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Abstract

Kizmaz [}] defined some difference spaces viz., Loo(A),c(A) and
co(A) and studied by Et and Colak [1] thoroughly. In this paper,
Norlund Nt- difference sequence spaces Nt(cq,p, A), N(c,p, A) and
N'(loo,p, A) contain the sequences whose N*A-transforms in co, c
and Lo are defined and the paranormed linear structures are devel-
oped on these spaces. It has been shown that the spaces N(co,p, A),
Nt(e,p,A) € N'(lw,p,A) are linearly isomorphic and are of non-
absolute type. Further, it is wverified that N'(c,p,A), Nt(co,p, A)
and N'(lo,p,A) of non-absolute form are isomorphic to Nt(co,p),
Nt(c,p) and Nt({s,p), respectively. Topological properties such as
the completeness and the isomorphism are also discussed. Some in-
clusion relations among these spaces are also verified. Finally, the

a-, B- and - dual of these spaces are determined and constructed the
Schauder-basis of Nt(co,p, A) and Nt(c,p, A).
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1. Introduction

Throughout the paper, w will denote the space of all sequence of com-
plex numbers and /., ¢ and ¢y are the spaces of all bounded, convergent
and null sequences, respectively, cs, bs, {1 and £, for the sequence spaces
of all convergent, bounded, absolutely and p-absolutely convergent series,
respectively.

Definition 1.1. Paranormed Space A linear space Y over R is a para-
normed space if there is a sub-additive function g : X — R such that
g(0) =0, g(x) = g(—z) and |ay, —a| — 0 and g(x,, —x) — 0g(anzy,—azx) —
0,Va € R,x € X, where 0 is the zero vector.

Let A and A2 be any two sequence spaces and A = (a,;) as any infinite
matrix of a,; € R, n,k € N. Then we say that A defines a matrix mapping
from A1 into Ay as A: A\ — Ao if x = (z,,) € MAz = {(Ax),} € p, where

(L.1) (A2), = Y anar (n € N)
k

Here(A;1 : A2), we denote the class of all matrices A such that the series in
(1.1) converges for each n € N and every x € u, A sequence z is said to A
summable to a if Az converges to a, which is called as the A-limit of x.

Assume here and after that (py,) is bounded sequence of strictly positive
real numbers with supp,, = H and M = max{1, H}. Then the linear spaces
(0, ¢(p) and co(p) were defined by Maddox in [8, 11, 13]) as follows:

loo == (2) €Ew: sup |z, < o0
neN

c(p) = {l‘ = (zp) €Ew: Jim |z, — L|P" = 0, forsome L > 0}
co(p) = {z = (xn) €w: lim |z, =0}
These are complete sequence spaces in the paranormed

(1.2) g(x) = sup \xn\% , iff  inf pp >0
neN keN

For the sequence space p and v, the set S(u, v) is defined as

(1.3) S(u,v)={z€w:zzevVr € pu}

The a-, 8-, y-duals of x, which are respectively denoted by k%, x° and
kY are K% = S(k,01), ° = S(k,cs), KT = S(k, bs).
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Definition 1.2 (Schauder Basis). A sequence (b,) is called Schauder
basis of the paranormed sequence space (u,g), if © € p, 3(5y) such that

k
lim g(z — 3 Bnbn) = 0.
k—oo n—=0

Peyerimhoff [12] and Mears [10] gave the concept of the Norlund Means.
Let T, = Y p_ogtr,Vn € N,t; > 0,tp > 0. Then the Norlund means for
t = (t) is a matrix N* = (al, ), where

(1.4) U =

ek 0<k<n
0, k>n

for all n € N.

Norlund matrix N* is a Toeplitz matrix iff ¢,/T,, — 0, as n — oo. If
t=e=(1,1,1,....), then the Norlund matrix N is reduced to the matrix
C1 of arithematic means. For ¢, = Agﬁl, the method N! gives Cesaro
method C, with r > —1, where, for n € N:

R R EE B Y
" 1, n=0.

For tg = Dg = 1, define the determinant D,,, for n € N as follows

(1.5)

t 1 0 0 - 0

to t1 1 0 - 0

t3 to t 1 o 0
(1.6) Dy=|. = .

th—1 th—2 th-3 th—qa - 1

tn th—1 tn—2 th—3 -+ t1

Let V' = (rf,) be the inverse of N* = (a!,), [10], then

. (=)"kD, Ty, 0<k<m,
(1.7) Tok = { 0, i

for all n, kK € N. Also for all £ € N, we have

(1.8) Dy = Z?Z_ll(—l)i*lti Dy_;+ (—l)kfl tr.

In this paper, the Norlund-difference sequence spaces N*(co,p, A), Nt(c,p, A)
and N'({s,p, A) of the sequences whose N!A-transform are in cg, ¢ and
l+ respectively ate introduced and investigated some topological proper-
ties, inclusion relations between among these sequence spaces.
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2. The Norlund sequence spaces N'(cy,p,A), N(c,p,A) and
N'(loo, p, A)

In this section, the paranormed spaces N*(cg,p, A), Nt(c,p, A) and
N'(ls,p, A) are defined and the paranormed structures are developed on
these spaces. It has been shown that these spaces are linearly isomorphic.
Kizmaz [4] defined some difference spaces viz., oo(A), c(A) and co(A)
and studied by Et and Colak [1] thoroughly. Let m(> 0) € Z. Then for any
given sequence space A, we have A(A™) = {z = (z,) € w: (A™x,) € \}
for A = cp,c and I, where A™z = (A™x,) = (A™ 1z, — A™ 12,1 and

so that
m 4 v m
A"z, = E (-1) (v)x"ﬂ”

v=0

Yesilkayagil and Basar [15] defined the Norlund sequence space N(p)

1 n Pn
E Ztk,i Z; < OO}
1=0
with 0 < p, < H < o0.

We introduced the A-Norlund difference sequence spaces
Nt(c,p,A), N'(co,p, A) and N'({wo,p, A), for z € w, as follows (for L > 0):

-
-
-}

as

Nt(p) = {z = (zn) Ew

N'(co,p, A) = {ZE : lim

n—oo

1 n
T > tpei A
=0

n—oo

Ni(c,p,A) = {a: : lim

1 n
T_n ;} tk,i(AHZZ’ — L)

Ztk i sz

The sequence spaces can redefine the spaces N t(co,p,
and N'({o,p, A) respectively as N'(co,p, A) = (co(p))ne
(c(p))nt and N*(loo,p, A) = (Loo(p)) ni-

Define the sequence y = (Ay,) by the N'(A)-transform of sequence
x = (Azy,), so we have

N'(loo,p, A) = {x Sup | 7

’ )

, N'(c,p
Hep, A)

(2.1) y = (yn) = Ztn i Az; Vne N



Paranormed Norlund N'- difference sequence spaces and their ... 883

Theorem 2.1. N(c,p,A), Nt(co,p, A) and N ({o, p, A) are the complete
linear metric space paranormed by

g1(z) =

Pn
1 n A M
p Tk ;:0 k—i i

with 0 < p, < H < oo with M = max{1, H}.

Proof.  The result is proved for N*(cg,p, A). And the supremum of every
bounded sequence is finite, the result for the other spaces can be proved
analogously.

Let z,y € N'(co,p,A), then

DPn Pn
M M
Sup Z t— z :L'Z + yz) < SUP Z tr— 1A-'L'z
pn
M
+ Sup | - Ztk i Ay;
and for any a € R, we have
(2.2) oPF < {max1,a™},

Clearly, g1(0) = 0,g1(z) = g1(—z) V x € N'(co,p, A). Therefore, in-
equalities (2.2) and (2.2) give sub-additivity of g; and
g1(azx) < max(1,a™)gi(z). Further, let (™) € N*(co,p, A), then
g1(z(™ — z) — 0 and let (av,) be any sequence of scalars such that a, — a.
Thus,

bn

g1(apz™ — az) = sup, ‘Tln Yoo tk—i Alay, xl(n) — )| ™

< oy — 't gy (z) 4+ i gy (2" — )
—0 as n— o0

Hence g; is paranorm.

Now, let {27} be any Cauchy sequence in N'(co,p,A), with 2/ =

{ZL‘O ,xgj),xg]), ...... }. For given ¢ > 0 3ng(e) such that gi(z? —z') <

€ YV j,i>ng(e). Then, for k € N,
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€
< E,Vj,z' > ng(e)

which yields the Cauchy sequence of real numbers
{(NYA,p)a®)y, (NYHA, p)at)y, ...}, for K € N. Hence, (NY(A,p)a?), —
(NY(A,p)x)r as j — oo. For (NY(A,p)x)o, (N'(A,p)z)1,... infinitely
many limits, there is a the sequence

{(N*(A,p)x)o, (NY(A,p)x)1, (N'(A, p)x)2,...}. Using (2.3) as i — oo, we
get

(N'(A,p)al )i = (N'(Ap)a)e < 5, 5 2 no(c)

Since z7 = (x)) € N'(cg,p,A) for each j € N, there exists ng(¢) € N such
that on

(NY(A,p)a?)M < § for every j > ng(e) and k € N.

Taking a fixed j > no(€), we obtain by (2.6) that

(NY(A, P < (NY(A,p)ad), — (NH(A, p)a) T
+ (Nt(A»p)wj)éV_? <€

for every j > no(e). Therefore, z € Nt(co,p, A). O

Remark 2.2. For the spaces N*(cy,p,A), the property of absolute is not
satisfied, i.e., g1(z) # g1(x), so that N'(co,p,A) is of non-absolute type,
x = (zy).

Theorem 2.3. The spaces N'(c,p,A), N(co,p,A) and N'(loo,p, A) of
non-absolute type are paranorm or norm isomorphic to N*(cg,p), Nt(c,p)
and N*({s,p) respectively, for 0 < p, < H < o0o.

Proof.  Define a linear transformation T : N%(cg,p, A) — N¥(co,p) by
Tx = N%(co,p, A)x. For x = 0, whenever Tx = 6 and hence T is injective.
Suppose y € N'(cp,p) and define the sequence = = (z,,) = (Ax,) by

&= (2n) = Yj_o(=1)""7 Dy_;T; Ay, ¥ neN. Thus, we have
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Pn
M

(@) =sup, |7 Yitgtei Az
Pn
= sup,, ’T% o tn—i > —o(=1)""7 Dn_jTj Ay;| ™

pn
= supy, [yn| M < o0

Thus, z € N'(co,p, A) and so T is onto and preserved under paranorm.
Hence, N*(cp,p, A) and N'(cg,p) are linearly isomorphic.

Analogously, it can be verifies that N*(c,p, A) = Nt(c, p) and
Nt(loo,p, A) = N(loo, D). O

Theorem 2.4. Let u(™(t) = {u,(fn) (t)} be a sequence defined as

n _1\(k—n) B < <
i [ LIt 0Sn <k

Then

a) {u™(t)},eN is a basis for N*(cg, p, A) and every z € N*(cg, p, A) has
a unique representation as = 3, o, (t)u™(t), where
an(t) = (NY(A,p)x)n,Vn € Nand 0 < p, < H < o0.

b) The set {e,u(™ ()} is a basis of N*(c,p, A) and every 2 € Nt(c, p, A)
has a unique representation as = = ne + 3., [an(t) — 7] u(™(t), where
n=lim (N(A,p)z)n.

Proof.
a) Clearly, {u™(t)} € N*(cy,p,A), also
(2.3) Ntu™(t) = e™ el(cy,A), VneN,0<p, <H < co.

Let z € (N'(co, p, A) be given. For every non-negative integer m, we
take .

(2.4) 2™ = 3" ap (t)ut(t)
n=0
Then, by using Nt to (??) with (2.4), we have
Ntz = S0 an(ONuM(t) = TiLo(N'a)n ™)

Now Vi, m € N, we obtain
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0, 0<i<m
(N'z); , i>m

(N —al)}; = {

For any given € > 0, there exists mp € N such that

L

g[Ni@—at)] = [T, (V)]

1
< [ (Nf2)f ]
<e, Vm>mg

g~

(N'z)}"

K

<=, VYm>my.

[NCRINe

Il
3

Therefore,

Now, if possible assume that z = 3" i, (£)u(™ (t). Then,

(N'2)r =3, i (O){Nu™ (&)}
= > kn(t) el(f) =up(t), VkeN

which is absurd.

Since {u(™(t)} € Nt(cp,p,A) and e € ¢ and the inclusion

{e,ul™(t)} € Nt(c,p,A) is trivial. For z € Nt(c,p, A), there exist
unique 7 satisfying (2.4). So, [ € N¥(co,p, A) whenever | = z — ne.

Hence, by part (a) that the representation of ¢ is unique.

3. The Inclusion Relations

Some inclusion relations between the sequence spaces loo(p), ¢(p), co(p) and
N'(loo, p, A), Nt(c,p, A), Nt(co,p, A) have been defined and studied in this

section.

Theorem 3.1. The inclusion N'(co,p, A) C N'(c,p,A) C N'(loo,p, A)

strictly hold.
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Proof. Let y € N%(co,p), then N'Az € N(cg,p). Since N(cg,p) C
Nt(c,p), we obtain N'Axz € N'(c,p) and so that z € Nt(c,p, A). Hence
the inclusion Nt(co,p,A) C Nt(c,p,A). Further, since N'Az € Nt(c,p)
for every x € N'(c,p, A) and the inclusion N*(cg,p) C N¥(c,p) is strict, for
some N'Ax € N'(c,p). Thus, z & Nt(co,p, A).

By the similar discussion, it may easily be proved that the inclusion
Nt(e,p, A) C N'(loo, p, A) is strict. O

Theorem 3.2. The inclusions N'(c,p) C Nt(c,p,A), Nt(co,p) C N(co,p, A)
and N*({so,p) C Nt ({so,p, A) hold for 1 < p, < pps1, Vn € N.

Proof.  The inclusions are obvious for p = e, (see [9]). We are considering
the case for N'({oo,p) C N'(loo,p, A). Let © € N¥({oo, p) be given. Then
AzP € L, where 2P = (z1P*)72,. Choose fixed my € N such that AzPr <
1 for all £ > mg. Then for any n > mg that

(3.1) AxpPr = (Axkpk)f’_z < AzpPP ) mog<k<n

Since pi < py, for k < n and n € N. Further, since p = (p,) is bounded,
then for K > 0, we have

1 mo—1 Pn mo—1
(3.2) SUp | 7 Z tei Ax;| < KsupT— Z tr—i |Ax;|P*
L Rk moEn =0

Therefore, using (3.1) and (3.2) and by applying Holder inequality that
|Nt(l007pa A)k|pn
< [supn (T—ln "o tk,i) Aa:i}pn
< {Supn 7 Yo thi Al‘ip”} [Supn (T% =0 tszi)}pn_l
= SUp,, 7 Yig th—i Az
sup,, T% [Z?ﬁa Ytemi AzPr + S0t AzP "]
i o thi AxPr
(K +1) (N'(AaP))

I IA

Also we have AzP € Iy, thus NY(AxP) € loo, (see [9])
With this the above inequality leads to the fact that N'Az € Nt(l, p) and
hence © € N'(loo, p, A). Therefore, the inclusion N*(loo,p) C Nt(loo,p, A)
hold.
Similarly, it can be shown with some modifications that the inclusion
N'(c,p) C N(c,p,A) and N(co,p) C N¥(cp,p,A) also hold. O
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4. The a-, - & 7-duals of the spaces N'(co,p, A), N(c,p, A),
N'(loo, p, A)

In this section, we determine the a-, 3- and ¥- duals of the spaces N(cg, p, A),
Nt(e,p,A), N'(loo,p, A). We refer the following lemmas:

Lemma 4.1. (see [2], Theorem 5.1.0) Let (anx) be an infinite matrix over
the complex field. Then the following statements holds:

(i) Let 1 < p, < H <oo,n € N. Then A= (an) € (U(p): ¢1)ITR>1€Z
such that

(4.1) sup Z

NeF k

28

< 00

Z ankR_l

neN

(ii) Let 0 < p, < 1 for every n € N. Then A = (anx) € (U(p) : £1) if and
only if

Pn
< 0

Z ank

neN

(4.2) sup sup
NeF keN

Lemma 4.2. (see [5],Theorem 1) Let (an;) be an infinite matrix over the
complex field. Then the following statements holds:

Let 1 < p, < H <oo,Vn € N. Then A = (anr) € (U(p) : loo) iff there
exists R > 1 € Z such that

,
< 0

4.3 R
(4 2

Let 0 < p, <1Vné&N. Then A = (ank) € (U(p) : loo) iff

(4.4) sup |ani/P" < oo

n,keN

Lemma 4.3. (see [5],Theorem 1) Let 0 < p, < H < oo for every n € N.
Then A = (ank) € (U(p) : ¢) iff (4.3) and (4.4) hold, and there is 5y € C
such that a,i — B, for each k € N.

Theorem 4.4. Let 1 < p, < H < oo for every n € N. Then a-dual of the
spaces Nt(co,p, A), Nt(c,p,A), N'(loo,p, A) is

Ph
Dl = {(Z cw: supNef Zk ‘ZnEN(_l)n_an_an AanR_l‘ < OO}
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Proof. For a = (a,) € w, consider the following equality

n

(4.5) antn = > (=1)"""Dy 1Ty Aanye = (Cy)n, YneEN
k=0

where C' = (¢p) is defined by

o= (=1)"*D, T, Aa,, if 0<k<n
"0, if k>n ’

for all n,k € N. Thus, by combining (4.5) with Part (i) of Lemma
4.1, we observe that ax € f; whenever x € N'(co,p,A), Nt(c,p,A), or
N'(loo,p, A) iff Cy € €1 when y € N¥(co,p), Ni(c,p), Nt({so,p). So
that, a is in the a-dual of Nt(cg,p,A), Nt(c,p,A), and Nt(lso,p, D) iff
C € NYco,l1) = Nic,l1) = NY(lso,l1). Thus a € [Ni(co,p,A)]* =
[Nt (e, p, A)]* = [Nt (loo, p, A)]® i supyer S [Snen Cor B < 00 which
leads to the consequence that

(4.6) [N*(co,p, A))* = [N*(c,p, A)]* = [N'(loo, p, A)]* = Dy

Theorem 4.5. Define the sets Do, D3, D4y and Ds as follows:

, P
Dy = {a € W : SUPLEN 2keN ‘Z?:k(—l)J*kYRA’ < oo}
Ds =cs
Dy = {a € W : SUPNeF 2 keN ‘ZneN(—l) PAan) < oo}

and D5 = {a € W : SUPLeN 2keN ‘Z?:k(—l)J*kPAaj‘ < oo}
where Y = Aa;D;_;T,, P = D;_;T,,0<p, <1,¥vne€N.

Then, [Nt(coapv A)]B = D2mD37 [Nt(c7p7 A)]IB - D2mD3mD47 [Nt(lOO7p7 A)]B
= D3N Ds.

Proof. Now we give the S—dual of the sequence space N'(co,p,A).
Consider the equality

n—1 n

(4.7) Z apTy = Z Z(—l)j*kPAajyk + ThAanyn = (EY)n
k=0 k=0 j=Fk
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where, P = D;_;T,, Vn € N, E = (ey) is defined by

S (=17 DT, Aay, if 0<k<n

enk =13 1), Aag, ifk=n
0, if k>n

for all n,k € N. Then, from equation (4.6) we obtain, ax = (apzy) € cs
whenever z = (z,,) € N(co,p, A) iff Ey € ¢ whenever y = (y,) € N'(co,p).
This means that a = (a,) € [N'(co, A,p)]? if and only if E € Nt(co,p).
Therefore by using Lemma (4.2) with Part (i) we have

i _1|Pn
SUP,eN 2ok ‘Z?:k(—l)] ij_an Aaj;R 1‘ < 00

and by Lemma (4.3), lim,, a,,;, exists for all kK € N. Hence we conclude that
[N*(co, p, A)]P = Dy N D3.

Analogously, the S— dual of the sequence spaces N'(c,p, A) and
N'(lo, p, A) can be obtained. O

Theorem 4.6. The - dual of N'(c,p, A), N(co,p, A) and N'(loo, p, A) is
Ds.

Proof. This result is easily obtained by proceeding as in the proof of
Theorem (4.5) with Lemma (4.3). O

5. Conclusions

The Norlund N'-difference sequence spaces N(co,p,A), Nt(c,p,A) and
N'(loo, p, A) has been studies thoroughly and the their a-, 8- and 7-duals
have been obtained with the help of some particular subsets containing
sequences viz., D1, Do, D3, D4 and Ds.
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