On the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials in weighted L^{2}-spaces

Imen Metoui
University of Tunis El-Manar, Tunisia
Received: January 2022. Accepted: March 2022

Abstract

Generation of a quasi-contractive semigroup by generalized OrnsteinUhlenbeck operators $$
\mathcal{L}=-\Delta+\nabla \Phi \cdot \nabla-G \cdot \nabla+V+c|x|^{-2}
$$ in the weighted space $L^{2}\left(\mathbf{R}^{N}, e^{-\Phi(x)} d x\right)$ is proven, where $\Phi \in C^{2}\left(\mathbf{R}^{N}, \mathbf{R}\right)$, $G \in C^{1}\left(\mathbf{R}^{N}, \mathbf{R}^{N}\right), 0 \leq V \in C^{1}\left(\mathbf{R}^{N}\right)$ and $c>0$. The proofs are carried out by an application of L^{2}-weighted Hardy inequality and bilinear form techniques.

Subjclass: 47D60, 47D06, 35K15.
Keywords: Inverse square potential, Regular potential, Weighted Hardy inequality, Generalized Ornstein-Uhlenbeck operator, C_{0}-semigroup, Bilinear forms.

1. Introduction

In recent years there has been an increasing interest in generalized OrnsteinUhlenbeck operators, see $[1],[2],[3],[4],[5],[6],[7],[8],[9],[12]$ and the references therein. Let us recall first some known results for generalized Ornstein-Uhlenbeck operators. It is known, see [4], under an appreciate conditions on Φ and G, that

$$
A_{\Phi, G}=\Delta-\nabla \Phi \cdot \nabla u+G \cdot \nabla
$$

with domain $W^{2, p}\left(\mathbf{R}^{N}, d \mu\right)$ generates a positive quasi-contractive analytic C_{0}-semigroup in $L^{p}\left(\mathbf{R}^{N}, d \mu\right)$, where $\Phi \in C^{2}\left(\mathbf{R}^{N}, \mathbf{R}\right), G \in C^{1}\left(\mathbf{R}^{N}, \mathbf{R}^{N}\right)$, $d \mu=e^{-\Phi(x)} d x$ and $1<p<\infty$. This result in [4] has been extended later partially to the case where $A_{\Phi, G}$ is perturbed by a potential $V \in C^{1}\left(\mathbf{R}^{N}\right)$ in [3] and [12]. Precisely, the authors established, under suitable assumptions on Φ, G and V, that $A_{\Phi, G}-V$ endowed with domain

$$
W_{V}^{2, p}\left(\mathbf{R}^{N}, d \mu\right)=\left\{u \in W_{\mu}^{2, p}\left(\mathbf{R}^{N}\right): V u \in L_{\mu}^{p}\left(\mathbf{R}^{N}\right)\right\}
$$

generates a quasi-contractive analytic C_{0}-semigroup on $L_{\mu}^{p}\left(\mathbf{R}^{N}\right)$ for $1<$ $p<\infty$. Afterwards, the operator $A_{\Phi, G}$ perturbed by a nonnegative singular potential νV in the space $L^{p}\left(\mathbf{R}^{N}, d \mu\right), 1<p<\infty$, has been investigated in [6]. More specifically, by using perturbation techniques, it is proven that $A_{\Phi, G}-\nu V$ with a suitable domain generates a quasi-contractive and positive analytic C_{0}-semigroup in $L^{p}\left(\mathbf{R}^{N}, d \mu\right)$.

The aim of this present paper is to study the operator $A_{\Phi, G}$ perturbed with regular potential $0 \leq V \in C^{1}\left(\mathbf{R}^{N}\right)$ and inverse square potential $c|x|^{-2}$ with $c>0$ in the weighted space $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$.

We look for conditions on Φ, G, V and c ensuring that

$$
A_{\Phi, G, V, c}=\Delta-\nabla \Phi \cdot \nabla u+G \cdot \nabla-V+c|x|^{-2}
$$

with a suitable domain generates a positivity preserving C_{0}-semigroup in $L^{2}\left(\mathbf{R}^{N}, d \mu\right)$.
The proofs are based on an L^{2}-weighted Hardy's inequality and bilinear form techniques.

Now, we introduce the following conditions on Φ, G and V :
(A1) The function $\Phi \in C^{2}\left(\mathbf{R}^{N}, \mathbf{R}\right)$.
(A2) The function $G \in C^{1}\left(\mathbf{R}^{N}, \mathbf{R}^{N}\right)$ satisfies $|G| \leq \kappa\left(|\nabla \Phi|^{2}+V+\alpha_{0}\right)^{\frac{1}{2}}$ for some constants $\kappa \geq 0$ and α_{0}.
(A3) For every $\xi>0$, there is a constant $C_{\xi}>0$ such that $\left|D^{2} \Phi\right| \leq \xi|\nabla \Phi|^{2}+C_{\xi}$.
(A4) There is constant $\beta \in \mathbf{R}$ such that $G \cdot \nabla \Phi-\operatorname{div} G-V \leq \beta$.
(A5) There is constant $\kappa_{1}>0$ and $\alpha_{1} \geq 0$ such that

$$
|\nabla V| \leq \kappa_{1} V^{\frac{3}{2}}+\alpha_{1} .
$$

We point out that under the assumptions $(A 1)-(A 5)$ and the following conditions

$$
G \cdot \nabla \Phi-\operatorname{div} G-\theta V \leq \beta,
$$

for some $\theta \in \mathbf{R}$ and

$$
\frac{\theta}{p}+(p-1) \kappa_{1}\left(\frac{\kappa}{p}+\frac{\kappa_{1}}{4}\right)<1,
$$

Sobajima-Yokota proved in [12, Theorem 1.1] that the operator $A_{\Phi, G, V}$ with domain

$$
W_{V}^{2, p}\left(\mathbf{R}^{N}, d \mu\right)=\left\{u \in W_{\mu}^{2, p}\left(\mathbf{R}^{N}\right): V u \in L_{\mu}^{p}\left(\mathbf{R}^{N}\right)\right\}
$$

generates an analytic semigroup on $L_{\mu}^{p}\left(\mathbf{R}^{N}\right)$ for $1<p<\infty$.
The paper is structured as follows, in Section 2, we prove an L^{2}-weighted Hardy inequality. Subsequently, we use them to investigate the perturbation of $A_{\Phi, G, V}$ with a singular potential $c|x|^{-2}, \quad c>0$.

Notation Throughout this paper, we use the following notation: In the N-dimensional Euclidean space $\mathbf{R}^{N}, N \geq 3$, the Euclidean scalar product is denoted by $x \cdot y$ and $|x|$ is the corresponding norm. $C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ means the space of C^{∞}-functions with compact support.

The weighted space $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)=L^{2}\left(\mathbf{R}^{N}, d \mu\right)$, where $d \mu=e^{-\Phi(x)} d x$. In addition, we denote by $H_{\mu}^{1}\left(\mathbf{R}^{N}\right)$ the set of all functions $f \in L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$ having distributional derivative ∇f in $\left(L_{\mu}^{2}\left(\mathbf{R}^{N}\right)\right)^{N}$. Besides, we denote the
following weighted Sobolev space

$$
H_{V}^{1}\left(\mathbf{R}^{N}, \mu\right)=\left\{u \in H_{\mu}^{1}\left(\mathbf{R}^{N}\right), V u \in L_{\mu}^{2}\left(\mathbf{R}^{N}\right)\right\} .
$$

Finally, by D_{k}, ∇, D^{2}, and Δ we designate, respectively, the (distributional) partial derivatives $\frac{\partial}{\partial x_{k}}$, the gradient, Hessian matrix and Laplace operator. If u is smooth enough, we set

$$
|\nabla u(x)|^{2}=\sum_{k=1}^{N}\left|D_{k} u(x)\right|^{2}, \quad\left|D^{2} u(x)\right|^{2}=\sum_{k, j=1}^{N}\left|D_{k} D_{j} u(x)\right|^{2} .
$$

2. Hardy inequality

In this section, we establish an L^{2}-weighted Hardy inequality, which will be useful later on.

Theorem 2.1. Assume $N \geq 3$ and (A3) hold. Then, for any $u \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$, one has

$$
\begin{equation*}
\left(\frac{N-2}{2}\right)^{2} \int_{\mathbf{R}^{N}} \frac{|u|^{2}}{|x|^{2}} d \mu \leq(4+\delta) \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu+c_{\delta} \int_{\mathbf{R}^{N}}|u|^{2} d \mu \tag{2.1}
\end{equation*}
$$

for any $\delta>0$ with a corresponding constants $c_{\delta}>0$.
Proof. Let $u \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$. We have

$$
u(x) \exp \left(-\frac{\Phi(x)}{2}\right)=-\int_{1}^{\infty} \frac{d}{d t}\left(u(t x) \exp \left(-\frac{\Phi(t x)}{2}\right)\right) d t
$$

Thus, by a change of variables, we infer that

$$
\begin{aligned}
\|u\| \|_{L_{\mu}^{2}} & \leq\left(\int_{1}^{\infty} t^{-\frac{N}{2}} d t\right)\left\|\nabla u-\frac{1}{2} u \nabla \Phi\right\|_{L_{\mu}^{2}} \\
& \leq \frac{2}{N-2}\left\|\nabla u-\frac{1}{2} u \nabla \Phi\right\|_{L_{\mu}^{2}} .
\end{aligned}
$$

Furthermore, by applying the Hölder, Young and Jensen inequalities, we get

$$
\begin{aligned}
& \left(\frac{N-2}{2}\right)^{2} \int_{\mathbf{R}^{N}} \frac{u^{2}}{|x|^{2}} d \mu \\
& \leq \int_{\mathbf{R}^{N}}|\nabla u|^{2} u^{2} d \mu+\frac{1}{4} \int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu-\int_{\mathbf{R}^{N}} u \nabla \Phi \cdot \nabla u d \mu \\
& \leq \int_{\mathbf{R}^{N}}|\nabla u|^{2} u^{2} d \mu+\frac{1}{4} \int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu+\left(\int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu\right)^{\frac{1}{2}} \\
& \leq\left(\frac{1}{4}+\frac{\kappa}{2}\right) \int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu+\left(1+\frac{1}{2 \kappa}\right) \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu,
\end{aligned}
$$

for every $\kappa>0$.
In addition, combining integration by parts, $(A 3)$ and Young's inequalities, we deduce that

$$
\begin{aligned}
\int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu & =\int_{\mathbf{R}^{N}} \Delta \Phi u^{2} d \mu+2 \int_{\mathbf{R}^{N}} u \nabla \Phi \cdot \nabla u d \mu \\
& \leq\left(N \xi+\frac{1}{2}\right) \int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu+N C_{\xi} \int_{\mathbf{R}^{N}} u^{2} d \mu+2 \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu
\end{aligned}
$$

Hence, we have

$$
\int_{\mathbf{R}^{N}}|\nabla \Phi|^{2} u^{2} d \mu \quad \leq \frac{2 N C_{\xi}}{1-2 N \xi} \int_{\mathbf{R}^{N}} u^{2} d \mu+\frac{4}{1-2 N \xi} \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu
$$

for every $\xi \in\left(0, \frac{1}{2 N}\right)$. Then, collecting all the terms, we conclude that

$$
\begin{aligned}
\left(\frac{N-2}{2}\right)^{2} \int_{\mathbf{R}^{N}} \frac{u^{2}}{|x|^{2}} d \mu & \leq\left[\left(\frac{1}{4}+\frac{\kappa}{2}\right) \frac{4}{1-2 N \xi}+1+\frac{1}{2 \kappa}\right] \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu \\
& +\left(\frac{1}{4}+\frac{\kappa}{2}\right) \frac{2 N C_{\xi}}{1-2 N \xi} \int_{\mathbf{R}^{N}} u^{2} d \mu
\end{aligned}
$$

Therefore, taking the minimum with respect to κ, that is, choosing $\kappa=\frac{1}{2}$ and ξ small, we get (2.1).

3. Generation result via the bilinear form technique

This section devoted to study the generation of the quasi-contractive semigroup by $A_{\Phi, G, V, c}$.
First of all, we introduce the bilinear form
$b(u, v)=\int_{\mathbf{R}^{N}} \nabla u \cdot \nabla \bar{v} d \mu-\int_{\mathbf{R}^{N}} \bar{v} G \cdot \nabla u d \mu+\int_{\mathbf{R}^{N}} V u \bar{v} d \mu-c \int_{\mathbf{R}^{N}} \frac{u \bar{v}}{|x|^{2}} d \mu$
for $u, v \in D(b)=H_{V}^{1}\left(\mathbf{R}^{N}, \mu\right)$, where $N \geq 3$ and $c>0$.

Proposition 3.1. Suppose that (A1)-(A4) hold, and let $N \geq 3$. Set $\gamma=$ $\frac{1}{4}\left(\frac{N-2}{2}\right)^{2}$.
Then, b is closed and quasi-accretive for all $c \in(0, \gamma)$.
Proof. We fix $c \in(0, \gamma)$, where $\gamma=\frac{1}{4}\left(\frac{N-2}{2}\right)^{2}$. Let δ be small such that $K=c(4+\delta)\left(\frac{N-2}{2}\right)^{-2}<1$. We observe that

$$
\begin{aligned}
b(u, u) & \geq K\left[\int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu-\frac{1}{(4+\delta)}\left(\frac{N-2}{2}\right)^{2} \int_{\mathbf{R}^{N}}|x|^{-2}|u|^{2} d \mu\right. \\
& \left.-\frac{1}{K} \int_{\mathbf{R}^{N}} \bar{u} G \cdot \nabla u|u|^{2} d \mu+\frac{1}{K} \int_{\mathbf{R}^{N}} V|u|^{2} d \mu\right]+(1-K) \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu
\end{aligned}
$$

By virtue of integration by parts we have

$$
\begin{aligned}
b(u, u) & \geq K\left[\int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu-\frac{1}{(4+\delta)}\left(\frac{N-2}{2}\right)^{2} \int_{\mathbf{R}^{N}}|x|^{-2}|u|^{2} d \mu\right. \\
& \left.+\frac{1}{2 K} \int_{\mathbf{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi+2 V)|u|^{2} d \mu\right]+(1-K) \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu
\end{aligned}
$$

By applying (A4) and the weighted Hardy inequality (2.1), we obtain

$$
b(u, u) \geq-K\left(\frac{\beta}{2 K}+\frac{c_{\delta}}{4+\delta}\right) \int_{\mathbf{R}^{N}}|u|^{2} d \mu+(1-K) \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu .
$$

Hence, we see that

$$
\begin{aligned}
& b(u, u)+\left[K\left(\frac{\beta}{2 K}+\frac{c_{\delta}}{4+\delta}\right)+1-K\right]\|u\|_{L_{\mu}^{2}}^{2}+(1-K)\|V u\|_{L_{\mu}^{2}}^{2} \\
& \geq(1-K)\|u\|_{H_{V}^{1}\left(\mathbf{R}^{N}, \mu\right)}^{2} .
\end{aligned}
$$

Thus, we have

$$
b(u, u)+\|u\|_{L_{\mu}^{2}}^{2}+\left\lvert\, V u\left\|_{L_{\mu}^{2}}^{2} \geq \frac{1-K}{\left(K\left(\frac{\beta}{2 K}+\frac{\delta_{\delta}}{4+\delta}\right)+1\right)}\right\| u\right. \|_{H_{V}^{1}\left(\mathbf{R}^{N}, \mu\right)}^{2} .
$$

Therefore this proves that the norm $\|.\|_{b}$ associated to the bilinear form is equivalent to $\|\cdot\|_{H_{V}^{1}\left(\mathbf{R}^{N}, \mu\right)}$.

In the sequel, we want to establish that b is quasi-accretive. Indeed, thanks to integration by parts we have

$$
\begin{aligned}
b(u, u) & \geq \int_{\mathbf{R}^{N}}|\nabla u|^{2} d \mu-c \int_{\mathbf{R}^{N}}|x|^{-2}|u|^{2} d \mu \\
& +\frac{1}{2} \int_{\mathbf{R}^{N}}(\operatorname{div} G-G \cdot \nabla \Phi+2 V)|u|^{2} d \mu .
\end{aligned}
$$

By means of the inequality (2.1) and the assumption (A4), we deduce that

$$
b(u, u) \geq(\gamma-c) \int_{\mathbf{R}^{N}}|x|^{-2}|u|^{2} d \mu-\left(\frac{\beta}{2}+\frac{c_{\delta}}{4+\delta}\right) \int_{\mathbf{R}^{N}}|u|^{2} d \mu
$$

Since $c<\gamma$, it follows that

$$
b(u, u) \geq-\left(\frac{\beta}{2}+\frac{c_{\delta}}{4+\delta}\right) \int_{\mathbf{R}^{N}}|u|^{2} d \mu
$$

Whence, for $c<\gamma$, one can associate with the form b the operator \mathcal{L} on $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$, defined by $D(\mathcal{L})=\{u \in D(b)$: there exists $v \in$ $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$ such that $b(u, \psi)=\int_{\mathbf{R}^{N}} v \psi d \mu$ for all $\left.\varphi \in D(b)\right\}$ and $\mathcal{L} u=v$.

We are now in position to state and establish the main results in this paper:

Theorem 3.2. Assume that (A1)-(A4) are satisfied, and let $N \geq 3$. Set $\gamma=\frac{1}{4}\left(\frac{N-2}{2}\right)^{2}$.
The operator $-\mathcal{L}=A_{\Phi, G, V, c}$ generates a quasi-contractive and positive
semigroup on $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$ for all $c \in(0, \gamma)$.
In particular, the semigroup $\{T(t)\}_{t \geq 0}$ is symmetric if $G=0$.

Proof. By virtue of [10, Theorem 1.51] and [10, Theorem 1.52], we conclude via Proposition 3.1 that $-\mathcal{L}$ generates a quasi-contractive semigroup $\{T(t)\}_{t \geq 0}$ on $L_{\mu}^{2}\left(\mathbf{R}^{N}\right)$. It remains therefore only to prove the semigroup $\{T(t)\}_{t \geq 0}$ is symmetric if $G=0$. Indeed, it is clear that the form b is symmetric if $G=0$. Hence, the associated operator $A_{\Phi, G, V, c}$ is also symmetric. Moreover, through Proposition 3.1, $A_{\Phi, G, V, c}$ is quasi-dissipative since the form b is quasi-accretive. Therefore, we have

$$
\left\langle u,\left(1-\lambda A_{\Phi, G, V, c}\right)^{-1} v\right\rangle=\left\langle\left(1-\lambda A_{\Phi, G, V, c}\right)^{-1} u, v\right\rangle
$$

Setting $\lambda=\frac{t}{n}$ for $t>0$ and $n \in \mathbf{N}$, we have

$$
\left\langle u,\left(1-\frac{t}{n} A_{\Phi, G, V, c}\right)^{-n} v\right\rangle=\left\langle\left(1-\frac{t}{n} A_{\Phi, G, V, c}\right)^{-n} u, v\right\rangle
$$

Letting n to infinity, we infer that the semigroup $T(t)$ is symmetric.

References

[1] A. Rhandi and T. Durante, "On the essential self-adjointness of Ornstein-U hlenbeck operators perturbed by inverse-square potentials", Discrete and Continuous Dynamical Systems - Series S, vol. 6, no. 3, pp. 649-655, 2013. doi: 10.3934/ dcdss.2013.6.649
[2] A. Rhandi and S. Fornaro, "On the Ornstein-U hlenbeck operator perturbed by singular potentials in L^{P}-spaces", Discrete and Continuous Dynamical Systems, vol. 33, no. 11/ 12, pp. 5049-5058, 2013. doi: 10.3934/ dcds.2013.33.5049
[3] T. Kojima and T. Y okota, "Generation of analytic semigroups by generalized Ornstein-U hlenbeck operators with potentials", Journal of M athematical Analysis and Applications, vol. 364, no. 2, pp. 618-629, 2010. doi: 10.1016/ j.jmaa.2009.10.028
[4] G. M etafune, J. Püss, A. R handi and R. Schnaubelt, "L p-regularity for elliptic operators with unbounded coefficients", Advances in Differential Equations, vol. 10, pp. 1131-1164, 2005. [On line]. A vailable: https:/ / bit.ly/ 3P X 18BV
[5] G. M etafune, J. Prüss, A. R handi and R. Schnaubelt, "The domain of the Ornstein-U hlenbeck Operator on an LD-space with invariant measure", A nnali della Scuola N ormale Superiore di Pisa - Classe di Scienze, pp. 471-485, 2002. [On line]. A vailable: https:/ / bit.ly/ 30 B2M Y N
[6] I. M etoui and S. M ourou, "An Lp-theory for generalized OrnsteinU hlenbeck operators with nonnegative singular potentials", Results in Mathematics, vol. 73, no. 4, pp. 1-21, 2018. doi: 10.1007/ s00025-018-0918-2
[7] N. Okazawa, "On the perturbation of linear operators in Banach and Hilbert spaces", J ournal of the M athematical Society of J apan, vol. 34, no. 4, pp. 677-701, 1982. doi: 10.2969/jmsj/ 03440677
[8] N . Okazawa, "A n L ${ }^{\text {p-theory for Schrödinger operators with nonnegative }}$ potentials", J ournal of the M athematical Society of J apan, vol. 36, no. 4, pp. 675-688, 1984. doi: 10.2969/ jmsj/ 03640675
[9] N. O kazawa, "Lp-theory of Schrödinger operators with strongly singular potentials", J apanese journal of mathematics. New series, vol. 22, no. 2, pp. 199-239, 1996. doi: 10.4099/ math1924.22.199
[10] E. M. Ouhabaz, Analysis of Heat Equations on Domains. London M athematical Society M onographs. Princeton U niversity Press, 2004.
[11] A. Pazy, Semigroups of linear operators and applications to partial differential equations. N ew Y ork: Springer-V erlag, 1983.
[12] M. Sobajima and T. Y okota, "A direct approach to generation of analytic semigroups by generalized Ornstein-U hlenbeck operators in weighted L^{p}-spaces", Journal of M athematical A nalysis and Applications, vol. 403, no. 2, pp. 606-618, 2013. doi: 10.1016/ j.jmaa.2013.02.054

Imen Metoui

Laboratory of Mathematical Analysis and Applications (LMAA-LR11-ES11)
Faculty of Mathematical,
Physical and Natural Sciences of Tunis,
University of Tunis El-Manar
2092 Tunis,
Tunisia
e-mail: imen.metoui@fst.utm.tn

