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Universidad Católica del Norte
Antofagasta - Chile

Abstract

In this work, we propose sufficient conditions guaranteeing an ex-
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alternative in Banach spaces combined with the semigroup theory for
the class of Caputo partial semilinear fractional evolution equations
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1. Introduction

In this paper, by using the Leray-Schauder alternative in a real Banach
space (E, | · |) combined with the semigroup theory we establish an exis-
tence result of mild solutions for the following partial functional differential
evolution equations with finite state-dependent delay involving the Caputo
fractional derivative

cDα
0 y(t) = A(t)y(t) + f

³
t, yρ(t,yt)

´
, a. e. t ∈ J := [0, b], 0 < α < 1,(1.1)

y(t) + ht(y) = ϕ(t), t ∈ H := [−r, 0],(1.2)

where f : J × C(H,E) −→ E ; ρ : J × C(H,E) −→ [−r, b] ; ϕ ∈ C(H,E)
and ht : C(H,E) −→ E are given functions ; cDα

0 is the Caputo fractional
derivative of order α ∈ (0, 1) and {A(t)}t∈J is a family of operators from E
into E which are linear, closed and not necessarily bounded.

For any continuous function y and any t ∈ J , we denote by yt the
element of E given by

yt(θ) = y(t+ θ) for θ ∈ H.

Functional differential equations of integer order arise in various areas
of applied mathematics and other equations have received already much
attention in recent years. The first appearance of a fractional derivative is
in a letter written to De l’Hopital by Leibniz in 1695. Then, it has devel-
oped by Euler, Fourier, Liouville, Riemann, and so on. Recently, various
phenomena in many fields of science and engineering are valuably modeled
by differential equations of fractional order. Some numerous applications
could be found in viscoelasticity, electromagnetism, control, electrochem-
istry, porous media, etc. see the works of Kilbas et al. [19], Miller and
Ross [25], Podlubny [28, 29] and Samko et al. [30]. In recent years, there
has been a significant development in fractional ordinary and partial dif-
ferential equations by Benchohra and his collaborators [6], El Borai [14],
El-Sayed [15] and Zhou et al. [31].

Firstly, Byszewski initiated the study of the nonlocal Cauchy partial
functional evolution problem in [12]. Li et al. looked on controllability
for nonlocal evolution inclusions in [20, 21], the nonlocal equations were
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studied by Liang et al. in [22], and Benchohra et al. considered several
classes of problems with nonlocal conditions in [11].

Baghli et al. give existence, uniqueness and controllability results for
mild solutions also in Fréchet spaces on semi-infinite interval of first class
partial functional evolution equations and inclusions and neutral functional
ones with delay in [2, 7, 8, 9]. Equations with delay which depend on the
state have been proposed in modeling. Existence results were derived from
semilinear functional differential equations in this case. Many results were
derived recently for different functional differential equations with delay
whose solution is depending on the delay and defined on a bounded interval
as is proven in [1], and for an unbounded interval as developed by Baghli
et al. in [4, 5, 10, 23]. Fractional non autonomous evolution equations in
Fréchet spaces has been investigated by Mesri et al. in [24].

So in this paper, we give the existence of solutions for the Caputo’s frac-
tional semilinear differential equations with finite state-dependent delay in
Banach spaces. Our results are based upon fixed point techniques com-
bined with the semigroup theory. After preliminaries in Section 2, we give
our main result about existence of mild solution of the problem (1.1)-(1.2)
in Section 3. In Section 4, an example is given to illustrate the abstract
theory.

2. Preliminaries

This section introduces notation, definitions, and fundamental facts that
will be employed throughout this study.

Let C(J ;E) be the space of functions from J into E that are continuous
with the norm |.| and B(E) be the space of linear bounded operators from
E into E with the usual supremum norm

kNkB(E) = sup { |N(y)| : |y| = 1 }.

A measurable function y : J → E is Bochner integrable if and only if |y|
is Lebesgue integrable. L1(J,E) denotes the Banach space of measurable
functions y : J → E that are Bochner integrable normed by

kykL1 =
Z b

0
|y(t)| dt.
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Definition 2.1. A function f : J × E → E is said to be Carathéodory if
it satisfies:

(i) for almost each t ∈ J , the function f(t, ·) : E → E is continuous;

(ii) for each y ∈ E, the function f(·, y) : J → E is measurable;

(iii) for every positive integer k, there exists a function k ∈ C (J ;R+)
such that

|f(t, y)| ≤ k(t)

for every |y| ≤ k and almost every t ∈ J.

The nonlocal condition y(t) + ht(y) = ϕ(t) for t ∈ H is a physical
application with better effect than the classical initial condition y(0) = y0.
ht(y), for example it can be given by

ht(y) =
pX

i=1

ci y(ti + t), t ∈ H,

where c1, c2, . . . , cp are given constants and 0 < t1 < . . . < tp < b.

In particular, at the initial time t = 0, we have

h0(y) =
pX

i=1

ci y (ti) .

Assume that the function ρ : J × C(H;E) → [−r, b] is continuous.
Additionally, we introduce here the following hypothesis involving the set

R
¡
ρ−
¢
= {ρ(s, ϕ) : (s, ϕ) ∈ J ×C(H;E), ρ(s, ϕ) ≤ 0}

(Hϕ) The function t → ϕt from R (ρ−) into C(H;E) is continuous, and
there exists a continuous and bounded function Lϕ : R (ρ−)→ (0,+∞)
such that

kϕtk ≤ Lϕ(t)kϕk, for every t ∈ R
¡
ρ−
¢
.

Remark 2.2. Continuous and bounded functions satisfy (Hϕ) (see [1, 18]).
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Lemma 2.3. ([18], Lemma 2.4) If a function y : H ∪ J → E is such that
y0 = ϕ, then

kysk ≤ Lϕkϕk+ sup
0≤θ≤ŝ

{|y(θ)| s ∈ R
¡
ρ−
¢
∪ J}, ŝ := max(0; s),

where Lϕ = sup
t∈R(ρ−)

Lϕ(t).

Proposition 2.4. [4] If a function y : [−r, b] → E is such that y|H = ϕ
and satisfies the condition (Hϕ), then we have

kyρ(t,yt)k ≤ |y(t)|+ Lϕkϕk, for every t ∈ J and ρ ∈ C(H,E).(2.1)

We give here fractional order derivative definitions.

Definition 2.5. [19, 28] The fractional integral operator of Riemann-Liouville
for the order α > 0 of a function f : R+ −→ R is defined as

Iα0 f(t) =
1

Γ(α)

Z t

0
(t− s)α−1f(s)ds

where Γ(z) =
R+∞
0 tz−1e−tdt is the Euler’s gamma function.

For all α > 0, the integral Iαf exists when f ∈ C (R+) ∩ L1loc (R
+).

Notice that, when f ∈ C (R+), then Iαf ∈ C (R+) and moreover Iαf(0) =
0.

Definition 2.6. [19, 28] The Caputo fractional derivative for order α > 0
of a function f : R+ −→ R is defined by

dαf(t)

dtα
=

1

Γ(m− α)

d

dt

Z t

0
(t− s)m−α−1f(s)ds =

d

dt
I1−α0 f(t).

where m = [α] + 1. Here [α] denotes the integer part of α.

In what follows, let us consider the family {A(t)}t∈J of linear, closed,
bounded, and densely defined operators on a Banach space E with domain
D(A(t)) which is independent of t. Additionally, we suppose that A(t)
verifies the following hypotheses (see [13], for more details):
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(A1) For any λ with Re(λ) ≥ 0, the operator [λI −A(t)] exists, and there
exists a bounded inverse [λI −A(t)]−1 ∈ B(E) such that°°°[λI −A(t)]−1

°°° ≤ M

|λ|+ 1
where M is a positive constant, independent of t and λ.

(A2) For any t, τ, s ∈ I, there exist constants γ ∈ (0, 1] and C > 0 such
that °°°[A(t)−A(τ)]A−1(s)

°°° ≤ C|t− τ |γ

where the constant C are independent of t, τ and s.

Remark. From Henry [17], Temam [26] and Pazy [27], we know that (A1)
means that for each s ∈ I, the operator A(s) generates an analytic semi-
group e−tA(s) (t > 0), and there exists a positive constant M , independent
of both t and s, such that

k−A(s)etA(s)k ≤ M

t
, for t > 0 and s ∈ J.

Definition 2.7. [13] Define the operators Ψ(t, s), φ(t, s) and U(t) by

Ψ(t, s) = α

Z +∞

0
θtα−1ξα(θ)e

tαθA(s)dθ,(2.2)

φ(t, s) =
+∞X
k=1

φk(t, s)(2.3)

and

U(t) = A(t)A−1(0)−
Z t

0
φ(t, s)A(s)A−1(0)ds,(2.4)

where ξα the function of probability density defined on [0,+∞) whose
Laplace transform is given byZ +∞

0
ξα(θ)e

θxdθ =
+∞X
i=1

(−x)i
Γ(1 + αi)

0 < α ≤ 1, x > 0,

φ1(t, s) = [−A(t) +A(s)]Ψ(t− s, s),

and

φk+1(t, s) =

Z t

s
φk(t, τ)φ1(τ, s)dτ, k = 1, 2, . . . .
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For more details about the definition and property of the probability
density function and the property below, one can see [16].

Theorem 2.8. (Leray-Schauder Nonlinear Alternative). Let X be a Ba-
nach space, C be a convex and closed subset of E, U an open subset of C,
and 0 ∈ U . Suppose that N(Y ) : Ū → C is continuous and compact map.
Then either,
(LS1) N has a fixed point ; or
(LS2) There exist λ ∈ [0, 1) and x ∈ ∂U such that x = λN(x).

3. Existence of mild solution

We will use the following definition of mild solutions for the nonlocal
problem (1.1)-(1.2).

Definition 3.1. A continuous function y(·) : [−r, b] → E is called a mild
solution of the problem (1.1)-(1.2), if y satisfies for each t ∈ J the following
integral equation

y(t) = [ϕ(0)− h0(y)]−
Z t

0
Ψ(t− s, s)U(s)A(0) [ϕ(0)− h0(y)] ds

+

Z t

0
Ψ(t− s, s)f

³
s, yρ(s,ys)

´
ds

+

Z t

0

Z s

0
Ψ(t− s, s)φ(s, τ)f

³
τ, yρ(τ,yτ )

´
dτds.

(3.1)

In what follow, we give some properties concerning the operators Ψ, φ
and U used later in our argument.

Lemma 3.2. [13] The functions Ψ(t − s, s) and A(t)Ψ(t − s, s) are con-
tinuous in uniform topology, where t ∈ J , 0 ≤ s ≤ t − for any > 0
and

kΨ(t− s, s)k ≤ C(t− s)α−1,(3.2)

where C is a positive constant, which is independent, of both t and s and
α is a positive constant. Furthermore,

kφ(t, s)k ≤ C(t− s)γ−1(3.3)

and
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kU(t)k ≤ C (1 + tγ) .(3.4)

where γ is a positive constant.

Set Θγ = α−1 + bγβ(α, γ +1) and Υ = α−1 +Cγ−1bγβ(α, γ +1) where
β(α, γ) =

R 1
0 t

α−1(1− t)γ−1dt is the beta Euler’s function.

In order to obtain the existence of mild solutions for problem (1.1)-(1.2),
we suppose the following hypotheses

(H1) The function f is Carathéodory.

(H2) For all R > 0, there exists lR ∈ L+∞ (J ;R+) such that

|f(t, u)| ≤ f(t, 0) + lR(t)kuk

for almost ever t ∈ J and each u ∈ C(H,E) with kuk ≤ R.
Also denote f∗ := ess sup

t∈J
f(t, 0) and l∗R := klRkL∞ .

(H3) For all R > 0, there exists a constant σ > 0 such that

|ht(u)| ≤ σ

for all t ∈ H and all u ∈ C(H,E) with kuk ≤ R.

Corollary 3.3. From Proposition 2.4, if a function y : [−r, b]→ E is such
that y(t) = ϕ(t)− ht(y) satisfying the condition (Hϕ), then we have

kyρ(t,yt)k ≤ |y(t)|+ L
ϕ
h(kϕk+ σ)(3.5)

where Lϕh = sup
t∈R(ρ−)

Lϕ(t)−ht(·).

Then we can give now our result.

Theorem 3.4. Assume that (Hϕ) and (H1) − (H3) are satisfied, and
CbαΥl∗R < 1. Then the nonlocal fractional problem (1.1) − (1.2) has at
least one mild solution.
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Proof. Transform the problem (1.1)− (1.2) into a fixed point problem.
Set Ω := C([−r, b];E) and consider the operator N : Ω→ Ω defined by

(Ny)(t) = [ϕ(0)− h0(y)]−
Z t

0
Ψ(t− s, s)U(s)A(0) [ϕ(0)− h0(y)] ds

+

Z t

0
Ψ(t− s, s)f

³
s, yρ(s,ys)

´
ds

+

Z t

0

Z s

0
Ψ(t− s, s)φ(s, τ)f

³
τ, yρ(τ,yτ )

´
dτds.

Clearly, all fixed points of the operator N are mild solutions of the
nonlocal problem (1.1)− (1.2).

We prove that the operator N is continuous and is compact.

• N is a continuous operator. Let (yn)n∈N be a sequence such that yn → y.
Then,

| (Nyn) (t)− (Ny)(t)| ≤ |− h0 (yn) + h0(y)|

+

Z t

0
|Ψ(t− s, s)U(s)A(0) [h0 (yn)− h0(y)]| ds

+

Z t

0

¯̄̄
Ψ(t− s, s)

h
f
³
s, ynρ(s,yns)

´
− f

³
s, yρ(s,ys)

´i¯̄̄
ds

+

Z t

0

Z s

0

¯̄̄
Ψ(t− s, s)φ(s, τ)

h
f
³
τ, ynρ(τ,ynτ )

´
− f

³
τ, yρ(τ,yτ )

´i¯̄̄
dτds.

By Lemma 3.2 and (H3), we have

| (Nyn) (t)− (Ny)(t)| ≤ σ kyn − yk

+σC2|A(0)|
Z t

0
(t− s)α−1 (1 + sγ) ds kyn − yk

+C

Z t

0
(t− s)α−1ds

°°°f ³·, ynρ(·,y·)´− f
³
·, yρ(·,y·)

´°°°
+C2

Z t

0
(t− s)α−1

Z s

0
(s− τ)γ−1dτdskf

³
·, ynρ(·,yn·)

´
− f

³
·, yρ(·,y·)

´
k.

Since Z t

0
(t− s)α−1ds = α−1tα,
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Z t

0
(t− s)α−1(1 + sγ)ds = tα

³
α−1 + tγβ(α, γ + 1)

´
and Z t

0
(t− s)α−1

Z s

0
(s− τ)γ−1dτds = γ−1tα+γβ(α, γ + 1),

we obtain

| (Nyn) (t)− (Ny)(t)| ≤ σ
h
1 + C2|A(0)|tα

³
α−1 + tγβ(α, γ + 1)

´i
kyn − yk

+Ctα
h
α−1 + Cγ−1tγβ(α, γ + 1)

i °°°f ³·, ynρ(·,yn·)´− f
³
·, yρ(·,y·)

´°°° .
Set

Θη := α−1 + bηβ(α, γ + 1)

and

Υ := α−1 + Cγ−1bγβ(α, γ + 1),

to get for t ≤ b

| (Nyn) (t)− (Ny)(t)| ≤ σ
h
1 +C2|A(0)|bαΘγ

i
kyn − yk

+ CbαΥ
°°°f ³·, ynρ(·,yn.)´− f

³
·, yρ(·,y·)

´°°° .
Hence,

| (Nyn) (t)− (Ny)(t)|→ 0asn→ +∞.

Then N is a continuous operator.

• N maps bounded sets into bounded sets in Ω.

We show that for each bounded set B ⊂ Ω, N(B) is a bounded set,
i.e. there exists κ a positive constant such that |y(t)| ≤ κ implies that there
exists ε a positive constant such that |Ny(t)| ≤ ε for each t ∈ J .

Using Lemma 3.2 and the hypothesis (H2), we obtain

|(Ny)(t)| ≤ |ϕ(0)− h0(y)|

+

Z t

0
|Ψ(t− s, s)U(s)A(0)[ϕ(0)− h0(y)]| ds



Nonlocal partial fractional evolution equations with state ... 1201

+

Z t

0

¯̄̄
Ψ(t− s, s)f

³
s, yρ(s,ys)

´¯̄̄
ds

+

Z t

0

Z s

0

¯̄̄
Ψ(t− s, s)φ(s, τ)f

³
τ, yρ(τ,yτ )

´¯̄̄
dτds

≤ (kϕk+ |h0(y)|)
∙
1 + C2|A(0)|

Z t

0
(t− s)α−1 (1 + sγ) ds

¸
+C

Z t

0
(t− s)α−1

h
f(s, 0) + lR(s)kyρ(s,ys)k

i
ds

+C2
Z t

0

Z s

0
(t− s)α−1(s− τ)γ−1

h
f(τ, 0) + lR(τ)kyρ(τ,yτ )k

i
dτds.

By hypothesis (H3) and Corollary 3.3, then we get for t ≤ b

|(Ny)(t)| ≤ (kϕk+ σ)
h
1 + C2|A(0)|tα

³
α−1 + tγβ(α, γ + 1)

´i
+ C

Z t

0
(t− s)α−1

£
f∗ + l∗R(|y(s)|+ L

ϕ
h [kϕk+ σ])

¤
ds

+ C2
Z t

0

Z s

0
(t− s)α−1(s− τ)γ−1 ×

×
£
f∗ + l∗R(|y(τ)|+ L

ϕ
h [kϕk+ σ])

¤
dτds

≤ (kϕk+ σ)
h
1 + C2|A(0)|tα

³
α−1 + bγβ(α, γ + 1)

´i
+ C

£
f∗ + l∗R(κ+ L

ϕ
h [kϕk+ σ])

¤
tα
h
α−1 +Cγ−1tγβ(α, γ + 1)

i
≤ (kϕk+ σ)

h
1 + C2|A(0)|bαΘγ

i
+ C

£
f∗ + l∗R(κ+ L

ϕ
h [kϕk+ σ])

¤
bα
h
α−1 + Cγ−1bγβ(α, γ + 1)

i
≤

³h
1 + C2|A(0)|bαΘγ

i
+ Cl∗Rb

αΥLϕh
´
(kϕk+ σ)

+ CbαΥ (l∗Rκ+ f∗) := ε.

Then there exists a positive constant ε such that |Ny(t)| ≤ ε for each
t ∈ J ; so the operator N maps bounded sets into bounded sets in Ω.

• N(B) is equicontinuous. Let t1, t2 ∈ J such that t1 < t2 and let
y ∈ B. By the hypothesis (H3), we get

|Ny (t2)−Ny (t1)| ≤ |A(0)||ϕ(0)− h0(y)| ×
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×
∙Z t1

0
|Ψ (t1 − s, s)−Ψ (t2 − s, s)| |U(s)|ds

+

Z t2

t1
|Ψ (t2 − s, s)| |U(s)|ds

¸
+

Z t1

0
|Ψ (t2 − s, s)−Ψ (t1 − s, s)| |f

³
s, yρ(s,ys)

´
|ds

+

Z t2

t1
|Ψ (t2 − s, s)| |f

³
s, yρ(s,ys)

´
|ds

+

Z t1

0

Z s

0
|Ψ (t2 − s, s)−Ψ (t1 − s, s)| |φ(s, τ)||f

³
τ, yρ(τ,yτ )

´
|dτds

+

Z t2

t1

Z s

0
|Ψ (t2 − s, s)| |φ(s, τ)||f

³
τ, yρ(τ,yτ )

´
|dτds.

Set

I(s) = |A(0)| (kϕk+ σ) |U(s)|+|f
³
s, yρ(s,ys)

´
|+
Z s

0
|φ(s, τ)f

³
τ, yρ(τ,yτ )

´
|dτ.

Hence

|Ny (t2)−Ny (t1)| ≤
Z t1

0
|Ψ (t1 − s, s)−Ψ (t2 − s, s)| I(s) ds

+

Z t2

t1
|Ψ (t2 − s, s)| I(s) ds.

Using the inequalities (3.3) and (3.4), the hypothesis (H2) and Corollary
3.3, we get for s ≤ b and |y(s)| ≤ κ

I(s) ≤ C|A(0)| (kϕk+ σ) (1 + sγ) +
h
f(s, 0) + lR(s)kyρ(s,ys)k

i
+ C

Z s

0
(1 + τγ)

h
f(τ, 0) + lR(τ)kyρ(τ,yτ )k

i
dτ

≤ C|A(0)| (kϕk+ σ) (1 + bγ) +
£
f∗ + l∗R

¡
|y(s)|+ Lϕh [kϕk+ σ]

¢¤
+ C

Z s

0
(1 + τγ)

£
f∗ + l∗R

¡
|y(τ)|+ Lϕh [kϕk+ σ]

¢¤
dτ

≤ C|A(0)| (kϕk+ σ) (1 + bγ) +
£
f∗ + l∗R

¡
κ+ Lϕh [kϕk+ σ]

¢¤
+ C

£
f∗ + l∗R

¡
κ+ Lϕh [kϕk+ σ]

¢¤ Z s

0
(1 + τγ)dτ

≤ C|A(0)|
∙
(1 + bγ) + l∗RL

ϕ
h

µ
1 +Cb

∙
1 +

bγ

γ + 1

¸¶¸
(kϕk+ σ)

+

µ
1 +Cb

∙
1 +

bγ

γ + 1

¸¶
(f∗ + l∗Rκ) := .



Nonlocal partial fractional evolution equations with state ... 1203

Then

|Ny (t2)−Ny (t1)| ≤
Z t1

0
|Ψ (t1 − s, s)−Ψ (t2 − s, s)| ds

+

Z t2

t1
|Ψ (t2 − s, s)| ds.

Then, |Ny (t2)−Ny (t1)| tends to zero as t2 − t1 → 0. Hence, N(B) is
equicontinuous.

• Estimates of solutions: Let y and λ ∈ [0, 1) such that y = λN(y). By
Lemma 3.2 and the hypotheses (H2) and (H3), we have for each t ∈ J

|y(t)| ≤ λ|ϕ(0)− h0(y)|+ λ

Z t

0
|Ψ(t− s, s)U(s)A(0)[ϕ(0)− h0(y)]| ds

+ λ

Z t

0

¯̄̄
Ψ(t− s, s)f

³
s, yρ(s,ys)

´¯̄̄
ds

+ λ

Z t

0

Z s

0

¯̄̄
Ψ(t− s, s)ϕ(s, τ)f

³
τ, yρ(τ,yτ )

´¯̄̄
dτds

≤ (kϕk+ σ)

∙
1 + C2|A(0)|

Z t

0
(t− s)α−1 (1 + sγ) ds

¸
+ C

Z t

0
(t− s)α−1

³
f(s, 0) + lR(s)kyρ(s,ys)k

´
ds

+ C2
Z t

0

Z s

0
(t− s)α−1(s− τ)γ−1

³
f(τ, 0) + lR(τ)kyρ(τ,yτ )k

´
dτds.

Using Corollary 3.3, we get

|y(t)| ≤ (kϕk+ σ)
h
1 + C2|A(0)|tα

³
α−1 + tγβ(α, γ + 1)

´i
+ C

Z t

0
(t− s)α−1

£
f∗ + l∗R

¡
|y(s)|+ Lϕh [kϕk+ σ]

¢¤
ds

+ C2
Z t

0

Z s

0
(t− s)α−1(s− τ)γ−1 ×

×
£
f∗ + l∗R

¡
|y(τ)|+ Lϕh [kϕk+ σ]

¢¤
dτds.

We consider the function

µ(t) := sup
s∈[0,t]

|y(s)|.
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Let t ∈ [−r, t] be such that µ(t ) = |y(t )|.
If t ∈ [−r, 0], then µ(t ) = kϕk−σ. If t ∈ [0, b], by the previous inequality,
we have

µ(t) ≤ (kϕk+ σ)
h
1 + C2|A(0)|tα

³
α−1 + tγβ(α, γ + 1)

´i
+ C

Z t

0
(t− s)α−1 (f∗ + l∗R(µ(s) + Lϕkϕk)) ds

+ C2
Z t

0

Z s

0
(t− s)α−1(s− τ)γ−1 ×

×
£
f∗ + l∗R

¡
µ(τ) + Lϕh [kϕk+ σ]

¢¤
dτds

≤ (kϕk+ σ)
h
1 + C2|A(0)|bα

³
α−1 + bγβ(α, γ + 1)

´i
+ Ctα

h
α−1 + Cγ−1tγβ(α, γ + 1)

i £
f∗ + l∗R

¡
kµk∞ + Lϕh [kϕk+ σ]

¢¤
≤ (kϕk+ σ)

h
1 + C2|A(0)|bαΘγ

i
+ Cbα

h
α−1 + Cγ−1bγβ(α, γ + 1)

i £
f∗ + l∗R

¡
kµk∞ + Lϕh [kϕk+ σ]

¢¤
≤ (kϕk+ σ)

h
1 + C2|A(0)|bαΘγ

i
+ CbαΥ

£
f∗ + l∗R

¡
kµk∞ + Lϕh [kϕk+ σ]

¢¤
.

Consequently,

kµk∞ ≤
CbαΥf∗ +

¡
1 + C2|A(0)|bαΘγ + CbαΥl∗RL

ϕ
h

¢
(kϕk+ σ)

(1− CbαΥl∗R)
:= fM.

Hence we have for every t ∈ H ∪ J ,

kyk∞ ≤ max{ kϕk− σ fM } :=M∗.

Set

Z = { y ∈ C([−r, b];E) : sup{|y(t)| : 0 ≤ t ≤ b} < M∗ + 1 }.

From the choice of Z there is no y ∈ ∂Z such that y = λ N(y) for
some λ ∈ (0, 1). Then the statement (LS2) in Theorem 2.8 does not hold
here. Thus, the statement (LS1) holds, so we can deduce that the operator
N has at least one fixed-point y , which is the mild solution of problem
(1.1)− (1.2). 2
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4. An Example

We consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αu

∂tα
(t, ξ) = κ(t, ξ)

∂2u(t, ξ)

∂ξ2

+

Z 0

−r
a1(s− t)u

∙
s− ρ1(t)ρ2

µZ π

0
a2(θ)|u(t, θ)|2dθ

¶
, ξ

¸
ds

0 < α < 1, 0 ≤ t ≤ b, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ b,

u(t, ξ) + ct(u) = u0(t, ξ), −r ≤ t ≤ 0, ξ ∈ [0, π],

(4.1)

where κ(t, ·) is a continuous function for t ∈ [0, b] and κ(·, ξ) is uniformly
Hölder continuous in ξ ∈ [0, π]; a1 : [−r, 0] → R and a2 : [0, π] → R, ρ1 :
[0, b]→ R, ρ2 : R→ R, ct : C([−r, 0],R)→ R and u0 : [−r, 0]× [0, π]→ R
are continuous given functions.

Consider the space E = L2([0, π],R) and define A by

A(t)w = κ(t, w)w00

with domain

D(A) = H2(0, π) ∩H1
0 (0, π).

Then A(s) generates an analytic etA(s) in E which satisfies the assump-
tions (A1) and (A2).

Theorem 4.1. Assume that the functions a1 : [−r, 0] → R, a2 : [0, π] →
R, ρ1 : [0, b] −→ R, ρ2 : R −→ R, ct : C([−r, 0],R) → R and u0 :
[−r, 0]× [0, π]→ R are continuous functions. Then there exists at least one
mild solution of (4.1) on [−r, b].

Proof. We may deduce from the assertions that for ξ ∈ [0, π], we have

y(t)(ξ) = u(t, ξ),

A−1(0) = (κ(·, 0))−1,

f(t, ψ)(ξ) =

Z 0

−r
a1(s)ψ(s, ξ)ds,
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ρ(t, ψ)(ξ) = t− ρ1(t)ρ2

µZ π

0
a2(s)|ψ(0, ξ)|2ds

¶
,

ht(ψ)(ξ) = ct(ψ)(ξ)

and
ϕ(t)(ξ) = u0(t, ξ)

are well defined functions, so we can transform the example (4.1) into the
abstract system (1.1)− (1.2). Hence, by Theorem 3.4, we may deduce the
existence of at least one mild solution. From Remark 2.2, we can obtain
the following.

Corollary 4.2. Since the function ϕ ∈ C(H,E) is continuous and bounded,
there exists at least one mild solution of (4.1).

2
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