Antofagasta - Chile

Bounds for absolute values and imaginary parts of matrix eigenvalues via traces

Michael Gil'
Ben Gurion University of the Negev, Israel
Received: February 2022. Accepted: May 2022

Abstract

Let $\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)$ be the eigenvalues of an $n \times n$-matrix A taken with their algebraic multiplicities. We suggest new bounds for $\left|\lambda_{j}(A)-\frac{\operatorname{trace}(A)}{n}\right|$ and $\left|\operatorname{Im} \lambda_{j}(A)-\frac{\operatorname{Im} \operatorname{trace}(A)}{n}\right|(j=1, \ldots, n)$, which refine the previously published results.

AMS (MOS) subject classification: 15A18, 15A42

Keywords: matrices, localization of eigenvalues

1. Introduction and statement of the main result

Let $\mathbf{C}^{n \times n}$ be the set of all $n \times n$-complex matrices. For an $A \in \mathbf{C}^{n \times n}, A^{*}$ is the adjoint matrix, $\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)$ are the eigenvalues of A repeated according to their algebraic multiplicities, and $|A|_{F}=\left(\text { trace } A A^{*}\right)^{1 / 2}$ is the Frobenius norm.

In the paper [14] it has been shown that

$$
\left|\lambda_{j}(A)-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(|A|_{F}^{2}-\frac{|\operatorname{trace} A|^{2}}{n}\right)(j=1, \ldots, n) .
$$

In [13] that inequality has been refined. The refinement asserts that
$\left|\lambda_{j}(A)-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(|A|_{F}^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{6|A|_{F}^{2}}-\frac{\mid \text { trace }\left.A\right|^{2}}{n}\right)(j=1, \ldots, n)$.
This inequality has caused a great interest of many mathematicians $[2,8,9,10,12,17]$. One of the best results connected with inequality (1.1) has been established in [8]. Namely, in that paper it is proved that
$\left|\lambda_{j}(A)-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(|A|_{F}^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{4|A|_{F}^{2}}-\frac{\mid \text { trace }\left.A\right|^{2}}{n}\right) \quad(j=1, \ldots, n)$.
In addition, in [13, Theorem 6] the following inequalities have been proved:
$\left|\operatorname{Im} \lambda_{j}(A)-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(\left|A_{I}\right|_{F}^{2}-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{12|A|_{F}^{2}}\right)$
and
$\left|\operatorname{Re} \lambda_{j}(A)-\frac{\operatorname{Re} \operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(\left|A_{R}\right|_{F}^{2}-\frac{1}{n}(\operatorname{Re} \operatorname{trace} A)^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{12|A|_{F}^{2}}\right)$

$$
\begin{equation*}
(j=1, \ldots, n), \tag{1.4}
\end{equation*}
$$

where $A_{I}=\left(A-A^{*}\right) / 2 i$ and $A_{R}=\left(A+A^{*}\right) / 2$.
In the present paper we suggest new estimates for the eigenvalues, which refine inequalities (1.2), (1.3) and (1.4). To this end put $|A|_{1}=$
trace $\left(A A^{*}\right)^{1 / 2}$. Recall that for any matrix $T \in \mathbf{C}^{n \times n}$ whose entries in an orthogonal normal basis are $t_{j k}(j, k=1, \ldots, n)$ we have

$$
\sum_{k=1}^{m}\left|\lambda_{k}(T)\right| \geq \sum_{k=1}^{m}\left|t_{k k}\right| \quad(m=1, \ldots, n)
$$

cf. [7, Section II.4.3]. Since the self-commutator $A^{*} A-A A^{*}$ of A is a Hermitian matrix, we can write

$$
\left|A^{*} A-A A^{*}\right|_{1} \geq \sum_{k=1}^{m}\left|c_{k k}\right|(m=1, \ldots, n)
$$

where $c_{j j}, j=1, \ldots, n$ are the diagonal entries of the commutator in an orthogonal normal basis. Now we are in a position to formulate the main result of the paper.

Theorem 1.1. For any $A \in \mathbf{C}^{n \times n}$ and all $j=1, \ldots, n$, the inequalities

$$
\begin{equation*}
\left|\lambda_{j}(A)-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left[\left(|A|_{F}^{4}-\frac{1}{4}\left|A^{*} A-A A^{*}\right|_{1}^{2}\right)^{1 / 2}-\frac{1}{n}|\operatorname{trace} A|^{2}\right] \tag{1.5}
\end{equation*}
$$

and

$$
\left|\operatorname{Im} \lambda_{j}(A)-\frac{1}{n} \operatorname{Im} \operatorname{trace} A\right|^{2}
$$

$\leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{4}\left|A A^{*}-A^{*} A\right|_{1}^{2}\right)^{1 / 2}+\left|A_{I}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}\right]$
are valid.
Due to Lemma 2.1 from [5] for any Hermitian matrix S with trace $S=0$ we have $|S|_{1} \geq \sqrt{2}|S|_{F}$. Thus,

$$
\begin{equation*}
\left|A^{*} A-A A^{*}\right|_{1} \geq \sqrt{2}\left|A^{*} A-A A^{*}\right|_{F} \tag{1.7}
\end{equation*}
$$

Theorem 1.1 and (1.7) imply
Corollary 1.2. For any $A \in \mathbf{C}^{n \times n}$ and all $j=1, \ldots, n$, the inequalities

$$
\begin{equation*}
\left|\lambda_{j}(A)-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left[\left(|A|_{F}^{4}-\frac{1}{2}\left|A^{*} A-A A^{*}\right|_{F}^{2}\right)^{1 / 2}-\frac{1}{n}|\operatorname{trace} A|^{2}\right] \tag{1.8}
\end{equation*}
$$

$$
\begin{align*}
& \qquad\left|\operatorname{Im} \lambda_{j}(A)-\frac{\operatorname{Im} \text { trace } A}{n}\right|^{2} \\
& \leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{2}\left|A A^{*}-A^{*} A\right|_{F}^{2}\right)^{1 / 2}+\left|A_{I}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}-\frac{1}{n}(\operatorname{Im} \text { trace } A)^{2}\right] \\
& \text { (1.9) } \tag{1.9}\\
& \text { are valid. }
\end{align*}
$$

Furthermore, replacing matrix A by $i A\left(i^{2}=-1\right)$ in Theorem 1.1 and Corollary 1.2, we obtain

$$
\begin{aligned}
& \qquad\left|\operatorname{Re} \lambda_{j}(A)-\frac{\operatorname{Re} \operatorname{trace} A}{n}\right|^{2} \\
& \leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{4}\left|A A^{*}-A^{*} A\right|_{1}^{2}\right)^{1 / 2}+\left|A_{R}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}-\frac{1}{n}(\operatorname{Re} \text { trace } A)^{2}\right] \\
& \leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{2}\left|A A^{*}-A^{*} A\right|_{F}^{2}\right)^{1 / 2}+\left|A_{R}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}-\frac{1}{n}(\operatorname{Re} \text { trace } A)^{2}\right] \\
& (1.10) \\
& (j=1, \ldots, n) . \text { Below we check that }
\end{aligned}
$$

$$
\begin{equation*}
|A|_{F}^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{4|A|_{F}^{2}} \geq\left(|A|_{F}^{4}-\frac{1}{2}\left|A^{*} A-A A^{*}\right|_{F}^{2}\right)^{1 / 2} \tag{1.11}
\end{equation*}
$$

and therefore (1.8) and (1.5) refine (1.2). In addition, from (1.11) it follows that

$$
\begin{equation*}
|A|_{F}^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{6|A|_{F}^{2}} \geq\left(|A|_{F}^{4}-\frac{1}{2}\left|A A^{*}-A^{*} A\right|_{F}^{2}\right)^{1 / 2} \tag{1.12}
\end{equation*}
$$

and therefore inequalities (1.9) and (1.6) refine (1.3). Similarly, one can show that (1.10) improves inequality (1.4).

In the next section we also check that

$$
\begin{equation*}
\left|A_{I}\right|_{F}^{2}=\frac{1}{2}|A|_{F}^{2}-\frac{1}{2} \operatorname{Re} \operatorname{trace} A^{2} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{R}\right|_{F}^{2}=\frac{1}{2}|A|_{F}^{2}-\frac{1}{2} \operatorname{Im} \text { trace } A^{2} . \tag{1.13}
\end{equation*}
$$

Now (1.9) and (1.10) yield the inequalities

$$
\begin{gather*}
\left|\operatorname{Im} \lambda_{j}-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2} \\
\leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{2}\left|A A^{*}-A^{*} A\right|_{F}^{2}\right)^{1 / 2}-\frac{1}{2} \operatorname{Re} \operatorname{trace} A^{2}-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}\right] \tag{1.14}
\end{gather*}
$$

and

$$
\left|\operatorname{Re} \lambda_{j}-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2}
$$

$\left.\leq \frac{n-1}{n}\left[\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{2}\left|A A^{*}-A^{*} A\right|_{F}^{2}\right)^{1 / 2}-\frac{1}{2} \operatorname{Im} \operatorname{trace} A^{2}-\frac{1}{n}(\operatorname{Re} \operatorname{trace} A)^{2}\right)\right]$ (1.15)
$(j=1, \ldots, n)$.

2. Proofs

Throughout the rest of the paper for the simplicity we put $\lambda_{j}(A)=\lambda_{j}$.
Proof of Theorem 1.1: due to Theorem 2.2 from [14]
(2.1) $\left|\lambda_{j}-\frac{\operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}-\frac{|\operatorname{trace} A|^{2}}{n}\right) \quad(j=1, \ldots, n)$.

According to Theorem 1.1 [4] (see also the book [6, Section 8.1]) we have

$$
\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2} \leq\left(|A|_{F}^{4}-\frac{1}{4}\left|A^{*} A-A A^{*}\right|_{1}^{2}\right)^{1 / 2}
$$

Now (2.1) yields (1.5). To prove (1.6) we need the inequality
$\left|\operatorname{Im} \lambda_{j}-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(\sum_{k=1}^{n}\left(\operatorname{Im} \lambda_{k}\right)^{2}-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}\right) \quad(j=1, \ldots, n)$,
cf. [13, Inequality (7)]. By Theorem 1.2 from [4], we have

$$
\sum_{k=1}^{n}\left(\operatorname{Im} \lambda_{k}\right)^{2} \leq\left|A_{I}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}+\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{4}\left|A A^{*}-A^{*} A\right|_{1}^{2}\right)^{1 / 2} .
$$

Now (2.2) implies the inequality
$\left|\operatorname{Im} \lambda_{j}-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2} \leq \frac{n-1}{n}\left(\left|A_{I}\right|_{F}^{2}-\frac{1}{2}|A|_{F}^{2}+\frac{1}{2}\left(|A|_{F}^{4}-\frac{1}{4}\left|A A^{*}-A^{*} A\right|_{1}^{2}\right)^{1 / 2}\right.$

$$
\left.-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}\right)(j=1, \ldots, n)
$$

So (1.6) is also valid, as claimed.

Proofs of inequality (1.11): Inequality (1.11) is due to the following relations:

$$
\begin{gathered}
\left(|A|_{F}^{2}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{4|A|_{F}^{2}}\right)^{2}=|A|_{F}^{4}-\frac{\left|A^{*} A-A A^{*}\right|_{F}^{2}}{2}+\frac{\left|A^{*} A-A A^{*}\right|_{F}^{4}}{16|A|_{F}^{4}} \\
\geq|A|_{F}^{4}-\frac{1}{2}\left|A^{*} A-A A^{*}\right|_{F}^{2}
\end{gathered}
$$

Proof of equalities (1.13) and (1.14): Obviously,

$$
\begin{aligned}
& \left|A_{I}\right|_{F}^{2}=\frac{1}{4}\left|A-A^{*}\right|_{F}^{2}=-\frac{1}{4} \operatorname{trace}\left(A-A^{*}\right)^{2} \\
= & \frac{1}{2} \operatorname{trace}\left(A A^{*}\right)-\frac{1}{4} \operatorname{trace}\left(A^{2}\right)-\frac{1}{4} \operatorname{trace}\left(A^{*}\right)^{2} .
\end{aligned}
$$

Or

$$
\left|A_{I}\right|_{F}^{2}=\frac{1}{2}|A|_{F}^{2}-\frac{1}{4} \operatorname{trace}\left(A^{2}\right)-\frac{1}{4} \operatorname{trace}\left(A^{*}\right)^{2} .
$$

Let $a_{k}=\operatorname{Re} \lambda_{k}, b_{k}=\operatorname{Im} \lambda_{k}$. Then

$$
\operatorname{trace}\left(A^{2}+\left(A^{*}\right)^{2}\right)=\sum_{k=1}^{n}\left(a_{k}+i b_{k}\right)^{2}+\left(a_{k}-i b_{k}\right)^{2}=2 \sum_{k=1}^{n} a_{k}^{2}-b_{k}^{2} .
$$

Take into account that

$$
\text { Re trace } A^{2}=\sum_{k=1}^{\infty} a_{k}^{2}-b_{k}^{2}
$$

Thus

$$
\operatorname{trace}\left(A^{2}+\left(A^{*}\right)^{2}\right)=2 \operatorname{Re} \operatorname{trace} A^{2}
$$

and

$$
\left|A_{I}\right|_{F}^{2}=\frac{1}{2}|A|_{F}^{2}-\frac{1}{2} \operatorname{Re} \text { trace } A^{2} .
$$

So (1.13) is valid.
Similarly (1.14) can be proved.

3. Additional inequalities and an example

Making use of [5, Theorem 1.1], we can write
$\sum_{k=1}^{n}\left(\operatorname{Im} \lambda_{k}\right)^{2} \leq\left|A_{I}\right|_{F}^{2}-\frac{1}{8}\left(\operatorname{spread}(A)-\sqrt{\operatorname{spread}^{2}(A)+2 \sqrt{2}\left|A A^{*}-A^{*} A\right|_{F}}\right)^{2}$, (3.1)
where

$$
\operatorname{spread}(A):=\sup _{j, k=1, \ldots, n ; j \neq k}\left|\lambda_{j}-\lambda_{k}\right|
$$

That result refines the classical inequality

$$
\sum_{k=1}^{\infty}\left(\operatorname{Im} \quad \lambda_{k}\right)^{2} \leq\left|A_{I}\right|_{F}^{2}
$$

Combining (3.1) with (2.2), we arrive at the inequality

$$
\begin{gather*}
\left|\operatorname{Im} \lambda_{j}-\frac{\operatorname{Im} \operatorname{trace} A}{n}\right|^{2} \leq \\
\frac{n-1}{n}\left(\left|A_{I}\right|_{F}^{2}-\frac{1}{8}\left(\operatorname{spread}(A)-\sqrt{\operatorname{spread}^{2}(A)+2 \sqrt{2}\left|A A^{*}-A^{*} A\right|_{F}}\right)^{2}\right. \\
\left.-\frac{1}{n}(\operatorname{Im} \operatorname{trace} A)^{2}\right) \tag{3.2}
\end{gather*}
$$

for all $j=1, \ldots, n$.
Note that the literature on the bounds for the spread is rather rich, cf. $[1,3,11,15,16,18,19]$.

Example 3.1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

Simple calculations show that $\left|A^{*} A-A A^{*}\right|_{F}^{2}=14$, trace $A=3$ and $|A|_{F}^{2}=$ 8. Now (1.8) yields $\left|\lambda_{j}-1\right| \leq 1.746(j=1,2,3)$.

In addition, $\left|A_{I}\right|_{F}^{2}=2.5$ and Im trace $A=0$. Making use of (1.9), we obtain

$$
\left|\operatorname{Im} \lambda_{j}(A)\right| \leq 1.236
$$

The eigenvalues of A are $\lambda_{1}=2$ and $\lambda_{2,3}=\frac{1}{2}(1 \pm i \sqrt{3})\left(i^{2}=-1\right)$. I.e. $\left|\lambda_{j}-1\right|=1(j=1,2,3)$, and

$$
\left|\operatorname{Im} \lambda_{j}(A)\right|=\frac{1}{2} \sqrt{3} \approx 0.866 . \quad(j=2,3) .
$$

References

[1] A. A bueida, M . Nielsen, and T. Yau Tamv, "Inverse spread limit of a nonnegative matrix", Proyecciones (A ntofagasta), vol. 29, no. 2, 2010. doi: 10.4067/s0716-0917201 0000200004
[2] M. Adam and J. M aroulas, "The generalized Levinger Transformation", Journal of Computational and A pplied M athematics, vol. 233, no. 11, pp. 3018-3029, 2010. doi: 10.1016/j.cam.2009.11051
[3] A. Frakis, " New bounds for the spread of a matrix using the radius of the smallest disc that contains all eigenvalues", Acta Mathematica U niversitatis Comenianae, vol. 89, no. 1, pp. 87-96, 2020.
[4] M . I. Gil', "Bounds for eigenvalues of Schatten-von neumann operators via self-commutators", Journal of Functional Analysis, vol. 267, no. 9, pp. 3500-3506, 2014. doi: 10.1016/j.jfa.2014.06.019
[5] M . I. Gil', "Inequalities for eigenvalues of compact operators in a Hilbert space", Communications in Contemporary Mathematics, vol. 18, no. 01, Art. ID. 1550022, pp. 1-5, 2015. doi: 10.1142/S0219199715500224
[6] M. I. Gil', Bounds for Determinants of Linear Operators and Their Applications. London: CRC Press, Taylor \& Francis Group, 2017.
[7] I. C. Gohberg and M . G. K rein, Introduction to the Theory of Linear N onselfadjoint 0 perators, v. 18. Providence (RI.), American M athematical Society, 1969.
[8] I. Gumus, O. Hirzallah, and F. Kittaneh, "Eigenvalue localization for complex matrices," The Electronic Journal of Linear Algebra, vol. 27, 2014. doi: 10.13001/1081-3810.2866
[9] T.-Z. Huang and L. W ang, "Improving bounds for eigenvalues of complex matrices using traces", Linear A lgebra and its A pplications, vol. 426, no. 2-3, pp. 841-854, 2007. doi: 10.1016/j.Iaa.2007.06.008
[10] M. Kian and M. Bakherad, "A new estimation for eigenvalues of matrix pow er functions", A nalysis M athematica, vol. 45, no. 3, pp. 527-534, 2019. doi: 10.1007/s10476-019-0912-2
[11] J. M erikoski and R. Kumar, "Inequalities for spreads of matrix sums and products", A pplied Mathematics E-N otes, vol. 4, pp. 150-159, 2004. [On line]. Available: https://bit.ly/3Bzv0Qn
[12] O. Rojo, "Inequalities involving the mean and the standard deviation of nonnegative real numbers", Journal of Inequalities and A pplications, vol. 2006, pp. 1-15, 2006. doi: 10.1155/jia/2006/43465
[13] O. Rojo, R. L. Soto, and H. Rojo, "New Eigenvalue estimates for complex matrices", Computers \& M athematics with A pplications, vol. 25, no. 3, pp. 91-97, 1993. doi: 10.1016/0898-1221(93)90147-n
[14] O. Rojo, R. L. Soto Montero, H. Rojo, and T.- Y. Tam, "Eigenvalue localization for complex matrices", Proyecciones (A ntofagasta), vol. 11, no. 1, pp. 11-19, 1992. doi: 10.22199/s07160917.1992.000100003
[15] R. Sharma, R. Kumar, R. Saini, and P. Devi, "Inequalities for central moments and spreads of matrices", A nnals of F unctional A nalysis, vol. 11, no. 3, pp. 815-830, 2020. doi: 10.1007/s43034-020-00056-y
[16] R. Sharma, R. Kumar, R. Saini, and G. Kapoor, "Bounds on spreads of matrices related to fourth central moment", Bulletin of the Malaysian Mathematical Sciences Society, vol. 41, no. 1, pp. 175-190, 2015. doi: 10.1007/s40840-015-0267-1
[17] R. Sharma and A. Thakur, "Inequalities related to variance of complex numbers", Journal of Inequalities and Special Functions, vol. 2, pp. 8-15, 2011 [On line]. A vailable: https://bit.ly/3Ln46Pf
[18] J. W u, "U pper (lower) bounds of the eigenvalues, spread and the open problems for the real symmetric interval matrices", M athematical M ethods in theA pplied Sciences, vol. 36, no. 4, pp. 413-421, 2012. doi: 10.1002/mma. 2601
[19] P. Z hang and H. Yang, "Improvements in the upper bounds for the spread of a matrix", M athematical Inequalities \& A pplications, no. 1, pp. 337-345, 2015. doi: 10.7153/mia-18-23

Michael Gil'

Department of Mathematics
Ben Gurion University of the Negev
P. 0. Box 653, Beer-Sheva 84105,

Israel
e-mail: gilmi@bezeqint.net

