On local edge antimagic chromatic number of graphs

S. Rajkumar
Vellore Institute of Technology, India
M. Nalliah
Vellore Institute of Technology, India
Received: February 2022. Accepted : April 2022

Abstract

Let $G=(V, E)$ be a graph of order p and size q having no isolated vertices. A bijection $f: V \rightarrow\{1,2,3, \ldots, p\}$ is called a local edge antimagic labeling if for any two adjacent edges $e=u v$ and $e^{\prime}=v w$ of G, we have $w(e) \neq w(e)$, where the edge weight $w(e=u v)=$ $f(u)+f(v)$ and $w(e)=f(v)+f(w)$. A graph G is local edge antimagic if G has a local edge antimagic labeling. The local edge antimagic chromatic number $\chi_{\text {lea }}^{\prime}(G)$ is defined to be the minimum number of colors taken over all colorings of G induced by local edge antimagic labelings of G. In this paper, we determine the local edge antimagic chromatic number for a friendship graph, wheel graph, fan graph, helm graph, flower graph, and closed helm.

Keywords: Local edge antimagic labeling, Local edge antimagic chromatic number, Friendship graph, Wheel graph, Fan graph, Helm graph, Flower graph.

1. Introduction

A graph $G=(V, E)$ is a finite, undirected graph with neither loops nor multiple edges. Let $|V|=p$ and $|E|=q$ be the order and size of G. For graph-theoretic terminology; we refer to Chartrand and Lesniak [1].

Hartsfield and Ringel's [2] introduced the concept of antimagic labeling of a graph. Let $f: E \rightarrow\{1,2, \ldots,|E|\}$ be a bijection. For each vertex $u \in V(G)$, the weight $w(u)=\sum_{e \in E(u)} f(e)$, where $E(u)$ is the set of edges incident to u. If $w(u) \neq w(v)$ for any two distinct vertices $u, v \in V(G)$, then f is called an antimagic labeling of G. A graph G is called antimagic if G has an antimagic labeling. For further reference see $[5,7,8,9]$.

In 2017, Arumugam et al.[3] introduced a new labeling local antimagic labeling and parameter local antimagic chromatic number using the concepts of antimagic labeling and vertex coloring. They defined as a bijection $f: E \rightarrow\{1,2, \ldots,|E|\}$ is called local antimagic labeling if for all $u v \in E$ we have $w(u) \neq w(v)$, where $w(u)=\sum_{e \in E(u)} f(e)$. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number is defined to be the minimum number of colors taken overall coloring of G induced by local antimagic labeling of G, and they proved some basic results. For further reference see $[5,6,10]$.

In 2017, Agustin et al. [4] introduced the concept of local edge antimagic chromatic number of graphs motivated by local antimagic chromatic number. It is defined as a bijection $f: V(G) \rightarrow\{1,2, \ldots, p\}$ is called a local edge antimagic labeling if for any two adjacent edges $e=u v$ and $e^{\prime}=v w$ of G we have $w(e) \neq w\left(e^{\prime}\right)$, where $w(e)=f(u)+f(v)$ and $w\left(e^{\prime}\right)=f(v)+f(w)$. A graph G is local edge antimagic if G has a local edge antimagic labeling. The local edge antimagic chromatic number $\chi_{l e a}^{\prime}(G)$ is defined to be the minimum number of colors taken overall coloring of G induced by local edge antimagic labeling of G. They obtained a trivial lower bound and proved the following results.
Theorem 1.1. [4] If $\Delta(G)$ is maximum degree of G, then we have $\chi_{l e a}^{\prime}(G) \geq$ $\Delta(G)$.

Theorem 1.2. [4] For $n \geq 3$, the local edge antimagic chromatic number of P_{n} is $\chi_{l e a}^{\prime}\left(P_{n}\right)=2$.

Theorem 1.3. [4] For $n \geq 3$, the local edge antimagic chromatic number of C_{n} is $\chi_{l e a}^{\prime}\left(C_{n}\right)=3$.

The friendship graph F_{n} is a set of n triangles having a common central vertex and otherwise disjoint.

Theorem 1.4. [4] For $n \geq 3$, the local edge antimagic chromatic number of F_{n} is $\chi_{\text {lea }}^{\prime}\left(F_{n}\right)=2 n+1$.

Theorem 1.5. [4] For $n \geq 3$, the local edge antimagic chromatic number of W_{n} is $\chi_{\text {lea }}^{\prime}\left(W_{n}\right)=n+2$.

Theorem 1.6. [4] For $n \geq 3$, the local edge antimagic chromatic number of K_{n} is $\chi_{l e a}^{\prime}\left(K_{n}\right)=2 n-3$.

In this paper, we determine the local edge antimagic chromatic number for wheel related graphs.

2. Local edge Chromatic Number of Wheel related graphs

This section shows that the local edge antimagic chromatic number for the friendship graph F_{n} and wheel graph W_{n}.

These results show that the result given in Agustin et al.[4] are not correct.

Theorem 2.1. For the friendship graph F_{n}, we have

$$
\chi_{l e a}^{\prime}\left(F_{n}\right)= \begin{cases}3 & \text { if } n=1 \\ 2 n & \text { if } \quad n \geq 2\end{cases}
$$

Proof. Let $V\left(F_{n}\right)=\left\{c, u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{c u_{i}, c v_{i}, u_{i} v_{i}, 1 \leq\right.$ $i \leq n\}$ be the vertex set and edge set of F_{n}. Then $\left|V\left(F_{n}\right)\right|=2 n+1$ and $\left|E\left(F_{n}\right)\right|=3 n$. If $n=1$ then $F_{1} \cong C_{3}$ and by Theorem 1.3[4], it follows, we get $\chi_{\text {lea }}^{\prime}\left(F_{1}\right)=3$. For $n \geq 2$, define a bijection $f_{1}: V\left(F_{n}\right) \rightarrow$ $\{1,2,3, \ldots, 2 n+1\}$ by
$f_{1}(c)=2 n$
$f_{1}\left(u_{i}\right)=2 i-1,1 \leq i \leq n$

$$
f_{1}\left(v_{i}\right)= \begin{cases}2 n+1 & \text { if } \quad i=1 \\ 2 n+2-2 i & \text { if } \quad 2 \leq i \leq n\end{cases}
$$

Then the edge weights of F_{n} are

$$
\begin{aligned}
& w_{1}\left(c u_{i}\right)=2 n+2 i-1,1 \leq i \leq n w_{1}\left(c v_{i}\right)=\left\{\begin{array}{lll}
4 n+1 & \text { if } \quad i=1 \\
4 n+2-2 i & \text { if } 2 \leq i \leq n
\end{array}\right. \\
& w_{1}\left(u_{i} v_{i}\right)= \begin{cases}2 n+2 & \text { if } i=1 \\
2 n+1 & \text { if } 2 \leq i \leq n\end{cases}
\end{aligned}
$$

The weights of the edges $\left\{c u_{i}, 1 \leq i \leq n, c v_{1}, c v_{i}, 2 \leq i \leq n\right\}$, under the labeling f_{1}, constitute the sets $\{2 n+1,2 n+3,2 n+5, \ldots, 4 n-1\},\{4 n+$ $1\},\{4 n-2,4 n-4,4 n-6, \ldots, 2 n+2\}$ and rest of the edge weights of F_{n}, under the labeling f_{1}, constitute the set $\{2 n+2,2 n+1\}$. Hence these sets consist of $2 n$ weights (colors) and for any two adjacent edges are received different colors. Therefore, f_{1} induces a proper edge coloring of F_{n} and hence $\chi_{l e a}^{\prime}\left(F_{n}\right) \leq 2 n$. Since $\Delta\left(F_{n}\right)=2 n$, it follows, we get $\chi_{\text {lea }}^{\prime}\left(F_{n}\right) \geq 2 n$. Thus $\chi_{l e a}^{\prime}\left(F_{n}\right)=2 n$.

Theorem 2.2. For the wheel graph W_{n} on $n+1$ vertices, we have

$$
\chi_{\text {lea }}^{\prime}\left(W_{n}\right)=\left\{\begin{array}{lll}
5 & \text { if } & n=3,4 \\
n & \text { if } & n \geq 5
\end{array}\right.
$$

Proof. Let $V\left(W_{n}\right)=\left\{c, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{c v_{i}, 1 \leq i \leq\right.$ $n\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$ be the vertex set and edge set of W_{n}. Then $\left|V\left(W_{n}\right)\right|=n+1$ and $\left|E\left(W_{n}\right)\right|=2 n$.

Case-1: $\quad n=3,4$
If $n=3$ then $W_{3} \cong K_{4}$ and by Theorem 1.6[4], it follows, we get $\chi_{\text {lea }}^{\prime}\left(W_{3}\right)=$ 5. For $n=4$, we assume that $\chi_{\text {lea }}^{\prime}\left(W_{4}\right)=4$. Then there exists a local edge antimagic labeling f with 4 -colors (edge weights) w_{1}, w_{2}, w_{3} and w_{4}. Clearly, the incident edges of the central vertex c are received the colors $w\left(c v_{i}\right)=w_{i}, 1 \leq i \leq 4$ and hence the edges $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, e_{3}=v_{3} v_{4}$, and $e_{4}=v_{4} v_{1}$ are must recevied the colors from the set $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Therefore, every color $w_{i}, 1 \leq i \leq 4$ occurs exactly two times and hence $\sum_{i=1}^{5} \operatorname{deg}\left(v_{i}\right) f\left(v_{i}\right)=2 \sum_{i=1}^{4} w_{i}$, which implies that $3\left[\frac{5 \times 6}{2}-f(c)\right]+4 f(c)=$ $2 \sum_{i=1}^{4} w_{i}$. This implies $f(c)=2 \sum_{i=1}^{4} w_{i}-45$. Hence $f(c)=1$ or 3 or 5 . If $f(c)=1$ then there is no edge $e_{i}, 1 \leq i \leq 4$ received the edge weight 3 or 4 , which is a contradiction. If $f(c)=3$ then $f\left(v_{i}\right) \in\{1,2,4,5\}, 1 \leq i \leq 4$ and $w\left(c v_{i}\right) \in\{4,5,7,8\}$. Hence there is no edge $e_{i}, 1 \leq i \leq 4$ received the edge weight 4 , which is a contradiction. If $f(c)=5$ then $f\left(v_{i}\right) \in\{1,2,3,4\}$ and $w\left(c v_{i}\right) \in\{6,7,8,9\}$. Hence there is no edge $e_{i}, 1 \leq i \leq 4$ received the edge weight 9 , which is a contradiction. Thus $\chi_{\text {lea }}^{\prime}\left(W_{4}\right) \geq 5$.

Now, define a labeling $f_{2}: V\left(W_{4}\right) \rightarrow\{1,2,3,4,5\}$ by $f_{2}(c)=4, f_{2}\left(v_{1}\right)=$ $1, f_{2}\left(v_{2}\right)=5, f_{2}\left(v_{3}\right)=2, f_{2}\left(v_{4}\right)=3$. Then the edge weights are $w_{2}\left(c v_{1}\right)=$ $5, w_{2}\left(c v_{2}\right)=9, w_{2}\left(c v_{3}\right)=6, w_{2}\left(c v_{4}\right)=7, w_{2}\left(v_{1} v_{2}\right)=6, w_{2}\left(v_{2} v_{3}\right)=7, w_{2}\left(v_{3} v_{4}\right)=$
$5, w_{2}\left(v_{4} v_{1}\right)=4$. Thus $\chi_{l e a}^{\prime}\left(W_{4}\right) \leq 5$. Hence $\chi_{l e a}^{\prime}\left(W_{4}\right)=5$.

Case-2: $\quad n \geq 5$
We define a bijection $f_{3}: V\left(W_{n}\right) \rightarrow\{1,2,3, \ldots, n+1\}$ by

$$
\begin{gathered}
f_{3}(c)= \begin{cases}\frac{n+1}{2} & \text { if } n \text { is odd, } \\
\frac{n+4}{2} & \text { if } n \text { is even. }\end{cases} \\
f_{3}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd and } i \neq n \\
n+2-\frac{i}{2} & \text { if } i \text { is even and } i \neq n-2, n \\
\frac{n+3}{2} & \text { if } n \text { is odd and } i=n \\
\frac{n+2}{2} & \text { if } n \text { is even and } i=n-2 \\
\frac{n+6}{2} & \text { if } n \text { is even and } i=n\end{cases}
\end{gathered}
$$

Then the edge weights of W_{n} are

$$
\begin{aligned}
& w_{3}\left(c v_{i}\right)= \begin{cases}\frac{n+2+i}{2} & \text { if } n \text { is odd and } i \text { is odd } 1 \leq i \leq n-2 \\
\frac{3 n+5-i}{2} & \text { if } n \text { is odd and } i \text { is even } 2 \leq i \leq n-1 \\
n+2 & \text { if } n \text { is odd and } i=n \\
\frac{n+5+i}{2} & \text { if } n \text { is even and } i \text { is odd } 1 \leq i \leq n-1 \\
\frac{3 n+8-i}{2} & \text { if } n \text { is even and } i \text { is even } 2 \leq i \leq n-4 \\
n+3 & \text { if } n \text { is even and } i=n-2 \\
n+5 & \text { if } n \text { is even and } i=n .\end{cases} \\
& w_{3}\left(v_{i} v_{i+1}\right)= \begin{cases}n+2 & \text { if } n \text { is odd and } i \text { is odd } 1 \leq i \leq n-2 \\
n+2 & \text { if } n \text { is even and } i \text { is odd } 1 \leq i \leq n-5 \\
n+3 & \text { if } n \text { is odd and } i \text { is even } 2 \leq i \leq n-3 \\
n+3 & \text { if } n \text { is even and } i \text { is even } 2 \leq i \leq n-4 .\end{cases} \\
& w_{3}\left(v_{n-1} v_{n}\right) \\
& w_{3}\left(v_{n} v_{1}\right) \\
& w_{3}\left(v_{n-3} v_{n-2}\right) \\
& \begin{array}{ll}
w_{3}\left(v_{n-2} v_{n-1}\right) & =n+4, \text { if } n \text { is odd } \\
w_{3}\left(v_{n-1} v_{n}\right) & =\frac{n+5}{2}, \text { if } n \text { is odd } n \text { is even } \\
w_{3}\left(v_{n} v_{1}\right)
\end{array} \\
& =n+3, \text { if } n \text { is even } n \text { is even } \\
& =\frac{n+8}{2}, \text { if } n \text { is even. }
\end{aligned}
$$

For n is odd, the weights of the edges $\left\{c v_{i}, i \neq n\right.$ is odd, $c v_{n}, c v_{i}, i \geq$ 2 is even $\}$, under the labeling f_{3}, constitute the sets $\left\{\frac{n+1}{2}+1, \frac{n+1}{2}+2, \frac{n+1}{2}+\right.$
$3, \ldots, n+1\},\{n+2\},\left\{n+2+\frac{n+1}{2}-1, n+2+\frac{n+1}{2}-2, n+2+\frac{n+1}{2}-3, \ldots, n+\right.$ $\left.2+\frac{n+1}{2}-\frac{n}{2}\right\}$ and rest of the edge weights of W_{n}, under the labeling f_{3}, constitute the set $\left\{n+2, n+3, n+4, \frac{n+5}{2}\right\}$. For n is even, the weights of the edges $\left\{c v_{i}, i\right.$ is odd, $c v_{n-2}, c v_{n}, c v_{i}, i \neq n-2, n$ is even $\}$, under the labeling f_{3}, constitute the sets $\left\{\frac{n}{2}+3, \frac{n}{2}+4, \ldots, n+2\right\},\{n+3\},\{n+5\},\{n+4+$ $\left.\frac{n}{2}-1, n+4+\frac{n}{2}-2, \ldots, n+6\right\}$ and rest of the edges weights of W_{n}, under the labeling f_{3}, constitute the set $\left\{\frac{n}{2}+4, n, n+1, n+2, n+3\right\}$. Hence, these sets consist of n weights(colors) and for any two adjacent edges are received different colors. Therefore, f_{3} induces a proper edge coloring of W_{n} and hence $\chi_{l, e a}^{\prime}\left(W_{n}\right) \leq n$. Since $\Delta_{l}\left(W_{n}\right)=n$ and by Theorem 1.1[4], it follows, we get $\chi_{\text {lea }}^{\prime}\left(W_{n}\right) \geq n$. Thus $\chi_{\text {lea }}^{\prime}\left(W_{n}\right)=n$.

A fan graph $T_{n}, n \geq 2$ is a graph obtained by joining all vertices of path P_{n} to a further vertex, called the central vertex.

Theorem 2.3. For the fan graph T_{n} on $n+1$ vertices, we have

$$
\chi_{l e a}^{\prime}\left(T_{n}\right)= \begin{cases}n+1 & \text { if } n=2,3 \\ n & \text { if } n \geq 4\end{cases}
$$

Proof. Let $V\left(T_{n}\right)=\left\{c, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(T_{n}\right)=\left\{c v_{i}, 1 \leq i \leq\right.$ $n\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of T_{n}. Then $\left|V\left(T_{n}\right)\right|=n+1$ and $\left|E\left(T_{n}\right)\right|=2 n-1$.

Case-1: $\quad n=2,3$.
Since $T_{2} \cong K_{3}$, and by Theorem 1.6[4], we get $\chi_{\text {lea }}^{\prime}\left(T_{2}\right)=3$. For $n=3$, suppose $\chi_{l e a}^{\prime}\left(T_{3}\right)=3$, then there exists a local edge antimagic labeling f with 3 -colors (edge weights) w_{1}, w_{2} and w_{3}. Let $V\left(T_{3}\right)=\left\{c, v_{1}, v_{2}, v_{3}\right\}$ and $E\left(T_{3}\right)=\left\{c v_{1}, c v_{2}, c v_{3}, v_{1} v_{2}, v_{2} v_{3}\right\}$ be the vertex set and edge set of T_{3}. Since $\Delta\left(T_{3}\right)=3$, it follows, the incident edges of the central vertex c are received the colors w_{1}, w_{2} and w_{3} and hence the edges $v_{1} v_{2}$ and $v_{2} v_{3}$ are must received the colors w_{3} and w_{1}. Therefore, the colors w_{1} and w_{3} are used two times and w_{2} used only one time. Since $3 \leq w(e) \leq 7, e \in E\left(T_{3}\right)$, it follows, a weight 5 only two possibles sets of two elements $\{1,4\}$ and $\{2,3\}$ and all other weights $3,4,6$ and 7 are only one possible set of two elements. Therefore, $w_{1}=5$ or $w_{3}=5$. Suppose $w_{1}=5$. Then $f(c)=1$ or $4, f\left(v_{1}\right)=$ 4 or 1 and hence $f\left(v_{2}\right), f\left(v_{3}\right) \in\{2,3\}$ and $w\left(v_{1} v_{2}\right) \in\{6,7\}$ or $\{3,4\}$. Thus an edge $v_{1} v_{2}$ with weight $w\left(v_{1} v_{2}\right) \neq w_{1}$, which is a contradiction. If $w_{3}=5$ then $f(c)=2$ or $3, f\left(v_{1}\right)=3$ or 2 and hence $f\left(v_{2}\right), f\left(v_{3}\right) \in\{1,4\}$ and
$w\left(v_{1} v_{2}\right) \in\{4,7\}$ or $\{3,6\}$. Thus an edge $v_{1} v_{2}$ with weight $w\left(v_{1} v_{2}\right) \neq w_{3}$, which is a contradiction. Thus $\chi_{\text {lea }}^{\prime}\left(T_{3}\right) \geq 4$.

Now, we define the labeling $f_{4}: V\left(T_{3}\right) \rightarrow\{1,2,3,4\}$ by $f_{4}(c)=3, f_{4}\left(v_{1}\right)=$ $1, f_{4}\left(v_{2}\right)=4, f_{4}\left(v_{3}\right)=2$. Then the edge weight of T_{3} are $w_{4}\left(c v_{1}\right)=$ $4, w_{4}\left(c v_{2}\right)=7, w_{4}\left(c v_{3}\right)=5, w_{4}\left(v_{1} v_{2}\right)=5, w_{4}\left(v_{2} v_{3}\right)=6$. Thus $\chi_{l e a}^{\prime}\left(T_{3}\right) \leq 4$. Hence $\chi_{\text {lea }}\left(T_{3}\right)=4$.

Case-2: $\quad n \geq 4$.
We define a bijection $f_{5}: V\left(T_{n}\right) \rightarrow\{1,2,3, \ldots, n+1\}$ by

$$
\begin{gathered}
f_{5}(c)=n \\
f_{5}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n \\
n+1 & \text { if } i=2 \\
n+1-\frac{i}{2} & \text { if } i \text { is even, } 4 \leq i \leq n\end{cases}
\end{gathered}
$$

Then the edge weights of T_{n} are

$$
\begin{gathered}
w_{5}\left(c v_{i}\right)= \begin{cases}n+\frac{i+1}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n \\
2 n+1 & \text { if } i=2 \\
2 n+1-\frac{i}{2} & \text { if } i \text { is even, } 4 \leq i \leq n\end{cases} \\
w_{5}\left(v_{i} v_{i+1}\right)= \begin{cases}n+1 & \text { if } i \text { is odd, } 3 \leq i \leq n \\
n+3 & \text { if } i=2 \\
n+2 & \text { if } i=1 \text { and } i \text { is even, } 4 \leq i \leq n\end{cases}
\end{gathered}
$$

The weights of the edges $\left\{c v_{i}, i\right.$ is odd $\cup c v_{2}, c v_{i}, i \geq 4$ is even $\}$, under the labeling f_{5}, constitute the sets $\left\{n+1, n+2, n+3, \ldots, n+\frac{n+1}{2}\right\},\{2 n+$ $1\},\left\{2 n-1,2 n-2, \ldots, 2 n+1-\frac{n}{2}\right\}$ and rest of the edges weights of T_{n}, under the labeling f_{5}, constitute the set $\{n+1, n+3, n+2\}$. Hence, these sets consist of n weights(colors) and for any two adjacent edges are received different colors. Therefore, f_{5} induces a proper edge coloring of T_{n} and hence $\chi_{l e a}^{\prime}\left(T_{n}\right) \leq n$. Since $\Delta\left(T_{n}\right)=n$ and by Theorem 1.1[4], it follows, we get $\chi_{\text {lea }}^{\prime}\left(T_{n}\right) \geq n$. Thus $\chi_{\text {lea }}^{\prime}\left(T_{n}\right)=n$.

The helm graph H_{n} is a graph obtained from the wheel graph by adjoining a pendant edge at each node of the cycle.

P1:Procedure for obtaining the vertices u_{1}, v_{2}, v_{3} and c labels of

 H_{3} graphLet $V\left(H_{3}\right)=\left\{c, v_{i}, u_{i}, 1 \leq i \leq 3\right\}$ and $E\left(H_{3}\right)=\left\{c v_{i}, v_{i} u_{i}, 1 \leq i \leq 3\right\} \cup$ $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$ be the vertex set and edge set of H_{3}. Then $\left|V\left(H_{3}\right)\right|=7$.

Let S_{1} be the set of all possible four weights w_{1}, w_{2}, w_{3} and,w_{4}. Clearly, $5 \leq w \leq 11$, where $w \in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Let $[n]$ denote the set of all positive integers less than or equal to n.

Step 1: Let $s \in S_{1}$ and $f\left(v_{1}\right)=x, 1 \leq x \leq 7$. Then we construct a 7×4 subtraction table using $f(v)=w_{i}-x, 1 \leq x \leq 7,1 \leq i \leq 4, v \in\left\{u_{1}, v_{2}, v_{3}, c\right\}$

Step 2: If $f(v) \leq 0, f(v)=f\left(v_{1}\right)$ and $f(v) \geq 8$ then remove the corresponding row labels from the 7×4 subtraction table. The remaining row labels are received by the vertices u_{1}, v_{2}, v_{3} and c. Clearly, $f(v) \in$ $\{1,2,3,4,5,6,7\}, v \in\left\{u_{1}, v_{2}, v_{3}, c\right\}$.

Step 3: The edges $e_{1}=v_{1} u_{1}, e_{2}=v_{1} v_{2}, e_{3}=v_{1} v_{3}$ and $e_{4}=v_{1} c$ with their weights $w\left(e_{i}\right) \in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Use the vertices labels which are obtained from Step 2 to form a weight $w=w\left(e=u u^{\prime}\right)=f(u)+f\left(u^{\prime}\right), u, u^{\prime} \in$ $\left\{u_{1}, v_{2}, v_{3}, c\right\}, e \in\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.

Step 4: If $w(e) \notin\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ for some e then $\chi_{\text {lea }}^{\prime}\left(H_{3}\right) \neq 4$. Otherwise, $\chi_{\text {lea }}^{\prime}\left(H_{3}\right)=4$ provided the edges $e_{i}^{\prime}=v_{i} u_{i}$ with their weights $w\left(e_{i}^{\prime}\right) \in$ $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ for all $i=2,3$. These edge weights are obtained from the vertices labels $f\left(u_{i}\right)=[7]-\left\{f(c), f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)\right\}$.

Theorem 2.4. For the helm graph H_{3}, we have $\chi_{\text {lea }}^{\prime}\left(H_{3}\right)=5$.
Proof. Let $V\left(H_{3}\right)=\left\{c, v_{i}, u_{i}, 1 \leq i \leq 3\right\}$ and $E\left(H_{3}\right)=\left\{c v_{i}, v_{i} u_{i}, 1 \leq\right.$ $i \leq 3\} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$ be the vertex set and edge set of H_{3}. Then $\left|V\left(H_{3}\right)\right|=7$ and $\left|E\left(H_{3}\right)\right|=9$. Suppose $\chi_{l e a}^{\prime}\left(H_{3}\right)=4$. Then there exists a local edge antimagic labeling f with 4 -colors (edge weights) w_{1}, w_{2}, w_{3} and w_{4}. Since $\Delta\left(H_{3}\right)=4$, it follows, the incident edges of the central vertex c received the colors w_{1}, w_{2}, w_{3} and w_{4}. The minimum and maximum possible edge weights are 5 and 11. Let S_{1} be set of all possible four edge weights set from the set $\{5,6,7,8,9,10,11\}$. Then there are 35 possible such sets are given as follows:
$S_{1}=\{\{5,6,7,8\},\{5,6,7,9\},\{5,6,7,10\},\{5,6,7,11\},\{5,6,8,9\},\{5,6,8,10\}$, $\{5,6,8,11),\{5,6,9,10\},\{5,6,9,11\},\{5,6,10,11\},\{5,7,8,9\},\{5,7,8,10\}$, $\{5,7,8,11\},\{5,7,9,10\},\{5,7,9,11\},\{5,7,10,11\},\{5,8,9,10\},\{5,8,9,11\}$, $\{5,8,10,11\},\{5,9,10,11\},\{6,7,8,9\},\{6,7,8,10\},\{6,7,8,11\},\{6,7,9,10\}$, $\{6,7,9,11\},\{6,7,10,11\},\{6,8,9,10\},\{6,8,9,11\},\{6,8,10,11\},\{6,9,10,11\}$, $\{7,8,9,10\},\{7,8,9,11\},\{7,8,10,11\},\{7,9,10,11\},\{8,9,10,11\}\}$.

We apply the above procedure P 1 and obtain the vertices u_{1}, v_{2}, v_{3} and c labels of H_{3}. Let $e_{1}^{\prime}=c v_{2}, e_{2}^{\prime}=c v_{3}$ and $e_{3}^{\prime}=v_{2} v_{3}$. Then form all possible edge weights $w\left(e_{i}^{\prime}\right), i=1,2,3$ from the labels $\left\{f\left(u_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right), f(c)\right\}$. Clearly, at least one of the edge weight $w^{\prime} \notin\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \in S_{1}$, which is a contradiction. Thus $\chi_{\text {lea }}^{\prime}\left(H_{3}\right) \geq 5$.

Now, we define a labeling $f_{6}: V\left(H_{3}\right) \rightarrow\{1,2,3,4,5,6,7\}$ by $f_{6}(c)=$ $3, f_{6}\left(u_{1}\right)=4, f_{6}\left(u_{2}\right)=5, f_{6}\left(u_{3}\right)=6, f_{6}\left(v_{1}\right)=7, f_{6}\left(v_{2}\right)=2, f_{6}\left(v_{3}\right)=1$. Then the edge weight of H_{3} are $w_{6}\left(c u_{1}\right)=7, w_{6}\left(c u_{2}\right)=8, w_{6}\left(c u_{3}\right)=$ $9, w_{6}\left(u_{1} u_{2}\right)=9, w_{6}\left(u_{2} u_{3}\right)=11, w_{6}\left(u_{3} u_{1}\right)=10, w_{6}\left(u_{1} v_{1}\right)=11, w_{6}\left(u_{2} v_{2}\right)=$ $7, w_{6}\left(u_{3} v_{3}\right)=7$. Thus $\chi_{\text {lea }}^{\prime}\left(H_{3}\right) \leq 5$. Hence $\chi_{\text {lea }}^{\prime}\left(H_{3}\right)=5$.
$P 2$:Procedure for obtaining the vertices v_{1}, v_{2}, v_{3} and v_{4} labels of H_{4} graph
Let $V\left(H_{4}\right)=\left\{c, v_{i}, u_{i}, 1 \leq i \leq 4\right\} E\left(H_{4}\right)=\left\{c v_{i}, v_{i} u_{i}, 1 \leq i \leq 4\right\} \cup$ $\left\{v_{i} v_{i+1}, 1 \leq i \leq 3\right\} \cup\left\{v_{1} v_{4}\right\}$ be the vertex set and edge set of H_{4}. Then $\left|V\left(H_{4}\right)\right|=9$.

Let S_{2} be the set of all possible four weights set $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Clearly, $7 \leq w \leq 13$, where $w \in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$.

Step 1: Let $s \in S_{2}$ and $f(c)=x, 1 \leq x \leq 9$. Then we construct a 9×4 subtraction table using $f\left(v_{i}\right)=w_{i}-x, 1 \leq i \leq 4$.

Step 2: If $f\left(v_{i}\right) \leq 0, f\left(v_{i}\right)=f(c)$ and $f\left(v_{i}\right) \geq 10$ then remove the corresponding row labels from the 9×4 subtraction table. The remaining row labels are received by the vertices v_{1}, v_{2}, v_{3} and v_{4}. Clearly, $f\left(v_{i}\right) \in$ $\{1,2,3,4,5,6,7,8,9\}, i=1,2,3,4$.

Step 3: The edges $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, e_{3}=v_{3} v_{4}$ and $e_{4}=v_{4} v_{1}$ with their weights $w\left(e_{i}\right) \in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Use the vertices labels which are obtained from Step 2 to form a weight $w(e=u v)=f(u)+f(v), u, v \in$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, e \in\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.

Step 4: If $w(e) \notin\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ for some e then $\chi_{\text {lea }}^{\prime}\left(H_{4}\right) \neq 4$. Otherwise, $\chi_{\text {lea }}^{\prime}\left(H_{4}\right)=4$ provided the pendant edges $e_{i}^{\prime}=v_{i} u_{i}, i=1,2,3,4$ with their weights $w\left(e_{i}^{\prime}\right) \in\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ for all $i=1,2,3,4$. These pendant edge weights are obtained from the pendant vertices labels $f\left(u_{i}\right)=[9]-$ $\left\{f(c), f\left(v_{i}\right), 1 \leq i \leq 4\right\}$.
Theorem 2.5. For the helm graph H_{4}, we have $\chi_{\text {lea }}^{\prime}\left(H_{4}\right)=5$.
Proof. Let $V\left(H_{4}\right)=\left\{c, v_{i}, u_{i}, 1 \leq i \leq 4\right\}$ and $E\left(H_{4}\right)=\left\{c v_{i}, v_{i} u_{i}, 1 \leq\right.$ $i \leq 4\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq 3\right\} \cup\left\{v_{1} v_{4}\right\}$ be the vertex set and edge set of H_{4}. Then $\left|V\left(H_{4}\right)\right|=9$ and $\left|E\left(H_{4}\right)\right|=12$. Suppose $\chi_{l e a}^{\prime}\left(H_{4}\right)=4$. Then there exists a local edge antimagic labeling f with 4 -colors w_{1}, w_{2}, w_{3} and w_{4}. Every color $w_{i}, 1 \leq i \leq 4$ must assigned to three nonadjacent edges of H_{4}. So, every edge $e=u v$ with weight $w(e)$ has at least 3 possibles two elements sets. The minimum and maximum possible edge weights are 7 and 13. Let S_{2} be the collection of all possible 4 edge weights from the set $\{7,8,9,10,11,12,13\}$. Then there are 35 possible such sets are given as follows:

$$
\begin{aligned}
& S_{2}=\{\{7,8,9,10\},\{7,8,9,11\},\{7,8,9,12\},\{7,8,9,13\},\{7,8,10,11\}, \\
& \{7,8,10,12\},\{7,8,10,13\},\{7,8,11,12\},\{7,8,11,13\},\{7,8,12,13\}, \\
& \{7,9,10,11\},\{7,9,10,12\},\{7,9,10,13\},\{7,9,11,12\},\{7,9,11,13\}, \\
& \{7,9,12,13\},\{7,10,11,12\},\{7,10,11,13\},\{7,10,12,13\},\{7,11,12,13\}, \\
& \{8,9,10,11\},\{8,9,10,12\},\{8,9,10,13\},\{8,9,11,12\},\{8,9,11,13\}, \\
& \{8,9,12,13\},\{8,10,11,12\},\{8,10,11,13\},\{8,10,12,13\},\{8,11,12,13\}, \\
& \{9,10,11,12\},\{9,10,11,13\},\{9,10,12,13\},\{9,11,12,13\},\{10,11,12,13\}\} .
\end{aligned}
$$

We apply the above procedure $P 2$ and obtain the vertices v_{1}, v_{2}, v_{3} and v_{4} labels of H_{4}. Let $e_{1}^{\prime}=v_{1} v_{2}, e_{2}^{\prime}=v_{2} v_{3}, e_{3}^{\prime}=v_{3} v_{4}$ and $e_{4}^{\prime}=v_{1} v_{4}$. Then form all possible edge weights $w\left(e_{i}^{\prime}\right), i=1,2,3,4$ from the labels $\left\{f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right), f\left(v_{4}\right), f(c)\right\}$. Clearly, at least one of the edge weight $w^{\prime} \notin\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$, where $w^{\prime} \in\left\{w\left(e_{1}^{\prime}\right), w\left(e_{2}^{\prime}\right), w\left(e_{3}^{\prime}\right), w\left(e_{4}^{\prime}\right)\right\}$, which is a contradiction. Thus $\chi_{\text {lea }}^{\prime}\left(H_{4}\right) \geq 5$.

Now, define the labeling $f_{7}: V\left(H_{4}\right) \rightarrow\{1,2,3,4,5,6,7,8,9\}$ by $f_{7}(c)=$ $5, f_{7}\left(u_{1}\right)=7, f_{7}\left(u_{2}\right)=4, f_{7}\left(u_{3}\right)=6, f_{7}\left(u_{4}\right)=3, f_{7}\left(v_{1}\right)=1, f_{7}\left(v_{2}\right)=$ $8, f_{7}\left(v_{3}\right)=2, f_{7}\left(v_{4}\right)=9$. Then the edge weights are $w_{7}\left(c u_{1}\right)=12, w_{7}\left(c u_{2}\right)=$ $9, w_{7}\left(c u_{3}\right)=11, w_{7}\left(c u_{4}\right)=8, w_{7}\left(u_{1} u_{2}\right)=11, w_{7}\left(u_{2} u_{3}\right)=10, w_{7}\left(u_{3} u_{4}\right)=$ $9, w_{7}\left(u_{4} u_{1}\right)=10, w_{7}\left(u_{1} v_{1}\right)=8, w_{7}\left(u_{2} v_{2}\right)=12, w_{7}\left(u_{3} v_{3}\right)=8, w_{7}\left(u_{4} v_{4}\right)=$ 12. Thus $\chi_{\text {lea }}^{\prime}\left(H_{4}\right) \leq 5$. Hence $\chi_{\text {lea }}^{\prime}\left(H_{4}\right)=5$.

Theorem 2.6. For the helm graph $H_{n}, n \geq 5$, we have $\chi_{\text {lea }}^{\prime}\left(H_{n}\right)=n$.

Proof. Let $V\left(H_{n}\right)=\left\{c, u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{c u_{i}, u_{i} v_{i}, 1 \leq\right.$ $i \leq n\} \cup\left\{u_{i} u_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Then $\left|V\left(H_{n}\right)\right|=2 n+1$ and $\left|E\left(H_{n}\right)\right|=3 n$. Define a bijection $f_{8}: V\left(H_{n}\right) \rightarrow\{1,2, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
& f_{8}(c)=n+1 \\
& f_{8}\left(u_{i}\right)= \begin{cases}\frac{n+2+i}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{3 n+5-i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
n+2 & \text { if } n \text { is odd, } i=n \\
\frac{3 n+3-i}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
n & \text { if } n \text { is even, } i=2 \\
\frac{n-2+i}{2} & \text { if } n \text { is even and } i \text { is even, } 4 \leq i \leq n\end{cases} \\
& f_{8}\left(v_{i}\right)= \begin{cases}\frac{4 n+3-i}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
\frac{n+1}{2} & \text { if } n \text { is odd, } i=n \\
\frac{i+1}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{3 n+4}{2} & \text { if } n \text { is even and } i=2 \\
\frac{4 n+6-i}{2} & \text { if } n \text { is even and } i \text { is even, } 4 \leq i \leq n\end{cases}
\end{aligned}
$$

The edge weights of H_{n} are

$$
\begin{aligned}
& w_{8}\left(c u_{i}\right)= \begin{cases}\frac{3 n+4+i}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{5 n+7-i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
\frac{2 n+3}{} & \text { if } n \text { is odd, } i=n \\
\frac{5 n+5-i}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{2 n+1}{} & \text { if } n \text { is even, } i=2 \\
\frac{3 n+i}{2} & \text { if } n \text { is even and } i \text { is even, } 4 \leq i \leq n\end{cases} \\
& w_{8}\left(u_{i} v_{i}\right)= \begin{cases}\frac{5 n+5}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{3 n+5}{2} & \text { if } n \text { is odd and } i \text { is even, } i=n \text { and } 2 \leq i \leq n-1 \\
\frac{3 n+4}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{5 n+4}{2} & \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n\end{cases} \\
& w_{8}\left(u_{i} u_{i+1}\right)= \begin{cases}2 n+3 & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
2 n+4 & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-3 \\
\frac{5 n+2}{2} & \text { if } n \text { is even and } i=1 \\
\frac{5 n}{2} & \text { if } n \text { is even and } i=2 \\
2 n+1 & \text { if } n \text { is even and } i \text { is odd, } 3 \leq i \leq n-1 \\
2 n & \text { if } n \text { is even and } i \text { is even, } 4 \leq i \leq n-2\end{cases} \\
& w_{8}\left(u_{n-1} u_{n}\right)=2 n+5 \text {, if } n \text { is odd, } \\
& w_{8}\left(u_{n} u_{1}\right)=\frac{3 n+7}{2} \text {, if } n \text { is odd, } \\
& w_{8}\left(u_{n} u_{1}\right)=\frac{5 n}{2} \text {, if } n \text { is even. }
\end{aligned}
$$

For n is odd, the weights of the edges $\left\{c u_{i}, i\right.$ is odd, $c u_{n}, c u_{i}, i$ is even $\}$, under the labeling f_{8}, constitute the sets $\left\{n+2+\frac{n+1}{2}, n+2+\frac{n+3}{2}, n+2+\right.$ $\left.\frac{n+5}{2}, \ldots, 2 n+1\right\},\{2 n+3\},\left\{2 n+3+\frac{n-1}{2}, 2 n+3+\frac{n-3}{2}, 2 n+3+\frac{n-5}{2}, \ldots, 2 n+4\right\}$. For n is even, the weights of the edges $\left\{c u_{i}, i\right.$ is odd, $c u_{2}, c u_{i}, i \geq 4$ is even $\}$, under the labeling f_{8}, constitute the sets $\left\{2 n+2+\frac{n}{2}, 2 n+2+\frac{\overline{n-2}}{2}, 2 n+2+\right.$ $\left.\frac{n-4}{2}, \ldots, 2 n+4,2 n+3\right\},\{2 n+1\},\left\{2 n+\frac{n}{2}+2,2 n+\frac{n}{2}+3,2 n+\frac{n}{2}+4, \ldots, 2 n\right\}$ and rest of the edge weights of H_{n}, under the labeling f_{8}, are belongs to the weight of $w\left(c u_{i}\right), 1 \leq i \leq n$. Hence these sets consist of n colors and for any two adjacent edges are received different colors. Therefore f_{8} induces a proper edge coloring of H_{n} and hence $\chi_{\text {lea }}^{\prime}\left(H_{n}\right) \leq n$. Since $\Delta\left(H_{n}\right)=n$, it follows, we get $\chi_{l e a}^{\prime}\left(H_{n}\right) \geq n$. Thus $\chi_{\text {lea }}^{\prime}\left(H_{n}\right)=n$.

A flower graph $F l_{n}$ is a graph obtained from a helm H_{n} by joining every pendant vertex to the central vertex.
Theorem 2.7. For the flower graph $F l_{n}$, we have $\chi_{l e a}^{\prime}\left(F l_{n}\right)=2 n, n \geq 3$.
Proof. Let $V\left(F l_{n}\right)=\left\{c, u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(F l_{n}\right)=\left\{c u_{i}, c v_{i}, u_{i} v_{i}, 1 \leq\right.$ $i \leq n\} \cup\left\{u_{i} u_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$. Then $\left|V\left(F l_{n}\right)\right|=2 n+1$ and $\left|E\left(F l_{n}\right)\right|=4 n$.

For $n=3$, we define a labeling $f_{9}: V\left(F l_{3}\right) \rightarrow\{1,2,3,4,5,6,7\}$ by $f_{9}(c)=3, f_{9}\left(u_{1}\right)=1, f_{9}\left(u_{2}\right)=4, f_{9}\left(u_{3}\right)=6, f_{9}\left(v_{1}\right)=7, f_{9}\left(v_{2}\right)=5, f_{9}\left(v_{3}\right)=$ 2. Then the edge weights of $F l_{3}$ are $w_{9}\left(c u_{1}\right)=4, w_{9}\left(c u_{2}\right)=7, w_{9}\left(c u_{3}\right)=$ $9, w_{9}\left(c v_{1}\right)=10, w_{9}\left(c v_{2}\right)=8, w_{9}\left(c v_{3}\right)=5, w_{9}\left(u_{1} u_{2}\right)=5, w_{9}\left(u_{2} u_{3}\right)=$ $10, w_{9}\left(u_{3} u_{1}\right)=7, w_{9}\left(u_{1} v_{1}\right)=8, w_{9}\left(u_{2} v_{2}\right)=9, w_{9}\left(u_{3} v_{3}\right)=8$. Therefore, $\chi_{l e a}^{\prime}\left(F l_{3}\right) \leq 6$. Since $\Delta\left(F l_{3}\right)=6$ and by Theorem 1.1[4], it follows, we get $\chi_{\text {lea }}^{\prime}\left(F l_{3}\right) \geq 6$. Hence $\chi_{\text {lea }}^{\prime}\left(F l_{3}\right)=6$. For $n \geq 4$, we define a bijection $f_{10}: V\left(F l_{n}\right) \rightarrow\{1,2, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
& f_{10}(c)= \begin{cases}\frac{3 n+3}{2} & \text { if } n \text { is odd } \\
\frac{3 n+2}{2} & \text { if } n \text { is even }\end{cases} \\
& f_{10}\left(u_{i}\right)= \begin{cases}\frac{4 n+3-i}{2+i} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{n+1+i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
\frac{3 n+1}{2} & \text { if } n \text { is odd, } i=n \\
\frac{4 n+3-i}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{2 n+2-i}{2} & \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n\end{cases} \\
& f_{10}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n \\
\frac{2 n+i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
\frac{i+1}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{2 n+i}{2} & \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n\end{cases}
\end{aligned}
$$

Then the edge weights of $F l_{n}$ are

$$
\begin{aligned}
& w_{10}\left(c u_{i}\right)= \begin{cases}\frac{7 n+6-i}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{4 n+4+i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
3 n+2 & \text { if } n \text { is odd, } i=n \\
\frac{7 n+5-i}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{5 n+4-i}{2} & \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n\end{cases} \\
& \begin{cases}\frac{3 n+4+i}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n \\
\frac{5 n+3+i}{3 n+3+i} & \text { if } n \text { is odd and } i \text { is }\end{cases} \\
& w_{10}\left(c v_{i}\right)= \begin{cases}\frac{5 n+3+i}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
\frac{3 n+3+i}{2} & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1\end{cases} \\
& \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n \\
& w_{10}\left(u_{i} v_{i}\right)= \begin{cases}2 n+2 & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{3 n+2 i+1}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-1 \\
2 n+1 & \text { if } n \text { is odd, } i=n \\
2 n+2 & \text { if } n \text { is even and } i \text { is odd, } 1 \leq i \leq n-1 \\
2 n+1 & \text { if } n \text { is even and } i \text { is even, } 2 \leq i \leq n\end{cases} \\
& w_{10}\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{5 n+5}{2} & \text { if } n \text { is odd and } i \text { is odd, } 1 \leq i \leq n-2 \\
\frac{5 n+3}{2} & \text { if } n \text { is odd and } i \text { is even, } 2 \leq i \leq n-3 \\
3 n+2-i & \text { if } n \text { is even, } 1 \leq i \leq n-1\end{cases} \\
& w_{10}\left(u_{n-1} u_{n}\right)=\frac{5 n+1}{2} \text {, if } n \text { is odd, } \\
& w_{10}\left(u_{n} u_{1}\right)=\frac{7 n^{2}+3}{2} \text {, if } n \text { is odd, } \\
& w_{10}\left(u_{n} u_{1}\right)=\frac{5 n+4}{2} \text {, if } n \text { is even. }
\end{aligned}
$$

The weights of the edges $\left\{c u_{i}, c v_{i}, 1 \leq i \leq n\right\}$, under the labeling f_{10}, constitute the sets $\left\{w_{10}\left(c u_{i}\right)\right\},\left\{w_{10}\left(c v_{i}\right)\right\}$ and rest of the edge weights of $F l_{n}$, under the labeling f_{10}, constitute the sets $\left\{w_{10}\left(u_{i} v_{i}\right), w_{10}\left(u_{i} u_{i+1}\right)\right\}$. Hence these sets consist of $2 n$ colors and for any two adjacent edges are received different colors. Therefore, f_{10} induces a proper edge coloring of $F l_{n}$ and hence $\chi_{l e a}^{\prime}\left(F l_{n}\right) \leq 2 n$. Since $\Delta\left(F l_{n}\right)=2 n$ and by Theorem 1.1[4], it follows, we get $\chi_{l e a}^{\prime}\left(F l_{n}\right) \geq 2 n$. Hence $\chi_{l e a}^{\prime}\left(F l_{n}\right)=2 n$.

The Closed Helm graph $C H_{n}$ is obtained from H_{n} by adding edges $v_{i} v_{i+1}, 1 \leq i \leq n-1$ and $v_{n} v_{1}$.

Theorem 2.8. For the closed helm graph $C H_{n}, n \geq 6$ and n is even, we have $\chi_{l e a}^{\prime}\left(C H_{n}\right)=n$.

Proof. Let $V\left(C H_{n}\right)=\left\{c, u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E\left(C H_{n}\right)=\left\{c u_{i}, u_{i} v_{i}, 1 \leq\right.$ $i \leq n\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}, v_{n} v_{1}\right\}$.Then $\left|V\left(C H_{n}\right)\right|=$ $2 n+1$ and $\left|E\left(C H_{n}\right)\right|=4 n$. Now, we define a bijection $f_{11}: V\left(C H_{n}\right) \rightarrow$
$\{1,2, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
& f_{11}(c)=n+1 \\
& f_{11}\left(u_{i}\right)= \begin{cases}\frac{3 n+3-i}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n-1 \\
n & \text { if } i=2 \\
\frac{n-2+i}{2} & \text { if } i \text { is even, } 4 \leq i \leq n\end{cases} \\
& f_{11}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{3 n+4}{2} & \text { if } i=2 \\
\frac{4 n+6-i}{2} & \text { if } i \text { is even, } 4 \leq i \leq n\end{cases}
\end{aligned}
$$

Then the edge weights of $C H_{n}$ are

$$
\begin{aligned}
& w_{11}\left(c u_{i}\right)= \begin{cases}\frac{5 n+5-i}{2} & \text { if } i \text { is odd, } 1 \leq i \leq n \\
\frac{2 n+1}{} & \text { if } i=2 \\
\frac{3 n+i}{2} & i \text { is even, } 4 \leq i \leq n\end{cases} \\
& w_{11}\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{5 n+2}{2}, & \text { if } i=1 \\
\frac{5 n}{2}, & \text { if } i=2 \\
2 n+1, & \text { if } i \text { is odd, } 3 \leq i \leq n-1 \\
2 n, & \text { if } i \text { is even, } 4 \leq i \leq n-2\end{cases} \\
& w_{11}\left(u_{i} v_{i}\right)= \begin{cases}\frac{3 n+4}{2}, & \text { if } i \text { is odd, } 1 \leq i \leq n-1 \\
\frac{5 n+4}{2}, & \text { if } i \text { is even, } 2 \leq i \leq n\end{cases} \\
& w_{11}\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{3 n+6}{2}, & i=1 \\
\frac{3 n+8}{2}, & i=2 \\
2 n+3, & \text { if } i \text { is odd, } 3 \leq i \leq n-1 \\
2 n+4, & \text { if } i \text { is even, } 4 \leq i \leq n-2\end{cases} \\
& w_{11}\left(v_{n} v_{1}\right)=\frac{3 n+8}{2}
\end{aligned}
$$

The weights of the edges $\left\{c u_{i}, 1 \leq i \leq n\right\}$, under the labeling f_{11}, constitute the set $\left\{w_{11}\left(c u_{i}\right)\right\}$ and rest of the edges weights of $C H_{n}$, under the labeling f_{11}, constitute the set $\left\{w_{11}\left(u_{i} v_{i}\right), w_{11}\left(u_{i} u_{i+1}\right), w_{11}\left(v_{i} v_{i+1}\right)\right\}$. Hence these sets consist of n colors and for any two adjacent edges are received different colors. Therefore, f_{11} induces a proper edge coloring of $C H_{n}$ and hence $\chi_{\text {lea }}^{\prime}\left(C H_{n}\right) \leq n$. Since $\Delta\left(C H_{n}\right)=n$ and by Theorem 1.1[4], it follows, we get $\chi_{l e a}^{\prime}\left(C H_{n}\right) \geq n$. Hence $\chi_{\text {lea }}^{\prime}\left(C H_{n}\right)=n$.

3. Conclusion

In this paper, we obtained the local edge chromatic number for a friendship graph, wheel graph, fan graph, helm graph, flower graph, and closed helm graph CH_{n}, where n is even. The problem of determining the local edge chromatic number for remaining graphs is still open.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digaphs, 4th ed. New York: Chapman and Hall/CRC, 2005.
[2] N. H artsfield and G. Ringel, Pearls ingraphtheory. Boston: A cademic Press, 1994.
[3] S. Arumugam, K. Premalatha, M. Bača, and A. Semaničová-Feňovčíková, "Local antimagic vertex coloring of a graph", Graphs and Combinatorics, vol. 33, no. 2, pp. 275-285, 2017. doi: 10.1007/s00373-017-1758-7
[4] I. H. Agustin, M . H asan, Dafik, R. Alfarisi, and R. M . Prihandini, "Local edge antimagic coloring of graphs", Far East Journal of Mathenatical Siences vol. 102, no. 9, pp. 1925-1941, 2017. doi: 10.17654/ms102091925
[5] J. A. Gallian, "A dynamic survey of graph labeling", TheEletroric Journal of Conbinatorics, \# DS6, 2020
[6] J. H aslegrave, "Proof of a local antimagic conjecture", Discreemathematics\& theoreical compter soience, vol. 20, no. 1, 2018.
[7] Y. Cheng, "A new class of antimagic cartesian product graphs", Discree Mathenatics, vol. 308, no. 24, pp. 6441-6448, 2008. doi: 10.1016/j.disc.2007.12.032
[8] T.-M. W ang and G.-H. Zhang, "On antimagic labeling of odd regular graphs", in Condinatorial Algorithm, S. Arumugam and B. Smyth, Eds. Berlin: Springer, 2012, pp. 162-168.
[9] M. Bača and M. M iller, Supe EdgeAntimagic Graphs A Wealth of problens and SorreSolutions. Baco R aton: Brown W alker Press, 2008.
[10] R. Shankar and M. N alliah, "Local vertex antimagic chromatic number of some wheel related graphs", Proyecoiones (Artofagasta), vol. 41, no. 1, pp. 319-334, 2022. doi: 10.22199/issn.0717-6279-44420

S. Rajkumar

Department of Mathematics
School of Advanced Sciences
Vellore Institute of Technology
Vellore-632 014,
India
e-mail: raj26101993@gmail.com
and

M. Nalliah

Department of Mathematics
School of Advanced Sciences
Vellore Institute of Technology
Vellore-632 014,
India
e-mail: nalliahklu@gmail.com
Corresponding Author

