Proyecciones Journal of Mathematics Vol. 41, N. 2, pp. 437-448, April 2022. Universidad Católica del Norte Antofagasta - Chile



Some open questions in real algebraic geometry

Wojciech Kucharz Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University, Kraków Poland Received: August 2021. Accepted: August 2021

Abstract

Many interesting problems arise on the borderline between real algebraic geometry and topology. We focus on 12 open questions. Some of them come from regulous geometry, which emerged as a subfield of real algebraic geometry less than 15 years ago.

Keywords: Real algebraic variety, regular map, regulous map, stratifiedalgebraic vector bundle, approximation.

MSC numbers: 14P05, 14P10, 26C15.

The author was partially supported by the National Science Center (Poland) under grant number 2018/31/B/ST1/01059.

In what follows we discuss 12 open questions concerning 7 topics in real algebraic geometry. Emphasis is placed on problems relating to the comparison of algebraic and topological categories.

Throughout this note the term real algebraic variety designates a ringed space with structure sheaf of \mathbb{R} -algebras of \mathbb{R} -valued functions, which is isomorphic to a Zariski locally closed subset of real projective *n*-space $\mathbb{P}^n(\mathbb{R})$, for some *n*, endowed with the Zariski topology and the sheaf of regular functions. This is compatible with [7], which contains a detailed exposition of real algebraic geometry. Recall that each real algebraic variety in the sense used here is actually affine, that is, isomorphic to an algebraic subset of \mathbb{R}^n , for some *n*, see [7, Proposition 3.2.10 and Theorem 3.4.4]. Morphisms of real algebraic varieties are called *regular maps*. Each real algebraic variety carries also the Euclidean topology determined by the usual metric on \mathbb{R} . Unless explicitly stated otherwise, all topological notions relating to real algebraic varieties refer to the Euclidean topology.

Given two real algebraic varieties X and Y, we denote by $\mathcal{R}(X, Y)$ the set of all regular maps from X to Y. Regular functions and regular maps can be described in a straightforward explicit way.

Let X be an algebraic subset of \mathbb{R}^n and let $U \subset X$ be a Zariski open subset. By [7, Proposition 3.2.3], a function $\varphi \colon U \to \mathbb{R}$ is regular if and only if there exist two polynomial functions $P, Q \colon \mathbb{R}^n \to \mathbb{R}$ with

$$U \subset \{x \in \mathbb{R}^n : Q(x) \neq 0\}$$
 and $f(x) = \frac{P(x)}{Q(x)}$ for all $x \in U$.

A map $f = (f_1, \ldots, f_p) \colon U \to Y \subset \mathbb{R}^p$, where Y is an algebraic subset of \mathbb{R}^p , is regular if and only if the components f_i are regular functions.

As a matter of convention, all \mathcal{C}^{∞} manifolds will be Hausdorff and second countable. The space $\mathcal{C}^k(M, N)$ of \mathcal{C}^k maps between \mathcal{C}^{∞} manifolds, where k is either a nonnegative integer or $k = \infty$, is endowed with the \mathcal{C}^k topology (see [13, pp. 34, 36] where it is called the weak \mathcal{C}^k topology; the \mathcal{C}^0 -topology is just the compact-open topology). If X, Y are nonsingular real algebraic varieties, then $\mathcal{R}(X, Y) \subset \mathcal{C}^{\infty}(X, Y)$.

1 Maps between spheres

As usual, we denote by \mathbb{S}^n the unit *n*-sphere,

$$\mathbb{S}^n \coloneqq \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \dots + x_n^2 = 1\}.$$

Question 1. Let (n, p) be a pair of positive integers. Can every \mathcal{C}^{∞} map from \mathbb{S}^n to \mathbb{S}^p be approximated by regular maps in the \mathcal{C}^{∞} topology? In other words, is the set $\mathcal{R}(\mathbb{S}^n, \mathbb{S}^p)$ of regular maps dense in the space $\mathcal{C}^{\infty}(\mathbb{S}^n, \mathbb{S}^p)$ of \mathcal{C}^{∞} maps?

This problem has been studied since at least the 1980's. New methods have been introduced in the recent paper by Bochnak and the author [11]. According to [11, Corollary 1.5], a \mathcal{C}^{∞} map $f: \mathbb{S}^n \to \mathbb{S}^p$ can be approximated by regular maps in the \mathcal{C}^{∞} topology if and only if f is homotopic to a regular map. As an application, we obtained the positive answer to Question 1 in the following five cases [11, Theorem 5.6]:

- (i) p = 1, 2 or 4;
- (ii) $n p \le 3;$
- (iii) $4 \le n p \le 5$ with possible exception for the pairs: (9,5), (7,3), (11,6), (10,5), (8,3);
- (iv) the homotopy group $\pi_n(\mathbb{S}^p)$ is finite cyclic of odd order, and p is odd with $n \leq 2p 2$;
- (v) n = p + 13, where p is odd and $p \ge 15$.

2 Maps with values in odd-dimensional spheres

Question 2. Let X be a compact connected nonsingular real algebraic variety of odd dimension n. Can every \mathcal{C}^{∞} map from X to \mathbb{S}^n be approximated by regular maps in the \mathcal{C}^{∞} topology?

The answer is known to be positive for n = 1 [8, Corollary 1.5]. For all other odd n, Question 2 remains open. By [11, Theorem 1.8], if X is orientable as a C^{∞} manifold, then either

- (i) the set $\mathcal{R}(X, \mathbb{S}^n)$ is dense in the space $\mathcal{C}^{\infty}(X, \mathbb{S}^n)$, or
- (ii) the closure of $\mathcal{R}(X, \mathbb{S}^n)$ in the space $\mathcal{C}^{\infty}(X, \mathbb{S}^n)$ coincides with the set

 $\{f \in \mathcal{C}^{\infty}(X, \mathbb{S}^n) : \deg(f) \in 2\mathbb{Z}\},\$

where $\deg(f)$ is the topological degree of f.

The behavior of regular maps into even-dimensional spheres is entirely different. For example, every regular map $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^2$ is null homotopic, that is, has topological degree 0, see [9].

3 Maps from real algebraic curves to real algebraic varieties

Question 3. Which pairs (X, Y) of nonsingular real algebraic varieties have the property that every \mathcal{C}^{∞} map from X to Y can be approximated by regular maps in the \mathcal{C}^{∞} topology?

Approximation as in Question 3 is known to be possible if X is a compact nonsingular real algebraic curve and either

- (i) Y is a rational nonsingular real variety (that is, Y is nonsingular and birationally equivalent to \mathbb{R}^p , where $p = \dim Y$), or
- (ii) Y is a homogeneous real algebraic G-variety for a Zariski closed subgroup

 $G \subset \operatorname{GL}_m(\mathbb{R})$, for some *m* (that is, *G* acts transitively on *Y*, the action $G \times Y \to Y$, $(a, y) \mapsto a \cdot y$ being a regular map).

The case (i) was settled by Bochnak and the author [10, Theorem 1.1], while the case (ii) is contained in the recent paper of Benoist and Wittenberg [4, Theorem A].

A real algebraic variety Y is said to be *rationally connected* if for any two points y_0, y_1 in Y there exists a regular map $f: \mathbb{P}^1(\mathbb{R}) \to Y$ such that y_0, y_1 belong to $f(\mathbb{P}^1(\mathbb{R}))$. Note that $\mathbb{P}^1(\mathbb{R})$ is biregularly isomorphic to \mathbb{S}^1 .

Question 4. Let X be a compact nonsingular real algebraic curve and let Y be a rationally connected nonsingular real algebraic variety. Can every \mathcal{C}^{∞} map from X to Y be approximated by regular maps in the \mathcal{C}^{∞} topology?

The following question is also undecided.

Question 5. Let X be a compact nonsingular real algebraic curve and let

$$Y := \{ (x, y, z) \in \mathbb{R}^3 : x^4 + y^4 + z^4 = 1 \}.$$

Can every \mathcal{C}^{∞} map from X to Y be approximated by regular maps in the \mathcal{C}^{∞} topology?

4 Regulous maps

Regulous geometry has emerged recently as a subfield of real algebraic geometry, see the survey paper [22]. It deals with objects described by real rational functions that can be extended to continuous ones.

Let X, Y be two nonsingular real algebraic varieties. A map $f: X \to Y$ is said to be *regulous* if it is continuous on X and there exists a Zariski open dense subset U of X such that the restriction $f|_U: U \to Y$ is a regular map. Let X(f) denote the union of all such U. The complement $P(f) := X \setminus X(f)$ of X(f) is the smallest Zariski closed subset of Xfor which the restriction $f|_{X \setminus P(f)}: X \setminus P(f) \to Y$ is a regular map. If $f(P(f)) \neq Y$, we say that f is a *nice* regulous map. In the literature regulous maps are also called *continuous rational maps* [15–17, 19]. The concise name "regulous" was coined by Fichou, Huisman, Mangolte and Monnier [14]. Since the publication of [16] in 2009 several mathematicians have devoted their attention to regulous maps, see the surveys [18,22] and the references therein.

A map $f: X \to Y$ is said to be *k*-regulous, where *k* is a nonnegative integer or $k = \infty$, if it is both regulous and of class \mathcal{C}^k . Thus, less formally, a *k*-regulous map is a \mathcal{C}^k map that admits a rational representation. Obviously, "0-regulous" is the same as "regulous". As observed in [16, Proposition 2.1], ∞ -regulous maps coincide with regular maps, and these are usually studied separately. A standard example of a *k*-regulous function, with *k* a nonnegative integer, is $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \frac{x^{3+k}}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$ and $f(0,0) = 0$.

Clearly, f is not of class \mathcal{C}^{k+1} .

Assume that X is compact. Denote by $H_d^{\text{alg}}(X; \mathbb{Z}/2)$ the subgroup of the homology group $H_d(X; \mathbb{Z}/2)$ generated by the homology classes represented by d-dimensional Zariski closed subsets of X, $0 \leq d \leq \dim X$ [7]. Set

$$H^c_{\mathrm{alg}}(X; \mathbb{Z}/2) \coloneqq D^{-1}_X(H^{\mathrm{alg}}_d(X; \mathbb{Z}/2)),$$

where $c + d = \dim X$ and $D_X \colon H^c(X; \mathbb{Z}/2) \to H_d(X; \mathbb{Z}/2)$ is the Poincaré duality isomorphism. By [16, Proposition 1.3], if both X, Y are compact, and $f \colon X \to Y$ is a regulous map, then

$$f^*(H^c_{\mathrm{alg}}(Y;\mathbb{Z}/2)) \subset H^c_{\mathrm{alg}}(X;\mathbb{Z}/2),$$

where $f^* \colon H^c(Y; \mathbb{Z}/2) \to H^c(X; \mathbb{Z}/2)$ is the induced homomorphism.

Clearly, $H^c_{\text{alg}}(\mathbb{S}^p; \mathbb{Z}/2) = H^p(\mathbb{S}^p; \mathbb{Z}/2)$. Therefore, if $f: X \to \mathbb{S}^p$ is a regulous map, then

$$f^*$$
: $(H^p(\mathbb{S}^p; \mathbb{Z}/2)) \subset H^p_{alg}(X; \mathbb{Z}/2).$

Question 6. Let k, p be integers with $k \ge 0, p \ge 1$. Let X be a compact nonsingular real algebraic variety and let $f: X \to \mathbb{S}^p$ be a \mathcal{C}^{∞} map such that

$$f^*(H^p(\mathbb{S}^p;\mathbb{Z}/2)) \subset H^p_{\mathrm{alg}}(X;\mathbb{Z}/2).$$

Can f be approximated by k-regulous maps in the \mathcal{C}^k topology?

The answer is known to be positive if k = 0 and $p \in \{1, n-1, n\}$, where $n = \dim X$, see [17].

Question 7. Let k, p be integers with $k \ge 0, p \ge 1$. Can every k-regulous map from X to \mathbb{S}^p be approximated by nice k-regulous maps in the \mathcal{C}^k topology?

It may seem that Question 7 is rather technical, but in view of [16, 17] the positive answer would have several interesting consequences.

Let k be a nonnegative integer, X a nonsingular real algebraic variety, and Z a nonsingular Zariski closed subvariety of X. By Kollár and Nowak [15, Proposition 8], if $F: X \to \mathbb{R}$ is a k-regulous function, then the restriction $F|_Z$ is also a k-regulous function.

Question 8. Let $f: Z \to \mathbb{R}$ be a k-regulous function. Does there exist a k-regulous function $F: X \to \mathbb{R}$ such that $F|_Z = f$?

According to [15, Theorem 10], the answer is positive for k = 0 (even in a more general setting).

5 Systems of linear equations with polynomial coefficients

Let m, n, p be positive integers. Consider a system of linear equations

$$\begin{cases} f_{11} \cdot y_1 + \dots + f_{1p} \cdot y_p = g_1 \\ \vdots \\ f_{m1} \cdot y_1 + \dots + f_{mp} \cdot y_p = g_m, \end{cases}$$
(1)

where the f_{ij} , g_i are polynomial real-valued functions on \mathbb{R}^n , and the y_j are unknowns.

Question 9. Which systems (1) that have a continuous solution $y_1 = \varphi_1, \ldots, y_p = \varphi_p$, where the $\varphi_j \colon \mathbb{R}^n \to \mathbb{R}$ are continuous functions, have also a regulous solution $y_1 = \psi_1, \ldots, y_p = \psi_p$, where the $\psi_j \colon \mathbb{R}^n \to \mathbb{R}$ are regulous functions?

The case n = 1 is an exercise. By [20], if n = 2 and m = 1, then (1) has a regulous solution precisely when it has a continuous solution. According to [15, Example 6], for n = 3, m = 1, p = 2, the equation

$$(x_1^3 x_2) \cdot y_1 + (x_1^3 - (1 + x_3^2) x_2^3) \cdot y_2 = x_1^4$$

has a continuous solution

$$y_1 = (1 + x_3^2)^{1/3}, \quad y_2 = \frac{x_1^3}{x_1^2 + (1 + x_3^2)^{1/3}x_1x_2 + (1 + x_3^2)^{2/3}x_2^2},$$

but does not have a regulous solution.

Problems related to Question 9 are discussed in [1, 5, 12, 15].

6 Stratified-algebraic vector bundles

Let \mathbb{F} stand for \mathbb{R} , \mathbb{C} or \mathbb{H} (the quaternions). All \mathbb{F} -vector spaces will be left \mathbb{F} -vector spaces. When convenient, \mathbb{F} will be identified with $\mathbb{R}^{d(\mathbb{F})}$, where $d(\mathbb{F}) = \dim_{\mathbb{R}} \mathbb{F}$.

Let X be a real algebraic variety. For any nonnegative integer n, let $\varepsilon_X^n(\mathbb{F})$ denote the standard trivial \mathbb{F} -vector bundle on X with total space $X \times \mathbb{F}^n$, where $X \times \mathbb{F}^n$ is regarded as a real algebraic variety. An *algebraic* \mathbb{F} -vector bundle on X is an algebraic \mathbb{F} -vector subbundle of $\varepsilon_X^n(\mathbb{F})$ for some n (see [7, Chapters 12 and 13] for basic properties of algebraic \mathbb{F} -vector bundles).

By a stratification of X we mean a finite collection \mathcal{S} of pairwise disjoint Zariski locally closed subvarieties whose union is X. Each subvariety in \mathcal{S} is called a stratum. A stratified-algebraic \mathbb{F} -vector bundle on X is a topological \mathbb{F} -vector subbundle ξ of $\varepsilon_X^n(\mathbb{F})$, for some n, such that for some stratification \mathcal{S} of X, the restriction $\xi|_S$ of ξ to each stratum $S \in \mathcal{S}$ is an algebraic \mathbb{F} -vector subbundle of $\xi_S^n(\mathbb{F})$ (see also [24] for a different but equivalent description). A topological \mathbb{F} -vector bundle ξ on X is said to *admit an algebraic* structure if it is isomorphic to an algebraic \mathbb{F} -vector bundle on X. Similarly, ξ is said to *admit a stratified-algebraic structure* if it is isomorphic to a stratified-algebraic \mathbb{F} -vector bundle on X. These two types of \mathbb{F} -vector bundles have been extensively investigated in [6,7] (see also the references therein) and [21,23,24], respectively. In general, their behaviors are quite different, see [21, Example 1.11].

Denote by $K_{\mathbb{F}}(X)$ the Grothendieck group of topological \mathbb{F} -vector bundles on X. Since X has the homotopy type of a compact polyhedron, it follows that the abelian group $K_{\mathbb{F}}(X)$ is finitely generated. Let $K_{\mathbb{F}}$ -str(X) be the subgroup of $K_{\mathbb{F}}(X)$ generated by the classes of all \mathbb{F} -vector bundles admitting a stratified-algebraic structure.

If the variety X is compact, then the group $K_{\mathbb{F}\operatorname{-str}}(X)$ contains complete information on $\mathbb{F}\operatorname{-vector}$ bundles admitting a stratified-algebraic structure: A topological $\mathbb{F}\operatorname{-vector}$ bundle ξ on X admits a stratified-algebraic structure if and only if its class in $K_{\mathbb{F}}(X)$ belongs to $K_{\mathbb{F}\operatorname{-str}}(X)$ (in other words, ξ admits a stratified-algebraic structure if and only if there is a stratifiedalgebraic $\mathbb{F}\operatorname{-vector}$ bundle η on X such that the direct sum $\xi \oplus \eta$ admits a stratified-algebraic structure), see [21, Corollary 3.14].

For any topological \mathbb{F} -vector bundle ξ on X, we regard rank ξ (the rank of ξ) as a function rank $\xi \colon X \to \mathbb{Z}$, which assigns to every point x in Xthe dimension of the fiber of ξ over x. Clearly, rank ξ is constant on each connected component of X. We say that ξ has property (rk) if for every integer d, the set $\{x \in X : (\operatorname{rank} \xi)(x) = d\}$ is algebraically constructible. Recall that a subset of X is said to be algebraically constructible if it belongs to the Boolean algebra generated by the Zariski closed subsets of X. It readily follows that each stratified-algebraic \mathbb{F} -vector bundle on Xhas property (rk). Thus, property (rk) is a necessary condition for ξ to admit a stratified-algebraic structure.

Let us illustrate the role of property (rk). The real algebraic curve

$$C = \{(x, y) \in \mathbb{R}^2 : x^2(x^2 - 1)(x^2 - 4) + y^2 = 0\}$$

is irreducible with singular locus $\{(0,0)\}$. It has three connected components, the singleton $\{(0,0)\}$ and two ovals. Clearly, every algebraic \mathbb{F} -vector bundle on C has constant rank, while the rank function of a topological \mathbb{F} -vector bundle on C may take three distinct values. On the other hand, the rank function of a stratified-algebraic \mathbb{F} -vector bundle on C need not be constant, but must be constant on $C \setminus \{(0,0)\}$.

Returning to the general case, denote by $K_{\mathbb{F}}^{(\mathrm{rk})}(X)$ the subgroup of $K_{\mathbb{F}}(X)$ generated by the classes of all topological \mathbb{F} -vector bundles having property (rk). By construction,

$$K_{\mathbb{F}-\mathrm{str}}(X) \subset K_{\mathbb{F}}^{(\mathrm{rk})}(X).$$

Since the group $K_{\mathbb{F}}(X)$ is finitely generated, so is the quotient group

$$\Gamma_{\mathbb{F}}(X) \coloneqq K_{\mathbb{F}}^{(\mathrm{rk})}(X) / K_{\mathbb{F}\operatorname{-str}}(X).$$

Thus the group $\Gamma_{\mathbb{F}}(X)$ is finite if and only if $r\Gamma_{\mathbb{F}}(X) = 0$ for some positive integer r.

For any \mathbb{F} -vector bundle ξ on X and any positive integer r, we denote by

$$\xi(r) = \xi \oplus \cdots \oplus \xi$$

the r-fold direct sum.

As observed in [23, Proposition 1.2], if X is compact, then for a positive integer r the following conditions are equivalent:

- (a) The group $\Gamma_{\mathbb{F}}(X)$ is finite and $r\Gamma_{\mathbb{F}}(X) = 0$.
- (b) For each topological \mathbb{F} -vector bundle ξ on X having property (rk), the \mathbb{F} -vector bundle $\xi(r)$ admits a stratified-algebraic structure.
- (c) For each topological \mathbb{F} -vector bundle η on X having constant rank, the \mathbb{F} -vector bundle $\eta(r)$ admits a stratified-algebraic structure.

It is known that $\Gamma_{\mathbb{F}}(X) \neq 0$ in general, see [21, Example 1.11].

Question 10. Let X be a compact real algebraic variety. Is the group $\Gamma_{\mathbb{F}}(X)$ finite?

By [23, Theorem 1.8], the answer is positive if dim $X \leq 8$.

7 Approximation of C^{∞} manifolds

Let X be a nonsingular real algebraic variety and let M be a compact \mathcal{C}^{∞} submanifold (without boundary) of X. We say that M admits an

algebraic (resp. a weak algebraic) approximation in X if for every neighborhood $\mathcal{U} \subset \mathcal{C}^{\infty}(M, X)$ of the inclusion map $M \hookrightarrow X$ there exists a \mathcal{C}^{∞} embedding $e: M \to X$ in \mathcal{U} such that e(M) is a nonsingular Zariski closed (resp. Zariski locally closed) subset of X. A bordism class in the *m*th unoriented bordism group $\mathrm{MO}_m(X)$ of X is said to be algebraic if it can be represented by a regular map from a compact nonsingular *m*-dimensional real algebraic variety to X. It readily follows that if M admits a weak algebraic approximation in X, then the bordism class of the inclusion map $M \hookrightarrow X$ is algebraic.

Question 11. Let X be a nonsingular real algebraic variety and let M be a compact \mathcal{C}^{∞} submanifold of X. Assuming that the bordism class of the inclusion map $M \hookrightarrow X$ is algebraic, does M admit a weak algebraic approximation in X?

It is conjectured in [19] that the answer is always positive. This, if true, would have very interesting consequences in regulous geometry. Recently, Benoist [3, Theorems 0.6 and 0.7] obtained the following remarkable result: If the bordism class of $M \hookrightarrow X$ is algebraic and $2 \dim M + 1 \leq \dim X$, then M admits an algebraic approximation in X. Furthermore, the assumption $2 \dim M + 1 \leq \dim X$ cannot be weakened in general.

By [2, Lemma 2.7.1], if X is one of the real algebraic varieties \mathbb{R}^n , \mathbb{S}^n , $\mathbb{P}^n(\mathbb{R})$ or $\mathbb{P}^k(\mathbb{R}) \times \mathbb{P}^l(\mathbb{R})$, then each unoriented bordism class of X is algebraic.

Question 12. Let X stand for \mathbb{R}^n , \mathbb{S}^n or $\mathbb{P}^n(\mathbb{R})$. Does every compact \mathcal{C}^{∞} submanifold of X admit an algebraic approximation in X?

One should stress that the varieties \mathbb{R}^n , \mathbb{S}^n and $\mathbb{P}^n(\mathbb{R})$ play a very particular role in Question 12. Indeed, by [3, Theorem 0.8], if $l = 2^{d+1} - 1$ for some positive integer d, then there exists a compact 2^d -dimensional \mathcal{C}^{∞} submanifold of $X := \mathbb{P}^1(\mathbb{R}) \times \mathbb{P}^l(\mathbb{R})$ which does not admit an algebraic approximation in X.

References

 J. Adamus and H. Seyedinejad, "On solutions of linear equations with polynomial coefficients", *Annales polonici mathematici*, vol. 121, no. 1, pp. 1–6, 2018. doi: 10.4064/ap171122-29-12.

- [2] S. Akbulut and H. King, *Topology of real algebraic sets*. New York: Springer, vol. 25, 1992.
- [3] O. Benoist, "On the subvarieties with nonsingular real loci of a real algebraic variety", 2020, arXiv: 2005.06424v1.
- [4] O. Benoist and O. Wittenberg, "The tight approximation property", *Journal für die reine und angewandte mathematik (Crelles Journal)*, vol. 2021, no. 776, pp. 151–200, 2021. doi: 10.1515/crelle-2021-0003.
- [5] E. Bierstone, J.-B. Campesato, and P. D. Milman, "CM solutions of semialgebraic or definable equations", *Advances in mathematics*, vol. 385, 107777, 2021. doi: 10.1016/j.aim.2021.107777.
- [6] J. Bochnak, M. Buchner, and W. Kucharz, "Vector bundles over real algebraic varieties", *K-theory*, vol. 3, no. 3, pp. 271–298, 1989. doi: 10.1007/bf00533373.
- [7] J. Bochnak, M. Coste and M.-F. Roy, *Real algebraic geometry*. Berlin: Springer, 1998. doi: 10.1007/978-3-662-03718-8.
- [8] J. Bochnak and W. Kucharz, "Algebraic approximation of mappings into spheres", *Michigan mathematical journal*, vol. 34, no. 1, 1987. doi: 10.1307/mmj/1029003489.
- [9] J. Bochnak and W. Kucharz, "Realization of homotopy classes by algebraic mappings", *Journal für die reine und angewandte mathematik (Crelles Journal)*, vol. 1987, no. 377, pp. 159–169, 1987. doi: 10.1515/crll.1987.377.159.
- [10] J. Bochnak and W. Kucharz, "The weierstrass approximation theorem for maps between real algebraic varieties", *Mathematische annalen*, vol. 314, no. 4, pp. 601–612, 1999. doi: 10.1007/s002080050309.
- [11] J. Bochnak and W. Kucharz, "On approximation of maps into real homogeneous spaces", 2020, arXiv: 2011.06637v3.
- [12] C. Fefferman, J. Kollár, "Continuous Solutions of Linear Equations", in *From fourier analysis and number theory to radon transforms and geometry*, H. Farkas, R. Gunning, M. Knopp, and B. Taylor, Eds. New York: Springer, 2013, pp. 233–282. doi: 10.1007/978-1-4614-4075-8_10.
- [13] M. W. Hirsch, *Differential topology*. New York: Springer, 1994.
- [14] G. Fichou, J. Huisman, F. Mangolte, and J.-P. Monnier, "Fonctions régulues", *Journal für die reine und angewandte mathematik*, vol. 2016, no. 718, pp. 103–151, 2015. doi: 10.1515/crelle-2014-0034.

- [15] J. Kollár and K. Nowak, "Continuous rational functions on real and p-adic varieties", *Mathematische zeitschrift*, vol. 279, no. 1-2, pp. 85–97, 2015. doi: 10.1007/s00209-014-1358-7.
- [16] W. Kucharz, "Rational maps in real algebraic geometry", *Advances in geometry*, vol. 9, no. 4, pp. 517–539, 2009. doi: 10.1515/advgeom.2009.024
- [17] W. Kucharz, "Approximation by continuous rational maps into spheres", *Journal of the European mathematical society*, vol. 16, no. 8, pp. 1555–1569, 2014. doi: 10.4171/jems/469.
- [18] W. Kucharz, "On continuous rational functions", in *Singularities- Kagoshima 2017. Proceedings of the 5th Franco-Japanese-Vietnamese Symposium on Singularities*, M. Ishikawa and S. Yokura, Eds. World Scientific Publishing, 2020, pp. 41-68, 2020. doi: 10.1142/9789811206030_0003.
- [19] W. Kucharz and K. Kurdyka, "Some conjectures on continuous rational maps into spheres", *Topology and its applications*, vol. 208, pp. 17–29, 2016. doi: 10.1016/j.topol.2016.05.002.
- [20] W. Kucharz and K. Kurdyka, "Linear equations on real algebraic surfaces", *Manuscripta mathematica*, vol. 154, no. 3-4, pp. 285–296, 2017. doi: 10.1007/s00229-017-0925-8.
- [21] W. Kucharz and K. Kurdyka, "Stratified-algebraic vector bundles", *Journal für die reine und angewandte mathematik (Crelles Journal)*, vol. 2018, no. 745, pp. 105–154, 2018. doi: 10.1515/crelle-2015-0105.
- [22] W. Kucharz, K. Kurdyka, "From continuous rational to regulous functions," in *Proceedings of the International Congress of Mathematicians (ICM 2018)*, vol. 2, B. Sirakov, P. Ney de Souza, and M. Viana, Eds. Hackensack: World Scientific, 2019, pp. 719–747. doi: 10.1142/ 9789813272880_0075.
- [23] W. Kucharz and K. Kurdyka, "Comparison of stratified-algebraic and topological K-theory", *Journal of singularities*, vol. 22, pp. 323-338, 2020. doi: 10.5427/jsing.2020.22t.
- [24] W. Kucharz and M. Zieli ski, "Regulous vector bundles", *Mathematis- che nachrichten*, vol. 291, no. 14-15, pp. 2252–2271, 2018. doi: 10.1002/mana.201700442.

Wojciech Kucharz

Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University, Łojasiewicza 6 30-348 Kraków, Poland email: Wojciech.Kucharz@im.uj.edu.pl