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Abstract

Let G = (V,E) be a graph of order p and size q having no isolated
vertices. A bijection f : V → {1, 2, 3, ..., p} is called a local edge
antimagic labeling if for any two adjacent edges e = uv and e

0
= vw

of G, we have w(e) 6= w(e
0
), where the edge weight w(e = uv) =

f(u)+f(v) and w(e
0
) = f(v)+f(w). A graph G is local edge antimagic

if G has a local edge antimagic labeling. The local edge antimagic
chromatic number χ

0

lea(G) is defined to be the minimum number of
colors taken over all colorings of G induced by local edge antimagic
labelings of G. In this paper, we determine the local edge antimagic
chromatic number for a friendship graph, wheel graph, fan graph, helm
graph, flower graph, and closed helm.
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1. Introduction

A graph G = (V,E) is a finite, undirected graph with neither loops nor
multiple edges. Let |V | = p and |E| = q be the order and size of G. For
graph-theoretic terminology; we refer to Chartrand and Lesniak [1].

Hartsfield and Ringel’s [2] introduced the concept of antimagic labeling
of a graph. Let f : E → {1, 2, . . . , |E|} be a bijection. For each vertex
u ∈ V (G), the weight w(u) =

P
e∈E(u) f(e), where E(u) is the set of edges

incident to u. If w(u) 6= w(v) for any two distinct vertices u, v ∈ V (G),
then f is called an antimagic labeling of G. A graph G is called antimagic
if G has an antimagic labeling. For further reference see [5, 7, 8, 9].

In 2017, Arumugam et al.[3] introduced a new labeling local antimagic
labeling and parameter local antimagic chromatic number using the con-
cepts of antimagic labeling and vertex coloring. They defined as a bijection
f : E → {1, 2, . . . , |E|} is called local antimagic labeling if for all uv ∈ E
we have w(u) 6= w(v), where w(u) =

P
e∈E(u) f(e). A graph G is local

antimagic if G has a local antimagic labeling. The local antimagic chro-
matic number is defined to be the minimum number of colors taken overall
coloring of G induced by local antimagic labeling of G, and they proved
some basic results. For further reference see [5, 6, 10].

In 2017, Agustin et al. [4] introduced the concept of local edge antimagic
chromatic number of graphs motivated by local antimagic chromatic num-
ber. It is defined as a bijection f : V (G) → {1, 2, . . . , p} is called a local
edge antimagic labeling if for any two adjacent edges e = uv and e

0
= vw of

G we have w(e) 6= w(e0), where w(e) = f(u)+f(v) and w(e
0
) = f(v)+f(w).

A graph G is local edge antimagic if G has a local edge antimagic labeling.
The local edge antimagic chromatic number χ

0
lea(G) is defined to be the

minimum number of colors taken overall coloring of G induced by local edge
antimagic labeling of G. They obtained a trivial lower bound and proved
the following results.

Theorem 1.1. [4] If∆(G) is maximum degree ofG, then we have χ
0
lea(G) ≥

∆(G).

Theorem 1.2. [4] For n ≥ 3, the local edge antimagic chromatic number
of Pn is χ

0
lea(Pn) = 2.

Theorem 1.3. [4] For n ≥ 3, the local edge antimagic chromatic number
of Cn is χ

0
lea(Cn) = 3.

The friendship graph Fn is a set of n triangles having a common central
vertex and otherwise disjoint.
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Theorem 1.4. [4] For n ≥ 3, the local edge antimagic chromatic number
of Fn is χ

0
lea(Fn) = 2n+ 1.

Theorem 1.5. [4] For n ≥ 3, the local edge antimagic chromatic number
of Wn is χ

0
lea(Wn) = n+ 2.

Theorem 1.6. [4] For n ≥ 3, the local edge antimagic chromatic number
of Kn is χ

0
lea(Kn) = 2n− 3.

In this paper, we determine the local edge antimagic chromatic number
for wheel related graphs.

2. Local edge Chromatic Number of Wheel related graphs

This section shows that the local edge antimagic chromatic number for the
friendship graph Fn and wheel graph Wn.

These results show that the result given in Agustin et al.[4] are not
correct.

Theorem 2.1. For the friendship graph Fn, we have

χ
0
lea(Fn) =

(
3 if n = 1,
2n if n ≥ 2.

Proof. Let V (Fn) = {c, ui, vi, 1 ≤ i ≤ n} andE(Fn) = {cui, cvi, uivi, 1 ≤
i ≤ n} be the vertex set and edge set of Fn. Then |V (Fn)| = 2n + 1 and
|E(Fn)| = 3n. If n = 1 then F1 ∼= C3 and by Theorem 1.3[4], it fol-
lows, we get χ

0
lea(F1) = 3. For n ≥ 2, define a bijection f1 : V (Fn) →

{1, 2, 3, ..., 2n+ 1} by
f1(c) = 2n
f1(ui) = 2i− 1, 1 ≤ i ≤ n

f1(vi) =

(
2n+ 1 if i = 1,
2n+ 2− 2i if 2 ≤ i ≤ n.

Then the edge weights of Fn are

w1(cui) = 2n+ 2i− 1, 1 ≤ i ≤ n w1(cvi) =

(
4n+ 1 if i = 1,
4n+ 2− 2i if 2 ≤ i ≤ n.

w1(uivi) =

(
2n+ 2 if i = 1,
2n+ 1 if 2 ≤ i ≤ n.
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The weights of the edges {cui, 1 ≤ i ≤ n, cv1, cvi, 2 ≤ i ≤ n}, under the
labeling f1, constitute the sets {2n + 1, 2n + 3, 2n + 5, . . . , 4n − 1}, {4n +
1}, {4n− 2, 4n− 4, 4n− 6, . . . , 2n+ 2} and rest of the edge weights of Fn,
under the labeling f1, constitute the set {2n+2, 2n+1}. Hence these sets
consist of 2n weights (colors) and for any two adjacent edges are received
different colors. Therefore, f1 induces a proper edge coloring of Fn and
hence χ

0
lea(Fn) ≤ 2n. Since ∆(Fn) = 2n, it follows, we get χ

0
lea(Fn) ≥ 2n.

Thus χ
0
lea(Fn) = 2n. 2

Theorem 2.2. For the wheel graph Wn on n+ 1 vertices, we have

χ
0
lea(Wn) =

(
5 if n = 3, 4
n if n ≥ 5.

Proof. Let V (Wn) = {c, vi, 1 ≤ i ≤ n} and E(Wn) = {cvi, 1 ≤ i ≤
n}∪ {vivi+1, 1 ≤ i ≤ n− 1}∪ {vnv1} be the vertex set and edge set of Wn.
Then |V (Wn)| = n+ 1 and |E(Wn)| = 2n.

Case-1: n = 3, 4

If n = 3 thenW3
∼= K4 and by Theorem 1.6[4], it follows, we get χ

0
lea(W3) =

5. For n = 4, we assume that χ
0
lea(W4) = 4. Then there exists a local

edge antimagic labeling f with 4-colors (edge weights) w1, w2, w3 and w4.
Clearly, the incident edges of the central vertex c are received the colors
w(cvi) = wi, 1 ≤ i ≤ 4 and hence the edges e1 = v1v2,e2 = v2v3,e3 = v3v4,
and e4 = v4v1 are must recevied the colors from the set {w1, w2, w3, w4}.
Therefore, every color wi, 1 ≤ i ≤ 4 occurs exactly two times and hence
5P

i=1
deg(vi)f(vi) = 2

4P
i=1

wi, which implies that 3
h
5×6
2 − f(c)

i
+ 4f(c) =

2
4P

i=1
wi. This implies f(c) = 2

4P
i=1

wi − 45. Hence f(c) =1 or 3 or 5. If

f(c) = 1 then there is no edge ei, 1 ≤ i ≤ 4 received the edge weight 3 or
4, which is a contradiction. If f(c) = 3 then f(vi) ∈ {1, 2, 4, 5}, 1 ≤ i ≤ 4
and w(cvi) ∈ {4, 5, 7, 8}. Hence there is no edge ei, 1 ≤ i ≤ 4 received the
edge weight 4, which is a contradiction. If f(c) = 5 then f(vi) ∈ {1, 2, 3, 4}
and w(cvi) ∈ {6, 7, 8, 9}. Hence there is no edge ei, 1 ≤ i ≤ 4 received the
edge weight 9, which is a contradiction. Thus χ

0
lea(W4) ≥ 5.

Now, define a labeling f2 : V (W4)→ {1, 2, 3, 4, 5} by f2(c) = 4, f2(v1) =
1, f2(v2) = 5, f2(v3) = 2, f2(v4) = 3. Then the edge weights are w2(cv1) =
5, w2(cv2) = 9, w2(cv3) = 6, w2(cv4) = 7, w2(v1v2) = 6, w2(v2v3) = 7, w2(v3v4) =
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5, w2(v4v1) = 4. Thus χ
0
lea(W4) ≤ 5. Hence χ

0
lea(W4) = 5.

Case-2: n ≥ 5
We define a bijection f3 : V (Wn)→ {1, 2, 3, ..., n+ 1} by

f3(c) =

(
n+1
2 if n is odd,

n+4
2 if n is even.

f3(vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i+1
2 if i is odd and i 6= n

n+ 2− i
2 if i is even and i 6= n− 2, n

n+3
2 if n is odd and i = n

n+2
2 if n is even and i = n− 2

n+6
2 if n is even and i = n.

Then the edge weights of Wn are

w3(cvi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+2+i
2 if n is odd and i is odd 1 ≤ i ≤ n− 2

3n+5−i
2 if n is odd and i is even 2 ≤ i ≤ n− 1

n+ 2 if n is odd and i = n
n+5+i
2 if n is even and i is odd 1 ≤ i ≤ n− 1

3n+8−i
2 if n is even and i is even 2 ≤ i ≤ n− 4

n+ 3 if n is even and i = n− 2
n+ 5 if n is even and i = n.

w3(vivi+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2 if n is odd and i is odd 1 ≤ i ≤ n− 2
n+ 2 if n is even and i is odd 1 ≤ i ≤ n− 5
n+ 3 if n is odd and i is even 2 ≤ i ≤ n− 3
n+ 3 if n is even and i is even 2 ≤ i ≤ n− 4.

w3(vn−1vn) = n+ 4, if n is odd
w3(vnv1) = n+5

2 , if n is odd
w3(vn−3vn−2) = n, if n is even
w3(vn−2vn−1) = n+ 1, if n is even
w3(vn−1vn) = n+ 3, if n is even
w3(vnv1) = n+8

2 , if n is even.

For n is odd, the weights of the edges {cvi, i 6= n is odd, cvn, cvi, i ≥
2 is even}, under the labeling f3, constitute the sets {n+12 +1, n+12 +2, n+12 +
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3, . . . , n+1}, {n+2}, {n+2+ n+1
2 −1, n+2+

n+1
2 −2, n+2+

n+1
2 −3, . . . , n+

2 + n+1
2 −

n
2} and rest of the edge weights of Wn, under the labeling f3,

constitute the set {n+2, n+3, n+4, n+52 }. For n is even, the weights of the
edges {cvi, i is odd, cvn−2, cvn, cvi, i 6= n− 2, n is even}, under the labeling
f3, constitute the sets {n2 + 3,

n
2 + 4, . . . , n+ 2}, {n+ 3}, {n+ 5}, {n+ 4 +

n
2 − 1, n+4+

n
2 − 2, . . . , n+6} and rest of the edges weights of Wn, under

the labeling f3, constitute the set {n2 + 4, n, n + 1, n + 2, n + 3}. Hence,
these sets consist of n weights(colors) and for any two adjacent edges are
received different colors. Therefore, f3 induces a proper edge coloring of
Wn and hence χ

0
lea(Wn) ≤ n. Since ∆(Wn) = n and by Theorem 1.1[4], it

follows, we get χ
0
lea(Wn) ≥ n. Thus χ

0
lea(Wn) = n. 2

A fan graph Tn, n ≥ 2 is a graph obtained by joining all vertices of path
Pn to a further vertex, called the central vertex.

Theorem 2.3. For the fan graph Tn on n+ 1 vertices, we have

χ
0
lea(Tn) =

(
n+ 1 if n = 2, 3
n if n ≥ 4.

Proof. Let V (Tn) = {c, vi, 1 ≤ i ≤ n} and E(Tn) = {cvi, 1 ≤ i ≤
n} ∪ {vivi+1, 1 ≤ i ≤ n − 1} be the vertex set and edge set of Tn. Then
|V (Tn)| = n+ 1 and |E(Tn)| = 2n− 1.

Case-1: n = 2, 3.
Since T2 ∼= K3, and by Theorem 1.6[4], we get χ

0
lea(T2) = 3. For n = 3,

suppose χ
0
lea(T3) = 3, then there exists a local edge antimagic labeling f

with 3-colors (edge weights) w1, w2 and w3. Let V (T3) = {c, v1, v2, v3}
and E(T3) = {cv1, cv2, cv3, v1v2, v2v3} be the vertex set and edge set of T3.
Since ∆(T3) = 3, it follows, the incident edges of the central vertex c are
received the colors w1, w2 and w3 and hence the edges v1v2 and v2v3 are
must received the colors w3 and w1. Therefore, the colors w1 and w3 are
used two times and w2 used only one time. Since 3 ≤ w(e) ≤ 7, e ∈ E(T3),
it follows, a weight 5 only two possibles sets of two elements {1, 4} and {2, 3}
and all other weights 3, 4, 6 and 7 are only one possible set of two elements.
Therefore, w1 = 5 or w3 = 5. Suppose w1 = 5. Then f(c) = 1 or 4, f(v1) =
4 or 1 and hence f(v2), f(v3) ∈ {2, 3} and w(v1v2) ∈ {6, 7} or {3, 4}. Thus
an edge v1v2 with weight w(v1v2) 6= w1, which is a contradiction. If w3 = 5
then f(c) = 2 or 3, f(v1) = 3 or 2 and hence f(v2), f(v3) ∈ {1, 4} and
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w(v1v2) ∈ {4, 7} or {3, 6}. Thus an edge v1v2 with weight w(v1v2) 6= w3,
which is a contradiction. Thus χ

0
lea(T3) ≥ 4.

Now, we define the labeling f4 : V (T3)→ {1, 2, 3, 4} by f4(c) = 3, f4(v1) =
1, f4(v2) = 4, f4(v3) = 2. Then the edge weight of T3 are w4(cv1) =
4, w4(cv2) = 7, w4(cv3) = 5, w4(v1v2) = 5, w4(v2v3) = 6. Thus χ

0
lea(T3) ≤ 4.

Hence χ
0
lea(T3) = 4.

Case-2: n ≥ 4.
We define a bijection f5 : V (Tn)→ {1, 2, 3, ..., n+ 1} by

f5(c) = n

f5(vi) =

⎧⎪⎨⎪⎩
i+1
2 if i is odd, 1 ≤ i ≤ n
n+ 1 if i = 2
n+ 1− i

2 if i is even, 4 ≤ i ≤ n.

Then the edge weights of Tn are

w5(cvi) =

⎧⎪⎨⎪⎩
n+ i+1

2 if i is odd, 1 ≤ i ≤ n
2n+ 1 if i = 2
2n+ 1− i

2 if i is even, 4 ≤ i ≤ n.

w5(vivi+1) =

⎧⎪⎨⎪⎩
n+ 1 if i is odd, 3 ≤ i ≤ n
n+ 3 if i = 2
n+ 2 if i = 1 and i is even, 4 ≤ i ≤ n.

The weights of the edges {cvi, i is odd ∪ cv2, cvi, i ≥ 4 is even}, under
the labeling f5, constitute the sets {n+1, n+2, n+3, . . . , n+ n+1

2 }, {2n+
1}, {2n−1, 2n−2, . . . , 2n+1− n

2} and rest of the edges weights of Tn, under
the labeling f5, constitute the set {n + 1, n + 3, n + 2}. Hence, these sets
consist of n weights(colors) and for any two adjacent edges are received
different colors. Therefore, f5 induces a proper edge coloring of Tn and
hence χ

0
lea(Tn) ≤ n. Since ∆(Tn) = n and by Theorem 1.1[4], it follows, we

get χ
0
lea(Tn) ≥ n. Thus χ

0
lea(Tn) = n. 2

The helm graph Hn is a graph obtained from the wheel graph by ad-
joining a pendant edge at each node of the cycle.
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P1:Procedure for obtaining the vertices u1, v2, v3 and c labels of
H3 graph
Let V (H3) = {c, vi, ui, 1 ≤ i ≤ 3} and E(H3) = {cvi, viui, 1 ≤ i ≤ 3} ∪
{v1v2, v2v3, v3v1} be the vertex set and edge set of H3. Then |V (H3)| = 7.

Let S1 be the set of all possible four weights w1, w2, w3 and ,w4. Clearly,
5 ≤ w ≤ 11, where w ∈ {w1, w2, w3, w4}. Let [n] denote the set of all posi-
tive integers less than or equal to n.

Step 1: Let s ∈ S1 and f(v1) = x, 1 ≤ x ≤ 7. Then we construct a 7×4 sub-
traction table using f(v) = wi − x,1 ≤ x ≤ 7, 1 ≤ i ≤ 4, v ∈ {u1, v2, v3, c}

Step 2: If f(v) ≤ 0, f(v) = f(v1) and f(v) ≥ 8 then remove the cor-
responding row labels from the 7 × 4 subtraction table. The remaining
row labels are received by the vertices u1, v2, v3 and c. Clearly, f(v) ∈
{1, 2, 3, 4, 5, 6, 7}, v ∈ {u1, v2, v3, c}.

Step 3: The edges e1 = v1u1, e2 = v1v2, e3 = v1v3 and e4 = v1c with their
weights w(ei) ∈ {w1, w2, w3, w4}. Use the vertices labels which are ob-
tained from Step 2 to form a weight w = w(e = uu0) = f(u)+ f(u0), u, u0 ∈
{u1, v2, v3, c}, e ∈ {e1, e2, e3, e4}.

Step 4: If w(e) 6∈ {w1, w2, w3, w4} for some e then χ
0
lea(H3) 6= 4.Otherwise,

χ
0
lea(H3) = 4 provided the edges e0i = viui with their weights w(e0i) ∈
{w1, w2, w3, w4} for all i = 2, 3. These edge weights are obtained from the
vertices labels f(ui) = [7]− {f(c), f(v1), f(v2), f(v3)}.

Theorem 2.4. For the helm graph H3, we have χ
0
lea(H3) = 5.

Proof. Let V (H3) = {c, vi, ui, 1 ≤ i ≤ 3} and E(H3) = {cvi, viui, 1 ≤
i ≤ 3} ∪ {v1v2, v2v3, v3v1} be the vertex set and edge set of H3. Then
|V (H3)| = 7 and |E(H3)| = 9. Suppose χ

0
lea(H3) = 4. Then there exists a

local edge antimagic labeling f with 4-colors (edge weights) w1, w2, w3 and
w4. Since ∆(H3) = 4, it follows, the incident edges of the central vertex c
received the colors w1, w2, w3 and w4. The minimum and maximum possible
edge weights are 5 and 11. Let S1 be set of all possible four edge weights
set from the set {5, 6, 7, 8, 9, 10, 11}. Then there are 35 possible such sets
are given as follows:
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S1 = {{5, 6, 7, 8}, {5, 6, 7, 9}, {5, 6, 7, 10}, {5, 6, 7, 11}, {5, 6, 8, 9}, {5, 6, 8, 10},
{5, 6, 8, 11), {5, 6, 9, 10}, {5, 6, 9, 11}, {5, 6, 10, 11}, {5, 7, 8, 9}, {5, 7, 8, 10},
{5, 7, 8, 11}, {5, 7, 9, 10}, {5, 7, 9, 11}, {5, 7, 10, 11}, {5, 8, 9, 10}, {5, 8, 9, 11},
{5, 8, 10, 11}, {5, 9, 10, 11}, {6, 7, 8, 9}, {6, 7, 8, 10}, {6, 7, 8, 11}, {6, 7, 9, 10},
{6, 7, 9, 11}, {6, 7, 10, 11}, {6, 8, 9, 10}, {6, 8, 9, 11}, {6, 8, 10, 11}, {6, 9, 10, 11},
{7, 8, 9, 10}, {7, 8, 9, 11}, {7, 8, 10, 11}, {7, 9, 10, 11}, {8, 9, 10, 11}}.

We apply the above procedure P1 and obtain the vertices u1, v2, v3 and
c labels of H3. Let e

0
1 = cv2, e

0
2 = cv3 and e

0
3 = v2v3. Then form all possible

edge weights w(e0i), i = 1, 2, 3 from the labels {f(u1), f(v2), f(v3), f(c)}.
Clearly, at least one of the edge weight w0 6∈ {w1, w2, w3, w4} ∈ S1, which
is a contradiction. Thus χ

0
lea(H3) ≥ 5.

Now, we define a labeling f6 : V (H3) → {1, 2, 3, 4, 5, 6, 7} by f6(c) =
3, f6(u1) = 4, f6(u2) = 5, f6(u3) = 6, f6(v1) = 7, f6(v2) = 2, f6(v3) = 1.
Then the edge weight of H3 are w6(cu1) = 7, w6(cu2) = 8, w6(cu3) =
9, w6(u1u2) = 9, w6(u2u3) = 11, w6(u3u1) = 10, w6(u1v1) = 11, w6(u2v2) =
7, w6(u3v3) = 7. Thus χ

0
lea(H3) ≤ 5. Hence χ

0
lea(H3) = 5. 2

P2 :Procedure for obtaining the vertices v1, v2, v3 and v4 labels of
H4 graph
Let V (H4) = {c, vi, ui, 1 ≤ i ≤ 4} E(H4) = {cvi, viui, 1 ≤ i ≤ 4} ∪
{vivi+1, 1 ≤ i ≤ 3} ∪ {v1v4} be the vertex set and edge set of H4. Then
|V (H4)| = 9.

Let S2 be the set of all possible four weights set {w1, w2, w3, w4}. Clearly,
7 ≤ w ≤ 13, where w ∈ {w1, w2, w3, w4}.

Step 1: Let s ∈ S2 and f(c) = x, 1 ≤ x ≤ 9. Then we construct a 9 × 4
subtraction table using f(vi) = wi − x,1 ≤ i ≤ 4.

Step 2: If f(vi) ≤ 0, f(vi) = f(c) and f(vi) ≥ 10 then remove the cor-
responding row labels from the 9 × 4 subtraction table. The remaining
row labels are received by the vertices v1, v2, v3 and v4. Clearly, f(vi) ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9}, i = 1, 2, 3, 4.

Step 3: The edges e1 = v1v2, e2 = v2v3, e3 = v3v4 and e4 = v4v1 with
their weights w(ei) ∈ {w1, w2, w3, w4}. Use the vertices labels which are
obtained from Step 2 to form a weight w(e = uv) = f(u) + f(v), u, v ∈
{v1, v2, v3, v4}, e ∈ {e1, e2, e3, e4}.



1406 S. Rajkumar and M. Nalliah

Step 4: If w(e) 6∈ {w1, w2, w3, w4} for some e then χ
0
lea(H4) 6= 4.Otherwise,

χ
0
lea(H4) = 4 provided the pendant edges e0i = viui, i = 1, 2, 3, 4 with
their weights w(e0i) ∈ {w1, w2, w3, w4} for all i = 1, 2, 3, 4. These pendant
edge weights are obtained from the pendant vertices labels f(ui) = [9] −
{f(c), f(vi), 1 ≤ i ≤ 4}.
Theorem 2.5. For the helm graph H4, we have χ

0
lea(H4) = 5.

Proof. Let V (H4) = {c, vi, ui, 1 ≤ i ≤ 4} and E(H4) = {cvi, viui, 1 ≤
i ≤ 4} ∪ {vivi+1, 1 ≤ i ≤ 3} ∪ {v1v4} be the vertex set and edge set of
H4. Then |V (H4)| = 9 and |E(H4)| = 12. Suppose χ

0
lea(H4) = 4. Then

there exists a local edge antimagic labeling f with 4-colors w1, w2, w3 and
w4. Every color wi, 1 ≤ i ≤ 4 must assigned to three nonadjacent edges
of H4. So, every edge e = uv with weight w(e) has at least 3 possibles
two elements sets. The minimum and maximum possible edge weights are
7 and 13. Let S2 be the collection of all possible 4 edge weights from the
set {7, 8, 9, 10, 11, 12, 13}. Then there are 35 possible such sets are given as
follows:

S2 = {{7, 8, 9, 10}, {7, 8, 9, 11}, {7, 8, 9, 12}, {7, 8, 9, 13}, {7, 8, 10, 11},
{7, 8, 10, 12}, {7, 8, 10, 13}, {7, 8, 11, 12}, {7, 8, 11, 13}, {7, 8, 12, 13},
{7, 9, 10, 11}, {7, 9, 10, 12}, {7, 9, 10, 13}, {7, 9, 11, 12}, {7, 9, 11, 13},
{7, 9, 12, 13}, {7, 10, 11, 12}, {7, 10, 11, 13}, {7, 10, 12, 13}, {7, 11, 12, 13},
{8, 9, 10, 11}, {8, 9, 10, 12}, {8, 9, 10, 13}, {8, 9, 11, 12}, {8, 9, 11, 13},
{8, 9, 12, 13}, {8, 10, 11, 12}, {8, 10, 11, 13}, {8, 10, 12, 13}, {8, 11, 12, 13},
{9, 10, 11, 12}, {9, 10, 11, 13}, {9, 10, 12, 13}, {9, 11, 12, 13}, {10, 11, 12, 13}}.

We apply the above procedure P2 and obtain the vertices v1, v2, v3
and v4 labels of H4. Let e

0
1 = v1v2, e

0
2 = v2v3, e

0
3 = v3v4 and e04 = v1v4.

Then form all possible edge weights w(e0i), i = 1, 2, 3, 4 from the labels
{f(v1), f(v2), f(v3), f(v4), f(c)}. Clearly, at least one of the edge weight
w0 6∈ {w1, w2, w3, w4}, where w0 ∈ {w(e01), w(e02), w(e03), w(e04)}, which is a
contradiction. Thus χ

0
lea(H4) ≥ 5.

Now, define the labeling f7 : V (H4)→ {1, 2, 3, 4, 5, 6, 7, 8, 9} by f7(c) =
5, f7(u1) = 7, f7(u2) = 4, f7(u3) = 6, f7(u4) = 3, f7(v1) = 1, f7(v2) =
8, f7(v3) = 2, f7(v4) = 9. Then the edge weights are w7(cu1) = 12, w7(cu2) =
9, w7(cu3) = 11, w7(cu4) = 8, w7(u1u2) = 11, w7(u2u3) = 10, w7(u3u4) =
9, w7(u4u1) = 10, w7(u1v1) = 8, w7(u2v2) = 12, w7(u3v3) = 8, w7(u4v4) =
12. Thus χ

0
lea(H4) ≤ 5. Hence χ

0
lea(H4) = 5. 2

Theorem 2.6. For the helm graph Hn, n ≥ 5, we have χ
0
lea(Hn) = n.
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Proof. Let V (Hn) = {c, ui, vi, 1 ≤ i ≤ n} and E(Hn) = {cui, uivi, 1 ≤
i ≤ n} ∪ {uiui+1, 1 ≤ i ≤ n − 1} ∪ {unu1}. Then |V (Hn)| = 2n + 1 and
|E(Hn)| = 3n. Define a bijection f8 : V (Hn)→ {1, 2, . . . , 2n+ 1} by

f8(c) = n+ 1

f8(ui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n+2+i
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

3n+5−i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1

n+ 2 if n is odd, i = n
3n+3−i

2 if n is even and i is odd, 1 ≤ i ≤ n− 1
n if n is even, i = 2
n−2+i
2 if n is even and i is even, 4 ≤ i ≤ n

f8(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4n+3−i
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1
n+1
2 if n is odd, i = n

i+1
2 if n is even and i is odd, 1 ≤ i ≤ n− 1
3n+4
2 if n is even and i = 2

4n+6−i
2 if n is even and i is even, 4 ≤ i ≤ n

The edge weights of Hn are

w8(cui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3n+4+i
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

5n+7−i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1

2n+ 3 if n is odd, i = n
5n+5−i

2 if n is even and i is odd, 1 ≤ i ≤ n− 1
2n+ 1 if n is even, i = 2
3n+i
2 if n is even and i is even, 4 ≤ i ≤ n

w8(uivi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5n+5
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

3n+5
2 if n is odd and i is even, i = n and 2 ≤ i ≤ n− 1

3n+4
2 if n is even and i is odd, 1 ≤ i ≤ n− 1

5n+4
2 if n is even and i is even, 2 ≤ i ≤ n

w8(uiui+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2n+ 3 if n is odd and i is odd, 1 ≤ i ≤ n− 2
2n+ 4 if n is odd and i is even, 2 ≤ i ≤ n− 3
5n+2
2 if n is even and i = 1

5n
2 if n is even and i = 2
2n+ 1 if n is even and i is odd, 3 ≤ i ≤ n− 1
2n if n is even and i is even, 4 ≤ i ≤ n− 2

w8(un−1un) = 2n+ 5, if n is odd,
w8(unu1) = 3n+7

2 , if n is odd,
w8(unu1) = 5n

2 , if n is even.
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For n is odd, the weights of the edges {cui, i is odd, cun, cui, i is even},
under the labeling f8, constitute the sets {n+2+ n+1

2 , n+2+ n+3
2 , n+2+

n+5
2 , . . . , 2n+1}, {2n+3}, {2n+3+n−1

2 , 2n+3+n−3
2 , 2n+3+n−5

2 , . . . , 2n+4}.
For n is even, the weights of the edges {cui, i is odd, cu2, cui, i ≥ 4 is even},
under the labeling f8, constitute the sets {2n+2+ n

2 , 2n+2+
n−2
2 , 2n+2+

n−4
2 , . . . , 2n+4, 2n+3}, {2n+1}, {2n+ n

2 +2, 2n+
n
2 +3, 2n+

n
2 +4, . . . , 2n}

and rest of the edge weights of Hn, under the labeling f8, are belongs to
the weight of w(cui), 1 ≤ i ≤ n. Hence these sets consist of n colors and for
any two adjacent edges are received different colors. Therefore f8 induces
a proper edge coloring of Hn and hence χ

0
lea(Hn) ≤ n. Since ∆(Hn) = n, it

follows, we get χ
0
lea(Hn) ≥ n. Thus χ

0
lea(Hn) = n. 2

A flower graph Fln is a graph obtained from a helm Hn by joining every
pendant vertex to the central vertex.

Theorem 2.7. For the flower graph Fln, we have χ
0
lea(Fln) = 2n, n ≥ 3.

Proof. Let V (Fln) = {c, ui, vi, 1 ≤ i ≤ n} andE(Fln) = {cui, cvi, uivi, 1 ≤
i ≤ n} ∪ {uiui+1, 1 ≤ i ≤ n − 1} ∪ {unu1}. Then |V (Fln)| = 2n + 1 and
|E(Fln)| = 4n.

For n = 3, we define a labeling f9 : V (Fl3) → {1, 2, 3, 4, 5, 6, 7} by
f9(c) = 3, f9(u1) = 1, f9(u2) = 4, f9(u3) = 6, f9(v1) = 7, f9(v2) = 5, f9(v3) =
2. Then the edge weights of Fl3 are w9(cu1) = 4, w9(cu2) = 7, w9(cu3) =
9, w9(cv1) = 10, w9(cv2) = 8, w9(cv3) = 5, w9(u1u2) = 5, w9(u2u3) =
10, w9(u3u1) = 7, w9(u1v1) = 8, w9(u2v2) = 9, w9(u3v3) = 8. Therefore,
χ
0
lea(Fl3) ≤ 6. Since ∆(Fl3) = 6 and by Theorem 1.1[4], it follows, we
get χ

0
lea(Fl3) ≥ 6. Hence χ

0
lea(Fl3) = 6. For n ≥ 4, we define a bijection

f10 : V (Fln)→ {1, 2, . . . , 2n+ 1} by

f10(c) =

(
3n+3
2 if n is odd

3n+2
2 if n is even

f10(ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4n+3−i
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

n+1+i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1

3n+1
2 if n is odd, i = n

4n+3−i
2 if n is even and i is odd, 1 ≤ i ≤ n− 1

2n+2−i
2 if n is even and i is even, 2 ≤ i ≤ n

f10(vi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i+1
2 if n is odd and i is odd, 1 ≤ i ≤ n
2n+i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1

i+1
2 if n is even and i is odd, 1 ≤ i ≤ n− 1
2n+i
2 if n is even and i is even, 2 ≤ i ≤ n
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Then the edge weights of Fln are

w10(cui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7n+6−i
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

4n+4+i
2 if n is odd and i is even, 2 ≤ i ≤ n− 1

3n+ 2 if n is odd, i = n
7n+5−i

2 if n is even and i is odd, 1 ≤ i ≤ n− 1
5n+4−i

2 if n is even and i is even, 2 ≤ i ≤ n

w10(cvi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3n+4+i

2 if n is odd and i is odd, 1 ≤ i ≤ n
5n+3+i

2 if n is odd and i is even, 2 ≤ i ≤ n− 1
3n+3+i

2 if n is even and i is odd, 1 ≤ i ≤ n− 1
5n+2+i

2 if n is even and i is even, 2 ≤ i ≤ n

w10(uivi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2n+ 2 if n is odd and i is odd, 1 ≤ i ≤ n− 2
3n+2i+1

2 if n is odd and i is even, 2 ≤ i ≤ n− 1
2n+ 1 if n is odd, i = n
2n+ 2 if n is even and i is odd, 1 ≤ i ≤ n− 1
2n+ 1 if n is even and i is even, 2 ≤ i ≤ n

w10(uiui+1) =

⎧⎪⎨⎪⎩
5n+5
2 if n is odd and i is odd, 1 ≤ i ≤ n− 2

5n+3
2 if n is odd and i is even, 2 ≤ i ≤ n− 3

3n+ 2− i if n is even, 1 ≤ i ≤ n− 1
w10(un−1un) = 5n+1

2 , if n is odd,
w10(unu1) = 7n+3

2 , if n is odd,
w10(unu1) = 5n+4

2 , if n is even.

The weights of the edges {cui, cvi, 1 ≤ i ≤ n}, under the labeling f10,
constitute the sets {w10(cui)}, {w10(cvi)} and rest of the edge weights of
Fln, under the labeling f10, constitute the sets {w10(uivi), w10(uiui+1)}.
Hence these sets consist of 2n colors and for any two adjacent edges are
received different colors. Therefore, f10 induces a proper edge coloring of
Fln and hence χ

0
lea(Fln) ≤ 2n. Since ∆(Fln) = 2n and by Theorem 1.1[4],

it follows, we get χ
0
lea(Fln) ≥ 2n. Hence χ

0
lea(Fln) = 2n. 2

The Closed Helm graph CHn is obtained from Hn by adding edges
vivi+1, 1 ≤ i ≤ n− 1 and vnv1.

Theorem 2.8. For the closed helm graph CHn, n ≥ 6 and n is even, we
have χ

0
lea(CHn) = n.

Proof. Let V (CHn) = {c, ui, vi, 1 ≤ i ≤ n} andE(CHn) = {cui, uivi, 1 ≤
i ≤ n} ∪ {uiui+1, vivi+1, 1 ≤ i ≤ n − 1} ∪ {unu1, vnv1}.Then |V (CHn)| =
2n + 1 and |E(CHn)| = 4n. Now, we define a bijection f11 : V (CHn) →
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{1, 2, . . . , 2n+ 1} by

f11(c) = n+ 1

f11(ui) =

⎧⎪⎨⎪⎩
3n+3−i

2 if i is odd, 1 ≤ i ≤ n− 1
n if i = 2
n−2+i
2 if i is even, 4 ≤ i ≤ n

f11(vi) =

⎧⎪⎨⎪⎩
i+1
2 if i is odd, 1 ≤ i ≤ n− 1
3n+4
2 if i = 2

4n+6−i
2 if i is even, 4 ≤ i ≤ n

Then the edge weights of CHn are

w11(cui) =

⎧⎪⎨⎪⎩
5n+5−i

2 if i is odd, 1 ≤ i ≤ n
2n+ 1 if i = 2
3n+i
2 i is even, 4 ≤ i ≤ n

w11(uiui+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5n+2
2 , if i = 1

5n
2 , if i = 2
2n+ 1, if i is odd, 3 ≤ i ≤ n− 1
2n, if i is even, 4 ≤ i ≤ n− 2

w11(uivi) =

(
3n+4
2 , if i is odd, 1 ≤ i ≤ n− 1

5n+4
2 , if i is even, 2 ≤ i ≤ n

w11(unu1) =
5n

2

w11(vivi+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3n+6
2 , i = 1

3n+8
2 , i = 2

2n+ 3, if i is odd, 3 ≤ i ≤ n− 1
2n+ 4, if i is even, 4 ≤ i ≤ n− 2

w11(vnv1) =
3n+ 8

2

The weights of the edges {cui, 1 ≤ i ≤ n}, under the labeling f11,
constitute the set {w11(cui)} and rest of the edges weights of CHn, under
the labeling f11, constitute the set {w11(uivi), w11(uiui+1), w11(vivi+1)}.
Hence these sets consist of n colors and for any two adjacent edges are
received different colors. Therefore, f11 induces a proper edge coloring of
CHn and hence χ

0
lea(CHn) ≤ n. Since ∆(CHn) = n and by Theorem 1.1[4],

it follows, we get χ
0
lea(CHn) ≥ n. Hence χ

0
lea(CHn) = n. 2
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3. Conclusion

In this paper, we obtained the local edge chromatic number for a friendship
graph, wheel graph, fan graph, helm graph, flower graph, and closed helm
graph CHn, where n is even. The problem of determining the local edge
chromatic number for remaining graphs is still open.
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