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Abstract

We consider, for a bounded open domain Ω in Rn; (n ≥ 1) and
a function u : Ω→ IRm; (m ≥ 1) the quasilinear elliptic system:

(QESw)(f,g)

½
−divσ (x, u (x) ,Du (x)) = v(x) + f(x, u) + divg(x, u) inΩ

u = 0 on ∂Ω,
(0.1)

Which is a Dirichlet problem. Here, v belongs to the dual space

W−1,p
0
(Ω, ω∗, Rm),

³
1
p +

1
p0 = 1, p > 1

´
, f and g satisfy some stan-

dard continuity and growth conditions. we will show the existence of a
weak solution of this problem in the four following cases: σ is mono-
tonic, σ is strictly monotonic, σ is quasi montone and σ derives from
a convex potential.
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1. Introduction

In this paper, the main point is that we not require monotonicity in the
or strict monotonicity of a typical Leray-Lions operators as it is usually
assumed in previous papers. The aims of this paper is to prove analo-
gous existence results under relaxed monotonicity, in particular under strict
quasi-monotonicity. The main technical tool we handle and use throughout
the proof are Young measures. By applying a Galerkin schema, we obtain
easily an approximating sequence uk. The Ball theorem [1] and especially
the resulting tools mode available by Hungerbühler to partial differential
equation theory give then a sufficient control on the gradient approximat-
ing sequence Duk to pass to the limit.This method is used by Dolzmann
[4], Muller [8], L. Boccardo; F. Murat [11], M. Candela [12] and Mainly by
Hungurbühler to get the existence of a weak solution for the quasilinear el-
liptic system [14]. This paper can be seen as generalization of Hungerbühler
and as a continuation of Y- Akdim [17]and [18]. we also based on all the
following references [3], [5], [6], [7], [9], [10] and [13].

2. Preliminary

Let ω = {ωij : 0 ≤ i ≤ n; 1 ≤ j ≤ m} and ω0 = (ω0j)1≤j≤m. weight
function systems defined in Ω and satisfying the following integrability con-
ditions:

ωij ∈ L1loc(Ω), ω
−1
p−1
ij ∈ L1loc(Ω), for some p ∈]1,∞[ and ∃s > Max(np ,

1
p−1)

such that ω−sij ∈ L1(Ω).

(2.1)

with ω∗ = {ω∗ij = ω1−p
0

ij : 0 ≤ i ≤ n, 1 ≤ j ≤ m}, σ = (σrs) with
1 ≤ s ≤ n, 1 ≤ r ≤ m and which satisfies some hypotheses (see below).
We denote by IMm×n the real vector space of m×n matrices equipped with
the inner product M : N =

X
ij

MijNij .

The Jacobian matrix of a function u : Ω −→ IRm is denoted by Du(x) =
(D1u(x),D2u(x), .....,Dnu(x)) with Di = ∂/∂(xi).

The space W 1,p(Ω, ω, IRm) is the set of functions

{u = u(x)| u ∈ Lp(Ω, ω0, IR
m)} , Diju =

∂ui

∂xj
∈ Lp(Ω, ωij , IR

m),

1 ≤ i ≤ n, 1 ≤ j ≤ m},
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with

Lp(Ω, ωij , IR
m) = {u = u(x)| | u | ωij

1
p ∈ Lp(Ω, IRm)}.

The weighted space W 1,p(Ω, ω, IRm) can be equipped by the norm :

kuk1,p,ω =

⎛⎝ mX
j=1

Z
Ω
|uj |pω0jdx+

X
1≤i≤n,1≤j≤m

Z
Ω
|Diju|pωijdx

⎞⎠ 1
p

,

the norm k.k1,ω,p is equivalent to the norm ||| . |||, on W 1,p
0 (Ω, ω, IRm), such

that, ||| u |||= (
X

1≤i≤n,1≤j≤m

Z
Ω
|Diju|pωijdx)

1
p

Proposition 2.1. The weighted Sobolev space W 1,p(Ω, ω, IRm) is a Ba-
nach space, separable and reflexive. The weighted Sobolev spaceW 1,p

0 (Ω, ω, IRm)
is the closure of C∞0 (Ω, ω, IR

m) in W 1,p(Ω, ω, IRm) equipped by the norm
k.k1,p,ω .

Proof: The prove of proposition is a slight modification of the analogous
one in [15] [Kufner-Drabek].

Definition 2.1. A Young measure (ϑx)x∈Ω is called W 1,p-gradient young
measures (1 ≤ p < ∞) if it is associated to a sequence of gradients Duk
such that uk is bounded in W 1,p(Ω).
The W 1,p-gradient young measures (ϑx)x∈Ω is called homogeneous, if it
doesn’t depend on x, i-e, if ϑx = ϑ for a.e. x ∈ Ω.

Theorem 2.1. (Kinderlehrer-Pedregal) Let (υx)x∈Ω, be a family of prob-
ability measures in (C(Mm×n))0, then (υx)x∈Ω are W 1,p Young measures if
and only if:

(i)There is a u ∈ W 1,p(Ω, IRm) such that Du(x) =

Z
Mm×n

Adϑx(A), a.e in

Ω.

(ii)Jensen’s inequality: φ(Du(x)) ≤
Z
Mm×n

φ(A)dϑx(A) hold for all φ ∈ Xp

quasi-convex, and
(iii)The function: ψ(x) =

R
Mm×n |A|pdϑx(A) ∈ L1(Ω). here, Xp denotes the

(not separable) space : Xp = {ψ ∈ C(Mm×n) : |ψ(A)| ≤ c× (1 + |A|p), for
all A ∈Mm×n}.

See [14].
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Theorem 2.2. (Ball) Let Ω ⊂ IRn be Lebesgue measurable, let K ⊂ IRm

be closed, and let uj : Ω→ IRm, j ∈ IN, be a sequence of Lebesgue measur-
able functions satisfying
uj → K, as j →∞, i-e. given any open neighborhood U of K ∈ IRm

limj→∞ |x ∈ Ω : uj(x) ∈ U | = 0. Then there exist a subsequence uk of uj
and a family ϑx, x ∈ Ω, of positive measures on IRm, depending measurably
on x, such that

(i) kϑxkM =

Z
IRm

dϑx ≤ 1, for a.e x ∈ Ω.
(ii)Suppϑx ⊂ K for a.e. x ∈ Ω.
(iii) f(uk) -

∗ hϑx, fi =
Z
IRm

f(λ)dϑx(λ) in L∞(Ω), for each continuous

functions f : IRm → IR satisfying
lim f(λ) = 0, |λ|→∞ [1].

Theorem 2.3. (Vitali) Let Ω ∈ IRn be an open bounded domain and let
un be a sequence in Lp(Ω, IRm) with 1 ≤ p <∞,
then un is a Cauchy sequence in the L

p- norm if and only if the two following
conditions holds:
(i) un is Cauchy in measure ( i-e.: ∀ε > 0, | {x ∈ Ω|un(x)−um(x)| ≥ ε} |= 0
as m,n→∞.
(ii) (|un|p) is equi-integrable i-e :
(supn

Z
Ω
|un|pdx < ∞ and ∀ε > 0,∃δ > 0 such that

Z
E
|un|pdx < ε for all

n whenever E ⊂ Ω and |E| < δ.) Note that if un converges pointwise, then
un is cauchy in measure.

Hypotheses (H0) ( Hardy inequality ): There exist a constant c > 0, a
weighted function γ and a real q (1 < q <∞) such that,⎛⎝ mX

j=1

Z
Ω
|uj(x)|qγj(x)dx

⎞⎠ 1
q

≤ c

⎛⎝ X
1≤i≤n; 1≤j≤m

Z
Ω
|Diju|pωij

⎞⎠ 1
p

,

for all u ∈W 1,p
0 (Ω, ω, IRm), with γ = {γj/1 ≤ j ≤ m} .

The injection W 1,p
0 (Ω, ω, IRm) /→/→ Lq(Ω, γ, IRm) is compact.

By the conditions (2.1) we have W 1,p
0 (Ω, ω, IRm) /→ W 1,ps(Ω, IRm), with

(ps =
ps
s+1), and W 1,p

0 (Ω, ω, IRm) /→/→ Lr(Ω, IRm) is compact, (by [15])
with (

1 ≤ r ≺ nps
n(s+1)−ps if ps ≺ n(s+ 1)

r ≥ 1 if n(s+ 1) ≺ ps
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(H1) Continuity: σ : Ω×IRm×IMm×n −→ IMm×n is a Carathéodory func-
tion ( i-e x 7−→ σ(x, u, F ) is measurable for every (u, F ) ∈ IRm × IMm×n

and (u, F ) 7−→ σ(x, u, F ) is continuous for almost every x ∈ Ω).
(H2) There exist c1 ≥ 0, c2 > 0 λ1 ∈ Lp0(Ω), λ2 ∈ L1(Ω), λ3 ∈ L(p/α)

0
(Ω), 0 <

α < p, 1 < q <∞ and β > 0 such that for all 1 ≤ r ≤ n; 1 ≤ s ≤ m, we
have the Growths conditions:

|σrs(x, u, F )| ≤ βω1/prs [λ1(x)+c1

mX
j=1

|γj |1/p
0 ·|uj |q/p

0
+c1

X
1≤i≤n; 1≤j≤m

ω
1/p0

ij |Fij |p−1]

(2.2)
and coercivity conditions:

σ(x, u, F ) : F ≥ −λ2(x)−
mX
j=1

ω0j(x)
α/pλ3(x)|uj |α+c2

X
1≤i≤n; 1≤j≤m

ωij(x)·|Fij |p

(2.3)
(H3) Monotonicity conditions: σ satisfies one of the following conditions:

a) For all x ∈ Ω, and all u ∈ IRm, the map F 7−→ σ(x, u, F ) is a C1-
function and is monotone( i-e, (σ(x, u, F )−σ(x, u,G)) : (F −G) ≥ 0,
for all x ∈ Ω, all u ∈ IRm and all F,G ∈ IMm×n).

b) There exists a function W : Ω × IRm × IMm×n −→ IMm×n such that

σ(x, u, F ) =
∂W

∂F
(x, u, F ) and F 7−→ W (x, u, F ) is convex and C1

function.

c) For all x ∈ Ω, and for all u ∈ IRm the map F 7−→ σ(x, u, F ) is strictly
monotone (i.e, σ(x, u, .) is monotone and :
[(σ(x, u, F )− σ(x, u,G)) : (F −G) = 0] =⇒ F = G).

d) σ(x, u, F ) is strictly p-quasi-monotone in F , i.e,Z
IMm×n

(σ(x, u, λ)− σ(x, u, λ)) : (λ− λ))dϑ(λ) > 0,

for all homogeneous W 1,p-gradient young measures ϑ with center of
mass λ = hϑ, idi which are not a single Dirac mass.
The main point is that we do not require strict monotonicity or mono-
tonicity in the variables (u,F ) in (H3) as it is usually assumed in
previous work see ([2] or [16]). (F0): ( continuity) f : Ω× IRm → IRm
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is a Carathéodory function i-e: x 7→ f(x, u) is measurable for every
u ∈ IRm, and, u 7→ f(x, u) is continuous for almost every x ∈ Ω.
(F1): (growth condition ): There exist : b1 ∈ Lp0(Ω) such that :

|fj(x, u)| ≤ [b1(x) + γ
1
p0
j |uj |

q
p0 ]ω

1
P
0j ; ∀j = 1; ...;m.

(G0): (continuity) the map g : Ω× IRm → IMm×n is a Carathéodory
function.
(G1): (growth condition) there exist : b2 ∈ Lp0(Ω)

|grs| ≤ ω
1
p
rs[b2 +

X
j

γ
1
p0
j |uj |

q
p0 ]

For all 1 ≤ r ≤ n and 1 ≤ s ≤ m.
Under the previous hypotheses H0,H1,H2, F0, F1, G0, G1 and in each
condition of H3; a, b, c and d we will demonstrate the existence of a
weak solution of system (QESw)f,g in the space W

1,P
0 (Ω, ω, IRm).

Remark 2.1. The conditions (F0) and (G0) ensure the measurability of f
and g for all measurable function u.
(F1) and (G1) ensure that growths conditions, in particularly: if u ∈
W 1,P
0 (Ω, ω, IRm) then f(., u).u and g(., u) : Du is in L1(Ω, ω).

If g = 0 we denote the system (QES)f,g by (QES)f .

Theorem 2.4. If p ∈ (1,∞) and σ satisfies the conditions (H1) − (H3),
f satisfies (F0) and (F1) and g satisfies (G0) and (G1), then the Dirichlet
problem (QESW )f,g has a weak solution u ∈ W 1,p

0 (Ω, ω, IRm), for every
v ∈W−1,p0(Ω, ω∗, IRm).

Lemma 2.1. For arbitrary u ∈W 1,p
0 (Ω, ω, IRm) and v ∈W−1,p0(Ω, ω∗, IRm),

the functional

F (u) :W 1,p
0 (Ω, ω, IRm) −→ IR

ϕ 7−→
Z
Ω
σ(x, u(x),Du(x)) : Dϕ(x)dx

− hv, ϕi−
Z
Ω
f(x, u) : ϕdx+

Z
Ω
g(x, u) : Dϕdx

is well defined, linear and bounded.
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Proof For all ϕ ∈W 1,p
0 (Ω, ω, IRm), we denote

F (u)(ϕ) = I1 + I2 + I3 + I4

with

I1 =

Z
Ω
σ(x, u(x),Du(x)) : Dϕ(x)dx,

I2 = − hv, ϕi ,

I3 = −
Z
Ω
f(x, u) : ϕdx

and

I4 =

Z
Ω
g(x, u) : Dϕdx.

We define

Irs =

Z
Ω
σrs(x, u(x),Du(x)) : Drsϕ(x)dx

Firstly, by virtue of the growth conditions (H2) and the Hölder inequality,
one has

|Irs| ≤
Z
Ω
|σrs(x, u(x),Du(x))| : |Drsϕ(x)|dx

≤
Z
Ω
βω1/prs (x)[λ1(x) + c1

mX
j=1

|γj(x)|1/p
0 |u(x)|q/p0 + c1X

1≤i≤n; 1≤j≤m
ω
1/p0

ij |Dij |p−1]|Drsϕ|dx.

≤ β[(

Z
Ω
|λ1(x)|p

0
dx)1/p

0
(

Z
Ω
|Drsϕ(x)|pωrsdx)1/p

+(

Z
Ω
|Drsϕ(x)|pωrs)1/p(

mX
j=1

Z
Ω
|uj |qγjdx)1/p

0

+(
X

1≤i≤n; 1≤j≤m

Z
Ω
|Diju|pωijdx)1/p

0
(

Z
Ω
|Drsϕ|pωrsdx)1/p]

with (p = p0(p− 1)), and thanks to Hardy-Type inequalities we have:

|Irs| ≤ cβ

⎡⎣ kλ1kp0 kϕk1,p,ωrs + c1 kDϕkp,ωrs (
Z
Ω
|u|qγdx)1/p0

+c1
X
ij

kDϕkp,ωij kDukp,ωrs

⎤⎦
≤ c0β[kλ1kp0 kϕk1,p,ωrs + kϕk1,p,ωrs kukq,γ + kuk1,p,ω kϕk1,p,ωrs
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with c0 = max(c, 1). Which gives

|I1| ≤ c0β[kλ1kp0 + kukq/p
0

1,p,ω + kuk1,p,w]kϕk1,p,ω <∞.

and

|I2| ≤
Z
Ω
|v||ϕ|dx ≤ kvk−1,p0,ω∗ kϕk1,p,ω <∞.

I3 =
X
j

Z
Ω
fj(x, u)ϕj(x)dx.

We denote I3,j = |
Z
Ω
fj(x, u)ϕj(x)dx|.

I3,j ≤
Z
Ω
|fj(x, u)||ϕj(x)|dx

≤
Z
Ω
b1(x)|ϕj(x)|ω

1
P
0jdx+

Z
Ω
γ
1
p0
j |uj |

q
p0 |ϕj(x)|ω

1
P
0jdx

≤ (
Z
Ω
|b1(x)|p

0
)
1
p0 (

Z
Ω
|ϕj(x)|pω0jdx)

1
p+(

Z
Ω
γj(x)|uj |qdx)

1
p0 (

Z
Ω
|ϕj(x)|pω0jdx)

1
p

≤k b1 kp0k ϕ k1,p,ω +(
X
j

Z
Ω
γj(x)|uj |qdx)

1
p0 k ϕ k1,p,ω

≤k b1 kp0k ϕ k1,p,ω +c k Du k1,p,ωk ϕ k1,p,ω

≤ (k b1 + c k Du k1,p,ω) k ϕ k1,p,ω .

I4 =
X
rs

Z
Ω
grs(x, u)Drsϕdx

Z
Ω
|grs| : |Drsϕ|dx ≤

Z
Ω
b2ω

1
p
rsDrsϕdx+

X
j

Z
Ω
γ
1
p0
j (x)|uj |

q
p0 ω

1
p
rsDrsϕdx
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≤ (
Z
Ω
|b2|p

0
dx)

1
p0 (

Z
Ω
|Drsϕ|pωrsdx)

1
p+
X
j

(

Z
Ω
|uj |qγj(x)dx)

1
p0 (

Z
Ω
|Drsϕ|pωrs(x)dx)

1
p

≤ kb2kp0kDrsϕk1,p,ωrs + kuk
q
p0
q,γ(

Z
Ω
|Drsϕ|pωrsdx)

1
p

I4 ≤k b2 kp0k Drsϕ k1,p,ωrs +kuk
q
p0
q,γ(

Z
Ω
|Drsϕ|pωrsdx)

1
p

≤k b2 kp0k Dϕ k1,p,ω +kuk
q
p0
q,γ k Dϕ k1,p,ω

≤ c00 k ϕ k1,p,ω,

hence I ≤ c4 k ϕ k1,p,ω with c4 <∞

Finally the functional F (.) is bounded.

Lemma 2.2. The restriction of F to a finite dimensional linear subspace
V of W 1,p

0 (Ω, ω, IRm) is continuous.

Proof Let d be the dimension of V and (e1, e2, ..., ed) a basis of V . Let
uj =

X
1≤i≤d

aij .ei be a sequence in V which converges to u =
X
1≤i≤d

aiei in V.

The sequence (aj) converge to a ∈ IRd, so uj −→ u and Duj −→ Du a.e.,
on the other hand kujkp and kDujkp are bounded by a constant c. Thus,
it follows by the continuity conditions (H1), that

σ(x, uj ,Duj) : Dϕ −→ σ(x, u,Du) : Dϕ

for all ϕ ∈ W 1,p
0 (Ω, ω, IRm) and a.e. in Ω. Let Ω0 be a measurable subset

of Ω and let ϕ ∈W 1,p
0 (Ω, ω, IRm).

Thanks to the condition (H2), we getZ
Ω0
|σ(x, uj ,Duj) : Dϕ|dx <∞.
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By the continuity conditions (F0) and (G0) we have:

f(x, uj).ϕ→ f(x, u).ϕ

and

g(x, uj).Dϕ→ g(x, u).Dϕ

almost everywhere. Moreover we infer from the growth conditions (F1) and
(G1) that the sequences:
(σ(x, uj ,Duj) : Dϕ)? (f(x, uj).ϕ) and (g(x, uj).Dϕ)
are equi-integrable. Indeed, if Ω0 ⊂ Ω is a measurable subset and ϕ ∈
W 1,p
0 (Ω, ω, IRm) then:

Z
Ω0
|f(x, uj).ϕ|dx < ∞ ( by (F1) and Hölder in-

equality),Z
Ω0
|g(x, uj).Dϕ|dx <∞ (by (G1) and Hölder inequality ),Z

Ω0
|σ(x, uj ,Duj) : Dϕ|dx <∞ (by Hölder inequality),

which implies that σ(x, uj ,Duj) : Dϕ is equi-integrable. And by applying
the Vitali’s theorem, it follows thatZ

Ω
σ(x, uj ,Duj) : Dϕdx −→

Z
Ω
σ(x, u,Du) : Dϕdx,

for all ϕ ∈W 1,p
0 (Ω, ω, IRm.

Finally

lim
j→∞

hF (uj), ϕi = hF (u), ϕi ,

which means that

F (uj) −→ F (u) in W−1,p0(Ω, ω∗, IRm).

Remark 2.2. Now, the problem (QES)f,g is equivalent to find a solution

u ∈W 1,p
0 (Ω, ω, IRm) such that hF (u), ϕi = 0, for all ϕ ∈W 1,p

0 (Ω, ω, IRm).
In order to find such a solution we apply a Galerkin Schema.

3. Galerkin approximation

Remark 3.1. (Galerkin Schema)
Let V1 ⊂ V2 ⊂ ..... ⊂W 1,p

0 (Ω, ω, IRm) be a sequence of finite dimensional
subspaces with

S
k∈IN Vk dense in W 1,p

0 (Ω, ω, IRm). The sequence Vk exists

since W 1,p
0 (Ω, ω, IRm) is separable.
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Let us fix some k, we assume that Vk has a dimension d and that
(e1, e2, ...., ed) is a basis of Vk, then we define the map

G : IRk −→ IRk

(a1, ....., ak) 7−→
ÃD

F (
Pd

i=1 aiei), e1
E
, ...,

D
F (
Pd

i=1 aiei), ed
E!t

.

Proposition 3.1. The map G is continuous and G(a) · a tends to infinity
when kakIRk tends to infinity.

Proof. Since F restricted to Vk is continuous by Lemma 2.2, so G is
continuous.
let a ∈ IRd and u =

X
1≤i≤d

ai · ei in Vk, then G(a) · a = hF (u), ui and which

implies that kakIRd tends to infinity if kuk1,p,ω tends to infinity.

G(a) · a =
X
1≤i≤d

hF (u), ai · eii = hF (u), ui

and

kukp1,p,ω =

°°°°°°
X
1≤i≤d

ai · ei

°°°°°°
p

1,p,ω

≤

⎛⎝ X
1≤i≤d

|ai| · keik1,p,ω

⎞⎠p

≤ max
1≤i≤d

³
keikp1,p,ω

´
·

⎛⎝ X
1≤i≤d

|ai|

⎞⎠p

≤ c · kakIRp ,

which implies that kakIRp tends to infinity if kuk1,p,ω tends to infinity.
Now, it suffices to prove that

hF (u), ui→∞ when kuk1,p,ω →∞.

Indeed, thanks to the first coercivity condition and the Hölder inequality,
we obtain

I =

Z
Ω
σ(x, u,Du) : Dudx ≥ − kλ2k1−

Z
Ω
λ3ω

α/p
0j |uj |αdx+c2

X
1≤i,j≤n,m

Z
Ω
|Diju|pωijdx.

By the Hölder inequality, we haveZ
Ω
λ3|uj |αωα/p0j dx ≤ kλ3k(p/α)0

µZ
Ω
ω0j |uj |(p/α)·α dx

¶α/p
≤ c0 kλ3k(p/α)0 kujk1,p,ω0j .



1534 El Houcine Rami, Elhoussine Azroul and Abdelkrim Barbara

where c0 is a constant positive.
For kuk1,p,ω large enough, we can write

| I | ≥ − kλ2k1 − c0 kλ3k(p/α)0 · kujk
α
1,p,ω0j

+ c2 ·
X

1≤i,j≤n,m
kDujkp1,p,ωij

≥ − kλ2k1 − c0 kλ3k(p/α)0 · kuk
α
1,p,ω + c2c

0 · kukp1,p,ω ,

and since

|I 0| = | hv, ui | ≤ kvk−1,p0,ω∗ · kuk1,p,ω .

Finally, it follows from the growth condition F1 and G1 that:

|I 00| = |
Z
Ω
f(x, u).udx| ≤ (kb1kp0 + c.kDuk1,p,ω).kuk1,p,ω

.

≤ c3.kuk1,p,ω

|I 000| = |
Z
Ω
g(x, u).Dudx| ≤ (kb2kp0 + kuk

q
p0
q,γ).kDuk1,p,ω ≤ c4.kuk1,p,ω;

with c4 is a constant, 0 < α < p and p > 1, we get:

I − I 0 − I 00 ≥ c2.c
0. · kukp1,p,ω − kvk−1,p0,ω∗ · kuk1,p,ω − c0 kλ3k(p/α)0 · kuk

α
1,p,ω

− kλ2k1 − c3. kuk1,p,ω(3.1)

Consequently, by using (??), we deduce

I − I 0 − I 00 −→∞ as kuk1,p,ω −→∞

. and

I 000 −→∞ as kuk1,p,ω −→∞

.

hF (u), ui −→∞ as kuk1,p,ω −→∞

.

Remark 3.2. The properties of G allows us to construct our Galerkin
approximations.

Corollary 3.1. For all k ∈ IN, there exists (uk) ⊂ Vk such that hF (uk), ϕi =
0, for all ϕ ∈ Vk.
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Proof By the proposition 3.1, there exists R > 0, such that for all a ∈
∂BR(0) ⊂ IRd, we have G(a) · a > 0, and the usual topological argument
see.e.g [Zei 86 proposition 2.8] [19] implies that G(x) = 0 has a solution
x ∈ BR(0). So, for all k ∈ In, there exists (uk) ⊂ Vk, such thatD

F (xjej), ej
E
= 0 for all 1 ≤ j ≤ d, with d = dimVk.

Taking uk = (x
i
kei), ei ∈ Vk, so we obtain:

h(F (uk)), ϕi = 0, for all ϕ ∈ Vk.

Proposition 3.2. The Galerkin approximations sequence constructed in
corollary 3.1 is uniformly bounded in W 1,p

0 (Ω, ω, IRm); i.e.,

there exists a constant R > 0, such that kukk1,p,ω ≤ R, for allk ∈ IN.

Proof Like in the proof of proposition 3.1, we can see that

hF (u), ui −→∞ as kuk1,p,ω −→∞.

Then, there exists R satisfying hF (u), ui > 1 when kuk1,p,ω > R. Now, for
the sequence of Galerkin approximations (uk) ⊂ Vk of corollary 3.1, which
satisfying hF (uk), uki = 0, we have the uniform bound kukk1,p,ω ≤ R, for
all k ∈ IN.

Remark 3.3. There exists a subsequence (uk) of the sequence (uk) ⊂ Vk,
such that:

uk - u in W 1,p
0 (Ω, ω, IRm)

and
uk −→ u in measure in Lr(Ω, IRm);

with (
1 ≤ r ≺ nps

n(s+1)−ps if ps ≺ n(s+ 1)

r ≥ 1 if n(s+ 1) ≺ ps

The gradient sequence (Duk) generates the Young measure ϑx, Since uk −→
u in measure, then (uk,Duk) generates the Young measure (δu(x)⊗ϑx), see
e.g [4] . Moreover, for almost x in Ω, we have,

(i) ϑx is the probability measure, i.e, kϑxkmes = 1.

(ii) ϑx is the W
1,p,ω - gradient homogeneous Young measure.

(iii) hϑx, idi = Du(x), see e.g [3].

Proof. See [4].( Dolzmann, N.Humgerbühler s Muller. Non linear elliptic
system....)
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4. Passage to the limit

Now, we are in a position to prove our main result under convenient hy-
potheses.
Let

Ik = (σ(x, uk,Duk)− σ(x, u,Du)) : (Duk −Du).(4.1)

Lemma 4.1. (Fatou lemma type) ( See [4]) Let : F : Ω×IRm×IMm×n −→
IR be a Carathéodory function, and uk : Ω −→ IRm a measurable sequence,
such that (Duk) generates the Young measure ϑx, with kϑxkmes = 1, for
a.e. x ∈ Ω. Then:

lim inf
k→∞

Z
Ω
F (x, uk,Duk)dx ≥

Z
Ω

Z
IMm×n

F (x, u, ζ)dϑx(ζ)dx,(4.2)

which provided that the negative part of F (x, uk,Duk) is equi-integrable.

Lemma 4.2. Let p > 1 and uk be a sequence which is uniformly bounded
in W 1,p

0 (Ω, ω, IRm). There exists a subsequence of uk ( for convenience
not relabeled ) and a function u ∈ W 1,p

0 (Ω, ω, IRm) such that uk - u in
W 1,p
0 (Ω, ω, IRm)

And such that uk → u in measure on Ω and in Lr(Ω, IRm), with :(
1 ≤ r ≺ nps

n(s+1)−ps if ps ≺ n(s+ 1)

r ≥ 1 if n(s+ 1) ≺ ps

Proof. see [14], with a slight modification.

Lemma 4.3. The sequence (Ik) is equi-integrable.

Proof

We have

Ik = (σ(x, uk,Duk)− σ(x, u,Du)) : (Duk −Du)
= [σ(x, uk,Duk) : Duk]− [σ(x, uk,Duk) : Du]− [σ(x, u,Du) : Duk]

+[σ(x, u,Du) : Du]

= I1k + I2k + I3k + I4k
(4.3)
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We denote (I1k)
− = −[σ(x, uk,Duk : Duk]

−. Thanks to the coercivity
condition (H2), we have

Z
Ω0
|(I1k)−|dx ≤

Z
Ω
|λ2|+ c2

X
1≤j≤m

ω
α
p

0j |λ3| · |ukj |α + c
X

1≤i,j≤n,m
ωij |Dijuk|pdx

≤ kλ2k1 +
Z
Ω0
(
X

1≤j≤m
ω
α/p
0j |ukj |α)p/αkλ3k(p/α)0 + c2 kukkp1,ω,p

(4.4)
with p/α ≥ 1. Therefore,Z

Ω0
|(I1k)−|dx ≤ kλ2k1 +

µ X
1≤j≤m

ω0j |ukj |p
¶α/p

kλ3k(p/α)0 + c2 kukkp1,ω,p

≤ kλ2k1 + kukkαp,ω00kλ3k(p/α)0 + c2 kukkp1,ω,p
< ∞,

for all Ω0 ⊂ Ω.
Similarly for (|(I4k)−|.

Now, by using the growth condition (H2) and the Hardy -Type inequal-
ities (H0), we haveZ

Ω0
|(I2k)−|dx =

Z
Ω0
|σ(x, uk,Duk) : Duk|dx

≤ β

Z
Ω0
ω1/prs

⎛⎝λ1 + c1
X

1≤j≤m
γ
1/p0

j .|ukj |q/p
0

+c1
X

1≤i,j≤n,m
ω
1/p0

ij |Dijuk|p−1
⎞⎠Drsukdx.

(4.5)

Thus, by the Hölder inequality, we obtainZ
Ω0
|(I2k)−|dx ≤ β

"
kλ1kp0

µZ
Ω0
|Drsuk|pωrsdx

¶1/p

+c1

µZ
Ω0
|Drsuk|pωrsdx

¶1/p⎛⎜⎝Z
Ω0

⎛⎝ X
1≤j≤m

γ
1/p0

j |ukj |q/p
0

⎞⎠p0

dx

⎞⎟⎠
1/p0

+c1

⎛⎝ X
1≤j≤m

Z
Ω0

³
|Dijuk(x)|p

0(p−1)ωijdx
´1/p0⎞⎠
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µZ
Ω0
|Drsuk|pωrsdx

¶1/p #
.(4.6)

So, by combining (4.5) and (??), we deduce thatZ
Ω0
|σ(x, uk,Duk) : Duk|dx ≤ c0β

¡
kλ1kp0kkukk1,p,ω + kukk1,p,ω

¢
<∞.(4.7)

Similarly to (|(I2k)−|, we obtain (|(I3k)−|. Finally: Ik is equi-integrable.
We choose a sequence ϕk such that ϕk belongs to the same space Vk and
ϕk → ϕ in W 1,p

0 (Ω, ω, IRm) this allows us in particular, to use uk −ϕk as a
test function in (3.1). We have:

Z
Ω
|σ(x, uk,Duk) : (Duk −Dϕk)|dx = hv, uk − ϕki

+

Z
Ω
f(x, uk)(uk − ϕk)dx−

Z
Ω
g(x, uk) : (Duk −Dϕk)dx.

(4.8)

The first term on the right in (4.8) converge to zero since (uk−ϕk)- 0
in W 1,p

0 (Ω, ω, IRm).
By the choice of ϕk, the sequence ϕk uniformly bounded inW

1,p
0 (Ω, ω, IRm).

And lemma (4.2) Next, for the second term: IIk =

Z
Ω
f(x, uk)(uk − ϕk)dx

in (4.8) it follows from the growth condition F1 and the Hölder inequality
that :

|IIk| ≤ (kb1kp0 + c.kD(uk − ϕk)k1,p,ω)kuk − ϕkk1,p,ω

≤ (kb1kp0 + c.kD(uk − ϕk)k1,p,ω).kuk − ϕkk1,p,ω.

By the equivalence of the norm in W 1,p
0 (Ω, ω, IRm) and the sequence (uk is

uniformly bounded in W 1,p
0 (Ω, ω, IRm), kukk1,p,ω is bounded. Moreover, by

the construction of ϕk, and lemma (4.2) we have:

kuk − ϕkk1,p,ω ≤ kuk − uk1,p,ω + ku− ϕkk1,p,ω

(kuk − uk1,p,ω + ku− ϕkk1,p,ω)→ 0

We infer that the second term in (4.8) vanishes as k →∞. Finally, for the
last term

IIIk =

Z
Ω
g(x, uk) : D(uk − ϕk)dx
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in (4.8), we note that
g(x, uk)→ g(x, u)

Strongly in Lp0(Ω,Mm×n) by (G0), (G1) and lemma (4.2).
Indeed we may assure that uk → u almost everywhere.

IIIk ≤ (kb2kp0 + kuk − ϕkk
q
p0
q,γ).kD(uk − ϕk)k1,p,ω

≤ c0.(kb2kp0 + kuk − ϕkk
q
p0
q,γ).k(uk − ϕk)k1,p,ω

≤ c0.(kb2kp0 + kuk − ϕkk
q
p0
q,γ).(kuk − uk1,p,ω + kϕk − uk1,p,ω)

kϕk − uk1,p,ω → 0, kuk − uk1,p,ω → 0 and kuk − ϕkk
q
p0
q,γ → 0.

Now, we consider (Ik)
0 = (σ(x, uk,Duk) : (Duk − Du). We have, I 0k is

equi-integrable because Ik it is. So, we define

X = lim inf

Z
Ω
Ikdx = lim inf

Z
Ω
(Ik)

0dx ≥
Z
Ω

Z
IMm×n

(σ(x, u, λ) : (λ−Du)dϑx(λ)

So to prove (4.2), it suffices to prove that:

X ≤ 0.(4.9)

Let ε > 0, so there exists k0 ∈ IN such that, for all k > k0, we have
dist(u, Vk) < ε since: (lim infϕk∈Vk(ku− ϕkk1,p,ω < ε, (uk - u)
Or in an equivalent manner dist(uk − u, Vk) < ε; ∀k > k0 then for all
vk ∈ Vk, we have

X = lim inf
k→∞

Z
Ω
(σ(x, uk,Duk) : (Duk −Du)dx

= lim inf
k→∞

∙Z
Ω
(σ(x, uk,Duk) : D(uk − u− ϕk)dx+

Z
Ω
(σ(x, uk,Duk) : D(ϕk)

¸
Combining (H2) and (0.1), we get

X ≤ lim inf
k→∞

Z
Ω
βω1/prs

⎡⎣λ1 + c1
X

1≤j≤m
γ
1/p0

j |ukj |q/p
0
+ c1

X
1≤i,j≤n,m

ω
1/p0

ij |Dijuk|p−1
⎤⎦

×|Drs(uk − u− ϕk)|dx+ hv, ϕki.
For all ε > 0, we choice ϕk ∈ Vk such that

kuk − u− ϕkk1,p,ω ≤ 2ε,(4.10)
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for all k ≥ k0. Which implies that

| hv, ϕki | ≤ | hv, ϕk + (u− uk)i |+ | hv, uk − ui | ≤ 2ε kvk−1,p0,ω∗ + o(k)

Hence limk→∞hv, uk−ui = 0. According to Hölder and Hardy inequalities,
and by (4.10) we deduce that

X ≤ lim inf
k→∞

cβ

⎛⎝°°°°λ1kp0(Z
Ω
|Drs(uk − u− ϕk)|p.ωrsdx

¶1/p
+c1

µZ
Ω
|uk|q.γ

¶1/p0
.

µZ
Ω
|Drs(uk − u− ϕk)|pωrsdx

¶1/p
+c1

µXZ
Ω
ωij |Diju|p

0(p−1)
¶1/p0

.

µZ
Ω
ωrs|Drs(uk − u− ϕk)|p

¶1/p⎞⎠
+| hv, ϕki |

≤ lim inf
k→∞

c
³
kλ1kp0 . kuk − u− ϕkk1,p,ω

´
+ kukkq1,p,ω kuk − u− ϕkk1,p,ω

+2ε kvk−1,p0,ω∗ + o(k)

Therefore,

X ≤ 2εcβ
³
kλ1kp0 + kukq1,p,ω + kvk−1,p0,ω∗

´
.

Which proves that X ≤ 0, and finallyZ
Ω

Z
IMmn

σ(x, u, λ) : λdϑxdx ≤
Z
Ω

Z
IMmn

σ(x, u, λ) : Dudϑx(λ)dx.

Proof of theorem2.4
For arbitrary ϕ in W 1,p

0 (Ω, ω, IRm). It follows from the continuity condition
(F0) and (G0) that

f(x, uk).ϕ(x)→ f(x, u).ϕ(x)

and

g(x, uk) : Dϕ(x)→ g(x, u) : Dϕ(x)

almost everywhere. Since, by the growth conditions (F1), (G1) and the uni-
form bound of uk, f(x, uk).ϕ(x) and g(x, uk) : Dϕ(x) are equi-integrable,
it follows that the Vitali’s theorem. This implies that:

lim
k→∞

Z
Ω
f(x, uk).ϕ(x)dx =

Z
Ω
f(x, u).ϕ(x)dx
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for all ϕ ∈ ∪∞k=1Vk
and

lim
k→∞

Z
Ω
g(x, uk) : Dϕ(x)dx =

Z
Ω
g(x, u) : Dϕ(x)dx

for all ϕ ∈ ∪∞k=1Vk We will start with the easiest case

(d) : F 7−→ σ(x, u, F ) is stictly p-quasi-monotone.(4.11)

Indeed, we assume that ϑx is not a Dirac mass on the setM with x ∈M
of positive Lebesgue measure |M | > 0. Moreover, by the strict p-quasi-
monotonicity of σ(x, u, ·) and ϑx is an homogeneous W

1,p gradient Young
measure for a.e. x ∈M. So, for a.e. x ∈M, with λ̄ = hϑx, Idi = apDu(x)),
with apDu(x)) is the differentiable approximation in x. We get

Z
IMm×n

σ(x, u, λ) : (λ−Du)dϑx(λ) >

Z
IMm×n

σ(x, u,Du) : (λ−Du)dϑx(λ)

> σ(x, u,Du) :

Z
IMm×n

λdϑx(λ)−
σ(x, u,Du) : Du

R
IMm×n dϑx(λ)

> (σ(x, u,Du) : Du− σ(x, u,Du) : Du)) = 0
> 0

On the other hand (4.9), integrating over Ω, and using the div-cul in-
equality we have:Z

Ω

Z
IMm×n

σ(x, u, λ) : λdϑx(λ)dx >

Z
Ω

Z
IMm×n

σ(x, u, λ) : Dudϑx(λ)dx

≥
Z
Ω

Z
IMm×n

σ(x, u, λ) : λdϑx(λ)dx.

Which is a contradiction with (4.8). Thus ϑx = δλ = δDu(x) for a.e. x ∈ Ω.
Therefore, Duk −→ Du in measure when k tends to infinity. Then, we
get σ(x, uk,Duk) −→ σ(x, u,Du) for all x ∈ Ω. In the other hand, for all
ϕ ∈ S

k∈IN
ϑk; σ(x, uk,Duk) : Dϕ −→ σ(x, u,Du) : Dϕ a.e. x ∈ Ω.Moveover,

for all Ω0 ⊂ Ω measurable, it is easy to see that:Z
Ω0
σ(x, uk,Duk) : Dϕdx ≤ cβ

³
kλ1kp0 + kukk

q/p0

1,p,ω + kukk
p/p0

1,p,ω

´
kuk1,p,ω <∞,

because kukk1,p,ω ≤ R. And thanks to Vitali’s theorem, we obtain:

hF (u), ϕi = 0, for all ϕ ∈
[
k∈IN

ϑk.

Which proves the theorem in this case.
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Remark 4.1. Before treating the cases (a), (b) and (c) of (H3), we note
that Z

Ω

Z
IMm×n

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du)dϑx(λ)dx ≤ 0(4.12)

Since Z
Ω

Z
IMm×n

σ(x, u, λ) : (λ−Du)dϑx(λ)dx = 0,

thanks to the div-Curl inequality in (4.9). On the other hand, the inte-
grand in (4.12) is non negative, by the monotonicity of σ. Consequently,
the integrating should be null, a.e., with respect to the product measure
dϑx ⊗ dx, which mean

(σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0 in sptϑx.(4.13)

Thus,

sptϑx ⊂
©
λ ∈ IMm×n/ (σ(x, u, λ)− σ(x, u,Du)) : (λ−Du) = 0

ª
.(4.14)

Case c: We prove that, the map F 7−→ σ(x, u, F ) is strictly monotone, for
all x ∈ Ω and for all u ∈ IRm.
Sine σ is strict monotone, and according to (4.14),

sptϑx = {Du} , i.e, ϑx = δDu, a.e. in Ω,

which implies that, Duk −→ Du in measure. For the rest of our prove is
similarly to case d.

Case b: We start by showing that for almost all x ∈ Ω, the support ofϑx
is contained in the set where W agrees with the supporting hyper-plane.

L =
n
(λ,W (x, u, λ) + σ(x, u, λ) : (λ− λ))

o
with λ = Du(x).

So, it suffices to prove that

sptϑx ⊂ Kx =
n
λ ∈ IMm×n/W (x, u, λ) =W (x, u, λ) + σ(x, u, λ) : (λ− λ)

o
(4.15)

If λ ∈ sptϑx, thanks to (4.14), we have

(1− t). (σ(x, u,Du)− σ(x, u, λ)) : (Du− λ) = 0, for all t ∈ [0, 1].(4.16)
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On the other hand, since σ is monotone, for all t ∈ [0, 1] We have:

(1− t). (σ(x, u,Du+ t.(λ−Du))− σ(x, u, λ)) : (Du− λ) ≥ 0.(4.17)

By subtracting (4.16) from (4.17), we get

(1− t)
h
σ(x, u, λ+ t(λ− λ))− σ(x, u, λ)

i
: (λ− λ) ≥ 0,(4.18)

for all t ∈ [0, 1]. Doing the same by the monotonicity in (4.18), we obtain

(1− t)
h
σ(x, u, λ+ t(λ− λ))− σ(x, u, λ)

i
: (λ− λ) ≤ 0.(4.19)

Combining (4.18) and (4.19), we conclude that

(1− t)
h
σ(x, u, λ+ t(λ− λ))− σ(x, u, λ)

i
: (λ− λ) = 0,(4.20)

for all t ∈ [0, 1], and for all λ ∈ sptϑx.
Now, it follows from (4.19) that

W (x, u, λ) = W (x, u, λ) + (W (x, u, λ)−W (x, u, λ))

= W (x, u, λ) +

Z 1

0
[σ(x, u, λ+ t(λ− λ))] : (λ− λ)dt

= W (x, u, λ) + σ(x, u, λ) : (λ− λ)

Which prove (4.15).
Now, by the coercivity of W, we get

W (x, u, λ) ≥W (x, u, λ) + σ(x, u, λ) : (λ− λ),

for all λ ∈ IMm×n. Therefore,

L is a supporting hyper-plane, for all λ ∈ Kx.(4.21)

Moveover, the mapping λ 7−→ W (x, u, λ) is continuously differentiable, so
we obtain

σ(x, u, λ) = σ(x, u, λ), for all λ ∈ Kx.(4.22)

Thus,

σ(x) =

Z
IMm×n

σ(x, u, λ)dϑx(λ) = σ(x, u, λ).(4.23)

Now, we consider the Carathéodory function

ψ(x, u, ρ) = |(σ(x, u, ρ)− σ(x))|,
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and lets ψk(x) = ψ(x, uk,Duk) is equi-integrable. Thus, thanks to Ball’s
theorem, see [8] ψk - ψ weakly in L1(Ω), and the weakly limit of ψk is
given by

ψ(x) =

Z Z
IRm×IMm×n

|σ(x, η, λ)− σ(x)|dδu(x)(η)⊗ dϑx(λ)

=

Z
sptϑx

|σ(x, u(x), λ)− σ(x)|dϑx(λ)

= 0.

According to (4.22) and (4.23), and since ψk ≥ 0, it follow that ψk −→ 0
strongly in L1(Ω) by Fatou lemma, which gives

lim
k→∞

Z
Ω
σ(x, uk,Duk) : Dϕ.dx =

Z
Ω
σ(x, u,Du) : Dϕdx.

Thus
hF (u), ϕi = 0, ∀ϕ ∈

[
k∈IN

Vk.

This completes the proof of the case (b).

Case (a): In this case, on sptϑx, we affirm that,

σ(x, u, λ) :M = σ(x, u,Du) :M + (∇Fσ(x, u,Du) :M) : (Du− λ),(4.24)

for all M ∈ IMm×n, where ∇F is the derivative with respect to the third
variable of σ and λ = Du(x).
Thanks to the monotonicity of σ, we have

(σ(x, u, λ)− σ(x, u,Du+ tM)) : (λ−Du− tM) ≥ 0, for all t ∈ IR.

By invoking (4.19), we obtain

−σ(x, u, λ) : (tM) ≥ −(σ(x, u,Du) : (λ−Du)+σ(x, u,Du+tM) : (λ−Du−t.M).

On the other hand, F 7−→ σ(x, u, F ) is a C1 function, so

σ(x, u,Du+ tM) = σ(x, u,Du) +∇F (x, u,Du).(tM) + o(t).

Thus

−σ(x, u, λ) : (t.M) ≥ −σ(x, u,Du) : (tM)+∇Fσ(x, u,Du)(t.M) : (λ−Du)+o(t),
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which gives

−σ(x, u, λ) : (t.M) ≥ t[(∇Fσ(x, u,Du) : (M) : (λ−Du)−σ(x, u,Du) : (M)]+o(t),

t is arbitrary in (4.24). Finally for all ϕ ∈ Sk∈IN Vk the sequence σ(x, uk,Duk) :
Dϕ is equi-integrable. Then, by the Ball’s theorem, see [1] the weak limit

is

Z
sptϑx

σ(x, u, λ) : Dϕdϑx(λ).

By choosing M = Du in (4.24), we obtain:Z
sptϑx

(Du− λ)(σ(x, u, λ) : Dϕ) : Dϕdϑx(λ)

=

Z
sptϑx

(σ(x, u,Du) : Dϕdϑx(λ)+(∇Fσ(x, u,Du) : Dϕ)t
Z
sptϑx

(Du−λ)dϑx(λ)

= (σ(x, u,Du) : Dϕ)

Z
sptϑx

dϑx(λ) = σ(x, u,Du) : Dϕ.

Hence,

σ(x, uk,Duk) : Dϕ −→ σ(x, u,Du) : Dϕ strongly

This proves that

hF (u), ϕi = 0 for all ϕ ∈
[

Vk.

And since
S
Vk is dense in W 1,P

0 (Ω, ω, IRm), so u is a weak solution of
(QES)f,g, as desired.

Remark 4.2. In case (b) σ(x, uk,Duk) : Dϕ −→ σ(x, u,Du) : Dϕ strongly,
but in the case (c) and (d) Duk −→ Du in measure.

Exemple 4.1. We shall suppose that the weight functions satisfy: ωi0j =
0, j = 1, 2, ...,m for some i0 ∈ Ic; and ωij(x) = ω(x);x ∈ Ω, with Ic

S
I =

{0; 1; 2; .....;n}, for all i ∈ I t Ic, j = 1, 2, ...,m and i 6= i0 with ω(x) > 0
a.e. in Ω then, we can consider the Hardy-Type inequalities in the form:

⎛⎝ mX
j=1

Z
Ω
|uj(x)|qγj(x)dx

⎞⎠ 1
q

≤ c

⎛⎝ X
1≤i≤N1≤j≤m

Z
Ω
|Diju|pωij

⎞⎠ 1
p

,

for every u ∈ W 1,p
0 (Ω, ω, IRm) with a constant c > 0 independent of u and

for some q > p0. Let us consider the Carathéodory functions: (B)

σij(x, η, ξI) = ω(x)|ξij |p−1sng(ξij), j = 1, 2, ....m i ∈ I
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σij(x, η, ξIc) = ω(x)|ξij |p−1sng(ξij), j = 1, 2, ....m i ∈ Ic, i 6= i0

σi0j(x, η, ξIc) = 0 j = 1, 2, ...,m.

The above functions defined by (B) satisfies the growth conditions (H2).
In particular, let use the special weight function ω. γ expressed in term of
the distance to the boundary ∂Ω denote d(x) = dist(x; ∂Ω) and ω(x) =
dλ(x), γj(x) = dµ(x) the hardy inequality reads:⎛⎝ mX

j=1

Z
Ω
|uj(x)|qdµ(x)dx

⎞⎠ 1
q

≤ c

⎛⎝ X
1≤i≤N1≤j≤m

Z
Ω
|Diju|pdλ(x)

⎞⎠ 1
p

,

and the corresponding W 1,p
0 (Ω;ω; IRm) /→ Lq(Ω; γ; IRm) is compact if:

i)- For, 1 < p ≤ q <∞

λ < p− 1; n
q
− n

p
+ 1 ≥ 0; µ

q
− λ

p
+

n

q
− n

p
+ 1 > 0.

ii)- For, 1 ≤ q < p <∞

λ < p− 1; n
q
− n

p
+ 1 ≥ 0; µ

q
− λ

p
+
1

q
− 1

p
+ 1 > 0.

iii)- For, q > 1
µ(q0 − 1) < 1, by the simple modifications of the example in [17].

Moreover, the monotonicity condition are satisfied:X
ij

(σij(x, η, ξI)− σij(x, η, ξ
0
I)(ξij − ξ0ij)

= ω(x)
X
ij

(| ξij |p−1 sng(ξij)− | ξ0ij |p−1 sng(ξ0ij))(ξij − ξ0ij) ≥ 0

for almost all x ∈ Ω and for all, ξ, ξ0 ∈ IMm×n. This last inequality can
not be strict, since for ξIc 6= ξ0Ic with ξi0j 6= ξ0i0j for all j = 1, 2, ...,m. But
ξij = ξ0ij for i ∈ Ic, i 6= i0, j = 1, 2, ...,m the corresponding expression is
Zero.
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