Universidad Católica del Norte
Antofagasta - Chile

# Open global shadow graph and it's zero forcing number 

M. R. Raksha<br>CHRIST (Deemed to be University), India<br>and<br>Charles Dominic<br>CHRIST (Deemed to be University), India<br>Received: January 2022. Accepted: August 2022


#### Abstract

Zero forcing number of a graph is the minimum cardinality of the zero forcing set. A zero forcing set is a set of black vertices of minimum cardinality that can colour the entire graph black using the colour change rule: each vertex of $G$ is coloured either white or black, and vertex $v$ is a black vertex and can force a white neighbour only if it has one white neighbour. In this paper we identify a class of graph where the zero forcing number is equal to the minimum rank of the graph and call it as a new class of graph that is open global shadow graph". Some of the basic properties of open global shadow graph are studied. The zero forcing number of open global shadow graph of a graph with upper and lower bound is obtained. Hence giving the upper and lower bound for the minimum rank of the graph.


Keywords: Zero forcing set, Zero forcing number, Open global shadow graph.

2010 Mathematics Subject Classification: 05C07, 05C38, 05C50, 05C69.

## 1. Introduction

Throughout this article we consider only simple un-directed finite graphs without loops and multiple edges. A graph consist of a vertex set $V(G)$ and an edge set $E(G)$. Two vertices $u$ and $v$ of a graph $G$ are adjacent if there is an edge $u v$ joining them, and we denote this as $v \sim u$. The open neighborhood of a vertex $v$ denoted by $N(v)$, consist of all the vertices which are adjacent to $v$. The closed neighborhood of $v$ denoted by $N[v]$, consist of the vertex $v$ and every vertex adjacent to $v$. Degree of a vertex $v$ is the number of edges incident with the vertex $v$. The minimum and maximum degree of a graph is represented respectively as $\delta$ and $\Delta$.

The zero forcing set $S \subseteq V(G)$ is a set consisting of black colored vertices, which are colored black based on the color changing rule. The color changing rule states that a black color vertex can force at most one white neighbour provided it is the only white neighbour of it. The minimum cardinality of $S$ gives the zero forcing number of a graph $G$. The concept of zero forcing number was introduced by AIM Minimum rank- special graphs work group [2] to bound the minimum rank of the graph. Independently the concept of zero forcing was introduced in 2007 [5] to understand the controlability of quantum system. The major advantage of introducing the concept of zero forcing over other tools to bound the minimum rank is that its definition is purely combinatorial. The problem of finding the zero forcing number of a graph is an NP hard problem [1].

The shadow graph is defined as, let $G$ be a simple connected graph and $G^{\prime}$ be a copy of $G$ such that each vertex $u \in V(G)$ is made adjacent to $N\left(u^{\prime}\right)$. Where $u^{\prime}$ is the corresponding vertex of $u$. Motivated by the definition of shadow graph we introduce a new class of graph called the open global shadow graph. Let $G$ be a graph and $G^{\prime}$ be a copy of $G$ such that $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. The open global shadow graph denoted by $G S(G)$ is obtained by taking two copies of $G$ say, $G$ and $G^{\prime}$ and joining the vertex $v_{i}$ to each of the vertex in $V\left(G^{\prime}\right) \backslash N\left[v_{i}^{\prime}\right]$, where $1 \leq i \leq n$. In this paper we refer to the vertices $v_{i}$ and $v_{i}^{\prime}$ as the corresponding vertices.

## 2. Some results on the open global shadow graph of a graph

In this section few characteristic properties of open global shadow graph are discussed. The total number of edges, regularity, the domination number and the connected domination number of the open global shadow graph are
found.
Observation 2.1. For a graph $G$ of order $n,|V(G S(G))|=2 n$.
Theorem 2.2. For a non-trivial graph $G,|E(G S(G))|=n(n-1)$.
Proof. For $n$ number of available vertices in a graph $G$ the maximum possible edges are $\frac{n(n-1)}{2}$. Which is that of a complete graph. It can be seen from the definition of open global shadow graph that if $G$ has $t$ edges $0 \leq t \leq \frac{n(n-1)}{2}, G^{\prime}$ also has $t$ edges. Therefore, there are $\frac{n(n-1)}{2}-t$ missing edges in $G$ and $G^{\prime}$ as compared to $K_{n}$. Now according to the definition of open global shadow graph, if $v_{i}$ and $v_{j}$ are not adjacent in $G$ then $v_{i}$ will be adjacent to $v_{j}^{\prime}$ and $v_{j}$ will be adjacent to $v_{i}^{\prime}$ in $G S[G]$. Clearly, total number of edges $=t+t+2\left(\frac{n(n-1)}{2}-t\right)=n(n-1)=2\left|V\left(K_{n}\right)\right|$.

From now on whenever we write a 'missing edge', we mean that from the total possible edge set for $n$ vertices in the graph $G$ (that is $\frac{n(n-1)}{2}$ ), an edge is removed.

If $G$ is the complete graph $K_{n}$, then none of the edges are missing. Hence in $G S\left(K_{n}\right)$ we will get $G$ and a copy of $G$ that is $G^{\prime}$. Therefore the open global shadow graph of the complete graph $K_{n}$ is $K_{n} \cup K_{n}$. Suppose that there is an edge missing between $v$ and $u$ for $\{v, u\} \subseteq V(G)$. Then the open global shadow graph will have $G$ and its copy $G^{\prime}$ and the edge connecting $v$ to $u^{\prime}$ and $u$ to $v^{\prime}$, where $\left\{v^{\prime}, u^{\prime}\right\} \subseteq V\left(G^{\prime}\right)$. From this the following observation can be drawn.

Observation 2.3. For each of the missing edges in $G$ there are 2 edges added in between $G$ and $G^{\prime}$ in $G S(G)$.

Theorem 2.4. Let $G$ be a connected graph. Then $G S(G)$ is disconnected if and only if $G$ is a complete graph.

Proof. Without loss of generality, assume that $G$ is a connected graph. If $G$ is a complete graph, then clearly no edges are missing so open global shadow graph is isomorphic to $2 K_{n}$. Since $2 K_{n}$ is disconnected, it is proved.

Conversely assume that $G$ is not a complete graph. Then there will be at least one missing edge in $G$. Also since $G$ is connected in the open global shadow graph of $G$ there will be at least two edge between (From observation 2.3) $G$ and $G^{\prime}$. Clearly $G S(G)$ is connected, a contradiction to our assumption that $G$ is not a complete graph.

In a simple connected graph $G$, if by removing an edge the graph $G$ get disconnected then such an edge is called cut edge. By removing a vertex from a simple connected graph $G$, if the graph splits into two or more components then such a vertex is called the cut vertex. Next theorem shows that the open global shadow graph has no cut edge and cut vertex.

Theorem 2.5. Let $G$ be a connected graph of order $n \geq 3$. Then i) $c[G S(G)-v]=c[G S(G)]$, where $v$ is any vertex in $G S(G)$ and $c[G S(G)]$ is the number of connected components of $G S(G)$.
ii) $c[G S(G)-e]=c[G S(G)]$, where $e$ is any edge in $G S(G)$.

Proof. Assume that $G$ is a connected graph. Now we divide the proof into two cases:

Case 1: To prove that $G S(G)$ is a graph without cut edge
Sub case 1.1: Assume that $G$ is not a complete graph $K_{n}$. Since $G$ is connected and $G$ is not $K_{n}$, there will be at least 2 vertices in $G$ (similarly in $G^{\prime}$ ) that are not adjacent to each other. According Observation 2.3 for each of this missing edges in $G$ there will be two extra edges added in $G S(G)$. Hence there cannot be a cut edge in this case.

Sub case 1.2: Assume that $G$ is the complete graph $K_{n}$. Clearly when $G \cong K_{n}$ the open global shadow graph $G S(G) \cong 2 K_{n}$.

Case 2:To show that $G S(G)$ doesn't have a cut vertex.
Sub case 2.1: Suppose $G$ is a graph with no cut vertex. This implies that $G^{\prime}$ has no cut vertex. Clearly from observation 2.3 the graph $G S(G)$ doesn't have cut vertex.

Sub case 2.2: Suppose $G$ is a graph with a cut vertex. Let $v$ be a cut vertex in $G$ and $K$ and $H$ be the components of the graph $G-v$. Let $K^{\prime}$ and $H^{\prime}$ be the graphs corresponding to $K$ and $H$ respectively in $G S(G)$. Clearly in $G S(G)$ all the vertices in the component $H$ will be adjacent to all the vertices in $K^{\prime}$ similarly all the vertices in the component $K$ will be adjacent to all the vertices in $H^{\prime}$. Therefore we cannot find any cut vertex.

Theorem 2.6. The open global shadow graph is $n-1$ regular.

Proof. Let $G$ be a graph with $n$ vertices. For any vertex say $v_{i} \in V(G)$ where $1 \leq i \leq n, V(G) \backslash N\left(v_{i}\right)$ are the non neighbors of $v_{i}$ in $G$, according to the definition of open global shadow graph $G S(G)$, vertices that are corresponding to $V(G) \backslash N\left(v_{i}\right)$ in $G^{\prime}$ are made adjacent to $v_{i}$ making the degree of $v_{i}$ to be $n-1$. Same is true when we consider any vertex say $v_{i}^{\prime}$ in $G^{\prime}$. Hence we can say that open global shadow graph is a $n-1$ regular graph.

Observation 2.7. If $G$ is an $n$ order disconnected graph with 2 components with each component forming a clique, then $G S(G)$ is isomorphic to $2 K_{n}$.

A dominating set for a graph $G$ is a subset $D$ of $V(G)$ such that every vertex not in $D$ is adjacent to at least one vertex of $D$.
Minimum cardinality of the dominating set is known as the domination number of the graph $G$ and denoted by $\gamma(G)$.
When the subgraph induced by $D$ is connected then it forms a connected dominating set and the minimum cardinality of the connected dominating set is known as connected domination number and is denoted by $\gamma_{c}(G)$ [10]. It can be observed that any of the two corresponding vertices of the open global shadow graph are enough to dominate the entire graph. therefore we have the following:

Proposition 2.8. For a connected graph $G, \gamma(G S(G))=2$.
Proposition 2.9. For a connected graph $G K_{n}, \gamma_{c}(G S(G)) \leq 4$.

Proof. From Proposition 2.8 it is clear that $v_{i}$ and $v_{i}^{\prime}$, where $1 \leq i \leq n$ are enough to dominate the entire open global shadow graph. However $v_{i}$ and $v_{i}^{\prime}$ are disconnected and there exists no vertex in $G S(G)$ such that it is adjacent to both $v_{i}$ and $v_{i}^{\prime}$. Let $v_{k}$ be adjacent to $v_{i}$ then clearly $v_{k}$ is not adjacent to $v_{i}^{\prime}$. Either exist at least one vertex $v_{t}$ which is adjacent to $v_{k}$ and $v_{i}^{\prime}$ in this case the connected dominating set will have $\left\{v_{i}, v_{k}, v_{t}, v_{i}^{\prime}\right\}$ or vertex $v_{t}$ which is adjacent to $v_{k}^{\prime}$ and $v_{i}$ in this case the connected dominating set will have $\left\{v_{k}, v_{i}, v_{t}^{\prime}, v_{k}^{\prime}\right\}$. Hence $\gamma_{c}(G S(G)) \leq 4$.

Theorem 2.10 ([6]). If $G$ is a simple connected t-regular graph with at most $2 t+2$ vertices, then $G$ is Hamiltonian.

Theorem 2.11. If $G S(G)$ is connected then $G S(G)$ is a Hamiltonian graph.

Observation 2.12. The graph $G S(G)$ is a $n-1$ regular graph with $2 n$ number of vertices. From theorem 2.10 we know that, if $G$ is a connected $r$-regular graph with at most $2 r+2$ vertices then $G$ is Hamiltonian. Hence if $G S(G)$ is connected, then it is Hamiltonian.

Observation 2.13. The open global shadow graph is Hamiltonian or its components are Hamiltonian.

## 3. Basic results on the zero forcing number of open global shadow graph

In this section, the bound for zero forcing number of open global shadow graphs are studied. Few characterization of the open global shadow graphs are given. Another objective of this section is to characterize simple graph $G$ for which $Z(G S(G))=1, Z(G S(G))=2$ and $Z(G S(G))=3$. The edge arrows of each figure in this section indicate the direction of forcing. That is if a vertex say $v_{1}$ forces another vertex say $v_{2}$ black, then the edge arrow from $v_{1}$ to $v_{2}$ indicates the direction of forcing from the vertex $v_{1}$ to the vertex $v_{2}$.

Theorem 3.1 ([4]). The Zero forcing number of graph $G$ is bounded by the minimum degree $\delta(G)$ as $Z(G) \geq \delta$.

The following observation is a consequence of Theorem 3.1 and Theorem 2.6.

Observation 3.2. For a graph $G$ of order $n, Z(G S(G)) \geq n-1$.
Theorem 3.3 ([3])). Let $G$ be a graph with minimum degree $\delta \geq 1$, then $Z(G) \leq n \frac{\Delta}{\Delta+1}$.

Theorem 3.4. Let $G$ be a graph of order $n$. Then $n-1 \leq Z(G S(G)) \leq$ $2 n-2$.

Proof. Lower bound follows from Observation 3.2. For a simple graph $G$ of order $n \geq 2, \delta(G S(G)) \geq 1$. From Theorem 3.3 we know that,

$$
Z(G) \leq n \frac{\Delta}{\Delta+1}
$$

$$
\begin{gathered}
Z(G S(G)) \leq \frac{2 n(n-1)}{(n-1)+1}=2(n-1) \\
Z(G S(G)) \leq 2 n-2
\end{gathered}
$$

From Observation 3.2 we can say that if $Z(G S(G))=1$, then the order of the graph $G$ is 2 . When the order of the graph $G$ is 2 , the only possible simple graphs are, $K_{2}$ and $\overline{K_{2}}$. Open global shadow graph of the graphs, $K_{2}$ and $\overline{K_{2}}$ are depicted in the figure 1 . It can be observed that none of the graphs in figure 1 has zero forcing number 1. This implies that $Z(G S(G)) \geq 2$. As a consequence we have the following observation.

Observation 3.5. There exists no simple graph $G$ of order $n$ with $Z(G S(G))=$ 1.

Observation 3.6. For an isolated vertex graph $K_{1}$. The graph $G S\left(K_{1}\right) \cong$ $2 K_{1}$ and the zero forcing number $Z\left(G S\left(K_{1}\right)\right)=2$.

$G \cong 2 K_{1}$,
$Z(G S(G))=2$

$G \cong K_{2}$ or $P_{2}$,
$Z(G S(G))=2$

Figure 1: All the possible open global shadow graph of graph when $n=2$ with their zero forcing number.

Now we characterize the simple graph $G$ for which $Z(G S(G))=2$
Theorem 3.7. For a graph $G, Z(G S(G))=2$ if and only if $G$ is isomorphic to one of the following graphs: $P_{2}, 2 K_{1}, 3 K_{1}$ and $P_{3}$.

Proof. According to Observation 3.2, if $Z(G S(G))=2$, then $n \leq 3$. All the open global shadow graph with $n=2,3$ is shown in figure 1 and figure 2 respectively along with the zero forcing number. It is clear from both the figures that $Z(G S(G))=2$ if and only if $G$ belonging to any of the graph $P_{2}, 2 K_{1}, 3 K_{1}$ and $P_{3}$.

Observation 3.8. It can be seen that the zero forcing number in figure 1 and figure 2 are obtained by considering the following conditions. $Z(G) \geq \delta$ ([4]) and $Z\left(C_{n}\right)=2$ (any two consecutive vertices of the cycle forms a zero forcing set). If $G$ is a disconnected graph with two connected components $H_{1}$ and $H_{2}$, then $Z(G)=Z\left(H_{1}\right)+Z\left(H_{2}\right)$.

It is important to note that there exists no simple open global shadow graph for which the zero forcing number is 3 .

Theorem 3.9. There exists no simple graph for which $Z(G S(G))=3$.

Proof. From Observation $3.2 Z(G S(G))=3$ implies that $n \leq 4$. Clearly for $n \geq 5$, the zero forcing number of open global shadow graph cannot be equal to 3. On the other hand, from Observation 3.8, Figure 1 and Figure 2 shows that the zero forcing number of open global shadow graph for $n=1,2$ and 3 are not equal to 3 . Now we are left to show that for $n=4$ there exists no open global shadow graph $G S(G)$ such that $Z(G S(G))=3$.

On contrary let us assume that for $n=4$ there exist at least one graph for which $Z(G S(G))=3$.

Case 1: Assume that $G S(G)$ is disconnected. Then the possible simple graph $G$ of order 4 are the complete graph $K_{4}$, the complement of the cycle $C_{4}$ that is $\overline{C_{4}}$ and the Co-claw graph that is $K_{3} \cup k_{1}$. It can be seen that in all the 3 graphs, $G$ is either a complete graph or has two components as clique. Hence $G S(G)$ is $2 K_{4}$. With 3 black vertices at most one white vertex can be forced and the forcing process stops in $G S(G)$.


$$
G \cong 3 K_{1}, Z(G S(G))=2
$$


$Z(G S(G))=4 \quad G \cong \overline{P_{3}}, Z(G S(G))=4$


$$
G \cong P_{3}, Z(G S(G))=2
$$

Figure 2: The figure illustrates all the possible open global shadow graph of a simple graph $G$ when the order $n=3$. In the first figure a minimum zero forcing set for the open global shadow graph of the graph $G \cong 3 K_{1}$ is marked by the black vertices $v_{1}$ and $v_{2}^{\prime}$. The forcing sequence $v_{1}$ forces $v_{3}^{\prime}$ and $v_{2}^{\prime}$ forces $v_{3}$ are indicated using the arrows. Again the vertex $v_{3}^{\prime}$ forces $v_{2}$ and $v_{3}$ forces $v_{1}^{\prime}$ also indicated using arrows.

Case 2: Assume that $G S(G)$ is connected.
Sub Case 2.1: Consider the graph $G$ to be $\overline{K_{4}}$. Let $G S(G)$ be its open global shadow graph. In the graph $G S(G)$, it can be observed that $\forall v \in V(G)$, all 3 of its neighbours will be in $V\left(G^{\prime}\right)$ and vice-versa. Clearly by taking $v$ and two of its neighbour black, it is not possible to force the entire graph $G S(G)$ to be black.

Sub Case 2.2: Consider the graph $G$ to be the Co-diamond. Label the two vertices with degree zero as $v_{1}$ and $v_{2}$ and two vertices of degree one as $v_{3}$ and $v_{4}$. The forcing of $G S(G)$ can be split into two cases as the forcing pattern is same when we take either one of the two zero degree vertex or one of the two one degree vertex as initial black vertex.

Sub Case 2.2.1: When $v_{1}$ is considered black, then two of its neighbours in $V\left(G^{\prime}\right)$ say $v_{2}^{\prime}, v_{3}^{\prime}$ are considered black so that $v_{1}$ can force $v_{4}^{\prime}$ black. $v_{2}^{\prime}$ will have 2 white neighbours $v_{3}$ and $v_{4}$ hence $v_{2}^{\prime}$ doesn't force any white neighbour black. Further $v_{3}^{\prime}$ or $v_{4}^{\prime}$ can force $v_{2}$ black as it is the only white neighbour of $v_{3}^{\prime}$ or $v_{4}^{\prime}$. In the next step $v_{2}$ has $v_{1}^{\prime}$ as its only white neighbour. However $v_{1}^{\prime}$ has two white neighbours $v_{3}$ and $v_{4}$. Hence 3 black vertices are not enough for the forcing process.
Case is similar when we consider $v_{2}$ as the initially colored black vertex.
Sub Case 2.2.2: When $v_{4}$ is taken to be black, two of its neighbours $v_{3}$ and $v_{2}^{\prime}$ are taken black. $v_{4}$ forces $v_{1}^{\prime}$ black. Now $v_{3}$ cannot force any vertex black as all its neighbours are black. $v_{2}^{\prime}$ can force $v_{1}$ black and $v_{1}^{\prime}$ can force $v_{2}$ black. Both $v_{2}$ and $v_{1}$ has 2 white vertices $v_{3}^{\prime}$ and $v_{4}^{\prime}$. Hence the forcing stops.
Case is similar when we consider $v_{3}$ as the initially colored black vertices.

Sub Case 2.3: Consider the graph $G$ to be the diamond graph. Label the two vertices with degree 3 as $v_{2}$ and $v_{4}$ and two vertices with degree 2 as $v_{1}$ and $v_{3}$ such that $v_{1} v_{3}$. The forcing of $G S(G)$ can be split into two cases as the forcing pattern is same when we take either one of the two 2 degree vertex or one of the two 3 degree vertex as initial black vertex.

Sub Case 2.3.1: When $v_{1}$ is taken initially black. Clearly two of its neighbour should be black say, $v_{2}$ and $v_{4}$, then $v_{1}$ forces $v_{3}^{\prime}$ and $v_{4}$ or $v_{2}$ forces $v_{3}$ black. $v_{3}$ can force $v_{1}^{\prime}$ black after which the forcing process stops as both $v_{1}^{\prime}$ and $v_{3}^{\prime}$ have two white vertices.

Sub Case 2.3.2: When $v_{2}$ is taken black along with two of its neighbours say $v_{1}$ and $v_{3} . v_{2}$ can force $v_{4}$ also $v_{1}$ forces $v_{3}^{\prime}$ and $v_{3}$ forces $v_{1}^{\prime}$ and the process stops as both $v_{1}^{\prime}$ and $v_{3}^{\prime}$ have two white neighbours $v_{2}^{\prime}$ and $v_{4}^{\prime}$.

Sub Case 2.4: Consider the graph $G$ to be the co-paw label the one isolated vertex as $v_{1}$, two degree one vertices as $v_{2}$ and $v_{4}$ and one degree two
vertex as $v_{3}\left(v_{3} \sim v_{2}\right.$ and $\left.v_{3} \sim v_{4}\right)$. The forcing of $G S(G)$ can be split into three cases based on the degree of the vertices.

Sub Case 2.4.1: When $v_{1}$ along with two of its neighbours $v_{2}^{\prime}$ and $v_{3}^{\prime} . v_{1}$ can force $v_{4}^{\prime}$. $v_{2}^{\prime}$ and $v_{4}^{\prime}$ respectively can force $v_{4}$ and $v_{2}$. The process of forcing stops as both $v_{2}$ and $v_{4}$ have two white vertices $v_{3}$ and $v_{1}^{\prime}$.

Sub Case 2.4.2: When $v_{2}$ and two of its neighbours $v_{3}$ and $v_{1}^{\prime}$ are black then, $v_{2}$ can force $v_{4}^{\prime}$ black. Then $v_{3}$ can force $v_{4}$ black. $v_{4}$ can force $v_{2}^{\prime}$ black. Both $v_{2}^{\prime}$ and $v_{4}^{\prime}$ are adjacent to two white vertices $v_{3}^{\prime}$ and $v_{1}$. Hence the process stops.
Case is similar when we consider $v_{4}$ as the initially colored black vertices.

Sub Case 2.4.3: When $v_{3}$ and two of its neighbours $v_{2}$ and $v_{4}$ are black. Then $v_{3}$ forces $v_{1}^{\prime}$ black. $v_{2}$ and $v_{4}$ forces $v_{4}^{\prime}$ and $v_{2}^{\prime}$ respectively. Now $v_{4}^{\prime}$ and $v_{2}^{\prime}$ has two white neighbours $v_{3}^{\prime}$ and $v_{1}$. Hence the process stops.

Sub Case 2.5 Consider the graph $G$ to be the paw, label the one vertex with degree one as $v_{1}$, vertex with degree 3 as $v_{2}$ and two vertices with degree 2 as $v_{3}$ and $v_{4} \cdot\left(v_{3} v_{1}\right.$ and $\left.v_{4} v_{1}\right)$ The forcing of $G S(G)$ can be split into three cases based on the degree of the vertices.

Sub case 2.5.1: $v_{1}$ and two of its neighbours $v_{2}$ and $v_{3}^{\prime}$ are taken black then $v_{1}$ forces $v_{4}^{\prime}$ black. $v_{3}^{\prime}$ or $v_{4}^{\prime}$ forces $v_{2}^{\prime}$ black $v_{2}^{\prime}$ further forces $v_{1}^{\prime}$ black. then process stops as both $v_{1}^{\prime}$ and $v_{2}$ are adjacent to two white neighbour $v_{3}$ and $v_{4}$.

Sub Case 2.5.2: $v_{2}$ and two of its neighbours $v_{3}$ and $v_{4}$ are taken initially black then $v_{2}$ forces $v_{1}$ and $v_{3}$ or $v_{4}$ forces $v_{1}^{\prime}$ black. $v_{1}^{\prime}$ can force $v_{2}^{\prime}$ black. However $v_{2}^{\prime}$ and $v_{1}$ are adjacent to two white vertices.

Sub Case 2.5.3: $v_{3}$ and two of its neighbours $v_{2}$ and $v_{4}$ are black then, $v_{3}$ can force $v_{1}^{\prime}$ black and $v_{2}$ can force $v_{1}$ black. $v_{1}^{\prime}$ can force $v_{2}^{\prime}$ black. However $v_{1}$ and $v_{2}^{\prime}$ both are adjacent to two white neighbour $v_{3}^{\prime}$ and $v_{4}^{\prime}$.
Case is similar when we consider $v_{4}$ as the initially colored black vertices.

Sub Case 2.6: Consider the graph $G$ to the cycle $C_{4}$. Clearly all the vertices are of degree 2. The forcing of $G S(G)$ is same irrespective of the vertex that we choose. Let $v_{1}$ and two of its neighbours $v_{2}$ and $v_{4}$ be colored
initially black, then $v_{1}$ can force $v_{3}^{\prime}$ black. Now the forcing process stops as $v_{2}, v_{4}$ and $v_{3}^{\prime}$ have 2 white neighbours ( $v_{3}$ and $v_{4}^{\prime}, v_{3}$ and $v_{2}^{\prime}, v_{2}^{\prime}$ and $v_{4}^{\prime}$ respectively).

Sub Case 2.7: Consider the graph $G$ to be the claw. Label the 3 vertices with degree one as $v_{1}, v_{3}, v_{4}$ and one vertex with degree three as $v_{2}$. The forcing of $G S(G)$ can be split into two cases as the forcing pattern is same when we take either one of the three 1 degree vertex as initial black vertex.

Sub Case 2.7.1: When $v_{1}$ along with two of its neighbour $v_{2}, v_{3}^{\prime}$ are taken black. $v_{1}$ can force $v_{4}^{\prime}$. $v_{2}, v_{3}^{\prime} a n d v_{4}^{\prime}$ have two white neighbours hence the process stops.
Case is similar when we consider $v_{4}$ or $v_{3}$ as the initially colored black vertices.

Sub Case 2.7.2: When $v_{2}$ and two of its neighbours say $v_{1}, v_{3}$ as black.Then $v_{2}$ can force $v_{4}$ black but further forcing is not possible as each of these black vertices are connected to two white neighbours.

Sub Case 2.8: Consider the graph $G$ to be the path $P_{4}$. Label the two vertices with degree one as $v_{1}, v_{4}$ and two vertices with degree two as $v_{2}, v_{3}$. The forcing of $G S(G)$ can be split into two cases based on the degree of the graph.

Sub Case 2.8.1: $v_{1}$ and two of its neighbours $v_{2}$ and $v_{3}^{\prime}$ are considered black. $v_{1}$ can force $v_{4}^{\prime}$ black. Then $v_{2}$ can force $v_{3}$ black and $v_{3}^{\prime}$ can force $v_{2}^{\prime}$ black. The forcing process stops as $v_{3}$ and $v_{2}^{\prime}$ have two white neighbours $v_{4}$ and $v_{1}^{\prime}$.
Case is similar when we consider $v_{4}$ as the initially colored black vertices.

Sub Case 2.8.2: $v_{2}$ and two of its neighbours $v_{1}$ and $v_{3}$ are taken black. Now $v_{2}$ can force $v_{4}^{\prime}$ black. $v_{4}^{\prime}$ can force $v_{3}^{\prime}$ black and $v_{3}^{\prime}$ can force $v_{2}^{\prime}$ black. Then the forcing process stops as both $v_{2}^{\prime}$ and $v_{3}$ have two white neighbours $v_{1}^{\prime}$ and $v_{4}$.
Case is similar when we consider $v_{3}$ as the initially colored black vertices.
From all the above cases we can conclude that for $n=4$ there exists no open global shadow graph $G S(G)$ such that $Z(G S(G))=3$. Table 3.1 shows all the possible graph $G$ when $n=4$ and its $Z(G S(G))$. It can be
observed that none of the graph $G$ takes $Z(G S(G))$ to be 3 .

| Graph G | $\mathrm{Z}(\mathrm{G})$ | $\mathrm{Z}(\mathrm{GS}(\mathrm{G}))$ |
| :---: | :---: | :---: |
| $\overline{K_{4}}$ | 4 | 4 |
| $K_{4}$ | 3 | 6 |
| Co-diamond | 3 | 4 |
| Diamond | 2 | 4 |
| Co-paw | 2 | 4 |
| paw | 2 | 4 |
| $\overline{C_{4}}$ | 2 | 6 |
| $C_{4}$ | 2 | 4 |
| Claw | 2 | 4 |
| Co-claw | 3 | 6 |
| $P_{4}$ | 1 | 4 |

Table 3.1: Value of $Z(G S(G))$ for all possible $G$ when $n=4$

It is an open problem to characterize graphs for which $Z(G S(G))=4$. In figure 3 we provide few examples of graphs for which $Z(G S(G))=4$.

Theorem 3.10. For a connected graph $G$ of order $n, Z(G S(G))=2 n-2$ if and only if $G \cong K_{n}$.

Proof. If $G \cong K_{n}$, then the open global shadow graph $G S(G) \cong 2 K_{n}$. We know that $Z(G)=n-1$ where n is the number of vertices in $G$. Now we have $2 K_{n}$, for each $K_{n}$ we need $n-1$ black vertices. Hence on the whole $Z(G)=2(n-1)=2 n-2$.
To prove the converse part, let us assume the contrary that $Z(G S(G))=$ $2 n-2$ and $G \neq K_{n}$. Since $G$ is connected and $G \neq K_{n}$, there will be at least two vertices in $G$ that are not adjacent to each other. Let $v_{i}$ and $v_{j}$ be the two vertices that are not adjacent to each other in $G$. In the open global shadow graph of $G, v_{i}$ will be adjacent to $v_{j}^{\prime}$ and $v_{j}$ will be adjacent to $v_{i}^{\prime}$. In $G S(G)$ let us take $V(G S(G)) \backslash\left\{v_{k}, v_{i}^{\prime}, v_{j}^{\prime}\right\}$ (where $v_{k}$ is one of the neighbour of $v_{j}^{\prime}$ such that $k \neq i$ )in the zero forcing set $S$. Clearly, $v_{j}^{\prime}$ is the only white neighbour of $v_{i}$. Hence $v_{i}$ forces $v_{j}^{\prime}$. Also $v_{k}$ is a white vertex adjacent to $v_{j}^{\prime}$, so $v_{j}^{\prime}$ can force $v_{k}$ as it is the only white neighbour. Similarly, $v_{i}^{\prime}$ is the only white neighbour of $v_{j}$ in $G S(G)$. Hence $v_{j}$ can force
$v_{i}^{\prime}$ black, thereby forcing the entire graph black. It can be concluded that $Z(G S(G)) \leq|S|=n-3$. Hence a contradiction.
Observation 3.11. Let $G S(G)$ be disconnected. Then $Z(G S(G))=2 n-2$.
Lemma 3.12. Let $G$ be a null graph. Then $G S(G)$ is a triangle free graph.
Proof. Let us assume that $G S(G)$ is not triangle free graph. Clearly there is at least one $K_{3}$ in the graph $G S(G)$. Consider the $K_{3}$ present in $G S(G)$, where at least two vertices are from the same component $G$ or $G^{\prime}$. However any two vertices in $G$ or $G^{\prime}$ cannot be adjacent as $G$ is a null graph. Hence the contradiction.
Theorem 3.13 ([7]). If a graph $G$ is triangle free, then $Z(G) \geq 2 \delta-2$.
Theorem 3.14. For a null graph $G$ of order $n>2, Z(G S(G))=2 n-4$.
Proof. It is known that $G S(G)$ is a triangle free graph from Lemma 3.12. Theorem 3.13 shows that if a graph is triangle free then $Z(G) \geq 2 \delta-2$. $G S(G)$ is an $n-1$ regular graph, Theorem 2.6. Hence $Z(G S(G)) \geq 2(n-$ 1) $-2=2 n-4$.

Now we are left to show that $Z(G S(G)) \leq 2 n-4$. According to the definition of $G S(G)$ each vertex in $G$ will be adjacent to all the $n-1$ vertices of $G^{\prime}$ except for the corresponding vertex. Let $S$ be the zero forcing set, by taking $v_{i}$ and $n-2$ of its neighbour black $v_{i}$ can force the only white neighbour black. To further carryout the forcing process we need to take $n-3$ neighbours of $v_{j}^{\prime}, 1 \leq j \leq n \& j \neq i$ black there by $v_{j}$ forcing its only white neighbour. At this stage we are left with one white vertex in $G$ and one in $G^{\prime}$. Both these vertices can be forced by the black vertices in $G S(G)$. Thereby forcing the entire graph black. Hence $|S|=1+n-2+n-3=2 n-4$ implies $Z(G S(G)) \leq 2 n-4$.
Theorem 3.15. If $G$ is $n-2$ regular, then $Z(G S(G)) \leq n$.
Proof. If $G$ is an $n-2$ regular graph, then according to the handshaking lemma $n$ must be even. Meaning there are $\frac{n}{2}$ missing edges in $G$. Due to which there will be $n$ edges between $G$ and $G^{\prime}$ in $G S(G)$. In $G S(G)$ each vertex in $G$ will have exactly one unique neighbour in $G^{\prime}$. Same is true with vertices of $G^{\prime}$. By taking all the $n$ vertices of $G$ or $G^{\prime}$ as black we can force the entire graph $G S(G)$ black. Hence $Z(G S(G)) \leq n$.
Theorem 3.16. For a path $P_{n}, Z\left(G S\left(P_{n}\right)\right) \leq n+1$.

Proof. Let $G$ be a path $P_{n}$. In the $G S(G)$, The vertices $v_{1}$ and $v_{n}$ are adjacent to $n-2$ vertices of $G^{\prime}$, the remaining $n-2$ vertices in $G$ has $n-3$ adjacent vertices in $G^{\prime}$. Similarly $v_{1}^{\prime}$ and $v_{n}^{\prime}$ are adjacent to $n-2$ vertices of $G$, the remaining $n-2$ vertices in $G^{\prime}$ has $n-3$ adjacent vertices in $G$. By taking all the vertices of $G$ or $G^{\prime}$ to be black. $G S(G)$ looks like a path graph. We need one more vertex to force the entire graph $G S(G)$ black. Hence $Z\left(G S\left(P_{n}\right)\right) \leq n+1$.

Now we consider the hamiltonicity of $G S(G)$

Theorem 3.17 ([2]). If $G$ is a Hamiltonian graph, then $Z(G)=M(G)$ where $M(G)$ is the maximum nullity of graph $G$.

Corollary 3.18. For a graph $G, Z(G S(G))=M(G S(G))$.

Proof. From Observation 2.12 it can be seen that open global shadow graph is Hamiltonian. From Theorem 3.17, it can be concluded that $Z(G S(G))=M(G S(G))$.

## 4. Relation between $Z(G S(G))$ and $2 Z(G)$

In this section we try to characterize graph classes for which $Z(G S(G))=$ $2 Z(G)$. We start with the complete graph $K_{n}$.

Theorem 4.1. If $G \cong K_{n}$, then $Z\left(G S\left(K_{n}\right)\right)=2 Z\left(K_{n}\right)$.

Proof. From Theorem 3.10 it is known that if $G \cong K_{n}$, then $Z(G S(G))=$ $2 n-2$. Also [9] we know that $Z(G)=n-1$ when $G \cong K_{n}$. Clearly $Z(G S(G))=2 Z(G)$, when $G \cong K_{n}$.

Let us recall the following theorem from [8] to prove the next theorem.

Theorem 4.2 ([8]). If $G$ is a complete bipartite graph $K_{p, q}$, then the zero forcing number $Z\left(K_{p, q}\right)=p+q-2$, where $p+q=n$..

Next we consider the complete bipartite graph $K_{p, q}$.

Theorem 4.3. If $G \cong K_{p, q}$ and $|V(G)|=n$, then $Z\left(G S\left(K_{p, q}\right)\right)=2 Z\left(K_{p, q}\right)$.

Proof. Zero forcing number of the complete bipartite graph is $Z\left(K_{p, q}\right)=$ $p+q-2$ from Theorem 4.2.
We need to prove that Zero forcing number of open global shadow graph of complete bipartite graph $Z\left(G S\left(K_{p, q}\right)\right)$ is $2 n-4$.
From Theorem 3.13 we know that if a graph $G$ is triangle free graph then the zero forcing number of graph $Z(G) \geq 2 \delta-2$.
Claim 1: Open global shadow graph of complete bipartite graph is triangle free. Since $K_{p, q}$ is triangle free, it can be seen that there is no induced $C_{3}$ in $G$ or $G^{\prime}$. In graph $G S(G)$ only possibility for it to have $C_{3}$ is when any two vertices $u, v \in V(G)$ such that $u \sim v$ and there exist a vertex $w \in V(G)$ such that $u w$ and $v w$. So that $u \sim w^{\prime}$ and $v \sim w^{\prime}$. Forming an induced $C_{3}: u \sim v \sim w^{\prime} \sim u$. But in a complete bipartite graph $G$ if $u, v \in V(G)$ and $u \sim v$, then $u$ and $v$ will be in two different partite set. In other words we can never find a vertex $w \in V(G)$ such that $u w$ and $v w$. Hence open global shadow graph of complete a bipartite graph is a triangle free graph. Hence if $G$ is a complete bipartite graph,

$$
\begin{equation*}
Z(G S(G)) \geq 2(n-1)-2=2 n-4 \tag{4.1}
\end{equation*}
$$

Let $K_{p, q}$ be a complete bipartite graph with $p$ number of vertices say $u_{1}, u_{2}, \ldots u_{p}$ in 1 st partite set $P$ and $q$ number of vertices say $v_{1}, v_{2}, \ldots, v_{q}$ in the second partite set $Q$. Now consider the open global shadow graph of $K_{p, q}$ and let $K_{p, q}^{\prime}$ be the copy of $K_{p, q}$ with $p$ number of vertices say $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{p}^{\prime}$ in the set $P^{\prime}\left(P^{\prime}\right.$ is the partite set in $K_{p, q}^{\prime}$ corresponding to the partite set $P$ in $K_{p, q}$ ) and $q$ number of vertices say $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{q}^{\prime}$ in the set $Q^{\prime}\left(Q^{\prime}\right.$ is the partite set in $K_{p, q}^{\prime}$ corresponding to the partite set $Q$ in $\left.K_{p, q}\right)$. With out loss of generality, in the graph $G S(G)$ if $u_{i} \in P$ is taken black, then all the vertices in $\left\{P^{\prime}\right\} \backslash u_{i}^{\prime}(p-1$ number of vertices) and $q$ vertices in $Q$ are adjacent to $u_{i}$. By taking $N\left(u_{i}\right) \backslash v$ (Where $v \in Q \cup P^{\prime} \backslash u_{i}$ ) to be black $v$ can be forced black by $u_{i}$. Now all the $q$ vertices in $Q$ are colored black. If $v_{j}$ is the vertex in $Q, v_{j}$ is adjacent to all the vertices in $P$ and $\left\{Q^{\prime}\right\} \backslash v_{j}^{\prime}$. By taking $N\left(v_{j}\right) \backslash u$ (Where $u \in Q^{\prime} \backslash v_{j} \cup P$ ) to be black $u$ can be forced black by $v_{j}$. Now any of the vertex other than $u_{i}$ in $P$ and any of the vertex other than $v_{j}$ in $Q$ can force $u_{i}^{\prime}$ and $v_{j}^{\prime}$ black respectively. So the cardinality of zero forcing set is given as $|S|=1+p-1+q-1+q-1+p-2=$ $2 p+2 q-4=2(p+q)-4=2 n-4$. Therefore the bound for the zero forcing number will be

$$
\begin{equation*}
Z(G S(G)) \leq 2 n-4 \tag{4.2}
\end{equation*}
$$

From equation 1 and $2, Z(G S(G))=2 n-4$.

Corollary 4.4. If $G$ is a star graph on $n+1$ vertices, then $Z\left(G S\left(K_{1, n}\right)\right)=$ $2 Z\left(K_{1, n}\right)$.

Proof. $\quad$ Star graph is a bipartite graph $K_{p, q}$ where $p=1$ and $q=n$. Clearly from the above Theorem $4.3 Z(G S(G))=2(n+1)-4=2 n-2$ and $Z(G S(G))=2 Z(G)$.

Observation 4.5. If $G S(G) \cong 2 K_{n}$, then $Z(G S(G))$ need not be twice $Z(G)$.

Let $G$ be an $n$ vertex graph with $G S(G) \cong 2 K_{n}$ and $Z(G S(G))=$ $2 Z\left(K_{n}\right)$. Let us assume that $Z(G S(G))=2 Z(G)$. We know that if $G S(G) \cong 2 K_{n}$, then $Z(G S(G))=2 n-2$.

If $G S(G)$ is obtained by taking $G \cong K_{n}$, then $Z(G S(G))=2 Z(G)=$ $2 Z\left(K_{n}\right)$. However if $G S(G) \cong 2 K_{n}$ doesn't always implies that $G \cong K_{n}$. According to Observation 2.7 suppose if $G$ is a graph with two cliques ( $K_{p}$ and $K_{q}$, where $p+q=n$ ), then we know that $G S(G) \cong 2 K_{n}$, but $Z(G)=n-2 \neq n-1$.

Theorem 4.6. Let $G$ be the graph $C_{n}$. Then $Z\left(G S\left(C_{n}\right)\right)=2 Z\left(C_{n}\right)$, if and only if, the cycle is either $C_{3}, C_{4}$ or $C_{5}$.

Proof. Clearly when $G$ is one of the graph $C_{3}, C_{4}$ or $C_{5}$ then $Z(G S(G))=$ 4 ( refer figure 3). It is enough if we can show that $n$ cannot take values greater than 6 . When $G$ is a cycle $Z(G)=2$ (two of the consecutive vertices forms a zero forcing set). From the Observation 3.2 if $Z(G S(G))=2 Z(G)$ implies $n 6$. Clearly $3 \leq n \leq 5$ that is $G$ is either $C_{3}, C_{4}$ or $C_{5}$.

Observation 4.7. In figure 3 the zero forcing number of $C_{3}$ and $C_{5}$ is obtained from $Z(G) \geq \delta$. The zero forcing number of $C_{4}$ can be observed in table 3.1.


$$
G \cong C_{3}, Z(G S(G))=4
$$



$$
G \cong C_{5}, Z(G S(G))=4
$$

Figure 3: All the possible open global shadow graphs of $C_{n}, 3 \leq n \leq 5$.

Theorem 4.8. If $Z(G)<\frac{n-1}{2}$, then $Z(G S(G))>2 Z(G)$.
Proof. Let $G$ be a simple graph such that $Z(G)<\frac{n-1}{2}$. From Observation 3.2, we know that
$Z(G S(G)) \geq n-1$.
$Z(G S(G)) \geq n-1=2 \frac{n-1}{2}>2 Z(G)$.
$Z(G S(G))>2 Z(G)$.
Converse of this theorem need not be true. If $Z(G S(G))>2 Z(G)$, then this doesn't mean that $Z(G)<\frac{n-1}{2}$.

## 5. Conclusion and Scope

In this article we have discussed about the zero forcing number of the open global global shadow graph. It is an open problem to characterize
connected graphs $G$ for which $Z(G S(G))=2 Z(G)$. It is an open problem to Characterize $Z(G S(G))=4$.

## Acknowledgement

We authors, thank the anonymous referees for their constructive comments and suggestions which helped in improving this article.

## References

[1] A. Aazami, Hardness results and approximation algorithms for some problems on graphs, U W Space, 2008. [On line]. A vailable: https://bit.ly/3X 7N w II
[2] AIM M inimum rank- special graphs w ork group, "Z ero forcing sets and the minimum rank of graphs", Linear Algebra and its Applications, vol. 428, no. 7, pp. 1628-1648, 2008. doi: 10.1016/j.laa.2007.10.009
[3] D. Amos, Y. Caro, R . Davila, and R. Pepper, "U pper bounds on the k-forcing number of a graph", Discrete Applied M athematics, vol. 181, pp. 1-10, 2015. doi: 10.1016/j.dam.2014.08.029
[4] A. Berman, S. Friedland, L. Hogben, U. G. Rothblum, and B. Shader, "An upper bound for the minimum rank of a graph", Linear Algebra and its A pplications, vol. 429, no. 7, pp. 1629-1638, 2008. doi: 10.1016/j.laa.2008.04.038
[5] D. Burgarth and V. Giovannetti, "Full control by locally induced relaxation", Physical review letters, vol. 99, no. 10, p. 100501, 2007. doi: 10.1103/PhysR evLett.99.100501
[6] D. W. Cranston and O. Suil, "H amiltonicity in connected regular graphs", Information Processing Letters, vol. 113, no. 22-24, pp. 858-860, 2013. doi: 10.1016/j.ipl.2013.08.005
[7] M. Gentner, L. D. Penso, D. Rautenbach, and U. S. Souza, "Extremal values and bounds for the zero forcing number", Discrete applied mathematics, vol. 214, pp. 196-200, 2016. doi: 10.1016/j.dam.2016.06.004
[8] Leah.S.M ays, The Zero Forcing Number Of Bipartite Graphs. 2013. [On line]. Available: https://bit.ly/3F 403Tz
[9] D. D. Row, "A technique for computing the zero forcing number of a graph with a cut- vertex", Linear Algebra and its A pplications, vol. 436, no. 12, pp. 4423-4432, 2012. doi: 10.1016/j.laa.201105.012
[10] E. Sampathkumar and H. W alikar, "The connected domination number of a graph", Journal of M athematical P hysics Science, vol. 13, no. 6, pp. 607-613, 1979

M. R. Raksha

Department of Mathematics
CHRIST (Deemed to be University)
Bangalore-560029,
India
e-mail: raksha.mr@res.christuniversity.in
Corresponding author
and
Charles Dominic
Department of Mathematics
CHRIST (Deemed to be University)
Bangalore-560029,
India
e-mail: charles.dominic@christuniversity.in
Department of Mathematical Sciences
University of Essex
Colchester, Essex CO4 3SQ
United Kingdom
e-mail: cd22129essex.ac.uk

