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Abstract

Let G = (V, E) be a graph of order p and size q having no isolated
vertices. A bijection f : V — {1,2,3,...,p} is called a local edge
antimagic labeling if for any two adjacent edges e = uv and e = vw
of G, we have w(e) # w(e'), where the edge weight w(e = uv) =
fw)+f(v) andw(e ) = f(v)+f(w). A graph G is local edge antimagic
if G has a local edge antimagic labeling. The local edge antimagic
chromatic number X;ea(G) is defined to be the minimum number of
colors taken over all colorings of G induced by local edge antimagic
labelings of G. In this paper, we determine the local edge antimagic
chromatic number for a friendship graph, wheel graph, fan graph, helm
graph, flower graph, and closed helm.

Keywords: Local edge antimagic labeling, Local edge antimagic chro-
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1. Introduction

A graph G = (V, E) is a finite, undirected graph with neither loops nor
multiple edges. Let |[V| = p and |E| = ¢ be the order and size of G. For
graph-theoretic terminology; we refer to Chartrand and Lesniak [1].

Hartsfield and Ringel’s [2] introduced the concept of antimagic labeling
of a graph. Let f: E — {1,2,...,|E|} be a bijection. For each vertex
u € V(G), the weight w(u) = 3 cp(u) f(€), where E(u) is the set of edges
incident to u. If w(u) # w(v) for any two distinct vertices u,v € V(G),
then f is called an antimagic labeling of G. A graph G is called antimagic
if G has an antimagic labeling. For further reference see [5, 7, 8, 9].

In 2017, Arumugam et al.[3] introduced a new labeling local antimagic
labeling and parameter local antimagic chromatic number using the con-
cepts of antimagic labeling and vertex coloring. They defined as a bijection
f:+E—{1,2,...,|E|} is called local antimagic labeling if for all uv € E
we have w(u) # w(v), where w(u) = Y ccpw) f(e). A graph G is local
antimagic if G has a local antimagic labeling. The local antimagic chro-
matic number is defined to be the minimum number of colors taken overall
coloring of G induced by local antimagic labeling of GG, and they proved
some basic results. For further reference see [5, 6, 10].

In 2017, Agustin et al. [4] introduced the concept of local edge antimagic
chromatic number of graphs motivated by local antimagic chromatic num-
ber. It is defined as a bijection f : V(G) — {1,2,...,p} is called a local
edge antimagic labeling if for any two adjacent edges e = uwv and € = vw of
G we have w(e) # w(e'), where w(e) = f(u)+f(v) and w(e') = f(v)+f(w).
A graph G is local edge antimagic if G has a local edge antimagic labeling.
The local edge antimagic chromatic number Xgea(G) is defined to be the
minimum number of colors taken overall coloring of G induced by local edge
antimagic labeling of G. They obtained a trivial lower bound and proved
the following results.

Theorem 1.1. [4] If A(G) is maximum degree of G, then we have X, (G) >
A(G).

Theorem 1.2. [4] For n > 3, the local edge antimagic chromatic number
of Py is Xjou(Pn) = 2.

Theorem 1.3. [4] For n > 3, the local edge antimagic chromatic number
of Cp is Xjeu(Cn) = 3.

The friendship graph F, is a set of n triangles having a common central
vertex and otherwise disjoint.
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Theorem 1.4. [4] For n > 3, the local edge antimagic chromatic number
of Fy, is X (Fn) = 2n + 1.

Theorem 1.5. [4] For n > 3, the local edge antimagic chromatic number
of Wi, is X (Wn) = n + 2.

Theorem 1.6. [4] For n > 3, the local edge antimagic chromatic number
of K, i8 Xjpq(Kn) = 2n — 3.

In this paper, we determine the local edge antimagic chromatic number
for wheel related graphs.

2. Local edge Chromatic Number of Wheel related graphs

This section shows that the local edge antimagic chromatic number for the
friendship graph F;, and wheel graph W,,.

These results show that the result given in Agustin et al.[4] are not
correct.

Theorem 2.1. For the friendship graph F,,, we have

/ 3 lf n = 1,
Xiea(Fn) = { o if n>2.

Proof. Let V(F,) = {c,u;,vi, 1 <i <n}and E(F,) = {cu;, cvi,u;v;, 1 <
i < n} be the vertex set and edge set of Fj,. Then |V(F,)| = 2n+ 1 and
|E(Fp)| = 3n. If n = 1 then i = C3 and by Theorem 1.3[4], it fol-
lows, we get Xgea(Fl) = 3. For n > 2, define a bijection f; : V(F,) —
{1,2,3,...,2n + 1} by

file) =2n

f1<uz) :21'—1,1§i§n

f(w) = om+1 if =1,
W= 2n+2-2i if 2<i<n.

Then the edge weights of F;, are

An +1 if =1,

N . i< N
w1 (cu;) 2n+2i—1,1 <i<n wi(cw) {471—1—2—21’ it 2<i<n.

(usvi) = m+2 if =1,
WY =9 o 41 if 2<i<n.
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The weights of the edges {cu;, 1 < i < n,cvi,cv;,2 <i <n}, under the
labeling fj, constitute the sets {2n + 1,2n+3,2n+5,...,4n — 1},{4n +
1},{4n —2,4n — 4,4n — 6,...,2n + 2} and rest of the edge weights of F},,
under the labeling fi, constitute the set {2n + 2,2n + 1}. Hence these sets
consist of 2n weights (colors) and for any two adjacent edges are received
different colors. Therefore, f; induces a proper edge coloring of F;, and
hence x;.,(Fn) < 2n. Since A(F,) = 2n, it follows, we get x;.,(Fn) > 2n.
Thus X, (Fy) = 2n. O

Theorem 2.2. For the wheel graph W, on n + 1 vertices, we have

/ 5 if n=3,4
Xlea(Wn):{ n if n > 5.

Proof. Let V(W,) = {c,v;,1 < i < n} and E(W,) = {cv;,1 < i <
n} U{vwiy1,1 <i<n—1}U{v,v1} be the vertex set and edge set of W,.
Then |V(W,)| =n+ 1 and |[E(W,,)| = 2n.

Case-1: n=3,4

If n = 3 then W3 = K4 and by Theorem 1.6[4], it follows, we get Xgea(Wg) =
5. For n = 4, we assume that )., (Ws) = 4. Then there exists a local
edge antimagic labeling f with 4-colors (edge weights) w1, we, w3 and wy.
Clearly, the incident edges of the central vertex c are received the colors
w(cv;) = w;, 1 <14 < 4 and hence the edges e; = viva,e9 = vav3,e3 = V34,
and eg = vqv1 are must recevied the colors from the set {w,ws,ws, wy}.
Therefore, every color w;,1 < ¢ < 4 occurs exactly two times and hence

3 deg(v;) f(v;) = 2 24: w;, which implies that 3 [% - f(c)} + 4f(c) =
=1 i=1

(3

4
2 Y w;. This implies f(c) = 2 Y. w; — 45. Hence f(¢) =1 or 3 or 5. If
i=1 i=1

f(c) =1 then there is no edge e;,1 < i < 4 received the edge weight 3 or
4, which is a contradiction. If f(c¢) = 3 then f(v;) € {1,2,4,5}, 1 <i <4
and w(cv;) € {4,5,7,8}. Hence there is no edge e;, 1 < i < 4 received the
edge weight 4, which is a contradiction. If f(¢) =5 then f(v;) € {1,2,3,4}
and w(cv;) € {6,7,8,9}. Hence there is no edge e;,1 < ¢ < 4 received the
edge weight 9, which is a contradiction. Thus Xzea(W4) > 5.

Now, define a labeling fo : V(W4) — {1,2,3,4,5} by fa(c) =4, fa(v1) =
1, fa(ve) =5, fa(vs) = 2, fa(vg) = 3. Then the edge weights are wy(cvy) =
5, wa(cvy) = 9, wa(cvs) = 6, wa(cvy) = 7, wa(v1v2) = 6, wa(vovs) = 7, wa(v3vy) =

W~
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5, wa(vqvy) = 4. Thus X;ea(W4) < 5. Hence Xzea(W4) =5.

Case-2: n>5
We define a bijection f3: V(W,,) — {1,2,3,....,n+ 1} by

£5(0) —”‘2"1 if n is odd,
c) = e
3 %‘ if n is even.
% ifiisodd and i #n
n+2—5 ifiisevenandi#n—2,n
fa(vy) = 243 if nisodd and i = n
”T‘*'Q ifnisevenand i =n — 2
"T% if n is even and i = n.

Then the edge weights of W,, are

%2” ifnisoddand tisodd 1 <i<n—2
% ifnisoddand tiseven 2 <¢<n-—1
n+2 ifnisoddandi=mn

wy(ev;) = 2 ifpiseven and disodd 1 <i<n—1
W ifnisevenandiiseven 2<i<n—4
n+3 ifnisevenandi=n—2

n+5 if niseven and i = n.

n+2 ifnisoddand7isodd 1 <i:<n-—2
n+2 ifnisevenandiisodd1<¢<n-5

ws(Vivig1) = n+3 ifnisoddand7iseven 2 <i<n-—3
n—+3 ifnisevenand iiseven 2 <i<n—4.

w3 (Vp—10p) =n+4,if nis odd

w3 (vpv1) = ”T%, if n is odd

w3(Vp—3vp—2) = n,if n is even

w3(vp—2vp—1) =n+ 1,if n is even

w3 (Vp—1vp) =n+3,if nis even

w3 (vpv1) = ”T*S, if n is even.

For n is odd, the weights of the edges {cv;,i # n is odd, cv,, cv;,i >
2 is even}, under the labeling f3, constitute the sets {"TH +1, ";1 +2, ”;rl +




1402 S. Rajkumar and M. Nalliah

3,...,n+1h {n+2}, {n+2+2 1 nt24 2l 2 pp24 bl 3 nt
2+ ”TH — 4} and rest of the edge weights of W,,, under the labeling f3,
constitute the set {n+2,n+3,n+4, ”T‘%} For n is even, the weights of the
edges {cv;, i is odd, cvp—2, cvn, cvi, i #n — 2,n is even}, under the labeling
f3, constitute the sets {§ +3,8 +4,...,n+2},{n+3},{n+ 5}, {n+4+
5—1L,n+4+%—2,...,n46} and rest of the edges weights of W,,, under
the labeling f3, constitute the set {§ +4,n,n + 1,n + 2,n + 3}. Hence,
these sets consist of n weights(colors) and for any two adjacent edges are
received different colors. Therefore, f3 induces a proper edge coloring of
W,, and hence x;_,(W,) < n. Since A(W,,) = n and by Theorem 1.1[4], it
follows, we get X, (Wn) > n. Thus x;.,(W,) = n. O

A fan graph T,,n > 2 is a graph obtained by joining all vertices of path
P, to a further vertex, called the central vertexz.

Theorem 2.3. For the fan graph T, on n + 1 vertices, we have

/ n+1 ifn=2,3
Xiea(Tn) _{ n if n>4.

Proof. Let V(T,) = {c,vi,1 < ¢ < n} and E(T,) = {cv;,1 < i <
n} U {vvir1,1 < i < n —1} be the vertex set and edge set of T,,. Then
\V(T,) =n+1and |[E(T,)| =2n—1.

Case-1: n =23.

Since Ty & K3, and by Theorem 1.6[4], we get X;.,(T2) = 3. For n = 3,
suppose X;ea(Tg,) = 3, then there exists a local edge antimagic labeling f
with 3-colors (edge weights) wi, w2 and ws. Let V(T3) = {c,v1,v2,v3}
and E(T3) = {cv1, cva, cvs, v1va, vov3} be the vertex set and edge set of Ts.
Since A(T3) = 3, it follows, the incident edges of the central vertex c are
received the colors wi,ws and w3 and hence the edges vive and vavs are
must received the colors w3 and wq. Therefore, the colors wy and ws are
used two times and wsy used only one time. Since 3 < w(e) < 7,e € E(T3),
it follows, a weight 5 only two possibles sets of two elements {1,4} and {2, 3}
and all other weights 3, 4,6 and 7 are only one possible set of two elements.
Therefore, wy = 5 or wz = 5. Suppose wy = 5. Then f(c) =1or4, f(v1) =
4 or 1 and hence f(v2), f(v3) € {2,3} and w(vivz) € {6,7} or {3,4}. Thus
an edge v1vy with weight w(v1ve) # w1, which is a contradiction. If ws =5
then f(c) = 2 or 3, f(v1) = 3 or 2 and hence f(v2), f(v3) € {1,4} and
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w(vivy) € {4,7} or {3,6}. Thus an edge vivy with weight w(vive) # ws,
which is a contradiction. Thus x;,,(T3) > 4.

Now, we define the labeling f4 : V(T3) — {1,2,3,4} by fa(c) = 3, fa(v1
1, fa(ve) = 4, fs(vs) = 2. Then the edge weight of T3 are w4(cvy)
4, wy(cve) = 7, wa(cvs) = 5, wa(v1ve) = 5, wa(vovs) = 6. Thus X;ea(Tg) <
Hence x,,,(T3) = 4.

) =
"

Case-2: n > 4.
We define a bijection f5: V(T,) — {1,2,3,...,n+ 1} by

fs(c)=n
4l ifiisodd,1<i<n
fs(vi)=4q n+1  ifi=2
n+1-g5 ifiiseven,4 <i<n.

Then the edge weights of T,, are

n+% ifiisodd,1<7<n
ws(cv;)) =4 2n+1  ifi=2

2n+1— 4 ifiiseven,4 <i<n.

n+1 ifiisodd,3<i<n
w5(1)ﬂ)i+1) = n+3 ifi=2
n+2 ifi=1andiiseven,4 <i<n.

The weights of the edges {cv;,i is odd U cve, cvj, i > 4 is even}, under
the labeling f5, constitute the sets {n+1,n+2,n+3,...,n+ ”TH}, {2n+
1},{2n—1,2n—-2,...,2n+1— 5} and rest of the edges weights of 7T}, under
the labeling f5, constitute the set {n + 1,n + 3,n + 2}. Hence, these sets
consist of n weights(colors) and for any two adjacent edges are received
different colors. Therefore, f; induces a proper edge coloring of T, and
hence x;,,(Tn) < n. Since A(T,,) = n and by Theorem 1.1[4], it follows, we
get Xpeo(Tn) > 1. Thus x;., (Th) = n. O

The helm graph H, is a graph obtained from the wheel graph by ad-
joining a pendant edge at each node of the cycle.
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P1:Procedure for obtaining the vertices ui,v2,v3 and ¢ labels of

Hs graph

Let V(Hs3) = {c,vi,u;,1 < i < 3} and E(H3z) = {cvi,viu;, 1 < i < 3} U

{v1v2, vou3, v3v1} be the vertex set and edge set of Hs. Then |V (Hs)| = 7.
Let 51 be the set of all possible four weights w1, we, w3 and ,wy. Clearly,

5 <w < 11, where w € {w;, we, ws,ws}. Let [n] denote the set of all posi-

tive integers less than or equal to n.

Step 1: Let s € Sj and f(v1) = x,1 <z < 7. Then we construct a 7x4 sub-
traction table using f(v) =w; —x,1 <z <7,1<i <4, v € {uy,ve,vs3,c}

Step 2: If f(v) < 0,f(v) = f(v1) and f(v) > 8 then remove the cor-
responding row labels from the 7 x 4 subtraction table. The remaining
row labels are received by the vertices ui,ve,v3 and c. Clearly, f(v) €
{1,2,3,4,5,6,7},v € {uy,v9,v3,c}.

Step 3: The edges e; = viu1, €2 = V12, €3 = vivg and eq = vic with their
weights w(e;) € {wi, w2, w3, ws}. Use the vertices labels which are ob-
tained from Step 2 to form a weight w = w(e = vu') = f(u) + f(u'),u, v’ €
{uy,va,v3,c},e € {e1,ea,€e3,e4}.

Step 4: If w(e) ¢ {w1, w2, w3, wys} for some e then X;ea(Hg) # 4. Otherwise,
Xjoq(H3) = 4 provided the edges ¢, = wu; with their weights w(e}) €
{w1,wa, w3, wy} for all i = 2,3. These edge weights are obtained from the

vertices labels f(ui) = [7] = {f(c), f(v1), f(v2), f(v3)}.
Theorem 2.4. For the helm graph Hj, we have x,,,(H3) = 5.

Proof. Let V(Hs3) = {c,vi,u;, 1 < i <3} and E(Hs) = {cvj,viu;, 1 <
i < 3} U {vive, vavs,v3v1} be the vertex set and edge set of Hs. Then
|V (H3)| = 7 and |E(Hs)| = 9. Suppose X, (Hs) = 4. Then there exists a
local edge antimagic labeling f with 4-colors (edge weights) w1, wa, w3 and
wy. Since A(H3) = 4, it follows, the incident edges of the central vertex c
received the colors wy, we, w3 and wy4. The minimum and maximum possible
edge weights are 5 and 11. Let S; be set of all possible four edge weights
set from the set {5,6,7,8,9,10,11}. Then there are 35 possible such sets
are given as follows:
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Sy = {{5,6,7,8},{5,6,7,9},{5,6,7,10}, {5,6,7,11}, {5,6,8,9}, {5, 6,8, 10},
{5,6,8,11), {5,6,9, 10}, {5,6,9,11}, {5, 6, 10,11}, {5,7,8,9}, {5,7, 8, 10},
{5,7,8,11},{5,7,9,10},{5,7,9,11}, {5,7, 10,11}, {5,8,9, 10}, {5,8,9, 11},
{5,8,10,11}, {5,9, 10,11}, {6,7,8,9},{6,7,8,10}, {6,7,8, 11}, {6,7,9, 10},
{6,7,9,11},{6,7,10, 11}, {6,8,9, 10}, {6,8,9, 11}, {6,8, 10, 11}, {6,9, 10, 11},
{7,8,9,10},{7,8,9,11},{7,8,10,11},{7,9,10,11}, {8,9, 10, 11}}

We apply the above procedure P1 and obtain the vertices uq, vo, v3 and
c labels of Hs. Let €] = cva, e = cvs and e = vavs. Then form all possible
edge weights w(e}),i = 1,2,3 from the labels {f(u1), f(v2), f(vs), f(c)}.
Clearly, at least one of the edge weight w’ & {w1,ws, ws,ws} € S1, which
is a contradiction. Thus x;,,(H3) > 5.

Now, we define a labeling fs : V(H3) — {1,2,3,4,5,6,7} by fs(c)

37f6(u1) = 4af6(u2) = 5af6(u3) = 6,f6(’1)1) = 77.}(-6(1}2) = 27f6(v3) =L
Then the edge weight of H3 are wg(cui) = 7,we(cuz) = 8, wg(cus) =
9, we(uruz) = 977116(”2%;) = 11, we(ugu1) = 1l0aw6(ulvl) = 11, we(ugvz) =
7, we(usvs) = 7. Thus x,,,(H3) < 5. Hence x;,,(Hs3) = 5. a

P2 :Procedure for obtaining the vertices v, v2,v3 and vy labels of
H, graph
Let V(Hy) = {c,vi,u;,1 < i < 4} E(Hy) = {cvi,viui,1 < @ < 4} U
{vivit1,1 < i < 3} U {vivg} be the vertex set and edge set of Hy. Then
|[V(Hy)| = 9.

Let S5 be the set of all possible four weights set {w1, wa, w3, wy}. Clearly,
7 <w < 13, where w € {wy, w2, w3, w4}.

Step 1: Let s € Sp and f(c) = z,1 < 2 < 9. Then we construct a 9 x 4
subtraction table using f(v;) = w; — z,1 < i < 4.

Step 2: If f(v;) <0, f(vi) = f(c) and f(v;) > 10 then remove the cor-
responding row labels from the 9 x 4 subtraction table. The remaining
row labels are received by the vertices v1,v9,v3 and vg. Clearly, f(v;) €
{1,2,3,4,5,6,7,8,9},i =1,2,3,4.

Step 3: The edges e; = v1v2,e9 = v9v3,e3 = wv3vg and eq4 = vqv; With
their weights w(e;) € {w1, w2, ws, ws}. Use the vertices labels which are
obtained from Step 2 to form a weight w(e = wv) = f(u) + f(v),u,v €
{v1,v2,v3,v4},e € {e1,e2,€3,€4}.
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Step 4: Ifw(e) ¢ {w1,ws, w3, ws} for some e then x,,, (Hy) # 4. Otherwise,
X;ea(Hzl) = 4 provided the pendant edges e, = vu;,i = 1,2,3,4 with
their weights w(e}) € {w1,we,ws, wa} for all i = 1,2,3,4. These pendant
edge weights are obtained from the pendant vertices labels f(u;) = [9] —
{f(c)vf(vi)a 1<i< 4}'

Theorem 2.5. For the helm graph Hy, we have x,,,(Hi) = 5.

Proof. Let V(Hy) = {c,vi,ui, 1 < i <4} and E(Hy) = {cvi,viug, 1 <
i < 4} U {vvig1,1 < i < 3} U {viva} be the vertex set and edge set of
Hy. Then |V(Hy)| = 9 and |E(Hy)| = 12. Suppose X).,(Hs) = 4. Then
there exists a local edge antimagic labeling f with 4-colors wy, wa, ws and
wy. Every color w;,1 < ¢ < 4 must assigned to three nonadjacent edges
of Hy. So, every edge e = uv with weight w(e) has at least 3 possibles
two elements sets. The minimum and maximum possible edge weights are
7 and 13. Let S2 be the collection of all possible 4 edge weights from the
set {7,8,9,10,11,12,13}. Then there are 35 possible such sets are given as
follows:

Sy = {{7,8,9,10},{7,8,9,11},{7,8,9,12},{7,8,9, 13}, {7,8,10, 11}
{7,8,10,12},{7,8,10,13},{7,8,11,12},{7,8,11, 13}, {7, 8,12, 13},
{7.9,10,11},{7,9,10,12},{7,9,10,13},{7,9,11,12},{7,9,11, 13},
{7,9,12,13},{7,10,11,12},{7,10,11, 13}, {7, 10,12, 13}, {7, 11,12, 13},
{8,9,10,11},{8,9,10,12},{8,9,10, 13}, {8,9, 11, 12}, {8,9, 11, 13},
{8,9,12,13}, {8,10, 11,12}, {8,10, 11,13}, {8, 10, 12, 13}, {8, 11, 12, 13},
{9,10,11,12}, {9, 10,11, 13}, {9, 10, 12, 13}, {9, 11, 12, 13}, {10, 11, 12, 13}}

We apply the above procedure P2 and obtain the vertices vy, v2,v3
and vy labels of Hy. Let €] = vivg, e = vavs,eh = v3vg and €y = vjvg.
Then form all possible edge weights w(e}),i = 1,2,3,4 from the labels
{f(v1), f(v2), f(v3), f(va), f(c)}. Clearly, at least one of the edge weight
w' & {w,we, ws,ws}, where w' € {w(e)),w(e)), w(es),w(ey)}, which is a
contradiction. Thus ¥, (Hs) > 5.

Now, define the labeling f7 : V(Hy) — {1,2,3,4,5,6,7,8,9} by f7(c) =
57f7(u1) = 7,f7(U2) = 4,f7('LL3) - 6,f7(U4) = 3,f7<1)1) = 1,f7(1)2) =
8, f7(v3) = 2, f7(v4) = 9. Then the edge weights are wr(cuy) = 12, wr(cug) =
9, wr(cuz) = 11, wr(cuq) = 8, wr(uiuz) = 11, wr(uguz) = 10, wy(ugug) =
9,’[07(U4U1)/ = 1O,w7(u1111) == 8,/107(U2’02) == 12,’11)7(’&31)3) = 8,’w7(U4U4) =
12. Thus x;,,(H4) < 5. Hence x;,,(Hs) = 5. O

Theorem 2.6. For the helm graph H,,n > 5, we have Xgea(Hn) =n.
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Proof. Let V(H,) = {c,uj,v;,1 < i <n} and E(H,) = {cuj,uv;, 1 <
i <n}U{uuiyi,l <i<n-1}U{upur}. Then |V(H,)| = 2n+ 1 and
|E(Hy)| = 3n. Define a bijection fs: V(H,) — {1,2,...,2n+ 1} by

felc)=n+1
%2” if nisodd and iisodd, 1 <i<n—2
% if nisodd and iiseven, 2 <i<n-—1
fs(ui) = Znizs%z nisodd, i=n ,
St if niseven and 7isodd, 1 <i<n-—1

n if nis even, ¢ = 2
”772” if nis even and i¢is even, 4 <i<n
% if nisodd and 7is odd, 1 <7 <mn —2

if nisodd and 7iseven, 2 <i<mn-—1

SN

folvs) = -2H ifnisodd, i =mn
S % if nisevenand ¢isodd, 1 <¢<n—1
Sntd if nis even and i = 2

2 .
% if nis even and iis even, 4 <i<n

The edge weights of H,, are
3ntdti if ) ig odd and 7isodd, 1 <i<n—2

2.
SndT=t if pis odd and iis even, 2 <i<n-—1
2n+3 ifnisodd,i=n

wg(cu;) = e .. .

s(cui) % if niseven and 7isodd, 1 <i<n—1
2n+1 if niseven, i =2
3nti if niseven and iis even, 4 <i<n

2
Sntd if pis odd and iis odd, 1 <i<n—2
3nt5  if nis odd and iis even, i =nand 2<i<n—1

) — 2
wg(u;v;) = e . .
8(uivi) 3ntd if nis even and iisodd, 1 <i<n—1

5"T+4 if nis even and iis even, 2 <i<mn

2n+3 ifnisodd and iisodd, 1 <i<mn —2
2n+4 ifnisodd and iiseven, 2 <i<n—3
% if nisevenand ¢ =1

ws(Uitii+1) = 57" if nis even and i = 2
2n+1 ifniseven and iisodd, 3 <i<n-—1
2n if niseven and ¢iseven, 4 <i<n—2
ws(Un—1un) = 2n+ 5,if nis odd,
ws(Unuy) = 3”;7, if n is odd,

ws (Unui) = 57”,if n is even.
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For n is odd, the weights of the edges {cu;,7is odd, cuy, cu;, is even},
under the labeling fg, constitute the 5et5 {n+2 + "H , 42 + "*3,n +24
oS 2n+1), {2043}, {2043+ 252, 2n4-34- 253 2n+3+ ., 2n+4}.
For n is even, the weights of the edges {cuz, iis odd cua, cul, i 2 4 is even},
under the labeling f3, constitute the sets {2n+2+44,2n+2+ ”;2, 2n+2+
o4 2n+4,2n+ 3}, {2n+ 1}, {2n+ 2 +2,2n+ 2 +3 2n+5+4,...,2n}
and rest of the edge weights of H,, under the labehng fs, are belongs to
the weight of w(cu;),1 < i < n. Hence these sets consist of n colors and for
any two adjacent edges are received different colors. Therefore fs induces
a proper edge coloring of H,, and hence ., (H,) < n. Since A(H,,) = n, it
follows, we get X;.,(Hn) > n. Thus X, (Hy,) = n. O

A flower graph F'l,, is a graph obtained from a helm H,, by joining every
pendant vertex to the central vertex.

Theorem 2.7. For the flower graph Fl,, we have X;ea(Fln) =2n,n > 3.

Proof. Let V(Fl,) ={c,uj,v;,1 <i<n}and E(Fl,) = {cu;, cv;,uv;, 1 <
i < n}U{uuit1,1 <i <n-—1}U{uyui}. Then |V(Fl,)| = 2n+ 1 and
|E(Fl,)| = 4n.

For n = 3, we define a labeling fo : V(Fli3) — {1,2,3,4,5,6,7} by
fole) =3, folwr) =1, fo(uz) =4, fo(uz) =6, fo(v1) =7, fo(v2) =5, fo(vs) =
2. Then the edge weights of Fl3 are wg(cuy) = 4, wg(cug) = 7, wy(cug) =
9,wg(cv1) = 10,wg(cve) = 8,wg(cvs) = 5,w9(u1u2) = 5, wo(uguz) =
10, wg(usuy) = 7,wo(uivy) = 8,wg(ugve) = 9,wg(ugvz) = 8. Therefore,
Xjoq(Fl3) < 6. Since A(Fl3) = 6 and by Theorem 1.1[4], it follows, we
get Xy, (Fl3) > 6. Hence x;.,(Fl3) = 6. For n > 4, we define a bijection
fio: V(Fln) —>{1,2,...,2’I’L+1} by

33 if pis odd
flO(C)_{ 3n2+2 . :

5= if nis even
dnd3—i  if pis odd and iis odd, 1 <i<n—2

%12” if nisodd and iiseven, 2 <i<n—1
fio(w;) = 3”—;1 if nisodd, i =n

% if niseven and 7isodd, 1 <i<n—1

W if nis even and 7is even, 2 <i<n

% if nisodd and 7is odd, 1 <¢<n

2ndi if nis odd and iiseven, 2 <i<n-—1
fio(vi) =9 A

if niseven and 7isodd, 1 <i<n—1
if nis even and 7is even, 2 <i<n

2
2n+1
2



On local edge antimagic chromatic number of graphs 1409

Then the edge weights of Fl, are

% if nisodd and 7isodd, 1 <t <n—2
% if nisodd and 7iseven, 2 <i<n-—1
wio(cu;) =< 3n+2 ifnisodd,i=mn
% if niseven and 7isodd, 1 <i<n-—1
5"+T‘H if niseven and 7is even, 2 <i<n
% if nisoddand 7isodd, 1 <7 <n
wio(cv) = % %fn%s odd and us even, 2 Sz:gn—l
st if piseven and iis odd, 1 <¢<n—1
% if nis even and ¢is even, 2 <i<n
2n+2 ifnisodd and iisodd, 1 <i<n—2
% if nisodd and 7is even, 2 <i<n—1
wio(uivi) =< 2n+1 ifnisodd,i=n
2n+2 ifniseven and 7isodd, 1 <i<n—1
2n+1 if niseven and iis even, 2<i<mn

% if nis odd and 7isodd, 1 <7 <n —2
wio(uiti1) = % if nis odd and ¢iseven, 2 <¢<n—3
3n+2—1 ifniseven, 1 <i<n-—1
w10 (Un—1Up) = 5”;rl,if n is odd,
wio(upur) = T3 if nis odd,
wio(unpu1) = 5”;rél,if n is even.

The weights of the edges {cu;,cv;, 1 < i < n}, under the labeling fio,
constitute the sets {wig(cu;)}, {wio(cv;)} and rest of the edge weights of
Fl,,, under the labeling fig, constitute the sets {wio(u;v;), wio(uwiuir1)}
Hence these sets consist of 2n colors and for any two adjacent edges are
received different colors. Therefore, fig induces a proper edge coloring of
Fl,, and hence x,,(Fl,) < 2n. Since A(Fl,,) = 2n and by Theorem 1.1[4],
it follows, we get X, (Fl,) > 2n. Hence xj,,(Fl,) = 2n. O

The Closed Helm graph CH,, is obtained from H, by adding edges
vivi+1,1 <1 <n—1and v,v1.

Theorem 2.8. For the closed helm graph CH,, n > 6 and n is even, we
have X,,,(CH,) = n.

Proof. Let V(CH,) = {c,ui,vi,1 <i<n}and E(CH,) = {cu;, ujv;, 1 <
i < n}U{ujuipr, vivit1, 1 <i <n—1} U{uyug,v,vr . Then |V(CH,)| =
2n + 1 and |E(CH,)| = 4n. Now, we define a bijection fi; : V(CH,) —
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{1,2,...,2n+1} by

fii(e) =n+1 ‘
Sntd—tif jisodd, 1 <i<n-—1
fii(ui)) =4 n ' ifi=2
"722“ ifiiseven, 4 <i<n
ol ifiisodd, 1<i<mn-—1
fll(Ui) = 3n2+4 ifi=2
4’”267’ ifiiseven,4<i<n

Then the edge weights of C'H,, are

SndS=t if jisodd, 1 <i<n

wir(eu;)) =< 2n+1 ifi=2
% riseven, 4 <i<n
bng2  ifi=1
s (it ) = & if i =2
it on+1, ifiisodd, 3<i<n-—1
2n, ifiiseven, 4 <i<n-—2

w (va)— 3”;4, ifiisodd, 1 <i<n-—1
AT =) 5o if jiseven, 2<i<n

2 )
5%0)
wi(unu1) = —
2
3712—1-67 i=1
3n+8 i=9
w11 (Vivig1) = 20 .
2n+ 3, ifiisodd,3<i:<n-1
2n+4, ifiiseven, 4 <i<n—2
3n+8
wiy(vpv1) = 5

The weights of the edges {cu;,1 < i < n}, under the labeling fi1,
constitute the set {wi1(cu;)} and rest of the edges weights of CH,,, under
the labeling f11, constitute the set {wi1(u;v;), w11(uitit1), wi1(vivit1)}
Hence these sets consist of n colors and for any two adjacent edges are
received different colors. Therefore, f11 induces a proper edge coloring of
CH,, and hence x,,(CH,) < n. Since A(CH,,) = n and by Theorem 1.1[4],
it follows, we get X,.,(CHy) > n. Hence x,,,(CH,) = n. O
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3. Conclusion

In this paper, we obtained the local edge chromatic number for a friendship
graph, wheel graph, fan graph, helm graph, flower graph, and closed helm
graph C'H,,, where n is even. The problem of determining the local edge
chromatic number for remaining graphs is still open.
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