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Roćıo Velasco Olalla
Universidad Nacional de Educación a Distancia, Spain
Received : January 2022. Accepted : March 2022

Proyecciones Journal of Mathematics
Vol. 41, No 4, pp. 933-940, August 2022.
Universidad Católica del Norte
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Abstract

Fillmore’s theorem is a matrix completion problem that states that
if A is a nonscalar matrix over a field F and γ1, . . . , γn ∈ F so that
γ1+ . . .+γn = tr(A) then there is a matrix similar to A with diagonal
(γ1, . . . , γn). Borobia [1] extended Fillmore’s Theorem to the matrices
over the ring of integers and Soto, Julio and Collao [3] studied it with
the nonnegativity hypothesis. In this paper we prove the same result
by modifying the initial proof of Fillmore, a subsequent new algorithm
is proposed and some new information about the final matrix will be
given.
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1. Introduction

Fillmore stated a theorem in 1969, commonly known as Fillmore’s theorem.
Some years after, Zhan [4] gave another proof to this theorem including
some modifications since the original one has some inaccuracy.

Theorem 1.1. (Fillmore’s theorem)[2] Let A be a nonscalar matrix of or-
der n over a field F and let {γ1, . . . , γn} ∈ F such that

Pn
i=1 γi = tr(A).

Then there is a matrix similar to A with diagonal (γ1, . . . , γn).

Proof. The proof is by induction on the size of A and it is based on the
next result.

Lemma 1.1. [1] Let A be a nonscalar matrix of order n ≥ 3 over a field
F and let γ ∈ F. Then there is a nonsingular matrix, P , such that

P−1AP =

Ã
γ ∗
∗ A1

!
, where A1 is a nonscalar matrix of order n− 1.

Moreover, (P−1AP )23 = 1.

The proof of this lemma uses an argument based on a change of basis of
the matrix A. The new basis used is {x,Ax− γx, x3, . . . , xn}, where x and
Ax are linearly independent. If A is not diagonal, we can take x as one of
the standard vectors. If it is diagonal, x can be sum of two standard basis
vectors. The matrix P is the identity except on its entry p13 = 1 − α23,
where α23 is the entrance (2,3) of A in the new basis.

By applying this lemma repeatedly to the similar matrix so that the
pair {x,Ax− γx} is linearly independent, we get to proof the theorem. 2

Here, we can highlight the importance that the change of basis matrix
has in Fillmore’s proof. Taking this into account, if we take the change
of basis matrix in a certain way and we introduce a small variation at the
beginning, then the similar matrix that results from the theorem has all its
entries in Z and we can extend Fillmore’s proof to integer matrices.

2. Fillmore’s theorem for integer matrices

Fillmore’s theorem have been studied in different moments. In this paper,
we are going to present a new proof of Fillmore’s theorem to conclude that
the final matrix is over Z and give some more information about the final
matrix. Borobia [1] also gave an algorithm that extended the theorem to
integer matrices but, in this case, we are not going to give an alternative
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algorithm as he did but introduce a small variation at the beginning of
Fillmore’s proof and then use the same argument that Fillmore.

This problem was also studied by Soto, Julio and Collao [3], considering
the nonnegativity hypothesis, that was not considered in the results of
Fillmore and Borobia and giving an alternative algorithm. In this paper,
we will follow Fillmore’s initial proof (except for a small variation at the
beginning) and we will give some new information about the final matrix.

Tan [5] extended Fillmore’s theorem to factorial rings, although it is not
proved that the matrix P−1 is also over the initial factorial ring, but over
it’s field of fractions. If Fillmore’s theorem can be extended to an integral
domain is a problem that has not been solved yet (see Remark 2.3 in [5]).

As it is said, the change of basis matrix is important in Fillmore’s proof.
If the initial matrix, A, is over Z and the change of basis matrix, B, is such
that det(B) = ±1, then the matrix A in the new basis is going to be also
over Z. This way, since we have by construction of P that det(P ) = ±1,
then the similar matrix P−1AP will be over Z.

The main point we want to prove is that, if a12 = ±1, then we can
obtain an integer matrix after applying Fillmore’s argument. After this,
we’ll prove it for matrices where a12 /∈ {±1}. This way, whether for Borobia
it is necesary to have an off-diagonal entry equal to 1, to continue Fillmore’s
argument, we’ll need it to be in position (1,2) or (2,1). We’ll also admit
value -1 in these positions.

Without any loss of generality, we can suppose that x = e2.
As we need the matrix in the new basis (B−1AB) to be over Z, det(B) =

±1 so that the inverse matrix, B−1, is also an integer matrix. Since
det(B) = −a12, we can conclude that a12 = ±1.

Theorem 2.1. (Fillmore’s theorem for integer matrices) Let A be a non-
scalar and nondiagonal matrix of order n ≥ 3 over Z and let γ = (γ1, . . . , γn) ∈
Zn. Then, there exists a non singular matrix over Z, C, similar to A, with
diagonal γ and with Cnj = 1 ∀j 6= n.

Proof. We will start proving the first part of the theorem and then, we
will proof the new information about the matrix C, that is not present in
the results of Fillmore, Borobia or Soto.

After knowing that if a12 ∈ {±1}, the matrix A is over Z, we’ll give the
new algorithm and proof the theorem distinguishing different cases:

• Case 1: A is a non diagonal matrix over Z with a12 ∈ {±1} or
a21 ∈ {±1}.
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• Case 2: A is a non diagonal matrix over Z with a12 /∈ {0,±1} and
a21 /∈ {±1}.

• Case 3: A is a non diagonal matrix over Z with a12 = 0.

• Case 4: A is a diagonal matrix.

Case 1: Since we want to follow Fillmore’s theorem argument, the change
of basis is given by the matrix {x,Ax − γx, x3, . . . , xn}. If we take x a
vector of the standard basis, ei, then, Ax − γx will be the column i of A
except for the element (Ax− γx)i that will be aii − γi.

As before, without any loss of generality, we can suppose that x = e2.
This way, the change of basis matrix
will have det(B) = ∓1, so we can conclude that B−1 is an integer matrix.
Therefore, the matrix A in the new basis, B−1AB, will also be an integer
matrix.

If we take the matrix P as it appears in the initial proof, we have
that P−1 is over Z because det(P ) = 1, so P−1AP is an integer matrix.
Following the initial proof, we can conclude that (P−1AP )11 = γ1 and
(P−1AP )23 = 1.

Since after the first iteration we have (P−1AP )23 = 1, we are under the
initial conditions to continue the iterations and the proof of the theorem
will follow by induction over the different submatrices.

Observation 2.1. If we have a21 ∈ {±1} rather than a12 ∈ {±1}, then
we can use the same argument but, in this case the first iteration must be
done with the standard basis vector x = e1 instead of e2. After, as we have
in position (2,3) the value 1, we can continue using the equivalent standard
basis vector to x = e2 in the rest of the iterations submatrices.

Observation 2.2. The algorithm of this case is exactly the same as Fill-
more’s one, but by choosing the change of basis matrix in this way, we have
the theorem proved for integer matrices. Now, we’ll study the rest of cases
and try to modify them so that we reduce them to this one and we don’t
change Fillmore’s main argument.

Case 2: As we said before, the small variation we introduce is made so
that a12 ∈ {±1}. This way, we are in the previous case. For Borobia, the
important thing is that the matrix has an off-diagonal element with value
1 but for us, we need it to be in position (1,2) or (2,1). To do so, we’ll use
the lemma that Borobia uses in [1].
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Lemma 2.1. ([1]) Let A = (aij)
n
i,j=1 be a non scalar matrix over Z. Then,

there exists an integer matrix similar to A with a non diagonal element
equal to 1.

Observation 2.3. Although the lemma doesn’t specify the position (1,2)
of the non diagonal element equal to 1, after applying the algorithm pro-
posed, we end with a 1 in position (1,2).

Case 3: Now we are going to proof the theorem when a12 = 0. This case is
motivated because the previous lemma assumes that a12 6= 0. If we apply
a transformation over A taking a permutation matrix, Q, so that we have
a nonzero element in position (1,2), then we’ll be under case 1 or case 2.
We can do this because A is a non diagonal matrix.

Case 4: Now, we are going to proof Fillmore’s theorem for integers matrices
when the initial matrix, A, is a diagonal matrix. If we follow Fillmore’s
argument, and we want det(B) ∈ {±1} so we continue being under Z, we’ll
have

det(B) = ±1⇐⇒ a11 − a22 = ±1 or if a11 − γ1 and a22 − γ2

are multiples of a11 − a22,

but this would add more conditions to the initial problem, and it’s not the
point we want to proof.

In Borobia’s argument (see [1]), if the matrix is diagonal, he first apply
the next lemma so that the matrix is no longer diagonal.

Lemma 2.2. [1] Let A be a nonscalar diagonal matrix over a field F, let s
such that a11 6= ass, and let B be equal to the identity except on its entry
b1s =

1
a11−ass . Then B−1AB is equal to A except on its entry (1,s) that is

equal to 1.

Applying this lemma and taking s = 2 (in case a11 6= a22), then we are
in case 1, where the value 1 will be in position (1,2). If not, we can take
s 6= 2 and after applying the lemma we’ll be in case 3.

Now that we have proved the theorem, we are going to give some new
information about the final matrix, C. We are going to proof that, if C is
the final matrix, then Cnj = 1 ∀j 6= n.
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Let C = P−1ÃP , where Ã is A in the new basis and P as in Fillmore’s
proof, i.e., the identity matrix with P13 = 1− ã23. The proof is then made
by induction over the different iterations. After the first iteration, we have

c21 = (P
−1ÃP )21 =

nX
k=1

(P−1Ã)2kPk1 = (P
−1Ã)21 =

nX
k=1

(P−1)2kÃk1 = ã21

Since x = e2 the basis is B = {e2, Ae2 − γ2, x3, . . . , xn}, and we have
ã21 = (B−1AB)21 =

Pn
k=1(B

−1A)2kBk1 = (B
−1A)22

=
Pn

k=1(B
−1
2k )Ak2 = a12a12 = 1

as a12 ∈ {±1}.

Now, we’ll apply the induction hypothesis so that if, after k steps we
have ak+1,j = 1 ∀j = 1, . . . , k, and ak+1,k+2 = 1, then ak+2,j = 1 ∀j =
1, . . . , k + 1. Since here j 6= k + 3, and taking into account that now, we
have x = ek+2 we can conclude that

ck+2,j = (P−1ÃP )k+2,j =
Pn

i=1(P
−1Ã)k+2,iPij = (P−1Ã)k+2,j

=
Pn

i=1(P
−1)k+2,iÃij =

= ãk+2,j = (B
−1AB)k+2,j =

Pn
i=1(B

−1A)k+2,iBij =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

j ≤ k
(B−1A)k+2,j =

Pn
i=1(B

−1)k+2,iAij =
= ak+1,k+2ak+1,j = 1

j = k + 1
(B−1A)k+2,k+2 =

Pn
i=1(B

−1)k+2,iAi,k+2 =
= ak+1,k+2ak+1,k+2 = 1

2
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3. Flowchart
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