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Abstract

Generation of a quasi-contractive semigroup by generalized Ornstein-
Uhlenbeck operators

L=-A+VD-V-G-V+V+clz|?

in the weighted space L>(RN, e~ ®®)dg) is proven, where ® € C*(RN,R),
G e CYRN,RY), 0<V € CYRN) and ¢ > 0. The proofs are car-
ried out by an application of L?-weighted Hardy inequality and bilinear
form techniques.
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1. Introduction

In recent years there has been an increasing interest in generalized Ornstein-
Uhlenbeck operators, see [1], [2], [3], [4], [5], [6], [7], [8], [9], [12] and the
references therein. Let us recall first some known results for generalized
Ornstein-Uhlenbeck operators. It is known, see [4], under an appreciate
conditions on ® and G, that

Apg=A-Vd - Vu+G-V,

with domain W?2P (RN ,du) generates a positive quasi-contractive ana-
lytic Co-semigroup in LP(RY, du), where ® € C?(RY,R), G € CY(RY,RY),
dp = e=®@dz and 1 < p < co. This result in [4] has been extended later
partially to the case where Ag ¢ is perturbed by a potential V' € C' LRN) in
[3] and [12]. Precisely, the authors established, under suitable assumptions
on ®, G and V, that Ag ¢ — V endowed with domain

WP (RN, dp) = {u e W2PRY) : Vu e LL(RY)}

generates a quasi-contractive analytic Cy-semigroup on Lﬁ(RN ) for 1 <
p < oo. Afterwards, the operator Ag ¢ perturbed by a nonnegative singu-
lar potential vV in the space LP(RY,du), 1 < p < oo, has been investigated
in [6]. More specifically, by using perturbation techniques, it is proven that
Ag ¢ — vV with a suitable domain generates a quasi-contractive and posi-
tive analytic Cp-semigroup in LP(RYN, dp).

The aim of this present paper is to study the operator Ag g perturbed
with regular potential 0 < V € C'(RY) and inverse square potential c|z|~2
with ¢ > 0 in the weighted space Li(RN).

We look for conditions on @, G, V' and c ensuring that
AsGve=A-VO -Vu+G-V~V +clz|?

with a suitable domain generates a positivity preserving Cp-semigroup in
L2(RN, du).

The proofs are based on an L?-weighted Hardy’s inequality and bilinear
form techniques.

Now, we introduce the following conditions on ®, G and V :

(A1) The function ® € C?(RM,R).
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1
2

(A2) The function G € CY(RY, RY) satisfies G| < /€<|V<I>\2 LV ao)
for some constants x > 0 and «p.

(A3) Forevery & > 0, there is a constant C¢ > 0 such that |D?®| < £|V®|? + Ck.

(A4) There is constant 8 € R such that G-V® —divG -V < S.

(A5) There is constant x; > 0 and a3 > 0 such that

IVV| < mV% + aj.

We point out that under the assumptions (A1) — (A5) and the following
conditions

G-V —divG — 0V < B,

for some 6 € R and

0 K K1

-+ p—11€1<—+—)<1,

p (p—1) i
Sobajima-Yokota proved in [12, Theorem 1.1] that the operator As g v
with domain

WP (RN, dp) = {u e W2PRY) : Vue LR}

generates an analytic semigroup on Lﬁ(RN ) for 1 < p < 0.

The paper is structured as follows, in Section 2, we prove an L?-weighted
Hardy inequality. Subsequently, we use them to investigate the perturba-
tion of Ag v with a singular potential c[z|=2, ¢ > 0.

Notation Throughout this paper, we use the following notation: In the
N-dimensional Euclidean space RY, N > 3, the Euclidean scalar product
is denoted by z -y and |z| is the corresponding norm. C°(R”) means the
space of C*°-functions with compact support.

The weighted space Li(RN) = L*(RN,dp), where du = e~ ®@dz. In
addition, we denote by H} (RY) the set of all functions f € Lz(RN ) hav-

N
ing distributional derivative V f in (Li(RN )) . Besides, we denote the
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following weighted Sobolev space
HY RN, ) = {u € Hy(R"),Vu e Li(RN)}.

Finally, by Dy, V, D2 and A we designate, respectively, the (distributional)
partial derivatives 8 , the gradient, Hessian matrix and Laplace operator.
If u is smooth enough we set

|Vu(z Z|Dku )2, | Du(x Z |Dy.Dju(x
k,j=1

2. Hardy inequality

In this section, we establish an L2-weighted Hardy inequality, which will
be useful later on.

Theorem 2.1. Assume N > 3 and (A3) hold. Then, for any u € C°(RY),
one has

0N 2 2
21 (X=2 / [P g < (4+5)/ |Vu]2du—0—c§/ (uf2dp
2 R RN RN

N el

for any § > 0 with a corresponding constants cs > 0.
Proof. Let u € C®(RY). We have

u(z) exp(—@) =— /100 % (u(ta:) exp(—q)(éa:)))dt.

Thus, by a change of variables, we infer that
< <f1°° t%dt) 'Vu — luve
7

Vu— uve

U
||

2
L

<5
L
Furthermore, by applying the Hoélder, Young and Jensen inequalities,
we get
2
u2
Jry rEdp
< Jm~ |[Vulu?dp+ 1 fgy [VO[*u?dp — [gy uV® - Vudp
1 1
2,2 1 2,2 2 2 2,2 2
< fry [VulPuldp + § [ga [VOPu?dp + ( Jgy [VulPdp ) | gy [VO[Puldp
< (1+3%) Jon [VOPWPdp+ (1+ 3) g [Vul?dp,
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for every k > 0.
In addition, combining integration by parts, (A3) and Young’s inequalities,
we deduce that

Jry IVO2uldy = [gy APuldu + 2 f[gn uV® - Vudu

< (NE+3) [ry IVO[2udp + NCe [gn uldp + 2 [g [Vul?dp.
Hence, we have

Jrx [VOPu2dp < 555 frw uldp + iy e [Vul?dp,

for every € € (0, ﬁ) Then, collecting all the terms, we conclude that

2
_ 2
(452) Jv e < |(3+ H)rdve + 1+ & S [ VPl
2NC
+<% + %)1721\755 Jrx vdp.

Therefore, taking the minimum with respect to k, that is, choosing
K= % and ¢ small, we get (2.1). O

3. Generation result via the bilinear form technique

This section devoted to study the generation of the quasi-contractive semi-

group by Ag qv.
First of all, we introduce the bilinear form

_ — _ uv
b(u,v) = /RN Vu-Vo d,u—/RN 7 G-Vu d,LH-/RN Vuw d,u—c/RN BB du
for u,v € D(b) = Hy (RN, 1), where N > 3 and ¢ > 0.

Proposition 3.1. Suppose that (A1)-(A4) hold, and let N > 3. Set v =
2
1( N=2

1\ 72
Then, b is closed and quasi-accretive for all ¢ € (0,7).

2
Proof. We fix ¢ € (0,7), where v = 1 <¥) . Let ¢ be small such that
-2
K =c¢(4+9) ¥> < 1. We observe that

2
bu,w) = K| fox (VP = kg (%52) o lol 2Juld

L TG ValuPdp L [ V|u|2d4 + (1= K) fan [Vul2dp.

By virtue of integration by parts we have
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b(u,u) > K[fRN |Vul2dy — (4+5) <¥ 2 Jrv 72 ul?dp
+37 R~ (de G-Vo+2V |u|2d,u] + (1 - K) [gv [Vul2dpu.
By applying (A4) and the weighted Hardy inequality (2.1), we obtain
blu,u) > —K<§% + ﬁ%) Jr [ulPdp + (1 = K) [gn |Vul?dp.
Hence, we see that
b(u, ) + [K(M + ) + 1= K|l + (1~ K) [Vl

= (1 - )||u||H‘1/(RN7M)'
Thus, we have
b(u,u) + ullZs + [Vullz, > =K
K| &+ )+

HUH%%/(RN#)-

Therefore this proves that the norm ||.||; associated to the bilinear form
is equivalent to ||.HH‘I/(RN7M).

In the sequel, we want to establish that b is quasi-accretive. Indeed,
thanks to integration by parts we have

b(u,u) > [gn [Vuldu — c [gn |27 |ul?dp
+3 [m~ (div G—-G-Vo+ QV) lu|2dp.
By means of the inequality (2.1) and the assumption (A4), we deduce
that

) = (=) s ol 2l — (§ + 5 ) fo ol

Since ¢ < 7, it follows that

b(u,u) > —<§ + ﬁ%) fRN |u|2d,u. O

Whence, for ¢ < +, one can associate with the form b the opera-
tor £ on Li(RN), defined by D(L) = {u € D(b) : there exists v €

LZ(RN) such that b(u,v) = [g~ vipdp for all ¢ € D(b)} and Lu = v.

We are now in position to state and establish the main results in this
paper:

Theorem 3.2. Assume that (Al)-(A4) are satisfied, and let N > 3. Set
2
1(N=2

4 2

The operator —L = As v, generates a quasi-contractive and positive
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semigroup on Li(RN) for all ¢ € (0,7).
In particular, the semigroup {T'(t) }+>0 Is symmetric if G = 0.

Proof. By virtue of [10, Theorem 1.51] and [10, Theorem 1.52], we con-
clude via Proposition 3.1 that —L generates a quasi-contractive semigroup
{T'(t) }+>0 on Li(RN ). It remains therefore only to prove the semigroup
{T'(t)}+>0 is symmetric if G = 0. Indeed, it is clear that the form b is sym-
metric if G = 0. Hence, the associated operator Ag g v, is also symmetric.
Moreover, through Proposition 3.1, As g v, is quasi-dissipative since the
form b is quasi-accretive. Therefore, we have

<u, (1 — )\Aq>7(;’\/70)7lv> = ((1 — )\Aq%G,V’c)flu, ’U)

Setting A = % for t > 0 and n € N, we have

t t
(u, (1 — EA<1>,G,V,C)7"U> =((1- EA<I>7G,V,C)7nU77)>

Letting n to infinity, we infer that the semigroup 7'(¢) is symmetric. O
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