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Abstract

Many interesting problems arise on the borderline between real

algebraic geometry and topology. We focus on 12 open questions.

Some of them come from regulous geometry, which emerged as a

subfield of real algebraic geometry less than 15 years ago.
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In what follows we discuss 12 open questions concerning 7 topics in

real algebraic geometry. Emphasis is placed on problems relating to the

comparison of algebraic and topological categories.

Throughout this note the term real algebraic variety designates a ringed

space with structure sheaf of R-algebras of R-valued functions, which is

isomorphic to a Zariski locally closed subset of real projective 𝑛-space

P𝑛(R), for some 𝑛, endowed with the Zariski topology and the sheaf of

regular functions. This is compatible with [7], which contains a detailed

exposition of real algebraic geometry. Recall that each real algebraic va-

riety in the sense used here is actually affine, that is, isomorphic to an

algebraic subset of R𝑛, for some 𝑛, see [7, Proposition 3.2.10 and Theo-

rem 3.4.4]. Morphisms of real algebraic varieties are called regular maps.

Each real algebraic variety carries also the Euclidean topology determined

by the usual metric on R. Unless explicitly stated otherwise, all topological

notions relating to real algebraic varieties refer to the Euclidean topology.

Given two real algebraic varieties 𝑋 and 𝑌 , we denote by ℛ(𝑋,𝑌 ) the

set of all regular maps from 𝑋 to 𝑌 . Regular functions and regular maps

can be described in a straightforward explicit way.

Let 𝑋 be an algebraic subset of R𝑛 and let 𝑈 ⊂ 𝑋 be a Zariski open

subset. By [7, Proposition 3.2.3], a function 𝜙 : 𝑈 → R is regular if and

only if there exist two polynomial functions 𝑃,𝑄 : R𝑛 → R with

𝑈 ⊂ {𝑥 ∈ R𝑛 : 𝑄(𝑥) ̸= 0} and 𝑓(𝑥) =
𝑃 (𝑥)

𝑄(𝑥)
for all 𝑥 ∈ 𝑈.

A map 𝑓 = (𝑓1, . . . , 𝑓𝑝) : 𝑈 → 𝑌 ⊂ R𝑝, where 𝑌 is an algebraic subset of

R𝑝, is regular if and only if the components 𝑓𝑖 are regular functions.

As a matter of convention, all 𝒞∞ manifolds will be Hausdorff and

second countable. The space 𝒞𝑘(𝑀,𝑁) of 𝒞𝑘 maps between 𝒞∞ manifolds,

where 𝑘 is either a nonnegative integer or 𝑘 = ∞, is endowed with the 𝒞𝑘

topology (see [13, pp. 34, 36] where it is called the weak 𝒞𝑘 topology; the

𝒞0-topology is just the compact-open topology). If 𝑋, 𝑌 are nonsingular

real algebraic varieties, then ℛ(𝑋,𝑌 ) ⊂ 𝒞∞(𝑋,𝑌 ).

1 Maps between spheres

As usual, we denote by S𝑛 the unit 𝑛-sphere,

S𝑛 := {(𝑥0, . . . , 𝑥𝑛) ∈ R𝑛+1 : 𝑥20 + · · · + 𝑥2𝑛 = 1}.
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Question 1. Let (𝑛, 𝑝) be a pair of positive integers. Can every 𝒞∞ map

from S𝑛 to S𝑝 be approximated by regular maps in the 𝒞∞ topology?

In other words, is the set ℛ(S𝑛, S𝑝) of regular maps dense in the space

𝒞∞(S𝑛, S𝑝) of 𝒞∞ maps?

This problem has been studied since at least the 1980’s. New methods

have been introduced in the recent paper by Bochnak and the author

[11]. According to [11, Corollary 1.5], a 𝒞∞ map 𝑓 : S𝑛 → S𝑝 can be

approximated by regular maps in the 𝒞∞ topology if and only if 𝑓 is

homotopic to a regular map. As an application, we obtained the positive

answer to Question 1 in the following five cases [11, Theorem 5.6]:

(i) 𝑝 = 1, 2 or 4;

(ii) 𝑛− 𝑝 ≤ 3;

(iii) 4 ≤ 𝑛− 𝑝 ≤ 5 with possible exception for the pairs:

(9, 5), (7, 3), (11, 6), (10, 5), (8, 3);

(iv) the homotopy group 𝜋𝑛(S𝑝) is finite cyclic of odd order, and 𝑝 is odd

with 𝑛 ≤ 2𝑝− 2;

(v) 𝑛 = 𝑝+ 13, where 𝑝 is odd and 𝑝 ≥ 15.

2 Maps with values in odd-dimensional spheres

Question 2. Let 𝑋 be a compact connected nonsingular real algebraic

variety of odd dimension 𝑛. Can every 𝒞∞ map from 𝑋 to S𝑛 be approxi-

mated by regular maps in the 𝒞∞ topology?

The answer is known to be positive for 𝑛 = 1 [8, Corollary 1.5]. For

all other odd 𝑛, Question 2 remains open. By [11, Theorem 1.8], if 𝑋 is

orientable as a 𝒞∞ manifold, then either

(i) the set ℛ(𝑋,S𝑛) is dense in the space 𝒞∞(𝑋,S𝑛), or

(ii) the closure of ℛ(𝑋,S𝑛) in the space 𝒞∞(𝑋,S𝑛) coincides with the

set

{𝑓 ∈ 𝒞∞(𝑋,S𝑛) : deg(𝑓) ∈ 2Z},

where deg(𝑓) is the topological degree of 𝑓 .
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The behavior of regular maps into even-dimensional spheres is entirely

different. For example, every regular map S1 × S1 → S2 is null homotopic,

that is, has topological degree 0, see [9].

3 Maps from real algebraic curves to real alge-

braic varieties

Question 3. Which pairs (𝑋,𝑌 ) of nonsingular real algebraic varieties

have the property that every 𝒞∞ map from 𝑋 to 𝑌 can be approximated

by regular maps in the 𝒞∞ topology?

Approximation as in Question 3 is known to be possible if 𝑋 is a

compact nonsingular real algebraic curve and either

(i) 𝑌 is a rational nonsingular real variety (that is, 𝑌 is nonsingular and

birationally equivalent to R𝑝, where 𝑝 = dim𝑌 ), or

(ii) 𝑌 is a homogeneous real algebraic 𝐺-variety for a Zariski closed sub-

group

𝐺 ⊂ GL𝑚(R), for some 𝑚 (that is, 𝐺 acts transitively on 𝑌 , the

action 𝐺× 𝑌 → 𝑌 , (𝑎, 𝑦) ↦→ 𝑎 · 𝑦 being a regular map).

The case (i) was settled by Bochnak and the author [10, Theorem 1.1],

while the case (ii) is contained in the recent paper of Benoist and Witten-

berg [4, Theorem A].

A real algebraic variety 𝑌 is said to be rationally connected if for any

two points 𝑦0, 𝑦1 in 𝑌 there exists a regular map 𝑓 : P1(R) → 𝑌 such that

𝑦0, 𝑦1 belong to 𝑓(P1(R)). Note that P1(R) is biregularly isomorphic to S1.

Question 4. Let 𝑋 be a compact nonsingular real algebraic curve and

let 𝑌 be a rationally connected nonsingular real algebraic variety. Can

every 𝒞∞ map from 𝑋 to 𝑌 be approximated by regular maps in the 𝒞∞

topology?

The following question is also undecided.

Question 5. Let 𝑋 be a compact nonsingular real algebraic curve and let

𝑌 := {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥4 + 𝑦4 + 𝑧4 = 1}.

Can every 𝒞∞ map from 𝑋 to 𝑌 be approximated by regular maps in the

𝒞∞ topology?
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4 Regulous maps

Regulous geometry has emerged recently as a subfield of real algebraic

geometry, see the survey paper [22]. It deals with objects described by

real rational functions that can be extended to continuous ones.

Let 𝑋, 𝑌 be two nonsingular real algebraic varieties. A map 𝑓 : 𝑋 → 𝑌

is said to be regulous if it is continuous on 𝑋 and there exists a Zariski

open dense subset 𝑈 of 𝑋 such that the restriction 𝑓 |𝑈 : 𝑈 → 𝑌 is a

regular map. Let 𝑋(𝑓) denote the union of all such 𝑈 . The complement

𝑃 (𝑓) := 𝑋 ∖ 𝑋(𝑓) of 𝑋(𝑓) is the smallest Zariski closed subset of 𝑋

for which the restriction 𝑓 |𝑋∖𝑃 (𝑓) : 𝑋 ∖ 𝑃 (𝑓) → 𝑌 is a regular map. If

𝑓(𝑃 (𝑓)) ̸= 𝑌 , we say that 𝑓 is a nice regulous map. In the literature

regulous maps are also called continuous rational maps [15–17, 19]. The

concise name “regulous” was coined by Fichou, Huisman, Mangolte and

Monnier [14]. Since the publication of [16] in 2009 several mathematicians

have devoted their attention to regulous maps, see the surveys [18,22] and

the references therein.

A map 𝑓 : 𝑋 → 𝑌 is said to be 𝑘-regulous, where 𝑘 is a nonnega-

tive integer or 𝑘 = ∞, if it is both regulous and of class 𝒞𝑘. Thus, less

formally, a 𝑘-regulous map is a 𝒞𝑘 map that admits a rational represen-

tation. Obviously, “0-regulous” is the same as “regulous”. As observed

in [16, Proposition 2.1], ∞-regulous maps coincide with regular maps, and

these are usually studied separately. A standard example of a 𝑘-regulous

function, with 𝑘 a nonnegative integer, is 𝑓 : R2 → R defined by

𝑓(𝑥, 𝑦) =
𝑥3+𝑘

𝑥2 + 𝑦2
for (𝑥, 𝑦) ̸= (0, 0) and 𝑓(0, 0) = 0.

Clearly, 𝑓 is not of class 𝒞𝑘+1.

Assume that 𝑋 is compact. Denote by 𝐻alg
𝑑 (𝑋;Z/2) the subgroup

of the homology group 𝐻𝑑(𝑋;Z/2) generated by the homology classes

represented by 𝑑-dimensional Zariski closed subsets of 𝑋, 0 ≤ 𝑑 ≤ dim𝑋

[7]. Set

𝐻𝑐
alg(𝑋;Z/2) := 𝐷−1

𝑋 (𝐻alg
𝑑 (𝑋;Z/2)),

where 𝑐+ 𝑑 = dim𝑋 and 𝐷𝑋 : 𝐻𝑐(𝑋;Z/2) → 𝐻𝑑(𝑋;Z/2) is the Poincaré

duality isomorphism. By [16, Proposition 1.3], if both 𝑋, 𝑌 are compact,

and 𝑓 : 𝑋 → 𝑌 is a regulous map, then

𝑓*(𝐻𝑐
alg(𝑌 ;Z/2)) ⊂ 𝐻𝑐

alg(𝑋;Z/2),
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where 𝑓* : 𝐻𝑐(𝑌 ;Z/2) → 𝐻𝑐(𝑋;Z/2) is the induced homomorphism.

Clearly, 𝐻𝑐
alg(S𝑝;Z/2) = 𝐻𝑝(S𝑝;Z/2). Therefore, if 𝑓 : 𝑋 → S𝑝 is a

regulous map, then

𝑓* : (𝐻𝑝(S𝑝;Z/2)) ⊂ 𝐻𝑝
alg(𝑋;Z/2).

Question 6. Let 𝑘, 𝑝 be integers with 𝑘 ≥ 0, 𝑝 ≥ 1. Let 𝑋 be a compact

nonsingular real algebraic variety and let 𝑓 : 𝑋 → S𝑝 be a 𝒞∞ map such

that

𝑓*(𝐻𝑝(S𝑝;Z/2)) ⊂ 𝐻𝑝
alg(𝑋;Z/2).

Can 𝑓 be approximated by 𝑘-regulous maps in the 𝒞𝑘 topology?

The answer is known to be positive if 𝑘 = 0 and 𝑝 ∈ {1, 𝑛−1, 𝑛}, where

𝑛 = dim𝑋, see [17].

Question 7. Let 𝑘, 𝑝 be integers with 𝑘 ≥ 0, 𝑝 ≥ 1. Can every 𝑘-regulous

map from 𝑋 to S𝑝 be approximated by nice 𝑘-regulous maps in the 𝒞𝑘

topology?

It may seem that Question 7 is rather technical, but in view of [16,17]

the positive answer would have several interesting consequences.

Let 𝑘 be a nonnegative integer, 𝑋 a nonsingular real algebraic vari-

ety, and 𝑍 a nonsingular Zariski closed subvariety of 𝑋. By Kollár and

Nowak [15, Proposition 8], if 𝐹 : 𝑋 → R is a 𝑘-regulous function, then the

restriction 𝐹 |𝑍 is also a 𝑘-regulous function.

Question 8. Let 𝑓 : 𝑍 → R be a 𝑘-regulous function. Does there exist a

𝑘-regulous function 𝐹 : 𝑋 → R such that 𝐹 |𝑍 = 𝑓?

According to [15, Theorem 10], the answer is positive for 𝑘 = 0 (even

in a more general setting).

5 Systems of linear equations with

polynomial coefficients

Let 𝑚, 𝑛, 𝑝 be positive integers. Consider a system of linear equations⎧⎪⎪⎨⎪⎪⎩
𝑓11 · 𝑦1 +

𝑓𝑚1 · 𝑦1 +

· · ·
...

· · ·

+ 𝑓1𝑝 · 𝑦𝑝 = 𝑔1

+ 𝑓𝑚𝑝 · 𝑦𝑝 = 𝑔𝑚,

(1)
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where the 𝑓𝑖𝑗 , 𝑔𝑖 are polynomial real-valued functions on R𝑛, and the 𝑦𝑗
are unknowns.

Question 9. Which systems (1) that have a continuous solution 𝑦1 =

𝜙1, . . . , 𝑦𝑝 = 𝜙𝑝, where the 𝜙𝑗 : R𝑛 → R are continuous functions, have

also a regulous solution 𝑦1 = 𝜓1, . . . , 𝑦𝑝 = 𝜓𝑝, where the 𝜓𝑗 : R𝑛 → R are

regulous functions?

The case 𝑛 = 1 is an exercise. By [20], if 𝑛 = 2 and 𝑚 = 1, then (1) has

a regulous solution precisely when it has a continuous solution. According

to [15, Example 6], for 𝑛 = 3, 𝑚 = 1, 𝑝 = 2, the equation

(𝑥31𝑥2) · 𝑦1 + (𝑥31 − (1 + 𝑥23)𝑥
3
2) · 𝑦2 = 𝑥41

has a continuous solution

𝑦1 = (1 + 𝑥23)
1/3, 𝑦2 =

𝑥31
𝑥21 + (1 + 𝑥23)

1/3𝑥1𝑥2 + (1 + 𝑥23)
2/3𝑥22

,

but does not have a regulous solution.

Problems related to Question 9 are discussed in [1, 5, 12,15].

6 Stratified-algebraic vector bundles

Let F stand for R, C or H (the quaternions). All F-vector spaces will be left

F-vector spaces. When convenient, F will be identified with R𝑑(F), where

𝑑(F) = dimR F.

Let 𝑋 be a real algebraic variety. For any nonnegative integer 𝑛, let

𝜀𝑛𝑋(F) denote the standard trivial F-vector bundle on 𝑋 with total space

𝑋 ×F𝑛, where 𝑋 ×F𝑛 is regarded as a real algebraic variety. An algebraic

F-vector bundle on 𝑋 is an algebraic F-vector subbundle of 𝜀𝑛𝑋(F) for some

𝑛 (see [7, Chapters 12 and 13] for basic properties of algebraic F-vector

bundles).

By a stratification of 𝑋 we mean a finite collection 𝒮 of pairwise disjoint

Zariski locally closed subvarieties whose union is 𝑋. Each subvariety in

𝒮 is called a stratum. A stratified-algebraic F-vector bundle on 𝑋 is a

topological F-vector subbundle 𝜉 of 𝜀𝑛𝑋(F), for some 𝑛, such that for some

stratification 𝒮 of 𝑋, the restriction 𝜉|𝑆 of 𝜉 to each stratum 𝑆 ∈ 𝒮 is

an algebraic F-vector subbundle of 𝜉𝑛𝑆(F) (see also [24] for a different but

equivalent description).
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A topological F-vector bundle 𝜉 on 𝑋 is said to admit an algebraic

structure if it is isomorphic to an algebraic F-vector bundle on 𝑋. Simi-

larly, 𝜉 is said to admit a stratified-algebraic structure if it is isomorphic to

a stratified-algebraic F-vector bundle on 𝑋. These two types of F-vector

bundles have been extensively investigated in [6,7] (see also the references

therein) and [21,23,24], respectively. In general, their behaviors are quite

different, see [21, Example 1.11].

Denote by 𝐾F(𝑋) the Grothendieck group of topological F-vector bun-

dles on 𝑋. Since 𝑋 has the homotopy type of a compact polyhedron, it

follows that the abelian group 𝐾F(𝑋) is finitely generated. Let 𝐾F-str(𝑋)

be the subgroup of 𝐾F(𝑋) generated by the classes of all F-vector bundles

admitting a stratified-algebraic structure.

If the variety𝑋 is compact, then the group𝐾F-str(𝑋) contains complete

information on F-vector bundles admitting a stratified-algebraic structure:

A topological F-vector bundle 𝜉 on 𝑋 admits a stratified-algebraic struc-

ture if and only if its class in 𝐾F(𝑋) belongs to 𝐾F-str(𝑋) (in other words,

𝜉 admits a stratified-algebraic structure if and only if there is a stratified-

algebraic F-vector bundle 𝜂 on 𝑋 such that the direct sum 𝜉 ⊕ 𝜂 admits a

stratified-algebraic structure), see [21, Corollary 3.14].

For any topological F-vector bundle 𝜉 on 𝑋, we regard rank 𝜉 (the rank

of 𝜉) as a function rank 𝜉 : 𝑋 → Z, which assigns to every point 𝑥 in 𝑋

the dimension of the fiber of 𝜉 over 𝑥. Clearly, rank 𝜉 is constant on each

connected component of 𝑋. We say that 𝜉 has property (rk) if for every

integer 𝑑 , the set {𝑥 ∈ 𝑋 : (rank 𝜉)(𝑥) = 𝑑} is algebraically constructible.

Recall that a subset of 𝑋 is said to be algebraically constructible if it

belongs to the Boolean algebra generated by the Zariski closed subsets of

𝑋. It readily follows that each stratified-algebraic F-vector bundle on 𝑋

has property (rk). Thus, property (rk) is a necessary condition for 𝜉 to

admit a stratified-algebraic structure.

Let us illustrate the role of property (rk). The real algebraic curve

𝐶 = {(𝑥, 𝑦) ∈ R2 : 𝑥2(𝑥2 − 1)(𝑥2 − 4) + 𝑦2 = 0}

is irreducible with singular locus {(0, 0)}. It has three connected com-

ponents, the singleton {(0, 0)} and two ovals. Clearly, every algebraic

F-vector bundle on 𝐶 has constant rank, while the rank function of a

topological F-vector bundle on 𝐶 may take three distinct values. On the
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other hand, the rank function of a stratified-algebraic F-vector bundle on 𝐶

need not be constant, but must be constant on 𝐶 ∖ {(0, 0)}.

Returning to the general case, denote by 𝐾
(rk)
F (𝑋) the subgroup of

𝐾F(𝑋) generated by the classes of all topological F-vector bundles having

property (rk). By construction,

𝐾F-str(𝑋) ⊂ 𝐾
(rk)
F (𝑋).

Since the group 𝐾F(𝑋) is finitely generated, so is the quotient group

ΓF(𝑋) := 𝐾
(rk)
F (𝑋)/𝐾F-str(𝑋).

Thus the group ΓF(𝑋) is finite if and only if 𝑟ΓF(𝑋) = 0 for some positive

integer 𝑟.

For any F-vector bundle 𝜉 on 𝑋 and any positive integer 𝑟, we denote

by

𝜉(𝑟) = 𝜉 ⊕ · · · ⊕ 𝜉

the 𝑟-fold direct sum.

As observed in [23, Proposition 1.2], if 𝑋 is compact, then for a positive

integer 𝑟 the following conditions are equivalent:

(a) The group ΓF(𝑋) is finite and 𝑟ΓF(𝑋) = 0.

(b) For each topological F-vector bundle 𝜉 on 𝑋 having property (rk),

the F-vector bundle 𝜉(𝑟) admits a stratified-algebraic structure.

(c) For each topological F-vector bundle 𝜂 on 𝑋 having constant rank,

the F-vector bundle 𝜂(𝑟) admits a stratified-algebraic structure.

It is known that ΓF(𝑋) ̸= 0 in general, see [21, Example 1.11].

Question 10. Let 𝑋 be a compact real algebraic variety. Is the group

ΓF(𝑋) finite?

By [23, Theorem 1.8], the answer is positive if dim𝑋 ≤ 8.

7 Approximation of 𝒞∞ manifolds

Let 𝑋 be a nonsingular real algebraic variety and let 𝑀 be a compact

𝒞∞ submanifold (without boundary) of 𝑋. We say that 𝑀 admits an
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algebraic (resp. a weak algebraic) approximation in 𝑋 if for every neigh-

borhood 𝒰 ⊂ 𝒞∞(𝑀,𝑋) of the inclusion map 𝑀 →˓ 𝑋 there exists a 𝒞∞

embedding 𝑒 : 𝑀 → 𝑋 in 𝒰 such that 𝑒(𝑀) is a nonsingular Zariski closed

(resp. Zariski locally closed) subset of 𝑋. A bordism class in the 𝑚th un-

oriented bordism group MO𝑚(𝑋) of 𝑋 is said to be algebraic if it can be

represented by a regular map from a compact nonsingular 𝑚-dimensional

real algebraic variety to 𝑋. It readily follows that if 𝑀 admits a weak

algebraic approximation in 𝑋, then the bordism class of the inclusion map

𝑀 →˓ 𝑋 is algebraic.

Question 11. Let 𝑋 be a nonsingular real algebraic variety and let 𝑀

be a compact 𝒞∞ submanifold of 𝑋. Assuming that the bordism class of

the inclusion map 𝑀 →˓ 𝑋 is algebraic, does 𝑀 admit a weak algebraic

approximation in 𝑋?

It is conjectured in [19] that the answer is always positive. This, if true,

would have very interesting consequences in regulous geometry. Recently,

Benoist [3, Theorems 0.6 and 0.7] obtained the following remarkable result:

If the bordism class of 𝑀 →˓ 𝑋 is algebraic and 2 dim𝑀+1 ≤ dim𝑋, then

𝑀 admits an algebraic approximation in 𝑋. Furthermore, the assumption

2 dim𝑀 + 1 ≤ dim𝑋 cannot be weakened in general.

By [2, Lemma 2.7.1], if 𝑋 is one of the real algebraic varieties R𝑛,

S𝑛, P𝑛(R) or P𝑘(R) × P𝑙(R), then each unoriented bordism class of 𝑋 is

algebraic.

Question 12. Let 𝑋 stand for R𝑛, S𝑛 or P𝑛(R). Does every compact 𝒞∞

submanifold of 𝑋 admit an algebraic approximation in 𝑋?

One should stress that the varieties R𝑛, S𝑛 and P𝑛(R) play a very

particular role in Question 12. Indeed, by [3, Theorem 0.8], if 𝑙 = 2𝑑+1− 1

for some positive integer 𝑑, then there exists a compact 2𝑑-dimensional

𝒞∞ submanifold of 𝑋 := P1(R)×P𝑙(R) which does not admit an algebraic

approximation in 𝑋.
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