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Abstract

Despite that the study of line arrangements in the projective plane

is old and elemental, there is still a long list of intriguing open

questions and applications to modern mathematics. Our goal is

to discuss part of that list, focusing on the connection with Chern

invariants and pointing towards configurations of rational curves.
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A classical and beautiful reference on the topic of configurations of

lines is “Geometry and the Imagination” [21, Chapter III], which traces

back several results, and in particular surveys point-line configurations

in detail. On page 95, it is stated that “... there was a time when the

study of configurations was considered the most important branch of all

geometry.” citing the book “Geometrische Konfigurationen” by F. Levi.

It is perhaps surprising that such an old and elemental subject is still

relevant today in ongoing research, especially in algebraic geometry. To

mention just two important results: the construction of special algebraic

surfaces (together with combinatorial consequences for line arrangements)

by Hirzebruch [22], and the Murphy’s law in algebraic geometry due to

Vakil [59], which is based on the Mnëv Universality Theorem (see e.g. [35]).

Beyond line arrangements, the use of configurations of special curves has

produced results on the geography of surfaces of general type (see e.g.

[41], [57], [46]), and the construction of exotic blow-ups of the complex

projective plane at few points, which even have complex structures (see

e.g. [34], [39], [40]), among other applications. (See e.g. [4] for another

important line of research.) We will not focus on any applications, the

purpose of this note is to present a short guide to various open problems

about arrangements of lines in the projective plane, and to hint connections

with current research.
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1 Arrangements of lines

Our main reference will be [15]. Let k be an arbitrary field. The most

relevant fields for us will be Q, R, C, and the algebraic closure F𝑝 of the

field of 𝑝 elements F𝑝. The projective plane over k will be denoted by P2
k .
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A set

𝐿 = {[𝑥, 𝑦, 𝑧] ∈ P2
k : 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 = 0},

for some 𝑎, 𝑏, 𝑐 ∈ k not all zero, will be called a line. A line arrangement is

a finite collection of 𝑑 lines 𝒜 = {𝐿1, · · · , 𝐿𝑑}. For 𝑚 ≥ 2, an m-point is a

point in 𝒜 which belongs to exactly 𝑚 lines in 𝒜. We denote the number

of 𝑚-points by 𝑡𝑚. Any arrangement of 𝑑 lines satisfies(︂
𝑑

2

)︂
=

∑︁
𝑚≥2

(︂
𝑚

2

)︂
𝑡𝑚,

which is a purely combinatorial fact. It is proved by counting pairs of lines

in two different ways, using only that two distinct lines intersect at one

point.

A line arrangement is said to be in general position if the arrangement

satisfies 𝑡𝑚 = 0 for every 𝑚 > 2, and so it only has double points. An

arrangement of 𝑑 lines with 𝑡𝑑 = 1 is called trivial. An arrangement of 𝑑

lines is called quasi-trivial if 𝑡𝑑−1 = 1.

B. Grünbaum: A catalogue of simplicial arrangements in the real projective plane 9

n A(n, 0) f = (f0, f1, f2) t = (t2, t3, t4, . . . ) r = (r2, r3, r4, . . . ) Notes
A(31, 2) (127, 378, 252) (54, 42, 21, 6, 1, 0, 3) (04, 1, 0, 0, 0, 9, 0, 6, 0, 15) M
A(31, 3) (127, 378, 252) (54, 42, 21, 6, 1, 0, 3) (04, 1, 0, 3, 0, 6, 0, 3, 0, 18) M

32 A(32, 0) (32, 93, 62) (31, 028, 1) (31, 028, 1) R(0)
A(32, 1) (137, 408, 272) (16, 120, 012, 1) (07, 8, 8, 05, 16) R(1)

33 A(33, 0) (33, 96, 63) (32, 029, 1) (32, 029, 1) R(0)
A(33, 1) (145, 432, 288) (24, 112, 8, 011, 1) (08, 16, 05, 17) R(2)

34 A(34, 0) (34, 99, 66) (33, 030, 1) (33, 030, 1) R(0)
A(34, 1) (154, 459, 306) (17, 136, 013, 1) (08, 17, 06, 17) R(1)
A(34, 2) (154, 459, 306) (60, 63, 18, 6, 4, 0, 3) (06, 3, 3, 3, 0, 4, 0, 6, 0, 9, 6)

35 A(35, 0) (35, 102, 68) (34, 031, 1) (34, 031, 1) R(0)
36 A(36, 0) (36, 105, 70) (35, 032, 1) (35, 032, 1) R(0)
A(36, 1) (172, 513, 342) (18, 153, 014, 1) (08, 9, 9, 06, 18) R(1)

37 A(37, 0) (37, 108, 72) (36, 033, 1) (36, 033, 1) R(0)
A(37, 1) (181, 540, 360) (27, 144, 9, 013, 1) (08, 9, 0, 9, 05, 19) R(2)
A(37, 2) (181, 540, 360) (72, 72, 12, 24, 06, 1) (010, 13, 0, 0, 0, 24) m,M
A(37, 3) (181, 540, 360) (72, 72, 24, 0, 10, 0, 3) (06, 3, 0, 6, 0, 4, 03, 12, 0, 12) M

3 Illustrations of selected arrangements

∞

A(6, 1)

The above are four different presentations of the same simplicial arrangementA(6, 1). Ad-
ditional ones could be added, but it seems that the ones shown here are sufficient to illustrate
the variety of forms in which isomorphic simplicial arrangements may appear. Naturally,
in most of the other such arrangements the number of possible appearances would be even
greater, making the catalog unwieldy. That is the reason why only one or two possible
presentations are shown for most of the other simplicial arrangements. In most cases the
form shown is the one with greatest symmetry.

Figure 1: The complete quadrilateral.

Many interesting line arrangements come from drawings in a black-

board, this is when k = R (cf. [22, 1.1]). Nontrivial line arrangements in

the real projective plane partition P2
R into polygons. When all of these

polygons are triangles, the arrangement is called simplicial (cf. [17], [7]).

A long-standing open problem is to classify simplicial arrangements. Any

quasi-trivial arrangement is simplicial. A more interesting example is
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the complete quadrilateral, meaning a quadrilateral and its two diagonals,

which is defined by the set of zeros of the polynomial

𝑥𝑦𝑧(𝑥− 𝑦)(𝑥− 𝑧)(𝑦 − 𝑧).

It has 6 lines, and 𝑡2 = 3, 𝑡3 = 4, 𝑡𝑚 = 0 else. That arrangement can

be thought of as coming from an equilateral triangle together with its 3

symmetry lines, as in Figure 1. This can be generalized as follows: Any

regular polygon of 𝑛 sides defines a simplicial arrangement (see [15, Section

2]) of 2𝑛 lines with 𝑡2 = 𝑛, 𝑡3 = 𝑛(𝑛 − 1)/2, 𝑡𝑛 = 1, 𝑡𝑚 = 0 else. They

partition P2
R into 𝑛2+𝑛 triangles. For example, the simplicial arrangement

in Figure 2 defines 30 triangles. There are many simplicial arrangements

which do not come from quasi-trivial or regular polygons, see e.g. [7] for a

classification up to 27 lines.

B. Grünbaum: A catalogue of simplicial arrangements in the real projective plane 3

Figure 2: A view of the arrangements A(8, 1) and A(10, 1) from the familyR(1) .

plane. An example with m = 3 is shown in Figure 3.

∞

Figure 3: A view of the arrangement A(13, 1) from the familyR(2).

Sporadic arrangements are rather mysterious. There is no known explanation why the
ones that exist do exist, or why others do not. In particular, there is no known explanation
for the observation that no sporadic simplicial arrangement found so far has more than 37
lines. The restriction cannot be related to the topology of the projective plane, since there
are several additional infinite families of simplicial arrangements of pseudolines, besides
many additional sporadic ones.

The present compilation of data about simplicial arrangements arose from several aims.
First, there has been no detailed published account of the known simplicial arrangements
beyond the paper [5], published more that a third of a century ago. The collection in which
the paper appeared is not widely available, and I have to admit that the presentation there
is not “user-friendly”. Moreover, although the number of sporadic arrangements is still the
same as quoted there, two changes have occurred. One pair of arrangements — denoted
A2(17) andA7(17) in the paper — have been found to be isomorphic, as reported in [7] and
[1, p. 64]. On the other hand, an additional arrangement A(16, 7) was found, as indicated
in [6, pages 7 and 9]. The complete list of the presently known (isomorphism classes of)
simplicial arrangements is given in the table below, and the 90 sporadic members (as well

Figure 2: The simplicial arrangement from a pentagon.

Only finitely many of the regular polygon arrangements can be defined

over Q. For 𝑛 > 6 the coefficients of the lines cannot be all in Q [6].

Question 1. Are there infinitely many (non quasi-trivial) simplicial ar-

rangements defined over k = Q?

An answer to this question would produce a new infinite family of

simplicial arrangements. On the other hand, it could solve Question 7

in relation to a density property on its combinatorics, which is true for

arrangements defined over R.
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For any given nontrivial line arrangement over R, one has that

𝑡2 ≥ 3 +
∑︁
𝑚≥4

(𝑚− 3)𝑡𝑚, (1)

and equality holds if and only if the arrangement is simplicial. One can

prove both statements through the computation of the Euler characteristic

of P2
R via the partition into polygons defined by the arrangement. At this

moment, the reader is invited to prove it. To start you need to count the

number of points, edges, and polygons in the partition using only the 𝑡𝑚
numbers. An immediate consequence is that the number of double points

is bigger than or equal to 3, which can be seen as a way to strongly solve

the classical problem of Sylvester (cf. [1, Chapter 9]): “Prove that it is

not possible to arrange any finite number of real points so that a right line

through every two of them shall pass through a third, unless they all lie

in the same right line”. To have an statement about lines and 2-points,

one just dualizes the points into lines, and so, for example, the collinearity

condition for points becomes a trivial arrangement for lines. We recall that

any arrangement of lines could be seen as an arrangement of points, where

each line {𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 = 0} is represented by the point [𝑎, 𝑏, 𝑐], and vice-

versa. (There is an analog inequality in [49] for pseudo-line arrangements,

meaning a collection of smooth closed curves in P2
R which behave as lines

but are not necessarily lines.)

Still in char(k) = 0, we could now consider complex arrangements.

Then we are talking about configurations of Riemann spheres in the 4-

manifold P2
C. It turns out that we have fewer constraints on the geometry.

For example, we do not need to have double points.

Let us consider the arrangement of 3𝑛 lines defined by

(𝑥𝑛 − 𝑦𝑛)(𝑥𝑛 − 𝑧𝑛)(𝑦𝑛 − 𝑧𝑛) = 0

in P2
C. For 𝑛 ≥ 4 we have 𝑡3 = 𝑛2, 𝑡𝑛 = 3, 𝑡𝑚 = 0 else. When 𝑛 = 3,

we have an arrangement of 9 lines with 𝑡3 = 12 and no other 𝑚-points. It

is called dual Hesse arrangement. The Hesse arrangement can be defined

as the arrangement of 12 lines given by dualizing the twelve 3-points. It

has 𝑡2 = 12, 𝑡4 = 9, 𝑡𝑚 = 0 else. It is unique up to projective equivalence

(i.e. up to changing coordinates by a linear transformation of P2
C). The
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Hesse arrangement could also be realized as the 12 lines which join the

9 inflection points of any given nonsingular plane cubic. Finally, we note

that 𝑛 = 2 defines the complete quadrilateral, and 𝑛 = 1 gives a triangle,

both of which are field independent arrangements.

For other interesting complex arrangements, we refer to [22, 1.2], where

we can find Klein’s and Wiman’s arrangements for example.

It was proved by Hirzebruch in [22] (improved in the remarks added

to the proof via a result of Sakai, and then by Sommese in [50, (5.3)The-

orem]; see also [23]) that any nontrivial and nonquasi-trivial arrangement

of complex lines satisfies

2𝑡2 + 𝑡3 ≥ 3 + 𝑑+
∑︁
𝑚≥5

(𝑚− 4)𝑡𝑚, (2)

and equality holds if and only if the arrangement is the dual Hesse arrange-

ment. All known proofs of it (and similar inequalities) invoke some version

of the Bogomolov-Miyaoka-Yau (BMY) inequality, which is a deep result

in the theory of complex algebraic surfaces. (In [33, Section 11] one can

find other applications.) The idea of Hirzebruch was to construct a surface

of general type 𝑋 as a Kummer covering of P2
C of degree 3𝑑−1 branch along

an arbitrary arrangement of 𝑑 lines, and then apply the BMY inequality

to 𝑋, which can be improved by adding the information of some rational

and elliptic curves inside of 𝑋. See [23] and the book [2] for variations of

that idea, which also produce nontrivial constraints on the 𝑡𝑚 numbers.

Thinking on the inequality (1) for real arrangements, and taking into

consideration related questions about the nature of the Bogomolov-Miyaoka-

Yau inequality (see e.g. [30]):

Question 2. Is there a topologically based proof of the Hirzebruch-Sakai

inequality?

Warning: this could be a hard question. Is there a cell decomposition

that may be of help as it was for arrangements over R? On the opossite

side, one may think that incidences from line arrangements defined over

fields of positive characteristic may help to produce counterexamples, but

[47] shows topological difficulties in that plan of attack. Below we will

elaborate about the geometry in positive characteristic.

The Hirzebruch-Sakai inequality (2) shows that complex arrangements

cannot have 𝑡2 = 𝑡3 = 0. On the other extreme, arrangements with only
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double points are the general ones. How about only triple points? The

only known complex arrangement with only triple points is the dual Hesse

arrangement. Combinatorially speaking, one can write down incidences of

potential examples with an unbounded amount of lines, but none of them

has been proved to be realizable over C. (In characteristic 2, as we will

see below, the Fano arrangement consists of 7 lines and 7 triple points.)

Question 3. Is the dual Hesse arrangement the only (nontrivial) complex

line arrangement with only triple points?

See [14] for various aspects about triple points in arrangements. Speak-

ing on special incidences at points in an arrangement of lines, we should

write a bit about the world of point-line configurations (cf. [21, Chapter

III], [12], [18]).

A (𝑟𝑎, 𝑑𝑏)-configuration for us is an arrangement of 𝑑 lines which con-

tains 𝑟 points, such that each line passes through 𝑏 points and each point

is in exactly 𝑎 lines. These points are included in the set of all singular

points of the arrangement, but they are not necessarily all of them. One

observes that

𝑟 · 𝑎 = 𝑑 · 𝑏.

When 𝑎 = 𝑏 (and so 𝑟 = 𝑑), we call it an 𝑟𝑎-configuration. It is an easy

exercise to find all 𝑟2-configurations. The 𝑟3-configurations are richer and

diverse in general. For 𝑟 = 7 we have essentially one possible combina-

torics, and its realization is the Fano plane configuration defined by the 7

lines in P2
F2
. In this case, there is no more room for extra singular points.

Moreover, the following fact due to de Bruijn and Erdös [8] implies a char-

acterization of all 𝑟𝑎-configurations where the number of singular points

of the arrangement is exactly 𝑟. Consider any nontrivial arrangement of 𝑑

lines. Then we have ∑︁
𝑚≥2

𝑡𝑚 ≥ 𝑑, (3)

and equality holds if and only if the arrangement is quasi-trivial or it is

defined by all the lines in P2
F𝑞

for some 𝑞. (See [15, Theorem 2.7] for

a proof, where the complicated part is to classify equality.) These very

special configurations are called finite projective plane arrangements. They

consists of 𝑞2+𝑞+1 lines with 𝑡𝑞+1 = 𝑞2+𝑞+1, 𝑡𝑚 = 0 else, and so they are

all 𝑟𝑞+1-configurations. They are only possible in positive characteristics.
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In general, it seems that 𝑟𝑎-configurations have not been classified.

Not even their combinatorics, which is not unique (see e.g. the possible

incidences for 93-configurations in [21, Chapter III]).

Let us finish with another big family of special arrangements of lines:

(𝑎, 𝑏)-nets. Motivation to study them comes from topological invariants of

complements of line arrangements, in particular components of the reso-

nance varieties that they define (see [60], [42]). Some references for (𝑎, 𝑏)-

nets are [60], [52], [42], [56], [37] , [31], [32]. A (𝑎, 𝑏)-net is an arrangement

𝒜 of 𝑎𝑏 lines which is the union of 𝑎 arrangements 𝒜𝑖 which do not share

lines, such that there is a set of 𝑏2 points 𝒳 satisfying (1) The intersection

point of any line in 𝒜𝑖 with any line in 𝒜𝑗 belongs to 𝒳 for 𝑖 ̸= 𝑗, and

(2) Through every point in 𝒳 there passes exactly one line from each 𝒜𝑖.

One can check that each 𝒜𝑖 contains 𝑏 lines, and that a (𝑎, 𝑏)-net is in

particular a (𝑏2𝑎, 𝑎𝑏𝑏)-configuration.

For example, one can check that all (3, 3)-nets belong to the following

family (up to change of coordinates):

𝒜1 : 𝐿1 = (𝑦), 𝐿2 = (1𝑐𝑥+ 𝑦 + 𝑧), 𝐿3 = ( 𝑏
𝑏−1𝑥+ 𝑧),

𝒜2 : 𝐿4 = (𝑥), 𝐿5 = (𝑥+ 𝑐𝑦 + 𝑧), 𝐿6 = (𝑏𝑦 + 𝑧),

𝒜3 : 𝐿7 = (𝑥+ 𝑐(1− 𝑏)𝑦), 𝐿8 = (𝑥+ 𝑦 + 𝑧), 𝐿9 = (𝑧),

where 𝑏, 𝑐 are parameters (see [56, Section 4]). In Figure 3 we evaluate

this family for suitable real numbers 𝑏, 𝑐.

The incidence of the 𝑏2 𝑎-points in 𝒳 is determined by (𝑎 − 2) 𝑏 × 𝑏

Latin squares which form an orthogonal set (cf. [56]). Any (𝑎, 𝑏)-net de-

fines a pencil of curves of degree 𝑏 in P2 (see [56, Section 3] for details).

A very simple argument on the topological Euler characteristic of the cor-

responding fibration shows that the only possible values for (𝑎, 𝑏) over C
are: (3, 𝑏 ≥ 2), (4, 𝑏 ≥ 3), and (5, 𝑏 ≥ 6). An alternative and elemental

argument [32] shows that actually (5, 𝑏)-nets are impossible over C, and
that (4, 𝑏)-nets cannot exist for 𝑏 congruent to 2 mod 3.

For (3, 𝑏)-nets we do have classification when 𝑏 < 7 (see [56]) in char-

acteristic zero. Here we need just one Latin square. For example, the set

of 6 × 6 Latin squares below represent all the combinatorial possibilities

(up to reorganize lines and points), but only nine of them (not the bold

ones) are realizable as (3, 6)-nets in P2
C. See [56, Section 3] for details.
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Figure 3: A real (3, 3)-net.

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5

1 2 3 4 5 6

2 1 5 6 3 4

3 6 1 5 4 2

4 5 6 1 2 3

5 4 2 3 6 1

6 3 4 2 1 5

1 2 3 4 5 6

2 3 1 5 6 4

3 1 2 6 4 5

4 6 5 2 1 3

5 4 6 3 2 1

6 5 4 1 3 2

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

5 6 1 2 4 3

6 5 2 1 3 4

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

5 6 2 1 4 3

6 5 1 2 3 4

1 2 3 4 5 6

2 1 4 5 6 3

3 6 2 1 4 5

4 5 6 2 3 1

5 3 1 6 2 4

6 4 5 3 1 2

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 4 2

4 6 5 1 2 3

5 3 6 2 1 4

6 4 2 5 3 1

1 2 3 4 5 6

2 1 6 5 3 4

3 6 1 2 4 5

4 5 2 1 6 3

5 3 4 6 1 2

6 4 5 3 2 1

1 2 3 4 5 6

2 3 1 6 4 5

3 1 2 5 6 4

4 6 5 1 2 3

5 4 6 2 3 1

6 5 4 3 1 2

1 2 3 4 5 6

2 1 6 5 4 3

3 5 1 2 6 4

4 6 2 1 3 5

5 3 4 6 2 1

6 4 5 3 1 2

1 2 3 4 5 6

2 1 4 5 6 3

3 4 2 6 1 5

4 5 6 2 3 1

5 6 1 3 2 4

6 3 5 1 4 2

1 2 3 4 5 6

2 1 5 6 4 3

3 5 4 2 6 1

4 6 2 3 1 5

5 4 6 1 3 2

6 3 1 5 2 4
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Typically there are some free parameters in their construction, as in

the case of (3, 3)-nets above, so we obtain families for each Latin square.

On the other hand, the question on which multiplication tables of groups

can be realized as (3, 𝑏)-nets was completely answered in [31].

Question 4. Is it possible to characterize Latin squares which realize

(3, 𝑏)-nets?

For (4, 𝑏)-nets over C we know only one example: The Hesse arrange-

ment. One can prove that this is the unique (4, 3)-net.

Question 5. Is the Hesse arrangement the only (4, 𝑏)-net over C?

Very recently appeared this pre-print [3] which claims to solve that

question in the positive. The argument involves the computation of the

topological signature of a particular covering branched along a hypothetical

(4, 𝑏)-net. There is an algebraic way and a topological way to compute it,

and they cannot agree, unless the (4, 𝑏)-net is the Hesse arrangement.

2 Chern numbers

To any given arrangement of 𝑑 lines 𝒜 we can assign the so-called loga-

rithmic Chern numbers:

𝑐21(𝒜) = 9− 5𝑑+
∑︁
𝑚≥2

(3𝑚− 4)𝑡𝑚 𝑐2(𝒜) = 3− 2𝑑+
∑︁
𝑚≥2

(𝑚− 1)𝑡𝑚.

We usually write just 𝑐21, 𝑐2. These numbers have been studied in [26],

[22], [50], [57], [15] to mention some places. One could see these integers

as invariants which stay constant under deformations of line arrangements

which do not change their point-line incidences. They produce a label for

the parameter space which classifies them.

The origin of these numbers comes from the following. Think about the

projective plane P2
k as an example of a nonsingular projective surface over

k . Let 𝜎 : 𝑋 → P2
k be the blow-up of all the 𝑚-points of 𝒜 with 𝑚 > 2.

Let 𝐷 be the reduced total transform under 𝜎 of the arrangement, and

so it contains all strict transforms of the lines and all exceptional divisors

of 𝜎. Let Ω1
𝑋(log𝐷) be the rank two vector bundle on 𝑋 of logarithmic

differentials with poles in 𝐷. Let

𝑐𝑖 = 𝑐𝑖(Ω
1
𝑋(log𝐷)*)
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be the Chern classes of the dual of Ω1
𝑋(log𝐷) (see e.g. [54, S1.4 and S3.2]).

The logarithmic Chern numbers of the pair (𝑋,𝐷) are 𝑐21 = 𝑐1 · 𝑐1 and

𝑐2 = 𝑐2. In [57, S2 and S4] it is explained this process in more generality

for arrangements of curves in algebraic surfaces.

An analog of the well-studied geography of surfaces of general type

(cf. [41], [25]) would be to find restrictions on logarithmic Chern numbers

and to construct line arrangements for any given admissible pair. This has

not been solved for surfaces of general type as far as the author knows!

We will now summarize what is known about constraints on (𝑐21, 𝑐2), which

depend on the field k , and results on the distribution of the Chern slope

𝑐21/𝑐2. For any details on what follows we refer to [15].

If 𝒜 has 𝑡𝑑 = 𝑡𝑑−1 = 0, then

𝑐21 > 0 and 𝑐2 > 0,

and so 𝑐21/𝑐2 is a well-defined positive rational number. Moreover

2𝑑− 6

𝑑− 2
≤ 𝑐21

𝑐2
≤ 3, (4)

and equality holds on the left if and only if the arrangement is in general

position; equality holds on the right if and only if 𝒜 is a finite projective

plane arrangement. The inequality on the left is combinatorial, and the

proof can be found in [50, Theorem (5.1)]. The inequality on the right is

exactly the inequality (3). Therefore, we have that independently of the

field k

𝑐21/𝑐2 ∈ [1, 3].

Arrangements with low slopes seem to be easier to construct. They include

all arrangements in general position for 𝑐21/𝑐2 < 2, and for that range we

cannot have accumulation points since we are forced to have 𝑑 → ∞.

Question 6. Is it possible to classify arrangements with 𝑐21/𝑐2 < 2? Do

we have restrictions on the field k for the realization of line arrangements

with 𝑐21/𝑐2 < 2?

In [50] Sommese characterizes arrangements for some few low slopes.

Arrangements with 𝑐21/𝑐2 ≥ 2 have more complexity. For example we

have two zones in characteristic zero: any arrangement 𝑑 lines 𝒜 with

𝑡𝑑 = 𝑡𝑑−1 = 0 satisfies
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(R) If k is in R, then 𝑐21 ≤ 5
2𝑐2. Equality holds if and only if 𝒜 is

simplicial.

(C) If k is in C, then 𝑐21 ≤ 8
3𝑐2. Equality holds if and only if 𝒜 is the

dual Hesse arrangement.

The inequality in (R) is precisely the inequality (1), and in (C) is the
inequality (2). This is a beautiful and surprising connection! We recall

that, in general, we do have logarithmic BMY inequalities in the complex

case (see [33]), bypassing Hirzebruch’s trick with coverings, and even we

have a characterization in the case of equality (see [53, Theorem 3.1]).

In this way, the interval ]8/3, 3] contains only Chern slopes for ar-

rangements defined in positive characteristics. We know that accumula-

tion points of Chern slopes are only possible in [2, 3]. There is a strategy

in [15] to fabricate accumulation points, which can be used to produce the

following distribution results.

∙ For any given 𝑝, the set of accumulation points of Chern slopes of

arrangements over F𝑝 is the interval [2, 3].

∙ The set of accumulation points of Chern slopes of arrangements over

R is the interval [2, 52 ].

Hence we have complete answers in those cases. Over Q we know that

the Chern slope is dense in [2, 2.375], because we have an infinite family

of arrangements over Q whose Chern slopes tend to 2.375 (see [15]).

Question 7. Is the set of accumulation points of Chern slopes of arrange-

ments over Q equal to the interval [2, 52 ]?

This could in principle be solved if someone answers positively the

question on the existence of infinitely many non-quasi trivial simplicial

arrangements over Q (see the previous section).

Over C there is more mystery. There are no known accumulation

points in the purely complex zone ]5/2, 8/3]. The inequality in (C) does

not consider explicitly any properties of the field k , and, by the Hilbert

Nullstellensatz theorem, the existence of an arrangement over k ⊂ C would

imply the existence of an arrangement with the same point-line incidences

over some number field (see at the end of [15]).
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Question 8. Let k be a complex number field. Is there an inequality as

in (2) which includes some properties of k?

Question 9. Are Chern slopes of complex line arrangements discrete in

]5/2, 8/3]? i.e., is there any accumulation point in that interval?

We do not even know if there is some 𝜖 > 0 such that the only arrange-

ment in [8/3− 𝜖, 8/3] is the dual Hesse arrangement!

As explained in [15], there is a direct connection with Harbourne con-

stants. They were introduced in [4] to study the bounded negativity con-

jecture (BNC) for blow-ups of the complex projective plane. In general,

the BNC states:

“Let 𝑋 be a smooth complex projective surface. Then there is an

integer 𝑏(𝑋) such that for every curve (reduced, irreducible) 𝐶 ⊂ 𝑋 we

have 𝐶2 ≥ 𝑏(𝑋)”.

It is known that it fails in positive characteristic via a suitable use of

the Frobenious morphism. One way to approach to the BNC problem is

to explore an asymptotic point of view via H-contants and h-indices. The

H-constant 𝐻(𝑋) measures how negative the self-intersection of reduced

curves over 𝑠 could be in a blow-up of 𝑋 at 𝑠 distinct points (if it is not

over 𝑠, then it would be trivially −∞). The h-index ℎ(𝑋) (Harbourne

index) measures the same but over the singular set of the reduced curve.

We point out that BNC for reduced irreducible curves is equivalent to the

analogue BNC for reduced curves (see [20]), and so if 𝐻(𝑋) is bounded

then BNC holds for blow-ups of 𝑋 at distinct points. This is mainly to

treat blow-ups of surfaces 𝑋 were the BNC is trivially true, e.g. 𝑋 = P2
C,

but where the question on blow-ups is unknown (and important). The

h-index is slightly weaker than the H-constant, since

−2 ≥ ℎ(𝑋) ≥ 𝐻(𝑋),

but for complex surfaces there is no example with ℎ(𝑋) → −∞. (For

rational surfaces in char 𝑝 > 0, there are examples coming from the fi-

nite projective plane line arrangements.) The BNC for complex surfaces

is related to logarithmic BMY type of inequalities. For example, using

the work of Miyaoka and the Zariski decomposition of pseudo-effective di-

visors, one can show a bound for 𝐶2 which depends on the genus of the
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components [19], i.e. BNC is true for reduced curves with components of

bounded genus.

The linear H-constant for a line arrangement 𝒜 is defined as

𝐻𝐿(𝒜) :=
𝑑2 −∑︀

𝑚≥2𝑚
2𝑡𝑚∑︀

𝑚≥2 𝑡𝑚
,

or equivalently

𝐻𝐿(𝒜) =
3− (𝑐21 − 2𝑐2)

𝑑− (𝑐21 − 3𝑐2)
− 2.

We then have a bijection between the above open questions on density of

Chern slopes and the analogue for linear H-constants, which can be found

in [15, Section 4]. See [9] for more on this topic.

3 Arrangements of rational plane curves

We close this note with some thoughts in relation to the study of arrange-

ments of rational plane curves. As it was already mentioned in the intro-

duction, these arrangements have been used to answer difficult questions

on the existence of special 4-manifolds (algebraic surfaces or not), and to

test the bounded negativity conjecture. The author believes that we know

very little about them, even the case of configurations of conics has not

been explored much. How about nodal cubic curves or a mix of cubics,

conics, and lines? (For example, they naturally appear from singular fibers

of rational elliptic fibrations. There is no systematic study of them.)

A key point in that study would be to find restrictions for the existence

of special configurations, and a starting point could be to understand opti-

mally constraints coming from their log Chern invariants. The goal would

be to prove theorems as we described in the previous section for line ar-

rangements. We recall that we can assign these Chern invariants to any

arrangement of curves in any nonsingular projective surface over any field

k , by considering the logarithmic differentials in a log resolution of the

arrangement. (See e.g. [55,57] for some relevant results which use arrange-

ments that are pairwise transversal, producing a bridge between geography

and log geography of surfaces.) Let us point out that these more general

arrangements introduce all sorts of plane curve singularities, which makes

the problem more difficult to handle.
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Here is one explicit motivation. In the theory of algebraic surfaces,

we still do not know how to classify simply-connected Godeaux surfaces.

The work of Lee-Park [34] gave us a way to explore instead its Kollár–

Shephered-Barron–Alexeev compactification via singular surfaces with only

T-singularities. (See many examples in [51].) It turns out that most of

these singular surfaces are rational, and the images of the exceptional di-

visors are arrangements of rational plane curves. It is possible to classify

these arrangements? There is no description yet of the KSBA boundary

of rational surfaces for the moduli space of simply-connected Godeaux

surfaces. In addition, it is an open related question: What is the list of

T-singularities that show up in this KSBA boundary? Configurations of

rational curves in K3 surfaces are relevant to construct surfaces of general

type with geometric genus 1. A very recent work on that connection is [44],

which is opening a complete new world to be explored!

An algebraic treatment of arrangements of rational plane curves can

be found here [5]. For general facts on arrangements of rational smooth

plane curves, i.e. lines and conics, one can check [23, Section 9], [36], [48] to

mention some. Recently there has been an interest on special arrangements

of conics, as one can check here [43], [29], [45], [13], [10], [11].

Instead of developing further any details on Chern invariants and ap-

plications of these more general arrangements, we finish with the following

questions.

Question 10. What is the optimal interval for Chern slopes of conic-line

arrangements?

Question 11. Which are the arrangements of complex rational plane

curves with the highest Chern slopes?
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