(X).

2. Preliminaries and Notations

To formulate the next lemma, we use this notation

F1,√2(X) := {x⊗ f : x ∈ X and f ∈ X∗ with f(x) =
1√
2
}.

In the following lemma, we will give a condition for two operators to be
the same.

Lemma 1. LetA andB be non-scalar operators. The following statements
are equivalent.

(i) A = B.

(ii) F (AT + TA) = F (BT + TB) for all T ∈ F1,√2(X).
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Proof. Since (i) =⇒ (ii) is obvious, we need only to prove the implica-
tion (ii) =⇒ (i). Let us set R = AT + TA and S = BT + TB. Assume
that A 6= B, so we shall distinguish two cases.

Case 1. x, Ax and Bx are linearly independent for certain nonzero vector
x ∈ X. We will discuss two cases.

Case 1.1. If x, Ax and A2x are linearly independent. It follows that there
exists f ∈ X∗ such that f(x) = f

¡
A2x

¢
= 1√

2
and f(Ax) = 1− 1√

2
. Hence

we get that x+Ax ∈ F (R) = F (S) ⊂ span{x,Bx}, this is a contradiction.

Case 1.2. If not, then there exist a, b ∈ C such that A2x = aAx+ bx. Let
f ∈ X∗ such that f(x) = 1√

2
and f(Ax) = µ with −

√
2µ2 + (a+ 2

√
2)µ+

( b√
2
−
√
2) = 0. Consider an operator T ∈ B(X) such that T = x ⊗ f .

Hence we have

R(
√
2(1− µ)x+Ax) = (−

√
2µ2 + (a+

√
2)µ+ b√

2
)x+Ax

=
√
2(1− µ)x+Ax.

(2.1)

Thus by (2.1) we obtain that
√
2(1−µ)x+Ax ∈ F (R) = F (S) ⊂ span{x,Bx},

a contradiction.

Case 2. x, Ax and Bx are linearly dependent for all x ∈ X. Lemma 2.4 in
[7] tell us that there exist α, λ ∈ C such that B = λA+αI. By hypothesis,
A is a non-scalar operator, there exists a nonzero vector x ∈ X such that
Ax and x are linearly independent. On the other hand we have(

Rx = f(Ax)x+ f(x)Ax
RAx = f(A2x)x+ f(Ax)Ax

and

(
Sx = λRx+ 2αf(x)x
SAx = λRAx+ 2αf(Ax)x.

We discuss two cases.

Case 2.1. If x, Ax and A2x are linearly independent for certain x ∈ X.
Then there exists f ∈ X∗ such that f(x) = f

¡
A2x

¢
= 1√

2
and f(Ax) =

1− 1√
2
. Hence we get that x+Ax ∈ F (R) = F (S). Since

S(x+Ax) = λ(x+Ax) + 2αx

= x+Ax,
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we obtain λ = 1 and α = 0.

Case 2.2. If x, Ax and A2x are linearly dependent for all x ∈ X. It follows
that there exist a, b ∈ C such that A2x = aAx + bx. As in the Case 1.2,
we can get that

√
2(1− µ)x+Ax ∈ F (R) = F (S). On the other hand we

have
S(
√
2(1− µ)x+Ax) = λ(

√
2(1− µ)x+Ax) + 2αx

=
√
2(1− µ)x+Ax,

(2.2)

Hence by (2.2) we obtain that λ = 1 and α = 0, as desired. This finishes
the proof.

2

In the next lemma, we characterize rank one non-nilpotent operators
by the dimension of fixed points of Jordan porduct of operators.

Lemma 2. For a nonzero operator A ∈ B(X). The following statements
are equivalent.

(i) A ∈ F1(X)\N1(X).

(ii) dimF (AT + TA) ≤ 1 for all T ∈ B(X).

Proof. (i) =⇒ (ii) Let T ∈ B(X) be an arbitrary operator, and consider
a non-nilpotent operator A = x⊗ f where x ∈ X and f ∈ X∗. Note that(

(AT + TA)x = f(Tx)x+ f(x)Tx
(AT + TA)Tx = f

¡
T 2x

¢
x+ f(Tx)Tx.

Now, if Tx and x are linearly independent, then we have x /∈ F (AT+TA) ⊂
span{x, Tx}. If not, we get that F (AT + TA) ⊂ span{x}. Hence in both
cases, we obtain that dimF (AT + TA) ≤ 1, as desired.

(ii) =⇒ (i) Suppose that there exists a vector x ∈ X such that x, Ax and
A2x are linearly independent. Let T ∈ B(X) such that

Tx = 0, TAx = x and TA2x = 0.

Then
(AT + TA)x = x
(AT + TA)Ax = Ax,



58 M. Elhodaibi and S. Elouazzani

which implies that span{x,Ax} ⊆ F (AT + TA), a contradiction. Hence x,
Ax and A2x are linearly dependent for all x ∈ X. It follows from lemma
2.4 in [7] that there exists a complex minimal polynomial Q of degree less
than 2 such that Q(A) = 0. We will distinguish two cases.

Case 1. If d◦(Q) = 1, then A = λI where λ is a nonzero scalar. Consider
an operator T = 1

2λI, it follows that AT+TA = I, hence F (AT+TA) = X,
a contradiction.

Case 2. If d◦(Q) = 2, then we discuss the following points.

• If Q admits two single nonzero roots λ1, λ2 ∈ C, then

Q(A) = (A− λ1I) (A− λ2I). It follows that there exist x1, x2 ∈ X linearly
independent vectors such that Ax1 = λ1x1 and Ax2 = λ2x2. We choose
T ∈ B(X) to be an operator satisfying

Tx1 =
1

2λ1
x1 and Tx2 =

1

2λ2
x2.

Then (
(AT + TA)x1 = x1
(AT + TA)x2 = x2,

(2.3)

Hence by (2.3) we get span {x1, x2} ⊂ F (AT + TA), a contradiction.

• If Q has a single nonzero root λ ∈ C, it follows that Q(A) =
A(A− λI). If dimN(A− λI) = 1, then, since R(A) ⊂ N(A− λI), we have
A ∈ F1(X)\N1(X), because if A ∈ N1(X), we obtain that λ = 0. Now,
if dimN(A − λI) ≥ 2, then there exist x1, x2 ∈ X linearly independent
vectors such that Ax1 = λx1 and Ax2 = λx2. Just as before we can get a
contradiction.

• If Q admits a double nonzero root λ ∈ C, then Q(A) = (A −
λI)2, and so there exist x1, x2 ∈ X linearly independent vectors such that
Ax1 = λx1 and Ax2 = x1 + λx2. Let T ∈ B(X) satisfying Tx1 = 1

2λx1 and
Tx2 = − 1

2λ2x1 +
1
2λx2. Hence, we get that span {x1, x2} ⊂ F (AT + TA),

which is a contradiction.

• If zero is a double root of Q, hence Q(A) = A2. If dimN(A) = 1,
then, since R(A) ⊂ N(A), we have A ∈ N1(X). Let A = y ⊗ f where
y ∈ X, f ∈ X∗ and f(y) = 0. Consider an operator T ∈ B(X) such that
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¡
y, Ty, T 2y

¢
are linearly independent, f(Ty) = 1 and f

¡
T 2y

¢
= 0. Hence

we obtain that span{y, Ty} ⊂ F (AT + TA), this is a contradiction. Now,
if dimN(A) ≥ 2 and dimR(A) ≥ 2, then there exist x1, x2, x3, x4 ∈ X
linearly independent vectors such that Ax1 = 0, Ax2 = 0, Ax3 = x1 and
Ax4 = x2. Take an operator T ∈ B(X) satisfying

Tx1 = x3, Tx2 = x4, Tx3 = 0 and Tx4 = 0.

Thus we get that span {x1, x2, x3, x4} ⊂ F (AT + TA), a contradiction.
This ends the proof. 2

3. Proof of Theorem 1

The implication (ii) =⇒ (i) is obvious. We only need to show that (i) =⇒
(ii). Let us discuss the several steps.

Step 1. For every A ∈ B(X), we have φ(A) = 0 if and only if A = 0.
If φ(0) = αI, then F (2αT ) = {0} for all T ∈ B(X), thus α = 0. Assume

that φ(0) 6= 0. Let x ∈ X be a nonzero vector such that φ(0)x and x are
linearly independent. It follows that there is a linear functional f ∈ X∗

such that f(x) = 0 and f(φ(0)x) = 1. Since φ is surjective, we take an
operator T ∈ B(X) such that φ(T ) = x⊗ f . This implies that

{0} = F (0T + T0)
= F (φ(0)φ(T ) + φ(T )φ(0))
= F (φ(0)x⊗ f + x⊗ fφ(0)).

On the other hand we have

(φ(0)x⊗ f + x⊗ fφ(0))x = f(x)φ(0)x+ f(φ(0)x)x
= x,

and so x ∈ F (φ(0)x⊗ f + x⊗ fφ(0)), a contradiction. Thus φ(0) = 0.

Next, assume that φ(A) = 0 for certain A ∈ B(X). If A = βI, then we
have F (2βT ) = {0} for all T ∈ B(X), hence β = 0. Suppose that A 6= 0,
it follows that there is a nonzero vector x ∈ X such that Ax and x are
linearly independent. Then there exists f ∈ X∗ such that f(x) = 0 and
f(Ax) = 1. For T = x⊗ f , we have

{0} = F (φ(x⊗ f)φ(A) + φ(A)φ(x⊗ f))
= F (x⊗ fA+Ax⊗ f).

(3.1)



60 M. Elhodaibi and S. Elouazzani

Since
(x⊗ fA+Ax⊗ f)x = f(x)Ax+ f(Ax)x

= x,
(3.2)

Hence by (3.1) and (3.2) we get a contradiction. Therefore A = 0.

Step 2. For every operator R ∈ B(X), we have φ(R) ∈ F1(X)\N1(X) if
and only if R ∈ F1(X)\N1(X).

By using lemma 2 and the surjectivity of φ, we can easly get that φ
preserves non-nilpotent rank one operators in both directions.

Step 3. There exists a nonzero scalar α ∈ C with α2 = 1 such that
φ(A) = αA for every A ∈ F1,√2(X).

Let x ∈ X and f ∈ X∗ such that f(x) = 1√
2
. From Step 2, there exist

y ∈ X and g ∈ X∗ such that φ(x⊗ f) = y ⊗ g. Hence we have

span{x} = F (
2√
2
x⊗ f)

= F (x⊗ fx⊗ f + x⊗ fx⊗ f)

= F (φ(x⊗ f)φ(x⊗ f) + φ(x⊗ f)φ(x⊗ f))

= F (y ⊗ gy ⊗ g + y ⊗ gy ⊗ g)

= F (2g(y)y ⊗ g).

Thus we get that 2g(y)2 = 1 and span{x} = span{y}.
Without loss of generality, we may assume that φ(x ⊗ f) = x ⊗ gx,f

where gx,f ∈ X∗.
Now, suppose that f and gx,f are linearly independent. Let z ∈ X be a

nonzero vector such that x and z are linearly independent with f(z) = 1√
2

and gx,f (z) = 0, then x + z ∈ F (x ⊗ fz ⊗ f + z ⊗ fx ⊗ f). On the other
hand we have

F (x⊗ fz ⊗ f + z ⊗ fx⊗ f) = F (φ(x⊗ f)φ(z ⊗ f) + φ(z ⊗ f)φ(x⊗ f))
= F (x⊗ gx,fz ⊗ gz,f + z ⊗ gz,fx⊗ gx,f )
= F (gz,f (x)z ⊗ gx,f )
= {0},

which is a contradiction. Hence gx,f and f are linearly dependent, thus
φ(x⊗ f) = λx,fx⊗ f for some nonzero scalar λx,f . Therefore, there exists
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a nonzero scalar λA ∈ C such that φ(A) = λAA for all A ∈ F1,√2(X). It
follows from this that

F (AA+AA) = F (φ(A)φ(A) + φ(A)φ(A))
= F

¡
λ2A(AA+AA)

¢
.

(3.3)

by (3.3) and the fact that F (AA + AA) 6= {0}, we obtain that λ2A = 1.

Now, let x ∈ X be a nonzero vector and pick f ∈ X∗ such that f(x) =
1√
2
.

For A = x⊗ f , we have

(
1√
2
IA+

1√
2
AI)x = x

and so

(λAφ(
1√
2
I)A+ λAAφ(

1√
2
I))x = x.(3.4)

This proves that φ( 1√
2
I)x and x are linearly dependent for all x ∈ X.

Hence φ( 1√
2
I) and I are linearly dependent. Thus, from (3.4) we easily get

that there exists a nonzero scalar α ∈ C such that φ( 1√
2
I) = α 1√

2
I and we

have λA = α. We conclude that φ(A) = αA for every A ∈ F1,√2(X) with
α2 = 1, as desired.

Step 4. φ takes the desired form.
Let α be the nonzero scalar in Step 3. For every A ∈ F1,√2(X) and

T ∈ B(X) \C.I, we have

F (TA+AT ) = F (φ(T )φ(A) + φ(A)φ(T ))
= F (αφ(T )A+ αAφ(T )) .

Lemma 1 ensures that φ(T ) = αT for all T ∈ B(X) \C.I.

Now, if T = γI where γ is a nonzero scalar. Consider an operator
A = x ⊗ f such that f(x) = 1

2γ . Since A is a non-scalar operator, then

φ(A) = αA. Just as in Step 3 when γ = 1√
2
, we obtain that φ(γI) = αγI.

Therefore, we conclude that φ(T ) = αT for every T ∈ B(X).
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