Vol. 42, $\mathrm{N}^{o} 4$, pp. 879-892, August 2023.
Universidad Católica del Norte
Antofagasta - Chile

Paranormed Norlund N^{t} - difference sequence spaces and their α-, β - and γ-duals

Sukhdev Singh (1)
Lovely Professional University, India and
Toseef Ahmed Malik
Lovely Professional University, India
Received: January 2022. Accepted: April 2023

Abstract

Kizmaz [4] defined some difference spaces viz., $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ and studied by Et and Colak [1] thoroughly. In this paper, Norlund N^{t} - difference sequence spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ contain the sequences whose $N^{t} \Delta$-transforms in c_{0}, c and ℓ_{∞} are defined and the paranormed linear structures are developed on these spaces. It has been shown that the spaces $N^{t}\left(c_{0}, p, \Delta\right)$, $N^{t}(c, p, \Delta) \xi^{t}\left(\ell_{\infty}, p, \Delta\right)$ are linearly isomorphic and are of nonabsolute type. Further, it is verified that $N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(l_{\infty}, p, \Delta\right)$ of non-absolute form are isomorphic to $N^{t}\left(c_{0}, p\right)$, $N^{t}(c, p)$ and $N^{t}\left(\ell_{\infty}, p\right)$, respectively. Topological properties such as the completeness and the isomorphism are also discussed. Some inclusion relations among these spaces are also verified. Finally, the α-, β - and γ-dual of these spaces are determined and constructed the Schauder-basis of $N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}(c, p, \Delta)$.

Keywords: Paranormed sequence space, N^{t}-Difference sequence space, Norlund matrix, Schauder basis, α-, β - and γ-duals.

AMS Subject Classification: Primary 40A05; Secondary 46 A 45 .

1. Introduction

Throughout the paper, w will denote the space of all sequence of complex numbers and ℓ_{∞}, c and c_{0} are the spaces of all bounded, convergent and null sequences, respectively, $c s, b s, \ell_{1}$ and ℓ_{p} for the sequence spaces of all convergent, bounded, absolutely and p-absolutely convergent series, respectively.

Definition 1.1. Paranormed Space A linear space Y over \mathbf{R} is a paranormed space if there is a sub-additive function $g: X \rightarrow \mathbf{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0 g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow$ $0, \forall \alpha \in \mathbf{R}, x \in X$, where θ is the zero vector.

Let λ_{1} and λ_{2} be any two sequence spaces and $A=\left(a_{n k}\right)$ as any infinite matrix of $a_{n k} \in \mathbf{R}, n, k \in \mathbf{N}$. Then we say that A defines a matrix mapping from λ_{1} into λ_{2} as $A: \lambda_{1} \rightarrow \lambda_{2}$ if $x=\left(x_{n}\right) \in \lambda_{1} A x=\left\{(A x)_{n}\right\} \in \mu$, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \quad(n \in \mathbf{N}) \tag{1.1}
\end{equation*}
$$

Here $\left(\lambda_{1}: \lambda_{2}\right)$, we denote the class of all matrices A such that the series in (1.1) converges for each $n \in \mathbf{N}$ and every $x \in \mu$, A sequence x is said to A summable to a if $A x$ converges to a, which is called as the A-limit of x.

Assume here and after that $\left(p_{n}\right)$ is bounded sequence of strictly positive real numbers with $\sup p_{n}=H$ and $M=\max \{1, H\}$. Then the linear spaces $\ell_{\infty}, c(p)$ and $c_{0}(p)$ were defined by Maddox in $\left.[8,11,13]\right)$ as follows:

$$
\begin{gathered}
\ell_{\infty}=\left\{x=\left(x_{n}\right) \in w: \sup _{n \in \mathbf{N}}\left|x_{n}\right|^{p_{n}}<\infty\right\} \\
c(p)=\left\{x=\left(x_{n}\right) \in w: \lim _{n \rightarrow \infty}\left|x_{n}-L\right|^{p_{n}}=0, \text { forsome } L>0\right\} \\
c_{0}(p)=\left\{x=\left(x_{n}\right) \in w: \lim _{n \rightarrow \infty}\left|x_{n}\right|^{p_{n}}=0\right\}
\end{gathered}
$$

These are complete sequence spaces in the paranormed

$$
\begin{equation*}
g(x)=\sup _{n \in \mathbf{N}}\left|x_{n}\right|^{\frac{p_{n}}{M}}, \quad \text { iff } \quad \inf _{k \in \mathbf{N}} p_{k}>0 \tag{1.2}
\end{equation*}
$$

For the sequence space μ and ν, the set $S(\mu, \nu)$ is defined as

$$
\begin{equation*}
S(\mu, \nu)=\{z \in w: x z \in \nu, \forall x \in \mu\} \tag{1.3}
\end{equation*}
$$

The $\alpha-, \beta$-, γ-duals of κ, which are respectively denoted by $\kappa^{\alpha}, \kappa^{\beta}$ and κ^{γ} are $\kappa^{\alpha}=S\left(\kappa, \ell_{1}\right), \kappa^{\beta}=S(\kappa, c s), \kappa^{\gamma}=S(\kappa, b s)$.

Definition 1.2 (Schauder Basis). A sequence $\left(b_{n}\right)$ is called Schauder basis of the paranormed sequence space (μ, g), if $x \in \mu, \exists\left(\beta_{n}\right)$ such that $\lim _{k \rightarrow \infty} g\left(x-\sum_{n=0}^{k} \beta_{n} b_{n}\right)=0$.

Peyerimhoff [12] and Mears [10] gave the concept of the Norlund Means. Let $T_{n}=\sum_{k=0}^{n} t_{k}, \forall n \in \mathbf{N}, t_{k} \geq 0, t_{0}>0$. Then the Norlund means for $t=\left(t_{k}\right)$ is a matrix $N^{t}=\left(a_{n k}^{t}\right)$, where

$$
a_{n k}^{t}= \begin{cases}\frac{t_{n-k}}{T_{n}}, & 0 \leq k \leq n \tag{1.4}\\ 0, & k>n\end{cases}
$$

for all $n \in \mathbf{N}$.
Norlund matrix N^{t} is a Toeplitz matrix iff $t_{n} / T_{n} \rightarrow 0$, as $n \rightarrow \infty$. If $t=e=(1,1,1, \ldots)$, then the Norlund matrix N^{t} is reduced to the matrix C_{1} of arithematic means. For $t_{n}=A_{n}^{r-1}$, the method N^{t} gives Cesaro method C_{r} with $r>-1$, where, for $n \in \mathbf{N}$:

$$
A_{n}^{r}= \begin{cases}\frac{(r+1)(r+2) \ldots . .(r+n)}{n!}, & n \in \mathbf{N} \tag{1.5}\\ 1, & n=0\end{cases}
$$

For $t_{0}=D_{0}=1$, define the determinant D_{n}, for $n \in \mathbf{N}$ as follows

$$
D_{n}=\left|\begin{array}{llllll}
t_{1} & 1 & 0 & 0 & \cdots & 0 \tag{1.6}\\
t_{2} & t_{1} & 1 & 0 & \cdots & 0 \\
t_{3} & t_{2} & t_{1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
t_{n-1} & t_{n-2} & t_{n-3} & t_{n-4} & \cdots & 1 \\
t_{n} & t_{n-1} & t_{n-2} & t_{n-3} & \cdots & t_{1}
\end{array}\right|
$$

Let $V^{t}=\left(r_{n k}^{t}\right)$ be the inverse of $N^{t}=\left(a_{n k}^{t}\right),[10]$, then

$$
r_{n k}^{t}= \begin{cases}(-1)^{n-k} D_{n-k} T_{k}, & 0 \leq k \leq n \tag{1.7}\\ 0, & k>n\end{cases}
$$

for all $n, k \in \mathbf{N}$. Also for all $k \in \mathbf{N}$, we have

$$
\begin{equation*}
D_{k}=\sum_{i=1}^{k-1}(-1)^{i-1} t_{i} D_{k-i}+(-1)^{k-1} t_{k} \tag{1.8}
\end{equation*}
$$

In this paper, the Norlund-difference sequence spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ of the sequences whose $N^{t} \Delta$-transform are in c_{0}, c and ℓ_{∞} respectively ate introduced and investigated some topological properties, inclusion relations between among these sequence spaces.

2. The Norlund sequence spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(l_{\infty}, p, \Delta\right)$

In this section, the paranormed spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ are defined and the paranormed structures are developed on these spaces. It has been shown that these spaces are linearly isomorphic.

Kizmaz [4] defined some difference spaces viz., $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ and studied by Et and Colak [1] thoroughly. Let $m(\geq 0) \in \mathbf{Z}$. Then for any given sequence space λ, we have $\lambda\left(\Delta^{m}\right)=\left\{z=\left(z_{n}\right) \in w:\left(\Delta^{m} x_{n}\right) \in \lambda\right\}$ for $\lambda=c_{0}, c$ and l_{∞} where $\Delta^{m} x=\left(\Delta^{m} x_{n}\right)=\left(\Delta^{m-1} x_{n}-\Delta^{m-1} x_{n+1}\right.$ and so that

$$
\Delta^{m} x_{n}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{n+v}
$$

Yesilkayagil and Basar [15] defined the Norlund sequence space $N^{t}(p)$ as

$$
N^{t}(p)=\left\{z=\left(z_{n}\right) \in w: \sum_{n}\left|\frac{1}{T_{k}} \sum_{i=0}^{n} t_{k-i} x_{i}\right|^{p_{n}}<\infty\right\}
$$

with $0<p_{n} \leq H<\infty$.
We introduced the Δ-Norlund difference sequence spaces
$N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$, for $x \in w$, as follows (for $L>0$):

$$
\begin{gathered}
N^{t}\left(c_{0}, p, \Delta\right)=\left\{x: \lim _{n \rightarrow \infty}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i}\right|^{p_{n}}=0\right\} \\
N^{t}(c, p, \Delta)=\left\{x: \lim _{n \rightarrow \infty}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i}\left(\Delta x_{i}-L\right)\right|^{p_{n}}=0\right\} \\
N^{t}\left(\ell_{\infty}, p, \Delta\right)=\left\{x: \sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i}\right|^{p_{n}}<\infty\right\}
\end{gathered}
$$

The sequence spaces can redefine the spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ respectively as $N^{t}\left(c_{0}, p, \Delta\right)=\left(c_{0}(p)\right)_{N^{t}}, N^{t}(c, p, \Delta)=$ $(c(p))_{N^{t}}$ and $N^{t}\left(l_{\infty}, p, \Delta\right)=\left(\ell_{\infty}(p)\right)_{N^{t}}$.

Define the sequence $y=\left(\Delta y_{n}\right)$ by the $N^{t}(\Delta)$-transform of sequence $x=\left(\Delta x_{n}\right)$, so we have

$$
\begin{equation*}
y=\left(y_{n}\right)=\frac{1}{T_{n}} \sum_{i=0}^{n} t_{n-i} \Delta x_{i} \forall n \in \mathbf{N} \tag{2.1}
\end{equation*}
$$

Theorem 2.1. $N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ are the complete linear metric space paranormed by

$$
g_{1}(x)=\sup _{n}\left|\frac{1}{T_{k}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i}\right|^{\frac{p_{n}}{M}}
$$

with $0<p_{n} \leq H<\infty$ with $M=\max \{1, H\}$.

Proof. The result is proved for $N^{t}\left(c_{0}, p, \Delta\right)$. And the supremum of every bounded sequence is finite, the result for the other spaces can be proved analogously.

Let $x, y \in N^{t}\left(c_{0}, p, \Delta\right)$, then

$$
\begin{aligned}
\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta\left(x_{i}+y_{i}\right)\right|^{\frac{p_{n}}{M}} & \leq \sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i}\right|^{\frac{p_{n}}{M}} \\
& +\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta y_{i}\right|^{\frac{p_{n}}{M}}
\end{aligned}
$$

and for any $\alpha \in \mathbf{R}$, we have

$$
\begin{equation*}
\alpha^{p_{k}} \leq\left\{\max 1, \alpha^{M}\right\} \tag{2.2}
\end{equation*}
$$

Clearly, $g_{1}(\theta)=0, g_{1}(x)=g_{1}(-x) \quad \forall x \in N^{t}\left(c_{0}, p, \Delta\right)$. Therefore, inequalities (2.2) and (2.2) give sub-additivity of g_{1} and
$g_{1}(\alpha x) \leq \max \left(1, \alpha^{M}\right) g_{1}(x)$. Further, let $\left(x^{(n)}\right) \in N^{t}\left(c_{0}, p, \Delta\right)$, then $g_{1}\left(x^{(n)}-x\right) \rightarrow 0$ and let $\left(\alpha_{n}\right)$ be any sequence of scalars such that $\alpha_{n} \rightarrow \alpha$. Thus,

$$
\begin{aligned}
g_{1}\left(\alpha_{n} x^{(n)}-\alpha x\right) & =\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta\left(\alpha_{n} x_{i}^{(n)}-\alpha x_{i}\right)\right|^{\frac{p_{n}}{M}} \\
& \leq \alpha_{n}-\alpha^{\frac{p_{n}}{M}} g_{1}\left(x^{n}\right)+\alpha^{\frac{p_{n}}{M}} g_{1}\left(x^{n}-x\right) \\
& \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Hence g_{1} is paranorm.
Now, let $\left\{x^{j}\right\}$ be any Cauchy sequence in $N^{t}\left(c_{0}, p, \Delta\right)$, with $x^{j}=$ $\left\{x_{0}^{(j)}, x_{1}^{(j)}, x_{2}^{(j)}, \ldots \ldots\right\}$. For given $\epsilon>0 \exists n_{0}(\epsilon)$ such that $g_{1}\left(x^{j}-x^{i}\right)<$ $\epsilon \forall j, i \geq n_{0}(\epsilon)$. Then, for $k \in \mathbf{N}$,

$$
\begin{aligned}
\left(N^{t}(\Delta, p) x^{j}\right)_{k} & -\left(N^{t}(\Delta, p) x^{i}\right)_{k}^{\frac{p_{n}}{M}} \\
\leq \sup _{n}\left(N^{t}(\Delta, p) x^{j}\right)_{k} & -\left(N^{t}(\Delta, p) x^{i}\right)_{k}^{\frac{p_{n}}{M}} \\
& <\frac{\epsilon}{2}, \forall j, i>n_{0}(\epsilon)
\end{aligned}
$$

which yields the Cauchy sequence of real numbers $\left\{\left(N^{t}(\Delta, p) x^{0}\right)_{k},\left(N^{t}(\Delta, p) x^{1}\right)_{k}, \ldots\right\}$, for $k \in \mathbf{N}$. Hence, $\left(N^{t}(\Delta, p) x^{j}\right)_{k} \rightarrow$ $\left(N^{t}(\Delta, p) x\right)_{k} \quad$ as $\quad j \rightarrow \infty$. For $\left(N^{t}(\Delta, p) x\right)_{0},\left(N^{t}(\Delta, p) x\right)_{1}, \ldots$ infinitely many limits, there is a the sequence
$\left\{\left(N^{t}(\Delta, p) x\right)_{0},\left(N^{t}(\Delta, p) x\right)_{1},\left(N^{t}(\Delta, p) x\right)_{2}, \ldots\right\}$. Using (2.3) as $i \rightarrow \infty$, we get

$$
\left(N^{t}(\Delta, p) x^{j}\right)_{k}-\left(N^{t}(\Delta, p) x\right)_{k}<\frac{\epsilon}{2}, j \geq n_{0}(\epsilon)
$$

Since $x^{j}=\left(x_{n}^{j}\right) \in N^{t}\left(c_{0}, p, \Delta\right)$ for each $j \in \mathbf{N}$, there exists $n_{0}(\epsilon) \in \mathbf{N}$ such that $\left(N^{t}(\Delta, p) x^{j}\right)_{k}^{\frac{p_{n}}{M}}<\frac{\epsilon}{2}$ for every $j \geq n_{0}(\epsilon)$ and $k \in \mathbf{N}$.
Taking a fixed $j \geq n_{0}(\epsilon)$, we obtain by (2.6) that

$$
\begin{aligned}
\left(N^{t}(\Delta, p) x\right)_{k}^{\frac{p_{n}}{M}} & \leq\left(N^{t}(\Delta, p) x^{j}\right)_{k}-\left(N^{t}(\Delta, p) x\right)_{k}^{\frac{p_{n}}{M}} \\
& +\left(N^{t}(\Delta, p) x^{j}\right)_{k}^{\frac{p_{n}}{M}}<\epsilon
\end{aligned}
$$

for every $j \geq n_{0}(\epsilon)$. Therefore, $x \in N^{t}\left(c_{0}, p, \Delta\right)$.
Remark 2.2. For the spaces $N^{t}\left(c_{0}, p, \Delta\right)$, the property of absolute is not satisfied, i.e., $g_{1}(x) \neq g_{1}(x)$, so that $N^{t}\left(c_{0}, p, \Delta\right)$ is of non-absolute type, $x=\left(x_{n}\right)$.

Theorem 2.3. The spaces $N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(l_{\infty}, p, \Delta\right)$ of non-absolute type are paranorm or norm isomorphic to $N^{t}\left(c_{0}, p\right), N^{t}(c, p)$ and $N^{t}\left(\ell_{\infty}, p\right)$ respectively, for $0<p_{n} \leq H<\infty$.

Proof. Define a linear transformation $T: N^{t}\left(c_{0}, p, \Delta\right) \rightarrow N^{t}\left(c_{0}, p\right)$ by $T x=N^{t}\left(c_{0}, p, \Delta\right) x$. For $x=\theta$, whenever $T x=\theta$ and hence T is injective. Suppose $y \in N^{t}\left(c_{0}, p\right)$ and define the sequence $x=\left(x_{n}\right)=\left(\Delta x_{n}\right)$ by $x=\left(x_{n}\right)=\sum_{j=0}^{n}(-1)^{n-j} D_{n-j} T_{j} \Delta y_{j}, \quad \forall n \in \mathbf{N}$. Thus, we have

$$
\begin{aligned}
g_{1}(x) & =\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{n-i} \Delta x_{i}\right|^{\frac{p_{n}}{M}} \\
& =\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{n} t_{n-i} \sum_{j=0}^{n}(-1)^{n-j} D_{n-j} T_{j} \Delta y_{j}\right|^{\frac{p_{n}}{M}} \\
& =\sup _{n}\left|y_{n}\right|^{\frac{p}{n}}{ }^{M}
\end{aligned}
$$

Thus, $x \in N^{t}\left(c_{0}, p, \Delta\right)$ and so T is onto and preserved under paranorm. Hence, $N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(c_{0}, p\right)$ are linearly isomorphic.

Analogously, it can be verifies that $N^{t}(c, p, \Delta) \cong N^{t}(c, p)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right) \cong N^{t}\left(l_{\infty}, p\right)$.

Theorem 2.4. Let $u^{(n)}(t)=\left\{u_{k}^{(n)}(t)\right\}$ be a sequence defined as

$$
u_{k}^{(n)}(t)=\left\{\begin{array}{ll}
(-1)^{(k-n)} D_{k-n} T_{n}, & 0 \leq n \leq k \\
0, & n>k
\end{array} .\right.
$$

Then
a) $\left\{u^{(n)}(t)\right\}_{n \in \mathbf{N}}$ is a basis for $N^{t}\left(c_{0}, p, \Delta\right)$ and every $x \in N^{t}\left(c_{0}, p, \Delta\right)$ has a unique representation as $x=\sum_{n} \alpha_{n}(t) u^{(n)}(t)$, where $\alpha_{n}(t)=\left(N^{t}(\Delta, p) x\right)_{n}, \forall n \in \mathbf{N}$ and $0<p_{n} \leq H<\infty$.
b) The set $\left\{e, u^{(n)}(t)\right\}$ is a basis of $N^{t}(c, p, \Delta)$ and every $x \in N^{t}(c, p, \Delta)$ has a unique representation as $x=\eta e+\sum_{n}\left[\alpha_{n}(t)-\eta\right] u^{(n)}(t)$, where $\eta=\lim _{n \rightarrow \infty}\left(N^{t}(\Delta, p) x\right)_{n}$.

Proof.

a) Clearly, $\left\{u^{(n)}(t)\right\} \subset N^{t}\left(c_{0}, p, \Delta\right)$, also

$$
\begin{equation*}
N^{t} u^{(n)}(t)=e^{(n)} \in l\left(c_{0}, \Delta\right), \quad \forall n \in \mathbf{N}, 0<p_{n} \leq H<\infty . \tag{2.3}
\end{equation*}
$$

Let $x \in\left(N^{t}\left(c_{0}, p, \Delta\right)\right.$ be given. For every non-negative integer m, we take

$$
\begin{equation*}
x^{[m]}=\sum_{n=0}^{m} \alpha_{n}(t) u^{(n)}(t) \tag{2.4}
\end{equation*}
$$

Then, by using N^{t} to (??) with (2.4), we have

$$
N^{t} x^{[m]}=\sum_{n=0}^{m} \alpha_{n}(t) N^{t} u^{(n)}(t)=\sum_{n=0}^{m}\left(N^{t} x\right)_{n} e^{(n)}
$$

Now $\forall i, m \in \mathbf{N}$, we obtain

$$
\left\{N^{t}\left(x-x^{[m]}\right)\right\}_{i}= \begin{cases}0, & 0 \leq i \leq m \\ \left(N^{t} x\right)_{i}, & i>m\end{cases}
$$

For any given $\epsilon>0$, there exists $m_{0} \in \mathbf{N}$ such that

$$
\left[\sum_{i=m}^{\infty}\left(N^{t} x\right)_{i}^{p_{n}}\right]^{\frac{1}{M}}<\frac{\epsilon}{2}, \quad \forall m \geq m_{0}
$$

Therefore,

$$
\begin{aligned}
g\left[N^{t}\left(x-x^{[m]}\right)\right] & =\left[\sum_{i=m}^{\infty}\left(N^{t} x\right)_{i}^{p_{n}}\right]^{\frac{1}{M}} \\
& \leq\left[\sum_{i=m_{0}}^{\infty}\left(N^{t} x\right)_{i}^{p_{n}}\right]^{\frac{1}{M}} \\
& <\epsilon, \quad \forall m \geq m_{0}
\end{aligned}
$$

Now, if possible assume that $x=\sum \mu_{n}(t) u^{(n)}(t)$. Then,

$$
\begin{aligned}
\left(N^{t} x\right)_{k} & =\sum_{n} \mu_{n}(t)\left\{N^{t} u^{(n)}(t)\right\}_{k} \\
& =\sum_{n} \mu_{n}(t) e_{k}^{(n)}=\mu_{k}(t), \quad \forall k \in \mathbf{N}
\end{aligned}
$$

which is absurd.
b) Since $\left\{u^{(n)}(t)\right\} \subset N^{t}\left(c_{0}, p, \Delta\right)$ and $e \in c$ and the inclusion $\left\{e, u^{(n)}(t)\right\} \subset N^{t}(c, p, \Delta)$ is trivial. For $x \in N^{t}(c, p, \Delta)$, there exist unique η satisfying (2.4). So, $l \in N^{t}\left(c_{0}, p, \Delta\right)$ whenever $l=x-\eta e$. Hence, by part (a) that the representation of ℓ is unique.

3. The Inclusion Relations

Some inclusion relations between the sequence spaces $l_{\infty}(p), c(p), c_{0}(p)$ and $N^{t}\left(l_{\infty}, p, \Delta\right), N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ have been defined and studied in this section.

Theorem 3.1. The inclusion $N^{t}\left(c_{0}, p, \Delta\right) \subset N^{t}(c, p, \Delta) \subset N^{t}\left(\ell_{\infty}, p, \Delta\right)$ strictly hold.

Proof. Let $y \in N^{t}\left(c_{0}, p\right)$, then $N^{t} \Delta x \in N^{t}\left(c_{0}, p\right)$. Since $N^{t}\left(c_{0}, p\right) \subset$ $N^{t}(c, p)$, we obtain $N^{t} \Delta x \in N^{t}(c, p)$ and so that $x \in N^{t}(c, p, \Delta)$. Hence the inclusion $N^{t}\left(c_{0}, p, \Delta\right) \subset N^{t}(c, p, \Delta)$. Further, since $N^{t} \Delta x \in N^{t}(c, p)$ for every $x \in N^{t}(c, p, \Delta)$ and the inclusion $N^{t}\left(c_{0}, p\right) \subset N^{t}(c, p)$ is strict, for some $N^{t} \Delta x \in N^{t}(c, p)$. Thus, $x \notin N^{t}\left(c_{0}, p, \Delta\right)$.

By the similar discussion, it may easily be proved that the inclusion $N^{t}(c, p, \Delta) \subset N^{t}\left(\ell_{\infty}, p, \Delta\right)$ is strict.

Theorem 3.2. The inclusions $N^{t}(c, p) \subset N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p\right) \subset N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(\ell_{\infty}, p\right) \subset N^{t}\left(\ell_{\infty}, p, \Delta\right)$ hold for $1 \leq p_{n} \leq p_{n+1}, \forall n \in \mathbf{N}$.

Proof. The inclusions are obvious for $p=e$, (see [9]). We are considering the case for $N^{t}\left(\ell_{\infty}, p\right) \subset N^{t}\left(\ell_{\infty}, p, \Delta\right)$. Let $x \in N^{t}\left(\ell_{\infty}, p\right)$ be given. Then $\Delta x^{p} \in \ell_{\infty}$, where $x^{p}=\left(x_{k}^{p_{k}}\right)_{k=0}^{\infty}$. Choose fixed $m_{0} \in \mathbf{N}$ such that $\Delta x_{k}{ }^{p_{k}}<$ 1 for all $k \geq m_{0}$. Then for any $n>m_{0}$ that

$$
\begin{equation*}
\Delta x_{k}^{p_{n}}=\left(\Delta x_{k}^{p_{k}}\right)^{\frac{p_{n}}{p_{k}}} \leq \Delta x_{k}^{p_{k}}, \quad m_{0} \leq k \leq n \tag{3.1}
\end{equation*}
$$

Since $p_{k} \leq p_{n}$ for $k \leq n$ and $n \in \mathbf{N}$. Further, since $p=\left(p_{n}\right)$ is bounded, then for $K>0$, we have

$$
\begin{equation*}
\sup _{n}\left|\frac{1}{T_{n}} \sum_{i=0}^{m_{0}-1} t_{k-i} \Delta x_{i}\right|^{p_{n}} \leq K \sup _{n} \frac{1}{T_{n}} \sum_{i=0}^{m_{0}-1} t_{k-i}\left|\Delta x_{i}\right|^{p_{k}} \tag{3.2}
\end{equation*}
$$

Therefore, using (3.1) and (3.2) and by applying Holder inequality that

$$
\left.\begin{array}{l}
\left|N^{t}\left(l_{\infty}, p, \Delta\right)_{k}\right|^{p_{n}} \\
\leq\left[\sup _{n}\left(\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i}\right) \Delta x_{i}\right]^{p_{n}} \\
\leq\left[\sup _{n} \frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i} p_{n}\right.
\end{array}\right]^{\left[\sup _{n}\left(\frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i}\right)\right]^{p_{n-1}}} \begin{aligned}
& =\sup _{n} \frac{1}{T_{n}} \sum_{i=0}^{n} t_{k-i} \Delta x_{i}{ }^{p_{n}} \\
& =\sup _{n} \frac{1}{T_{n}}\left[\sum_{i=0}^{n_{0}-1} t_{k-i} \Delta x_{i}{ }^{p_{n}}+\sum_{k=n_{0}}^{n} t_{k-i} \Delta x_{i}{ }^{p_{n}}\right] \\
& \leq \frac{K+1}{T_{n}} \sum_{k=0}^{n} t_{k-i} \Delta x_{i}^{p_{n}} \\
& =(K+1)\left(N^{t}\left(\Delta x^{p}\right)\right)
\end{aligned}
$$

Also we have $\Delta x^{p} \in l_{\infty}$, thus $N^{t}\left(\Delta x^{p}\right) \in l_{\infty}$, (see [9])
With this the above inequality leads to the fact that $N^{t} \Delta x \in N^{t}\left(l_{\infty}, p\right)$ and hence $x \in N^{t}\left(l_{\infty}, p, \Delta\right)$. Therefore, the inclusion $N^{t}\left(l_{\infty}, p\right) \subset N^{t}\left(l_{\infty}, p, \Delta\right)$ hold.
Similarly, it can be shown with some modifications that the inclusion $N^{t}(c, p) \subset N^{t}(c, p, \Delta)$ and $N^{t}\left(c_{0}, p\right) \subset N^{t}\left(c_{0}, p, \Delta\right)$ also hold.
4. The α-, β - \& γ-duals of the spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$, $N^{t}\left(l_{\infty}, p, \Delta\right)$

In this section, we determine the α-, β - and γ - duals of the spaces $N^{t}\left(c_{0}, p, \Delta\right)$, $N^{t}(c, p, \Delta), N^{t}\left(l_{\infty}, p, \Delta\right)$. We refer the following lemmas:

Lemma 4.1. (see [2], Theorem 5.1.0) Let ($a_{n k}$) be an infinite matrix over the complex field. Then the following statements holds:
(i) Let $1<p_{n} \leq H<\infty, n \in \mathbf{N}$. Then $A=\left(a_{n k}\right) \in\left(\ell(p): \ell_{1}\right)$ iff $R>1 \in \mathbf{Z}$ such that

$$
\begin{equation*}
\sup _{N \in \mathcal{F}} \sum_{k}\left|\sum_{n \in \mathbf{N}} a_{n k} R^{-1}\right|^{p_{n}^{\prime}}<\infty \tag{4.1}
\end{equation*}
$$

(ii) Let $0<p_{n} \leq 1$ for every $n \in \mathbf{N}$. Then $A=\left(a_{n k}\right) \in\left(\ell(p): \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{N \in \mathcal{F}} \sup _{k \in \mathbf{N}}\left|\sum_{n \in N} a_{n k}\right|^{p_{n}}<\infty \tag{4.2}
\end{equation*}
$$

Lemma 4.2. (see [5], Theorem 1) Let $\left(a_{n k}\right)$ be an infinite matrix over the complex field. Then the following statements holds:
Let $1<p_{n} \leq H<\infty, \forall n \in \mathbf{N}$. Then $A=\left(a_{n k}\right) \in\left(\ell(p): \ell_{\infty}\right)$ iff there exists $R>1 \in \mathbf{Z}$ such that

$$
\begin{equation*}
\sup _{n \in \mathbf{N}} \sum_{k}\left|a_{n k} R^{-1}\right|^{p_{n}^{\prime}}<\infty \tag{4.3}
\end{equation*}
$$

Let $0<p_{n} \leq 1 \forall n \in \mathbf{N}$. Then $A=\left(a_{n k}\right) \in\left(\ell(p): \ell_{\infty}\right)$ iff

$$
\begin{equation*}
\sup _{n, k \in \mathbf{N}}\left|a_{n k}\right|^{p_{n}}<\infty \tag{4.4}
\end{equation*}
$$

Lemma 4.3. (see [5], Theorem 1) Let $0<p_{n} \leq H<\infty$ for every $n \in \mathbf{N}$. Then $A=\left(a_{n k}\right) \in(\ell(p): c)$ iff (4.3) and (4.4) hold, and there is $\beta_{k} \in \mathbf{C}$ such that $a_{n k} \rightarrow \beta_{k}$, for each $k \in \mathbf{N}$.

Theorem 4.4. Let $1<p_{n} \leq H<\infty$ for every $n \in \mathbf{N}$. Then α-dual of the spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta), N^{t}\left(l_{\infty}, p, \Delta\right)$ is

$$
D_{1}=\left\{a \in w: \sup _{N \in \mathcal{F}} \sum_{k}\left|\sum_{n \in \mathbf{N}}(-1)^{n-k} D_{n-k} T_{n} \Delta a_{n} R^{-1}\right|^{p_{n}^{\prime}}<\infty\right\}
$$

Proof. For $a=\left(a_{n}\right) \in w$, consider the following equality

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n}(-1)^{n-k} D_{n-k} T_{n} \Delta a_{n} y_{k}=(C y)_{n}, \quad \forall n \in \mathbf{N} \tag{4.5}
\end{equation*}
$$

where $C=\left(c_{n k}\right)$ is defined by

$$
C_{n k}= \begin{cases}(-1)^{n-k} D_{n-k} T_{n} \Delta a_{n}, & \text { if } 0 \leq k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

for all $n, k \in \mathbf{N}$. Thus, by combining (4.5) with Part (i) of Lemma 4.1, we observe that $a x \in \ell_{1}$ whenever $x \in N^{t}\left(c_{0}, p, \Delta\right)$, $N^{t}(c, p, \Delta)$, or $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ iff $C y \in \ell_{1}$ when $y \in N^{t}\left(c_{0}, p\right), N^{t}(c, p), N^{t}\left(\ell_{\infty}, p\right)$. So that, a is in the α-dual of $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$, and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ iff $C \in N^{t}\left(c_{0}, l_{1}\right)=N^{t}\left(c, l_{1}\right)=N^{t}\left(l_{\infty}, l_{1}\right)$. Thus $a \in\left[N^{t}\left(c_{0}, p, \Delta\right)\right]^{\alpha}=$ $\left[N^{t}(c, p, \Delta)\right]^{\alpha}=\left[N^{t}\left(l_{\infty}, p, \Delta\right)\right]^{\alpha}$ iff $\sup _{N \in \mathcal{F}} \sum_{k}\left|\sum_{n \in \mathbf{N}} C_{n k} R^{-1}\right|^{p_{n}^{\prime}}<\infty$ which leads to the consequence that

$$
\begin{equation*}
\left[N^{t}\left(c_{0}, p, \Delta\right)\right]^{\alpha}=\left[N^{t}(c, p, \Delta)\right]^{\alpha}=\left[N^{t}\left(l_{\infty}, p, \Delta\right)\right]^{\alpha}=D_{1} \tag{4.6}
\end{equation*}
$$

Theorem 4.5. Define the sets D_{2}, D_{3}, D_{4} and D_{5} as follows:

$$
\begin{array}{ll}
D_{2} & =\left\{a \in w: \sup _{n \in \mathbf{N}} \sum_{k \in \mathbf{N}}\left|\sum_{j=k}^{n}(-1)^{j-k} Y R^{-1}\right|^{p_{n}^{\prime}}<\infty\right\} \\
D_{3} & =c s \\
D_{4} & =\left\{a \in w: \sup _{N \in \mathcal{F}} \sum_{k \in \mathbf{N}}\left|\sum_{n \in N}(-1)^{n-k} P \Delta a_{n}\right|^{p_{n}}<\infty\right\} \\
\text { and } & D_{5}
\end{array}=\left\{a \in w: \sup _{n \in \mathbf{N}} \sum_{k \in \mathbf{N}}\left|\sum_{j=k}^{n}(-1)^{j-k} P \Delta a_{j}\right|^{p_{n}}<\infty\right\}, ~ l
$$

where $Y=\Delta a_{j} D_{j-k} T_{n}, P=D_{j-k} T_{n}, 0<p_{n} \leq 1, \forall n \in \mathbf{N}$.
Then, $\left[N^{t}\left(c_{0}, p, \Delta\right)\right]^{\beta}=D_{2} \cap D_{3},\left[N^{t}(c, p, \Delta)\right]^{\beta}=D_{2} \cap D_{3} \cap D_{4},\left[N^{t}\left(l_{\infty}, p, \Delta\right)\right]^{\beta}$ $=D_{3} \cap D_{5}$.

Proof. Now we give the β-dual of the sequence space $N^{t}\left(c_{0}, p, \Delta\right)$.
Consider the equality

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n-1} \sum_{j=k}^{n}(-1)^{j-k} P \Delta a_{j} y_{k}+T_{n} \Delta a_{n} y_{n}=(E y)_{n} \tag{4.7}
\end{equation*}
$$

where, $P=D_{j-k} T_{n}, \forall n \in \mathbf{N}, E=\left(e_{n k}\right)$ is defined by

$$
e_{n k}=\left\{\begin{array}{lc}
\sum_{j=k}^{n}(-1)^{j-k} D_{j-k} T_{n} \Delta a_{j}, & \text { if } 0 \leq k<n \\
T_{n} \Delta a_{n}, & \text { if } k=n \\
0, & \text { if } k>n
\end{array}\right.
$$

for all $n, k \in \mathbf{N}$. Then, from equation (4.6) we obtain, $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x=\left(x_{n}\right) \in N^{t}\left(c_{0}, p, \Delta\right)$ iff $E y \in c$ whenever $y=\left(y_{n}\right) \in N^{t}\left(c_{0}, p\right)$. This means that $a=\left(a_{n}\right) \in\left[N^{t}\left(c_{0}, \Delta, p\right)\right]^{\beta}$ if and only if $E \in N^{t}\left(c_{0}, p\right)$. Therefore by using Lemma (4.2) with Part (i) we have

$$
\sup _{n \in \mathbf{N}} \sum_{k}\left|\sum_{j=k}^{n}(-1)^{j-k} D_{j-k} T_{n} \Delta a_{j} R^{-1}\right|^{p_{n}^{\prime}}<\infty
$$

and by Lemma (4.3), $\lim _{n} a_{n k}$ exists for all $k \in \mathbf{N}$. Hence we conclude that $\left[N^{t}\left(c_{0}, p, \Delta\right)\right]^{\beta}=D_{2} \cap D_{3}$.

Analogously, the β - dual of the sequence spaces $N^{t}(c, p, \Delta)$ and $N^{t}\left(\ell_{\infty}, p, \Delta\right)$ can be obtained.

Theorem 4.6. The γ - dual of $N^{t}(c, p, \Delta), N^{t}\left(c_{0}, p, \Delta\right)$ and $N^{t}\left(l_{\infty}, p, \Delta\right)$ is D_{2}.

Proof. This result is easily obtained by proceeding as in the proof of Theorem (4.5) with Lemma (4.3).

5. Conclusions

The Norlund N^{t}-difference sequence spaces $N^{t}\left(c_{0}, p, \Delta\right), N^{t}(c, p, \Delta)$ and $N^{t}\left(l_{\infty}, p, \Delta\right)$ has been studies thoroughly and the their α-, β - and γ-duals have been obtained with the help of some particular subsets containing sequences viz., $D_{1}, D_{2}, D_{3}, D_{4}$ and D_{5}.

References

[1] M. Et and R. Colak R., "On some generalized sequence spaces", Soochow Journal of M athematics, vol. 21, pp. 377-386, 1995.
[2] K. G. GrosseErdmann, "Matrix transformation between the sequence spaces of Maddox", Journal of M athematical A nalysis and A pplications, vol. 180, no. 1 , pp. 223-238, 1993. doi: 10.1006/J MAA.1953.1398
[3] A. M. Jarrah and E. Makowsky, "Ordinary, absolute and strong summability and matrix transformations", Filomat, vol. 17, pp. 59-78, 2003. doi: 10.2298/FILO37059
[4] H. Kizmaz, "On certain sequence spaces", C anadian M athematical Bulletin, vol. 24, no. 2, pp. 169-176, 1981 doi: 10.4153/CMB-1981-027-5
[5] G. C. Lascarides and I.J. Maddox, "Matrix Transformations betwen some classes of sequences", Proceedings C ambridge Philosophical Society, vol. 68, no. 1, pp. 99-104, 1970. doi: 10.1017/S0305004100001109
[6] I. J. Maddox, Elements of Functional Analysis, 2nd ed. Cambridge: The University Press, 1988.
[7] I. J. Maddox, "Paranormed sequence spaces generated by infinite matrices", Proceedings Cambridge Philosophical Society, vol. 64, pp. 335-340, 1968. doi: 10.1017/S0305004100042894
[8] I. J. Maddox, "Spaces of strongly summable sequences", Quarterly Journal of M athematics, vol. 18, no. 2, pp. 345-355, 1967. doi: 10.1093/qmath/18.1345
[9] E. Malkowsky and E. Savas, "Matrix transformation betwen sequence spaces of generalized weighted means", A pplied M athematics and C omputation, vol. 147, no. 2, pp. 333-345, 2004. doi: 10.1016/50096-3003(02) 00670-7
[10] M. F. Mears, "The inverse Norlund means", A nnals of M athematics, vol. 44, no. 3, pp. 401-409, 1943. doi: 10.2307/1968971
[11] H. Nakano, "M odulared sequencespaces", P roceedings of the Japan A cademy, vol. 27, no. 2, pp. 508-512, 1951 doi: 10.3792/pja/1195571225
[12] A. Peyerimhoff, Lectures on Summability. Lectures Notes in Mathematics. New York: Springer, 1969.
[13] S. Simons., "The sequence spaces $\mathrm{I}(\mathrm{pv})$ and $\mathrm{m}(\mathrm{pv})$ ", Proceedings of the London Mathematical Society, vol. 15, no. 3, pp. 422-436, 1965. doi: 10.1112/plms/53-15.1422.
[14] M. Yesilkayagil and F. Basar, "On the paranormed Norlund sequence space of nonabsolute type", A bstract and A pplied A nalysis, 2014, Artide ID 858704. doi: 10.1155/2014/858704

Sukhdev Singh

Department of Mathematics,
School of Chemical Engineering and Physical Sciences, Lovely Professional University,
Phagwara,
India 144411
India
Corresponding Author
e-mail: singh.sukhdev01@gmail.com
and
Toseef Ahmed Malik
Department of Mathematics,
School of Chemical Engineering and Physical Sciences,
Lovely Professional University,
Phagwara,
India 144411
India
e-mail: tsfmlk5@gmail.com

