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Abstract

Zero forcing number of a graph is the minimum cardinality of the
zero forcing set. A zero forcing set is a set of black vertices of mini-
mum cardinality that can colour the entire graph black using the colour
change rule: each vertex of G is coloured either white or black, and
vertex v is a black vertex and can force a white neighbour only if it has
one white neighbour. In this paper we identify a class of graph where
the zero forcing number is equal to the minimum rank of the graph
and call it as a new class of graph that is open global shadow graph”.
Some of the basic properties of open global shadow graph are studied.
The zero forcing number of open global shadow graph of a graph with
upper and lower bound is obtained. Hence giving the upper and lower
bound for the minimum rank of the graph.
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1. Introduction

Throughout this article we consider only simple un-directed finite graphs
without loops and multiple edges. A graph consist of a vertex set V (G)
and an edge set E(G). Two vertices u and v of a graph G are adjacent if
there is an edge uv joining them, and we denote this as v ∼ u. The open
neighborhood of a vertex v denoted by N(v), consist of all the vertices
which are adjacent to v. The closed neighborhood of v denoted by N [v],
consist of the vertex v and every vertex adjacent to v. Degree of a vertex
v is the number of edges incident with the vertex v. The minimum and
maximum degree of a graph is represented respectively as δ and ∆.

The zero forcing set S ⊆ V (G) is a set consisting of black colored
vertices, which are colored black based on the color changing rule. The
color changing rule states that a black color vertex can force at most one
white neighbour provided it is the only white neighbour of it. The minimum
cardinality of S gives the zero forcing number of a graph G. The concept of
zero forcing number was introduced by AIM Minimum rank- special graphs
work group [2] to bound the minimum rank of the graph. Independently
the concept of zero forcing was introduced in 2007 [5] to understand the
controlability of quantum system. The major advantage of introducing the
concept of zero forcing over other tools to bound the minimum rank is
that its definition is purely combinatorial. The problem of finding the zero
forcing number of a graph is an NP hard problem [1].

The shadow graph is defined as, let G be a simple connected graph
and G0 be a copy of G such that each vertex u ∈ V (G) is made adjacent
to N(u0). Where u0 is the corresponding vertex of u. Motivated by the
definition of shadow graph we introduce a new class of graph called the
open global shadow graph. Let G be a graph and G0 be a copy of G such
that V (G) = {v1, v2, . . . , vn} and V (G0) = {v01, v02, . . . , v0n}. The open global
shadow graph denoted by GS(G) is obtained by taking two copies of G say,
G and G0 and joining the vertex vi to each of the vertex in V (G0) \N [v0i],
where 1 ≤ i ≤ n. In this paper we refer to the vertices vi and v0i as the
corresponding vertices.

2. Some results on the open global shadow graph of a graph

In this section few characteristic properties of open global shadow graph are
discussed. The total number of edges, regularity, the domination number
and the connected domination number of the open global shadow graph are
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found.

Observation 2.1. For a graph G of order n, |V (GS(G))| = 2n.

Theorem 2.2. For a non-trivial graph G, |E(GS(G))| = n(n− 1).

Proof. For n number of available vertices in a graph G the maximum
possible edges are n(n−1)

2 . Which is that of a complete graph. It can be
seen from the definition of open global shadow graph that if G has t edges
0 ≤ t ≤ n(n−1)

2 , G0 also has t edges. Therefore, there are n(n−1)
2 − t missing

edges in G and G0 as compared to Kn. Now according to the definition of
open global shadow graph, if vi and vj are not adjacent in G then vi will
be adjacent to v0j and vj will be adjacent to v0i in GS[G]. Clearly, total

number of edges = t+ t+ 2(n(n−1)2 − t) = n(n− 1) = 2|V (Kn)|. 2

From now on whenever we write a ‘missing edge’, we mean that from
the total possible edge set for n vertices in the graph G (that is n(n−1)

2 ), an
edge is removed.

If G is the complete graph Kn, then none of the edges are missing.
Hence in GS(Kn) we will get G and a copy of G that is G0. Therefore the
open global shadow graph of the complete graph Kn is Kn ∪Kn. Suppose
that there is an edge missing between v and u for {v, u} ⊆ V (G). Then
the open global shadow graph will have G and its copy G0 and the edge
connecting v to u0 and u to v0, where {v0, u0} ⊆ V (G0). From this the
following observation can be drawn.

Observation 2.3. For each of the missing edges in G there are 2 edges
added in between G and G0 in GS(G).

Theorem 2.4. Let G be a connected graph. Then GS(G) is disconnected
if and only if G is a complete graph.

Proof. Without loss of generality, assume that G is a connected graph.
If G is a complete graph, then clearly no edges are missing so open global
shadow graph is isomorphic to 2Kn. Since 2Kn is disconnected, it is proved.

Conversely assume that G is not a complete graph. Then there will
be at least one missing edge in G. Also since G is connected in the open
global shadow graph of G there will be at least two edge between (From
observation 2.3) G and G0. Clearly GS(G) is connected, a contradiction to
our assumption that G is not a complete graph. 2
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In a simple connected graph G, if by removing an edge the graph G
get disconnected then such an edge is called cut edge. By removing a
vertex from a simple connected graph G, if the graph splits into two or
more components then such a vertex is called the cut vertex. Next theorem
shows that the open global shadow graph has no cut edge and cut vertex.

Theorem 2.5. Let G be a connected graph of order n ≥ 3. Then
i) c[GS(G)− v] = c[GS(G)], where v is any vertex in GS(G) and c[GS(G)]
is the number of connected components of GS(G).
ii) c[GS(G)− e] = c[GS(G)], where e is any edge in GS(G).

Proof. Assume that G is a connected graph. Now we divide the proof
into two cases:

Case 1: To prove that GS(G) is a graph without cut edge

Sub case 1.1: Assume that G is not a complete graph Kn. Since G
is connected and G is not Kn, there will be at least 2 vertices in G (simi-
larly in G0) that are not adjacent to each other. According Observation 2.3
for each of this missing edges in G there will be two extra edges added in
GS(G). Hence there cannot be a cut edge in this case.

Sub case 1.2: Assume that G is the complete graph Kn. Clearly when
G ∼= Kn the open global shadow graph GS(G) ∼= 2Kn.

Case 2:To show that GS(G) doesn’t have a cut vertex.

Sub case 2.1: Suppose G is a graph with no cut vertex. This implies
that G0 has no cut vertex. Clearly from observation 2.3 the graph GS(G)
doesn’t have cut vertex.

Sub case 2.2: Suppose G is a graph with a cut vertex. Let v be a cut
vertex in G and K and H be the components of the graph G− v. Let K 0

and H 0 be the graphs corresponding to K and H respectively in GS(G).
Clearly in GS(G) all the vertices in the component H will be adjacent to
all the vertices in K 0 similarly all the vertices in the component K will be
adjacent to all the vertices in H 0. Therefore we cannot find any cut vertex.
2

Theorem 2.6. The open global shadow graph is n− 1 regular.
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Proof. Let G be a graph with n vertices. For any vertex say vi ∈ V (G)
where 1 ≤ i ≤ n, V (G) \N(vi) are the non neighbors of vi in G, according
to the definition of open global shadow graph GS(G), vertices that are
corresponding to V (G) \ N(vi) in G0 are made adjacent to vi making the
degree of vi to be n− 1. Same is true when we consider any vertex say v0i
in G0. Hence we can say that open global shadow graph is a n− 1 regular
graph. 2

Observation 2.7. If G is an n order disconnected graph with 2 compo-
nents with each component forming a clique, then GS(G) is isomorphic to
2Kn.

A dominating set for a graph G is a subset D of V (G) such that every
vertex not in D is adjacent to at least one vertex of D.
Minimum cardinality of the dominating set is known as the domination
number of the graph G and denoted by γ(G).
When the subgraph induced by D is connected then it forms a connected
dominating set and the minimum cardinality of the connected dominating
set is known as connected domination number and is denoted by γc(G) [10].
It can be observed that any of the two corresponding vertices of the open
global shadow graph are enough to dominate the entire graph. therefore
we have the following:

Proposition 2.8. For a connected graph G, γ(GS(G)) = 2.

Proposition 2.9. For a connected graph GKn, γc(GS(G)) ≤ 4.

Proof. From Proposition 2.8 it is clear that vi and v0i, where 1 ≤ i ≤ n
are enough to dominate the entire open global shadow graph. However vi
and v0i are disconnected and there exists no vertex in GS(G) such that it is
adjacent to both vi and v0i. Let vk be adjacent to vi then clearly vk is not
adjacent to v0i. Either exist at least one vertex vt which is adjacent to vk and
v0i in this case the connected dominating set will have {vi, vk, vt, v0i} or vertex
vt which is adjacent to v

0
k and vi in this case the connected dominating set

will have {vk, vi, v0t, v0k}. Hence γc(GS(G)) ≤ 4. 2

Theorem 2.10 ([6]). If G is a simple connected t-regular graph with at
most 2t+ 2 vertices, then G is Hamiltonian.

Theorem 2.11. IfGS(G) is connected thenGS(G) is a Hamiltonian graph.
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Observation 2.12. The graph GS(G) is a n − 1 regular graph with 2n
number of vertices. From theorem 2.10 we know that, if G is a connected
r-regular graph with at most 2r+2 vertices then G is Hamiltonian. Hence
if GS(G) is connected, then it is Hamiltonian.

Observation 2.13. The open global shadow graph is Hamiltonian or its
components are Hamiltonian.

3. Basic results on the zero forcing number of open global
shadow graph

In this section, the bound for zero forcing number of open global shadow
graphs are studied. Few characterization of the open global shadow graphs
are given. Another objective of this section is to characterize simple graph
G for which Z(GS(G)) = 1, Z(GS(G)) = 2 and Z(GS(G)) = 3. The edge
arrows of each figure in this section indicate the direction of forcing. That
is if a vertex say v1 forces another vertex say v2 black, then the edge arrow
from v1 to v2 indicates the direction of forcing from the vertex v1 to the
vertex v2.

Theorem 3.1 ([4]). The Zero forcing number of graph G is bounded by
the minimum degree δ(G) as Z(G) ≥ δ.

The following observation is a consequence of Theorem 3.1 and Theorem
2.6.

Observation 3.2. For a graph G of order n, Z(GS(G)) ≥ n− 1.

Theorem 3.3 ([3])). Let G be a graph with minimum degree δ ≥ 1, then
Z(G) ≤ n ∆

∆+1 .

Theorem 3.4. Let G be a graph of order n. Then n− 1 ≤ Z(GS(G)) ≤
2n− 2.

Proof. Lower bound follows from Observation 3.2. For a simple graph
G of order n ≥ 2, δ(GS(G)) ≥ 1. From Theorem 3.3 we know that,

Z(G) ≤ n
∆

∆+ 1
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Z(GS(G)) ≤ 2n(n− 1)
(n− 1) + 1 = 2(n− 1)

Z(GS(G)) ≤ 2n− 2
.

2

From Observation 3.2 we can say that if Z(GS(G)) = 1, then the order
of the graph G is 2. When the order of the graph G is 2, the only possible
simple graphs are, K2 and K2. Open global shadow graph of the graphs,
K2 and K2 are depicted in the figure 1. It can be observed that none
of the graphs in figure 1 has zero forcing number 1. This implies that
Z(GS(G)) ≥ 2. As a consequence we have the following observation.

Observation 3.5. There exists no simple graphG of order n with Z(GS(G)) =
1.

Observation 3.6. For an isolated vertex graph K1. The graph GS(K1) ∼=
2K1 and the zero forcing number Z(GS(K1)) = 2.

Figure 1: All the possible open global shadow graph of graph when n=2
with their zero forcing number.

Now we characterize the simple graph G for which Z(GS(G)) = 2

Theorem 3.7. For a graphG, Z(GS(G)) = 2 if and only ifG is isomorphic
to one of the following graphs: P2, 2K1, 3K1 and P3.

pc
fu-1
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Proof. According to Observation 3.2, if Z(GS(G)) = 2, then n ≤ 3. All
the open global shadow graph with n = 2, 3 is shown in figure 1 and figure
2 respectively along with the zero forcing number. It is clear from both the
figures that Z(GS(G)) = 2 if and only if G belonging to any of the graph
P2, 2K1, 3K1 and P3. 2

Observation 3.8. It can be seen that the zero forcing number in figure 1
and figure 2 are obtained by considering the following conditions. Z(G) ≥ δ
([4]) and Z(Cn) = 2 (any two consecutive vertices of the cycle forms a zero
forcing set). If G is a disconnected graph with two connected components
H1 and H2, then Z(G) = Z(H1) + Z(H2).

It is important to note that there exists no simple open global shadow
graph for which the zero forcing number is 3.

Theorem 3.9. There exists no simple graph for which Z(GS(G)) = 3.

Proof. From Observation 3.2 Z(GS(G)) = 3 implies that n ≤ 4. Clearly
for n ≥ 5, the zero forcing number of open global shadow graph cannot be
equal to 3. On the other hand, from Observation 3.8 , Figure 1 and Figure
2 shows that the zero forcing number of open global shadow graph for
n = 1, 2 and 3 are not equal to 3. Now we are left to show that for n = 4
there exists no open global shadow graph GS(G) such that Z(GS(G)) = 3.

On contrary let us assume that for n = 4 there exist at least one graph
for which Z(GS(G)) = 3.

Case 1: Assume that GS(G) is disconnected. Then the possible simple
graph G of order 4 are the complete graph K4, the complement of the cycle
C4 that is C4 and the Co-claw graph that is K3 ∪ k1. It can be seen that
in all the 3 graphs, G is either a complete graph or has two components
as clique. Hence GS(G) is 2K4. With 3 black vertices at most one white
vertex can be forced and the forcing process stops in GS(G).
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Figure 2: The figure illustrates all the possible open global shadow
graph of a simple graph G when the order n = 3. In the first figure a
minimum zero forcing set for the open global shadow graph of the graph
G ∼= 3K1 is marked by the black vertices v1 and v02. The forcing sequence
v1 forces v

0
3 and v02 forces v3 are indicated using the arrows. Again the

vertex v03 forces v2 and v3 forces v
0
1 also indicated using arrows.

Case 2: Assume that GS(G) is connected.
Sub Case 2.1: Consider the graph G to be K4. Let GS(G) be its
open global shadow graph. In the graph GS(G), it can be observed that
∀ v ∈ V (G), all 3 of its neighbours will be in V (G0) and vice-versa. Clearly
by taking v and two of its neighbour black, it is not possible to force the
entire graph GS(G) to be black.

pc
fu-2
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Sub Case 2.2: Consider the graph G to be the Co-diamond. Label the
two vertices with degree zero as v1 and v2 and two vertices of degree one as
v3 and v4. The forcing of GS(G) can be split into two cases as the forcing
pattern is same when we take either one of the two zero degree vertex or
one of the two one degree vertex as initial black vertex.

Sub Case 2.2.1: When v1 is considered black, then two of its neighbours
in V (G0) say v02, v

0
3 are considered black so that v1 can force v

0
4 black. v

0
2

will have 2 white neighbours v3 and v4 hence v
0
2 doesn’t force any white

neighbour black. Further v03 or v
0
4 can force v2 black as it is the only white

neighbour of v03 or v
0
4. In the next step v2 has v

0
1 as its only white neighbour.

However v01 has two white neighbours v3 and v4. Hence 3 black vertices are
not enough for the forcing process.
Case is similar when we consider v2 as the initially colored black vertex.

Sub Case 2.2.2: When v4 is taken to be black, two of its neighbours v3
and v02 are taken black. v4 forces v

0
1 black. Now v3 cannot force any vertex

black as all its neighbours are black. v02 can force v1 black and v
0
1 can force

v2 black. Both v2 and v1 has 2 white vertices v
0
3 and v04. Hence the forcing

stops.
Case is similar when we consider v3 as the initially colored black vertices.

Sub Case 2.3: Consider the graph G to be the diamond graph. Label the
two vertices with degree 3 as v2 and v4 and two vertices with degree 2 as
v1 and v3 such that v1v3. The forcing of GS(G) can be split into two cases
as the forcing pattern is same when we take either one of the two 2 degree
vertex or one of the two 3 degree vertex as initial black vertex.

Sub Case 2.3.1: When v1 is taken initially black. Clearly two of its neigh-
bour should be black say, v2 and v4, then v1 forces v

0
3 and v4 or v2 forces v3

black. v3 can force v
0
1 black after which the forcing process stops as both

v01 and v03 have two white vertices.

Sub Case 2.3.2: When v2 is taken black along with two of its neighbours
say v1 and v3. v2 can force v4 also v1 forces v

0
3 and v3 forces v

0
1 and the

process stops as both v01 and v03 have two white neighbours v
0
2 and v04.

Sub Case 2.4: Consider the graph G to be the co-paw label the one iso-
lated vertex as v1 , two degree one vertices as v2 and v4 and one degree two
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vertex as v3 (v3 ∼ v2 and v3 ∼ v4). The forcing of GS(G) can be split into
three cases based on the degree of the vertices.

Sub Case 2.4.1: When v1 along with two of its neighbours v
0
2 and v03. v1

can force v04. v02 and v04 respectively can force v4 and v2. The process of
forcing stops as both v2 and v4 have two white vertices v3 and v01.

Sub Case 2.4.2: When v2 and two of its neighbours v3 and v01 are black
then, v2 can force v

0
4 black. Then v3 can force v4 black. v4 can force v

0
2

black. Both v02 and v04 are adjacent to two white vertices v
0
3 and v1. Hence

the process stops.
Case is similar when we consider v4 as the initially colored black vertices.

Sub Case 2.4.3: When v3 and two of its neighbours v2 and v4 are black.
Then v3 forces v

0
1 black. v2 and v4 forces v

0
4 and v02 respectively. Now v04

and v02 has two white neighbours v
0
3 and v1. Hence the process stops.

Sub Case 2.5 Consider the graph G to be the paw, label the one vertex
with degree one as v1 , vertex with degree 3 as v2 and two vertices with
degree 2 as v3 and v4.(v3v1 and v4v1) The forcing of GS(G) can be split
into three cases based on the degree of the vertices.

Sub case 2.5.1: v1 and two of its neighbours v2 and v03 are taken black
then v1 forces v

0
4 black. v

0
3 or v

0
4 forces v

0
2 black v02 further forces v

0
1 black.

then process stops as both v01 and v2 are adjacent to two white neighbour
v3 and v4.

Sub Case 2.5.2: v2 and two of its neighbours v3 and v4 are taken initially
black then v2 forces v1 and v3 or v4 forces v

0
1 black. v

0
1 can force v

0
2 black.

However v02 and v1 are adjacent to two white vertices.

Sub Case 2.5.3: v3 and two of its neighbours v2 and v4 are black then,v3
can force v01 black and v2 can force v1 black. v

0
1 can force v

0
2 black. However

v1 and v02 both are adjacent to two white neighbour v
0
3 and v04.

Case is similar when we consider v4 as the initially colored black vertices.

Sub Case 2.6: Consider the graph G to the cycle C4. Clearly all the
vertices are of degree 2. The forcing of GS(G) is same irrespective of the
vertex that we choose. Let v1 and two of its neighbours v2 and v4 be colored
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initially black, then v1 can force v
0
3 black. Now the forcing process stops

as v2, v4 and v03 have 2 white neighbours (v3 and v04, v3 and v02, v
0
2 and v04

respectively).

Sub Case 2.7: Consider the graph G to be the claw. Label the 3 vertices
with degree one as v1, v3, v4 and one vertex with degree three as v2. The
forcing of GS(G) can be split into two cases as the forcing pattern is same
when we take either one of the three 1 degree vertex as initial black vertex.

Sub Case 2.7.1: When v1 along with two of its neighbour v2, v
0
3 are taken

black. v1 can force v
0
4. v2, v

0
3andv

0
4 have two white neighbours hence the

process stops.
Case is similar when we consider v4 or v3 as the initially colored black ver-
tices.

Sub Case 2.7.2: When v2 and two of its neighbours sayv1, v3 as black.Then
v2 can force v4 black but further forcing is not possible as each of these black
vertices are connected to two white neighbours.

Sub Case 2.8: Consider the graph G to be the path P4. Label the two
vertices with degree one as v1, v4 and two vertices with degree two as v2, v3.
The forcing of GS(G) can be split into two cases based on the degree of
the graph.

Sub Case 2.8.1: v1 and two of its neighbours v2 and v03 are considered
black. v1 can force v

0
4 black. Then v2 can force v3 black and v03 can force

v02 black. The forcing process stops as v3 and v
0
2 have two white neighbours

v4 and v01.
Case is similar when we consider v4 as the initially colored black vertices.

Sub Case 2.8.2: v2 and two of its neighbours v1 and v3 are taken black.
Now v2 can force v

0
4 black. v

0
4 can force v

0
3 black and v03 can force v

0
2 black.

Then the forcing process stops as both v02 and v3 have two white neighbours
v01 and v4.
Case is similar when we consider v3 as the initially colored black vertices.

From all the above cases we can conclude that for n = 4 there exists
no open global shadow graph GS(G) such that Z(GS(G)) = 3. Table 3.1
shows all the possible graph G when n = 4 and its Z(GS(G)). It can be
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observed that none of the graph G takes Z(GS(G)) to be 3. 2

Graph G Z(G) Z(GS(G))

K4 4 4

K4 3 6

Co-diamond 3 4

Diamond 2 4

Co-paw 2 4

paw 2 4

C4 2 6

C4 2 4

Claw 2 4

Co-claw 3 6

P4 1 4

Table 3.1: Value of Z(GS(G)) for all possible G when n = 4

It is an open problem to characterize graphs for which Z(GS(G)) = 4.
In figure 3 we provide few examples of graphs for which Z(GS(G)) = 4.

Theorem 3.10. For a connected graph G of order n, Z(GS(G)) = 2n− 2
if and only if G ∼= Kn.

Proof. If G ∼= Kn, then the open global shadow graph GS(G) ∼= 2Kn.
We know that Z(G) = n− 1 where n is the number of vertices in G. Now
we have 2Kn, for each Kn we need n−1 black vertices. Hence on the whole
Z(G) = 2(n− 1) = 2n− 2.
To prove the converse part, let us assume the contrary that Z(GS(G)) =
2n − 2 and G 6= Kn. Since G is connected and G 6= Kn, there will be at
least two vertices in G that are not adjacent to each other. Let vi and vj
be the two vertices that are not adjacent to each other in G. In the open
global shadow graph of G, vi will be adjacent to v

0
j and vj will be adjacent

to v0i. In GS(G) let us take V (GS(G)) \ {vk, v0i, v0j} (where vk is one of
the neighbour ofv0j such that k 6= i )in the zero forcing set S. Clearly, v0j
is the only white neighbour of vi. Hence vi forces v

0
j . Also vk is a white

vertex adjacent to v0j , so v
0
j can force vk as it is the only white neighbour.

Similarly, v0i is the only white neighbour of vj in GS(G). Hence vj can force
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v0i black, thereby forcing the entire graph black. It can be concluded that
Z(GS(G)) ≤ |S| = n− 3. Hence a contradiction. 2

Observation 3.11. Let GS(G) be disconnected. Then
Z(GS(G)) = 2n− 2.
Lemma 3.12. Let G be a null graph. Then GS(G) is a triangle free graph.

Proof. Let us assume that GS(G) is not triangle free graph. Clearly
there is at least one K3 in the graph GS(G). Consider the K3 present in
GS(G), where at least two vertices are from the same component G or G0.
However any two vertices in G or G0 cannot be adjacent as G is a null
graph. Hence the contradiction. 2

Theorem 3.13 ([7]). If a graph G is triangle free, then Z(G) ≥ 2δ − 2.
Theorem 3.14. For a null graph G of order n > 2, Z(GS(G)) = 2n− 4.

Proof. It is known thatGS(G) is a triangle free graph from Lemma 3.12.
Theorem 3.13 shows that if a graph is triangle free then Z(G) ≥ 2δ − 2.
GS(G) is an n− 1 regular graph, Theorem 2.6. Hence Z(GS(G)) ≥ 2(n−
1)− 2 = 2n− 4.
Now we are left to show that Z(GS(G)) ≤ 2n − 4. According to the
definition of GS(G) each vertex in G will be adjacent to all the n−1 vertices
of G0 except for the corresponding vertex. Let S be the zero forcing set,
by taking vi and n − 2 of its neighbour black vi can force the only white
neighbour black. To further carryout the forcing process we need to take
n− 3 neighbours of v0j , 1 ≤ j ≤ n & j 6= i black there by vj forcing its only
white neighbour. At this stage we are left with one white vertex in G and
one in G0. Both these vertices can be forced by the black vertices in GS(G).
Thereby forcing the entire graph black. Hence |S| = 1+n−2+n−3 = 2n−4
implies Z(GS(G)) ≤ 2n− 4. 2

Theorem 3.15. If G is n− 2 regular, then Z(GS(G)) ≤ n.

Proof. If G is an n−2 regular graph, then according to the handshaking
lemma n must be even. Meaning there are n

2 missing edges in G. Due to
which there will be n edges between G and G0 in GS(G). In GS(G) each
vertex in G will have exactly one unique neighbour in G0. Same is true
with vertices of G0. By taking all the n vertices of G or G0 as black we can
force the entire graph GS(G) black. Hence Z(GS(G)) ≤ n. 2

Theorem 3.16. For a path Pn, Z(GS(Pn)) ≤ n+ 1.
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Proof. Let G be a path Pn. In the GS(G), The vertices v1 and vn are
adjacent to n−2 vertices of G0, the remaining n−2 vertices in G has n−3
adjacent vertices in G0. Similarly v01 and v0n are adjacent to n− 2 vertices
of G, the remaining n − 2 vertices in G0 has n− 3 adjacent vertices in G.
By taking all the vertices of G or G0 to be black. GS(G) looks like a path
graph. We need one more vertex to force the entire graph GS(G) black.
Hence Z(GS(Pn)) ≤ n+ 1. 2

Now we consider the hamiltonicity of GS(G)

Theorem 3.17 ([2]). If G is a Hamiltonian graph, then Z(G) = M(G)
where M(G) is the maximum nullity of graph G.

Corollary 3.18. For a graph G, Z(GS(G)) =M(GS(G)).

Proof. From Observation 2.12 it can be seen that open global shadow
graph is Hamiltonian. From Theorem 3.17, it can be concluded that
Z(GS(G)) =M(GS(G)). 2

4. Relation between Z(GS(G)) and 2Z(G)

In this section we try to characterize graph classes for which Z(GS(G)) =
2Z(G). We start with the complete graph Kn.

Theorem 4.1. If G ∼= Kn, then Z(GS(Kn)) = 2Z(Kn).

Proof. From Theorem 3.10 it is known that ifG ∼= Kn, then Z(GS(G)) =
2n − 2. Also [9] we know that Z(G) = n − 1 when G ∼= Kn. Clearly
Z(GS(G)) = 2Z(G), when G ∼= Kn. 2

Let us recall the following theorem from [8] to prove the next theorem.

Theorem 4.2 ([8]). If G is a complete bipartite graph Kp,q, then the zero
forcing number Z(Kp,q) = p+ q − 2, where p+ q = n..

Next we consider the complete bipartite graph Kp,q.

Theorem 4.3. IfG ∼= Kp,q and |V (G)| = n, then Z(GS(Kp,q)) = 2Z(Kp,q).
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Proof. Zero forcing number of the complete bipartite graph is Z(Kp,q) =
p+ q − 2 from Theorem 4.2.
We need to prove that Zero forcing number of open global shadow graph
of complete bipartite graph Z(GS(Kp,q)) is 2n− 4.
From Theorem 3.13 we know that if a graph G is triangle free graph then
the zero forcing number of graph Z(G) ≥ 2δ − 2.
Claim 1: Open global shadow graph of complete bipartite graph is triangle
free. Since Kp,q is triangle free, it can be seen that there is no induced C3
in G or G0. In graph GS(G) only possibility for it to have C3 is when any
two vertices u, v ∈ V (G) such that u ∼ v and there exist a vertex w ∈ V (G)
such that uw and vw. So that u ∼ w0 and v ∼ w0. Forming an induced
C3 : u ∼ v ∼ w0 ∼ u. But in a complete bipartite graph G if u, v ∈ V (G)
and u ∼ v, then u and v will be in two different partite set. In other words
we can never find a vertex w ∈ V (G) such that uw and vw. Hence open
global shadow graph of complete a bipartite graph is a triangle free graph.
Hence if G is a complete bipartite graph,

Z(GS(G)) ≥ 2(n− 1)− 2 = 2n− 4.(4.1)

Let Kp,q be a complete bipartite graph with p number of vertices say
u1, u2, . . . up in 1st partite set P and q number of vertices say v1, v2, . . . , vq
in the second partite set Q. Now consider the open global shadow graph
of Kp,q and let K

0
p,q be the copy of Kp,q with p number of vertices say

u01, u
0
2, . . . , u

0
p in the set P

0 (P 0 is the partite set in K 0
p,q corresponding to

the partite set P in Kp,q) and q number of vertices say v01, v
0
2, . . . , v

0
q in the

set Q0(Q0 is the partite set in K 0
p,q corresponding to the partite set Q in

Kp,q). With out loss of generality, in the graph GS(G) if ui ∈ P is taken
black, then all the vertices in {P 0} \ u0i (p − 1 number of vertices) and q
vertices in Q are adjacent to ui. By taking N(ui)\v (Where v ∈ Q∪P 0\ui)
to be black v can be forced black by ui. Now all the q vertices in Q are
colored black. If vj is the vertex in Q, vj is adjacent to all the vertices in P
and {Q0}\v0j . By taking N(vj)\u (Where u ∈ Q0\vj∪P ) to be black u can
be forced black by vj . Now any of the vertex other than ui in P and any of
the vertex other than vj in Q can force u0i and v

0
j black respectively. So the

cardinality of zero forcing set is given as |S| = 1+p−1+q−1+q−1+p−2 =
2p + 2q − 4 = 2(p + q) − 4 = 2n − 4. Therefore the bound for the zero
forcing number will be

Z(GS(G)) ≤ 2n− 4.(4.2)

From equation 1 and 2, Z(GS(G)) = 2n− 4. 2
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Corollary 4.4. If G is a star graph on n+1 vertices, then Z(GS(K1,n)) =
2Z(K1,n).

Proof. Star graph is a bipartite graph Kp,q where p = 1 and q = n.
Clearly from the above Theorem 4.3 Z(GS(G)) = 2(n + 1) − 4 = 2n − 2
and Z(GS(G)) = 2Z(G). 2

Observation 4.5. If GS(G) ∼= 2Kn, then Z(GS(G)) need not be twice
Z(G).

Let G be an n vertex graph with GS(G) ∼= 2Kn and Z(GS(G)) =
2Z(Kn). Let us assume that Z(GS(G)) = 2Z(G). We know that if
GS(G) ∼= 2Kn, then Z(GS(G)) = 2n− 2.

If GS(G) is obtained by taking G ∼= Kn, then Z(GS(G)) = 2Z(G) =
2Z(Kn). However if GS(G) ∼= 2Kn doesn’t always implies that G ∼= Kn.
According to Observation 2.7 suppose if G is a graph with two cliques
(Kp and Kq, where p + q = n), then we know that GS(G) ∼= 2Kn, but
Z(G) = n− 2 6= n− 1.

Theorem 4.6. Let G be the graph Cn. Then Z(GS(Cn)) = 2Z(Cn), if
and only if, the cycle is either C3, C4 or C5.

Proof. Clearly whenG is one of the graphC3, C4 or C5 then Z(GS(G)) =
4 ( refer figure 3). It is enough if we can show that n cannot take values
greater than 6. When G is a cycle Z(G) = 2 (two of the consecutive vertices
forms a zero forcing set). From the Observation 3.2 if Z(GS(G)) = 2Z(G)
implies n6. Clearly 3 ≤ n ≤ 5 that is G is either C3, C4 or C5. 2

Observation 4.7. In figure 3 the zero forcing number of C3 and C5 is
obtained from Z(G) ≥ δ. The zero forcing number of C4 can be observed
in table 3.1.
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Figure 3: All the possible open global shadow graphs of Cn, 3 ≤ n ≤ 5.

Theorem 4.8. If Z(G) < n−1
2 , then Z(GS(G)) > 2Z(G).

Proof. Let G be a simple graph such that Z(G) < n−1
2 . From Observa-

tion 3.2, we know that
Z(GS(G)) ≥ n− 1.
Z(GS(G)) ≥ n− 1 = 2n−12 > 2Z(G).
Z(GS(G)) > 2Z(G). 2

Converse of this theorem need not be true. If Z(GS(G)) > 2Z(G), then
this doesn’t mean that Z(G) < n−1

2 .

5. Conclusion and Scope

In this article we have discussed about the zero forcing number of the
open global global shadow graph. It is an open problem to characterize

pc
fu-3
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connected graphs G for which Z(GS(G)) = 2Z(G). It is an open problem
to Characterize Z(GS(G)) = 4.
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