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450 Peter E. Newstead

In this article, we present some of the many open questions on higher
rank Brill-Noether theory and coherent systems on algebraic curves. A pre-
vious problems list including open questions on higher rank Brill-Noether
theory was produced originally in 1991 with an updated version in 1994
for the foundational meeting of the research group Vector Bundles on Al-
gebraic Curves (VBAC). Mercat’s Présentation of 2001 contains a further
list. In 2003, I launched the Brill-Noether project aimed at solving the
basic questions in 10 years. Of course, this was not achieved (I never really
expected it to be), but much progress has been made. The project and
Mercat’s Présentation are available on my website
http://www.liverpool.ac.uk/∼newstead; almost all the questions stated there
are still open in full generality, although they have been solved in specific
cases. The survey article [86] concludes with a list of problems on moduli
spaces of coherent systems and many open questions are stated in various
papers on the subject.

The questions presented here are a mixture of general problems and
more specific ones. They are far from being a complete list. The list of
references is also incomplete; I have concentrated on those which form the
basis for the questions raised in this article. Most of the questions are
unlikely to have a clear-cut answer; partial solutions and counter-examples
are a more plausible aim.

My thanks are due to Usha Bhosle, Leticia Brambila-Paz, Gavril Farkas,
George Hitching, Michael Hoff, Emanuele Macŕı, Alexander Schmitt and
Montserrat Teixidor i Bigas for comments, corrections, suggestions and
additional references. Responsibility for any remaining errors and omissions
is entirely mine.

1. Background and definitions

Brill-Noether theory is concerned with the possible dimensions of the space
of sections H0(E) of a vector bundle on an algebraic variety. This is an
extension of the classical study of meromorphic functions on a smooth
complex algebraic curve (or Riemann surface) C with poles along a given
divisor. This study began with Riemann, Roch and Clifford, followed by a
considerable number of other researchers in the 19th century, most notably
for our purposes Brill and Max Noether. The essence of the theory is the
study of projective embeddings of C. In more recent times, the theory has
played a significant role in the study of moduli spaces of curves.

We are concerned here with the higher-rank analogue; in other words,
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we consider vector bundles over a projective curve C, which we shall sup-
pose to be defined over the complex numbers; many questions arise for
curves defined over other fields (either not algebraically closed or of finite
characteristic), but we shall not address these here. When h0(E) > rk(E),
there is a close connection with morphisms to Grassmannians and with
Quot schemes, also with syzygies and with the geometrical structure of
the moduli spaces of curves. In particular, counter-examples to the Harris-
Morrison slope conjecture have been discovered using divisors in the moduli
space which are defined in terms of rank-2 Brill-Noether loci (see, inter alia,
[42] and [39]).

In what follows, I have attempted to use a consistent set of notations.
This is not the case in the literature.

Except in the final section, we shall suppose that C is smooth and
irreducible. For E a vector bundle, we write µ(E) := degE

rkE for the slope of
E. Recall that a vector bundle E is said to be stable (semistable) if every
proper subbundle F of E satisfies µ(F ) < (≤)µ(E). LetM(n, d) denote the
moduli space of stable bundles of rank n and degree d on C, and fM(n, d)
the compactification of M(n, d) whose points correspond to (S-equivalence
classes of) semistable vector bundles; if gcd(n, d) = 1, M(n, d) = fM(n, d).
The Brill-Noether loci B(n, d, k) ⊂ M(n, d) and eB(n, d, k) ⊂ fM(n, d) are
defined by

B(n, d, k) := {E ∈M(n, d)|h0(E) ≥ k}

and eB(n, d, k) := {[E] ∈ fM(n, d)|h0(grE) ≥ k},

where [E] denotes the S-equivalence class of E and grE is the associated
graded bundle. (In classical notation, B(1, d, k) = W k−1

d ; in the general
situation, various other notations have been used.)

A coherent system on C of type (n, d, k) is a pair (E, V ), where E is
a vector bundle of rank n and degree d, and V is a linear subspace of
H0(E) of dimension k; when n = 1, these are referred to as linear systems.
When k > n, we say that (E, V ) is generated (generically generated) if
the evaluation map V ⊗O → E is surjective (surjective at all but a finite
number of points); if (E, V ) is generated, it determines a map from C to
the Grassmannian Gr(k, n). If (E,H0(E)) is (generically) generated, we
say also that E is (generically) generated.

For any α ∈ R, the α-slope of (E, V ) is defined by

µα(E, V ) :=
d+ αk

n
.
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A coherent system (E, V ) is said to be α-stable (α-semistable) if every
proper subsystem (F,W ) of (E, V ) satisfies µα(F,W ) < (≤)µα(E, V ). Note
that (E, 0) is α-stable (α-semistable) if and only if E is stable (semistable).
It is easy to see that, if k ≥ 1, (E, V ) can be α-semistable only if α ≥
0, d ≥ 0 and α(n − k) ≤ d (note that the last of these conditions is
vacuous if k ≥ n). If n = 1 and α > (≥)0, all coherent systems are α-
stable (α-semistable). For any α, there exists a quasi-projective moduli
space G(α;n, d, k) of α-stable coherent systems, which possesses a natural
compactification eG(α;n, d, k) given by S-equivalence classes of α-semistable
coherent systems. When n = 1, these spaces are independent of α > 0 and
we write them as G(1, d, k) (classically Gk−1

d ).

A key feature for coherent systems is that of a critical value. This can be
defined as a value of α for which there exist α-semistable coherent systems
which become unstable (i.e. not semistable) for values of the parameter on
one side or other (possibly both) of α. There is a simple numerical criterion
for critical values, which are rational numbers with a finite set of possible
denominators. It follows at once that there are finitely many critical values
when k < n and this can be proved also for k ≥ n. We therefore have a
sequence of critical values

0 = α0 < α1 < ... < αL <

(
d

n−k if k < n,

∞ if k ≥ n.

The moduli space can change only at a critical value and we write
Gi(n, d, k) (GL(n, d, k)) for G(α;n, d, k) with αi < α < αi+1 (α > αL).
The moduli space GL(n, d, k) may be referred to as the terminal moduli
space. One can define similarly eGi(n, d, k) and eGL(n, d, k). Further useful
definitions are

Us(n, d, k) :=

(
(E,V ) ∈ G0(n, d, k)

¯̄̄̄
¯ (E, V ) ∈ G(α;n, d, k) for

α > 0, α(n− k) < d

)

and U(n, d, k) := {(E, V ) ∈ Us(n, d, k)|E stable}.
For any critical value αi, one can define flip loci

G−i := {(E, V ) ∈ Gi−1(n, d, k)|(E, V ) 6∈ Gi(n, d, k)})

and

G+i := {(E, V ) ∈ Gi(n, d, k)|(E, V ) 6∈ Gi−1(n, d, k)}.

These describe the wall-crossing at αi.



Higher rank Brill—Noether theory and coherent systems 453

The Brill-Noether number β(n, d, k) is defined by

β(n, d, k) := n2(g − 1) + 1− k(k − d+ n(g − 1)),

where g is the genus of C (suppressed in the notation). When k ≤ d−n(g−
1), B(n, d, k) = M(n, d). Otherwise, the Brill-Noether number is often
referred to as the expected dimension of B(n, d, k) and every irreducible
component ofB(n, d, k) has dimension at least β(n, d, k). Moreover, with no
condition on k, every irreducible component of G(α;n, d, k) has dimension
at least β(n, d, k).

The infinitesimal behaviour of G(α;n, d, k) at (E, V ) is governed by the
multiplication map

µE,V : V ⊗H0(E∗ ⊗K) −→ H0(E ⊗E∗ ⊗K),

where E∗ is the dual of E andK is the canonical line bundle on C. This map
is often referred to as the Petri map at (E, V ). When V = H0(E), we write
also µE. The moduli space G(α;n, d, k) is smooth of dimension β(n, d, k)
at (E, V ) if and only if µE,V is injective. Moreover, if E ∈ B(n, d, k) \
B(n, d, k+1), then B(n, d, k) is smooth of dimension β(n, d, k) at E if and
only if µE is injective. If k > d− n(g − 1), then B(n, d, k + 1) is contained
in the singular set of B(n, d, k).

If we consider bundles of fixed determinant L of degree d, we have
a moduli space M(n,L), Brill-Noether loci B(n,L, k) and moduli spaces
G(α;n,L, k). It follows at once from the above that every irreducible
component of G(α;n,L, k) has dimension at least β(n, d, k) − g, as does
B(n,L, k) when k > d− n(g − 1). However, statements about smoothness
are not necessarily true. In particular, B(2,K, k) has a new Brill-Noether
number

β(2,K, k) := 3g − 3− k(k + 1)

2
,

and a new Petri map

µKE : S
2H0(E) −→ H0(S2E),

arising from the symmetry E ∼= E∗⊗K. All components of B(2,K, k) have
dimension at least β(2,K, k) and, if E ∈ B(2,K, k) \ B(2,K, k + 1), then
B(2,K, k) is smooth of this dimension at E if and only if µKE is injective.

Given a vector bundle F of rank n0 and degree d0, one can define the
twisted Brill-Noether loci B(n, d, k)(F ) by

B(n, d, k)(F ) := {E ∈M(n, d)|h0(E ⊗ F ) ≥ k}
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and similarly for eB(n, d, k)(F ). There is a new Brill-Noether number
β(n, d, k)(F ) defined by

β(n, d, k)(F ) := n2(g − 1) + 1− k(k − n0d− nd0 + nn0(g − 1))

and a new Petri map, defined as the composite of a multiplication map and
a trace map:

µEF : H
0(F ⊗E)⊗H0(E∗ ⊗ F ∗ ⊗K) −→ H0(End(F ⊗E)⊗K)

−→ H0(EndE ⊗K)

with the same significance as before. The simplest examples of such loci
are generalised theta divisors, i.e. divisors of the form

{E ∈M(n, d)|h0(E ⊗ F ) > 0},

where F is a fixed vector bundle of rank n0 such that deg(E⊗F ) = nn0(g−
1). These have been studied extensively over many years, but the extension
of this to arbitrary twisted Brill-Noether loci is more recent. Here we could
also allow V to vary in a family, but we shall not pursue this further here.

One can extend this idea still further by choosing a homogeneous repre-
sentation ρ : GLn(C)→ GL(H), where H is a vector space (this includes,
for example, tensor power representations) and defining

B(ρ, n, d, k)(F ) := {E ∈M(n, d)|h0(Eρ ⊗ F ) ≥ k),

where Eρ is the vector bundle induced from E by ρ. Again there is a similar
definition for eB(ρ, n, d, k)(F ). For all these twisted Brill-Noether loci, there
is an obvious concept of coherent system.

2. Basic questions

Let C be a smooth projective curve defined over C. The following are basic
questions in the Brill-Noether theory of C.

Question 2.1. For what values of (n, d, k) is B(n, d, k) non-empty?

Question 2.2. What are the connected components of B(n, d, k)? In par-
ticular, for what values of (n, d, k) is B(n, d, k) connected?

Question 2.3. What are the irreducible components of B(n, d, k)? In par-
ticular, for what values of (n, d, k) is B(n, d, k) irreducible?
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Question 2.4. What is the dimension (of each component) of B(n, d, k)?

Question 2.5. Does B(n, d, k) have singularities outside B(n, d, k + 1)?
Could B(n, d, k) be non-reduced?

Similar questions can be asked for eB(n, d, k), B(n,L, k) and the twisted
Brill-Noether loci. For G(α;n, d, k), the first four questions make sense, but
Question 5 needs to be replaced by

Question 2.6. Is G(α;n, d, k) smooth?

For n = 1 (the classical case), the answers to the above questions are
all known (for general C) (see [1] for this and much more).

(i) For any C, G(1, d, k) and B(1, d, k) are non-empty if β(1, d, k) ≥ 0
and connected if β(1, d, k) > 0.

(ii) For general C, G(1, d, k) is smooth of dimension β(1, d, k) (in partic-
ular, it is empty if β(1, d, k) < 0) and it is irreducible if β(1, d, k) > 0.

(iii) For general C, B(1, d, k) has dimension β(1, d, k) if

0 ≤ β(1, d, k) ≤ g,

is irreducible if β(1, d, k) > 0, and its singular set coincides with
B(1, d, k + 1) if β(1, d, k) < g.

Properties (ii) and (iii) follow from the fundamental fact that, for the gen-
eral curve C of genus g, the Petri map µE is injective for every line bundle
E on C. A curve with this property is said to be a Petri curve (the terms
Petri general and Brill-Noether-Petri are often used in the literature, Brill-
Noether general being reserved for a weaker concept).

For the twisted Brill-Noether loci B(1, d, k)(F ), all this remains true,
provided that, in (ii) and (iii), we take F to be general as well as C [44, 73,
108, 48] (see also [49, Theorem 2.1]).

If n ≥ 2, none of the above is true for all values of (d, k) with the possible
exception of connectedness. In fact, the following question remains (to my
knowledge) open.

Question 2.7. Is it true that, if B(n, d, k) 6= ∅ and β(n, d, k) > 0, then
B(n, d, k) is connected?
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There are some cases in which there are good and expected results
for B(n, d, k), for instance for d ≤ 2n [21, 76, 78] (hence also g ≤ 3)
and hyperelliptic curves [25]. There are already considerable gaps in our
knowledge for non-hyperelliptic curves of genus 4 [66]. In general, the
condition β(n, d, k) ≥ 0 is not sufficient for non-emptiness of β(n, d, k) (see,
for example, [21]), nor is it necessary even when C is general (examples
can be obtained using the results of [77]). However there is a wide range
of values for (n, d, k) for which, if C is general, there exists a component
of B(n, d, k) of the expected dimension and generically smooth; this was
proved in [99] (see [34] for the smoothness) using degenerations and in
[77] using elementary transformations. There is an interesting question in
connection with this.

Question 2.8. Are the components of B(n, d, k) constructed in [99] and
[77] the same?

There is a third construction in [25], which overlaps with those of [99]
and [77]. One can ask whether this also gives the same component when
all are defined.

Question 2.9. What is a “good” definition for Brill-Noether general for
rank n?

At first sight, this looks like a good question. However, since some of
the answers to the basic questions are negative even on the general curve,
and others are unknown, it is difficult to specify any specific conditions
which must be satisfied on the general curve except by looking at specific
values for (d, k). This certainly allows us to state conditions which are
necessary for a curve to be called Brill-Noether general, and one can also
find sufficient conditions, but these are some distance apart.

Question 2.10. What is a “good” definition of α-stability for twisted co-
herent systems?

This, on the other hand, is an excellent question. Recently, Schmitt
has proposed two definitions for coherent systems of type (ρ, n, d, k)(F ),
where F is a line bundle. The obvious extension of the standard definition
for standard coherent systems is one of these, but presents some problems
over the permissible range for α [97]. The second one is more complicated,
but fits well with Schmitt’s concept of decorated bundles and has some
interesting features [98]. A key requirement for a good definition is that it
leads to a construction of moduli spaces.
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3. Clifford indices and gonalities

In determining the possible dimensions for the spaces of sections of line
bundles on C, the starting point is the classical theorems of Riemann-Roch
and Clifford. In higher rank, the Riemann-Roch Theorem generalises for
any vector bundle: if E has rank n and degree d, then

h0(E)− h0(E∗ ⊗K) = d− n(g − 1).

For Clifford’s Theorem, we have to restrict to semistable E, when we get,
for 0 ≤ d ≤ n(2g − 2),

h0(E) ≤ d

2
+ n.

Note that, if E is semistable and d < 0, h0(E) = 0, while, if d > n(2g− 2),
h0(E) = d− n(g − 1).

These results depend only on the genus of C. To take the complex
structure of C into account, we need more refined invariants. The first of
these is the Clifford index, defined as follows. For any vector bundle E of
rank n and degree d,

Cliff(E) :=
1

n
(d− 2(h0(E)− n)) = µ(E)− 2h

0(E)

n
+ 2.

For g ≥ 4, the Clifford indices of C are then defined by

Cliffn(C) := min
E

(
Cliff(E)

¯̄̄̄
¯ E semistable of rank n
h0(E) ≥ 2n, µ(E) ≤ g − 1

)
.

Note that, using Serre duality, we can extend this definition to the full range
0 ≤ d ≤ n(2g− 2). For n = 1, we get the classical Clifford index, which we
denote here by Cliff1(C). We can extend the definition to g ≥ 2 by defining
Cliffn(C) to be 0 when g = 2 and when C is hyperelliptic of genus 3, and to
be 1 when C is non-hyperelliptic of genus 3. (Clifford indices were defined
in [59], where they were denoted by γ0n; the notation γn has also been used,
but this was used in [59] with a different meaning.)

We can define still more refined invariants

gonn,k := min{d|∃ semistable E of rank n with h0(E) ≥ k}.

Classically, gon1,2 is known as the gonality of C and we shall refer to all the
gonn,k as gonalities. We shall also define gon

s
n,k to be the corresponding

quantities when we replace “semistable” by “stable” in the definition.
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Curves of genus 0 or 1 are excluded from the definition of Clifford index
and all gonalities are known in these cases, so we assume for the rest of this
section that g ≥ 2.

It is conventional to represent the non-emptiness of B(n, d, k) graph-
ically by plotting λ := k

n against µ. On this diagram, the upper bound
given by Clifford’s Theorem is the line λ = µ

2 +1 (valid for 0 ≤ µ ≤ 2g−2).
However, it is certainly possible to find smaller upper bounds. Mercat has
proposed the following problems.

Question 3.1. Find a function f (defined for 0 ≤ µ ≤ 2g − 2) as small as
possible such that all eB(n, d, k) with λ > f(µ) are empty.

Question 3.2. Find a function h (defined for 0 ≤ µ ≤ 2g − 2) as large as
possible such that all B(n, d, k) with λ < h(µ) are non-empty.

Precise answers are known for g = 2, g = 3 and hyperelliptic curves
of genus 4 [66] and 5 [67]; in fact, in these cases, all non-empty Brill-
Noether loci are known. For hyperelliptic curves of any genus, there are
very good results; in fact, if one weakens the last question to insist only that
B(n, d, k) 6= ∅ for some (n, d, k) with d = nµ and k = nλ, then again there
is a precise answer [25]. For bielliptic curves, one can take h(µ) = µ

2 [4]
and, over a certain part of the range for µ, one can also take f(µ) = µ

2 [79].
On any curve, in the range 0 < µ < 2, we have f(µ) = h(µ) = 1

g (µ− 1)+ 1
[21, 76], with a corresponding result for 2g − 4 < µ < 2g − 2.

For fixed n, the best known general result for f is f(µ) = µ−Cliffn(C)
2 +1

given by the Clifford index, and, for h, the bound of Teixidor [99] and
Mercat [77] as extended in [25]. The bound for f can certainly be improved
(see, for example, the diagrams for 4 ≤ g ≤ 6 in [66, 67, 68] and the example
in [75] for g = 41). All of these bounds are piecewise linear (but not
necessarily continuous). However, for a large class of curves on K3 surfaces,
a recent result [43] establishes the quadratic bound f(µ) < 1+ g

4(g−1)2µ
2+ 1

g

for µ ≤ g − 1 and the positivity of the Brill-Noether number also takes a
quadratic form (although it does not provide a bound). It is even possible
that the “true” bounds are fractal.

For twisted Brill-Noether loci, non-emptiness and smoothness results
somewhat analogous to those of [99] and [77] have been obtained in [49].
However, there are extra numerical conditions required in the proof.

Question 3.3. Can the additional conditions in [49, Theorem 1.2] for the
non-emptiness of B(n, d, k)(F ) and the existence of a component which is
generically smooth of dimension β(n, d, k)(F ) be relaxed?
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We have clearly Cliffn(C) ≤ Cliff1(C) and indeed Cliffam(C) ≤ Cliffm(C)
for any positive integer a. The following question seems natural.

Question 3.4. Is it true that Cliffn(C) ≤ Cliffm(C) when n ≥ m?

An implication of an affirmative answer to this question for a given n is
that every bundle computing Cliffn(C) would then be primitive (i.e. both
E and E∗ ⊗K are generated) [60]. However, the answer can be negative;
for n = 3, there are examples in [64].

In [79], Mercat made a conjecture proposing upper bounds for h0(E) in
the range 1 ≤ µ(E) ≤ 2g − 3. The main implication of this conjecture can
be stated as

Conjecture 1. Cliffn(C) = Cliff1(C).

This has come to be known as Mercat’s Conjecture. The conjecture was
originally made for general C, but it makes sense for any C.

Question 3.5. For which values of n ≥ 2 and for which curves does
Mercat’s Conjecture hold? More generally, find a good lower bound for
Cliffn(C).

The conjecture always holds if Cliff1(C) ≤ 2, i.e. for hyperelliptic
curves, trigonal curves, tetragonal curves, including bielliptic curves, and
smooth plane curves of degree 6. It has been proved recently that it holds
for arbitrary smooth plane curves [43]. For the class of curves on K3 sur-
faces mentioned above, the exact value of Cliffn(C) is calculated for g ≥ n2

and, for n ≥ 3, it is strictly less than Cliff1(C) except for n = 3, g = 10, 14.
When n = 2, the conjecture also holds for general c-gonal curves with
c ≥ 5 and g ≥ 4c − 4 (possibly for smaller g as well) [63], for arbitrary
c-gonal curves with g ≥ (c−1)(2c−4) [41], and for C general [3]. However,
there exist C (even having maximal Clifford index Cliff1(C) = bg−12 c) for
which it does not hold [40, 61, 41]; there are indeed Petri curves for which

Cliff2(C) < Cliff1(C) [74]. Moreover, Cliff2(C) ≥ min{Cliff1(C),
gon1,5−4

2 }
[59] and this bound can be attained for any value of Cliff1(C) [61].

For n = 3, the conjecture fails for general C of genus 9 or 11 [52] and
for any smooth curve lying on a K3 surface with g = 9 or g ≥ 11 and

Cliff1(C) =
j
g−1
2

k
[41]. For the best bound known to me which covers all

curves, see [64]. In particular, if Cliff1(C) = 3, we have
8
3 ≤ Cliff3(C) ≤ 3.
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Question 3.6. Do there exist curves with Cliff1(C) = 3 and Cliff3(C) =
8
3?

There are severe restrictions on the existence of such a curve [65]; in
particular, one must have 9 ≤ g ≤ 12.

Turning now to looking at gonalities, we have the following general
question.

Question 3.7. What are the values of gonn,k, gon
s
n,k for a general curve?

When is gonn,k = gon
s
n,k?

All values of gon1,k = gons1,k are known for Petri curves, and also for
hyperelliptic curves, trigonal curves, general tetragonal curves, bielliptic
curves and smooth plane curves. For n ≥ 2, the values of dn,k and dsn,k are
known for g = 2 and g = 3 and for hyperelliptic curves of genus 4 or 5.

The gonality gonn,2n is particularly interesting as bundles of this gonal-
ity are the first candidates for computing the Clifford index. This happens
if and only if dn,2n = n(Cliffn(C) + 2). In fact, it is easy to see that, on a
general curve of genus g, there exist strictly semistable bundles of any rank
n ≥ 2 and degree d = n(Cliff1(C) + 2) = nbg+32 c, so this certainly holds if
Mercat’s Conjecture holds, in particular if n = 2. On the other hand, it is
not obvious that there exist stable bundles with this property. In general,
one can ask the following question.

Question 3.8. Which bundles compute the Clifford index? Which, if any,
stable bundles do so?

For hyperelliptic and trigonal curves, the bundles computing Cliffn(C)
are all strictly semistable. For hyperelliptic curves, they are all direct sums
of copies of the hyperelliptic line bundle [94]; for trigonal curves of genus g ≥
5, they are direct sums of copies of the unique trigonal line bundle [62, 50].
For n = 2,[63] contains several further results as follows. The only bundle
computing Cliff2(C) = Cliff1(C) for a smooth plane curve of degree δ ≥ 5
is H ⊕ H, where H is the hyperplane bundle. For the general tetragonal
curve of genus g ≥ 27, the only bundle computing Cliff2(C) = Cliff1(C) is
Q⊕Q, where Q is the unique tetragonal bundle. For c ≥ 5, a similar result
holds for the general c-gonal curve of genus g > max{3c2 − 8c + 7, 46}.
These lower bounds can certainly be improved.

In rank 2, for C general, we have d2,4 = ds2,4 = g+3 if g is odd [104, 40]
and d2,4 = g + 2 if g is even. This leaves the following question.
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Question 3.9. Does there exist a stable bundle of rank 2 and degree g+2
with h0 = 4 on a general curve of even genus g?

The answer is negative for g ≤ 10, although there do exist Petri curves
of genus g = 10 for which B(2, 12, 4) 6= ∅ [45]. To my knowledge, the
answer to the question is not known for g ≥ 12. To complete the picture
for bundles of rank 2 computing Cliff2(C), we can ask

Question 3.10. Does there exist a bundle E computing Cliff2(C) on a
general curve with h0(E) > 4?

It is shown in [3] that there are no such bundles on a curve of even
genus g ≥ 10, while, on a curve of odd genus g ≥ 15, the only possibility
is for a semistable bundle E of degree 2g − 2 with h0(E) = g+3

2 . It is not
known whether any such bundle E exists, but, if it does, detE 6∼= K. For
6 ≤ g ≤ 9, g = 11 and g = 13, there are bundles of determinant K with the
requisite number of sections. For g = 4 and g = 5, there are no candidates
for such a bundle.

Much less is known when n = 3.

Question 3.11. What is the value of Cliff3(C) for a general curve C of
genus g? Which bundles compute Cliff3(C)?

Certainly Cliff3(C) = Cliff1(C) for g ≤ 6, but (to my knowledge) the
answer is not known for g = 7 (here 8

3 ≤ Cliff3(C) ≤ Cliff1(C) = 3). For
g = 9, we have Cliff1(C) = 4 and Cliff3(C) =

10
3 [52, 64]; moreover, in this

case, Cliff3(C) is computed by a stable bundle of degree 16 with h0 = 6.
For g = 11, it was shown in [52, 64] that 4 ≤ Cliff3(C) < Cliff1(C) = 5;
recently, the exact value Cliff3(C) =

14
3 was determined in [43]. In general,

the results of [43] imply that, for C general of genus g ≥ 9, we have

2

3
(g − 1)− 2

3

¹
g

3

º
≤ Cliff3(C) ≤ Cliff1(C) =

¹
g − 1
2

º
.

There are many questions that can be asked for special curves. An
interesting case is that of smooth plane curves of degree δ ≥ 7. As seen
above, we know that Cliffn(C) = Cliff1(C) = δ − 4, but, to my knowledge,
the following question remains open.

Question 3.12. For C a smooth plane curve of degree δ ≥ 7, is it true
that the only bundles computing Cliffn(C) are direct sums of copies of the
hyperplane bundle H?
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4. Fixed determinant

We again assume that g ≥ 2. Let L be a line bundle of degree d. The näıve
lower bound β(n, d, k)−g for the dimension of a component of G(α;n,L, k)
(and, when k ≥ d − n(g − 1), that of a component of B(n,L, k)) cannot
always be attained, although we do expect it to apply for the general L of
any fixed degree; for circumstances in which it can be attained in the case
n = 2, see [107]. Based on work of Osserman [89, 90], we pose the following
question.

Question 4.1. Is it true that the dimension of G(α;n,L, k) at (E, V ) is
at least β(n, d, k)− g + h1(L)

¡k
n

¢
? Can this lower bound be attained?

Following Osserman’s work, an affirmative answer to the first question
has been given by Zhang [111] for any Petri curve when (E,V ) is generi-
cally generated. Osserman also gave some examples in which the bound is
attained and it is shown in [46] that the bound is attained for k ≤ n + 1
under a mild generality condition on L. That some such condition is nec-
essary is already implicit in Osserman’s work. For k > n + 1, the second
question remains open.

For the rest of this section, we fix n to be 2. The case of B(2,K, k)
is particularly interesting. As indicated in Section 1, there is a modified
Brill-Noether number β(2,K, k) := 3g − 3 − k(k+1)

2 in this case. Many
years ago, Bertram and Feinberg [8] conjectured that, on a general curve
C, B(2,K, k) 6= ∅ if and only if β(2,K, k) ≥ 0; the question was also asked
by Mukai in the form of two problems [81, 82]. The “only if” part of this
conjecture was proved by Teixidor [105], who showed that the Petri map µKE
is injective for all semistable E of rank 2 and determinant K. It therefore
remains to consider the following question.

Question 4.2. Is it true that B(2,K, k) 6= ∅ whenever β(2,K, k) ≥ 0?

This question has been attacked by degeneration methods [103, 110]
and, more recently, by cohomological methods [69], which reduce the prob-
lem to a (complicated) combinatorial one. In fact, this shows that, if
B(2,K, k) is non-empty for one value of g, then this also holds for all
greater values of g. The answer is now known to be affirmative for k ≤ 9
and, correspondingly, for g ≤ 19 (for the case k = 8, g = 13, see [39];
k = 9, g = 16 is even more recent and, so far, unpublished). In the case
k = 10, we can reduce the problem to two particular values of g. In fact,
B(2,K, 10) 6= ∅ for g ≥ 22 (for g = 22, see [38]).
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Question 4.3. Is B(2,K, 10) non-empty for g = 20 or g = 21?

It is also known that B(2,K, k) 6= ∅ whenever β(2,K, k) ≥ 0 for k = 11,
k = 15, k = 16, k = 20 and k = 24; in fact, the calculations in [69] and the
papers mentioned above give complete answers for all genera g < 110 except
for 20, 21, 27, 28, 32− 36, 52, 58, 65, 66, 78, 86− 88, 93− 96. The expectation
is that these are not genuine exceptions.

A particularly interesting fact is that β(2,K, k) can be greater than
β(2, 2g − 2, k), so there is the possibility that B(2,K, k) is contained in a
superabundant component of B(2, 2g − 2, k) (i.e., one of dimension greater
than β(2, 2g − 2, k)). The first time this happens is for g = 5 [87]. This
can be generalised to B(2m,m(2g − 2), k) by considering bundles of rank
2m with a K-valued symplectic structure E ∼= E∗ ⊗ K [2]; the required
lower bound for the genus for this construction to give a superabundant
component is g = 50.

We can also consider B(2, L, k) when L 6∼= K. This case is of course
covered by Question 4.1. It is possible to study B(2, L, k) using cohomo-
logical methods similar to those of [69]. This is done in the case when d
is odd in [70]. As for the case L = K, we reduce the problem (at least for
general L) to a combinatorial one.

5. Butler’s Conjecture

Suppose that (E, V ) is a generated coherent system on C of type (n, d, k)
with k > n. We define a bundle DE,V by the exact sequence

0 −→ D∗E,V −→ V ⊗OC −→ E −→ 0.

Provided h0(E∗) = 0 (which is certainly the case if E is semistable), dual-
ising this sequence gives rise to a coherent system D(E, V ) := (DE,V , V

∗).
This is known as the dual span construction. The bundle D∗E,V is often re-
ferred to as a kernel bundle or syzygy bundle and denoted by ME,V . When
V = H0(E), we write DE and ME for DE,V and ME,V . Now let S0(n, d, k)
be the open subset of G0(n, d, k) consisting of generated coherent systems.
In [33], D. C. Butler made the following conjecture.

Conjecture 2. Let C be a general curve of genus g and n, d, k positive
integers. Then, for a general (E, V ) ∈ S0(n, d, k), D(E, V ) ∈ S0(k−n, d, k).
Moreover, S0(n, d, k) and S0(k − n, d, k) are birational.
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Here, by saying that (E,V ) is general, we mean that it belongs to some
dense open subset of S0(n, d, k). Butler’s Conjecture is often stated in the
form of the following question.

Question 5.1. For a general (E, V ) ∈ S0(n, d, k) on a general curve C of
genus g ≥ 1, is DE,V semistable?

In general, this is slightly weaker than Conjecture 2, but is equivalent
to it when n = 1; note that, in this case, the hypothesis (E, V ) ∈ S0(1, d, k)
is equivalent to the simple assertion that (E,V ) is generated. This case
has been examined by a number of authors and finally proved to be true in
[13]. In fact, when n = 1 and g ≥ 3, DE,V is very frequently stable, rather
than just semistable. This is always true if k ≤ 5 [12] and also if k ≥ 6 and
g ≥ 2k− 6. For g = 3, the problem of stability would be completely solved
by an answer to the following question.

Question 5.2. Suppose that C is a non-hyperelliptic curve of genus g = 3.
Is it true that, for general (E, V ) ∈ G(1, 2k, k) with k ≥ 6, DE,V is stable?

An interesting concept, which dates back to Mumford, is that of linear
stability for a generated rank 1 coherent system (E, V ) ∈ G(1, d, k). Linear
stability is linked with the Chow stability of the image of C in Pk−1 under
the map defined by (E, V ); for some recent work on this link, see [28].
Stability (semistability) of DE,V implies linear stability (semistability) of
(E, V ), but the converse is not clear.

Question 5.3. Suppose that (E, V ) ∈ G(1, d, k) is generated and linearly
stable (semistable). Is it true that DE,V is stable (semistable)?

In [80], this was shown to be true in many cases and some counterex-
amples were given. When V = H0(E), the question has been answered in
the affirmative for Petri curves and hyperelliptic curves [36], but counter-
examples are known for smooth plane curves of genus 7 [35].

There is another condition on bundles, namely that of cohomological
stability. In fact, cohomological semistability is equivalent to semistability,
but cohomological stability is stronger than stability. The concept has been
used in proving Butler’s Conjecture in some cases (see, for example, [80]).

Note that any generated coherent system of type (n, d, n+ 1) is of the
form D(E, V ) for some generated (E, V ) of type (1, d, n + 1). If one can
prove that none of these D(E, V ) is stable, it follows that B(n, d, n + 1)
contains no generated bundles.
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Question 5.4. Let C be a general curve. Do there exist non-empty Brill-
Noether loci B(n, d, n+ 1) which contain no generated bundles?

On special curves, such loci exist even for n = 1. On a smooth plane
curve of degree 7, the example constructed in [35] shows that B(2, 15, 3),
which is non-empty, contains no generated elements. So far as I am aware,
this particular example has not previously been observed.

For higher rank, much less is known. Conjecture 2 is true on any curve
of genus g ≥ 2 when V = H0(E) and d > 2ng (see [32],[76], [24]). It
is also proved in [24] that the conjecture holds when V = H0(E) and
d = 2ng provided C is not hyperelliptic. Another interesting fact proved
in [24] is that, if (E, V ) ∈ S0(n, d, k) and D(E, V ) ∈ S0(k − n, d, k), then
(E, V ) ∈ G(α;n, d, k) for all α > 0, or, in other words, (E, V ) ∈ Us(n, d, k);
this is a possible source of counter-examples to Butler’s Conjecture.

Question 5.5. Does Conjecture 2 hold for (E, V ) ∈ S0(2, d, 4)?

This is the first case to consider for n ≥ 2 where V 6= H0(E). The
conjecture is shown to be true for a range of values of d when C is a
general curve of genus g ≥ 3 in [24], but there are many other values to be
considered.

6. Coherent systems on the projective line

It is well known that the only vector bundles on P1 are direct sums of line
bundles OC(a). This means that the Brill-Noether theory is completely
trivial. However, there is a very interesting theory of coherent systems (see
[53, 55, 56, 88], also [92], where the closely related concept of holomorphic
triples is studied).

The spaces G(α;n, d, k) are always smooth and irreducible of dimension
β(n, d, k) whenever they are non-empty. Moreover, the set I(n, d, k) :=
{α|G(α;n, d, k) 6= ∅} is always an open interval (possibly semi-infinite) and
all Gi(α;n, d, k) are birational.

Question 6.1. When is I(n, d, k) non-empty? If I(n, d, k) 6= ∅ and we
write I(n, d, k) =]αm, αM [, where αM can be∞, what are the values of αm
and αM?

In many cases, the answer is known; for example, if d = an for some
integer a ≥ 2 and k ≥ n, then I(n, d, k) 6= ∅ if and only if β(n, d, k) =
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k((a + 1)n − k) − n2 + 1 ≥ 0. Moreover, if this condition holds, then
I(n, d, k) =]0,∞[. A complete answer is also known when k ≤ 3. For
k < n, there is a known upper bound for αM , so αM 6= ∞. For k ≥ n,
there are conjectures concerning the non-emptiness of I(n, d, k) in [88] and,
in particular, we can ask the following question.

Question 6.2. Suppose that d = an − t with a ≥ 2, 1 ≤ t ≤ n − 1 and
k ≥ n. If G(α;n, d, k) is non-empty for some α, is it true that αM =∞?

I know of no cases in which the answer is no, but there is an indication
for possible counter-examples in [88].

Question 6.3. Can one determine the flip loci for coherent systems of type
(n, d, k) on P1 and use this information to compute Hodge and Poincaré
polynomials of Gi(n, d, k)?

In the case k = 1, this is done in [56] and the information is suffi-
cient to determine the Hodge polynomials of the smooth projective varieties
Gi(n, d, 1). In the general case, the description of the flip loci in [17] works
for the case g = 0, but these loci are more complicated than in the case
k = 1 and it has not so far been possible to carry out the cohomological
calculations.

7. Coherent systems on elliptic curves

When g = 1, the basic questions for G(α;n, d, k) are fully answered in [54]
(see also [91] for holomorphic triples). Precise conditions for non-emptiness
are given and are entirely as expected, and all non-empty G(α;n, d, k)
are smooth and irreducible of the expected dimension. As with P1, the
set I(n, d, k) := {α|G(α;n, d, k) 6= ∅} is always an open interval and all
Gi(α;n, d, k) are birational. In fact, if it is non-empty,

I(n, d, k) =

(
]0, d

n−k [ if k < n

]0,∞[ if k ≥ n.

There is a very interesting use of Fourier-Mukai transforms in [47], which
shows that G0(n, d, k) ∼= G0(n+ad, d, k) (and GL(n, d, k) ∼= GL(n+ad, d, k)
if k < n) for all integers a. In particular, the birational type of G(α;n, d, k)
depends only on n mod d. The following question is raised in [58].

Question 7.1. Let L be a line bundle of degree d. Is G(α;n,L, k) a ratio-
nal variety?
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This is proved to be true when gcd(n, d) = 1 and in some other cases
in [58].

The main question remaining is the analogue of Question 6.3.

Question 7.2. When g = 1, can one determine the flip loci for coherent
systems of type (n, d, k) and use this information to compute Hodge and
Poincaré polynomials of Gi(n, d, k)?

For some computations in this direction, covering also the fixed deter-
minant case, see [58]. In particular, the Hodge polynomial is computed for
all Gi(2 + ad, d, 1).

The results of [54] can be used to obtain results on coherent systems on
bielliptic curves [5].

8. Coherent systems for g ≥ 2

We now assume that g ≥ 2. There is a version of Clifford’s Theorem for
α-semistable coherent systems (E, V ) of type (n, d, k) (just replace h0(E)
by k in the classical statement) [57]. There are also obvious definitions of
Clifford indices Cliffα,n(C), but I do not know of any work on the subject
outside that of [57].

Question 8.1. What values can Cliffα,n(C) take on a curve with specified
Cliff1(C)?

Somewhat related to this question, we have

Question 8.2. Find a good bound (either dependent on or independent
of α) for h0(E) when (E, V ) ∈ G(α;n, d, k).

It is known that such a bound exists [17], but this bound can certainly
be improved.

The major new feature for coherent systems is the variation of the
moduli spaces with α. Recall that Us(n, d, k) consists of those (E, V ) which
are α-stable for all α > 0. The following question was raised by Ballico in
[5].

Question 8.3. What is the smallest integer d0n,k such that, for all d ≥ d0n,k,
there exists a coherent system (E, V ) ∈ U(n, d, k) with (E, V ) generated
and both the Petri map and the natural map ψ :

Vn(V ) → H0(detE)
injective?
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Ballico proved that d0n,k exists and gave a crude estimate for it. The
significance of the injectivity of the natural map ψ is that it is equivalent
to saying that the image of C under the map to projective space defined
as the map to Gr(k, n) given by (E, V ) followed by the Plücker embedding
is non-degenerate. It is clear that d0n,k ≥ dn,k. The map ψ is investigated

in [102] in the case where V = H0(E) and injectivity is proved for general
E when d = ng + 1 and d = ng + 2. It follows that, in these cases, ψ is
injective for all (E, V ) with V any subspace of H0(E). This suggests the
possibility that d0n,n+1 = ng + 1 and d0n,n+2 = ng + 2.

A somewhat similar question (stated as a “Model Theorem”) was pro-
posed in [86].

Question 8.4. Suppose that n ≥ 2. Does there exist an integer d0(n, k)
with the following properties

(a) G(α;n, d, k) 6= ∅ if and only if α > 0, (n− k)α < d and d ≥ d0;

(b) B(n, d, k) 6= 0 if and only if d ≥ d0;

(c) if d ≥ d0, then U(n, d, k) 6= ∅?

For k < n, this is true and d0(n, k) = n − g(n − k) ≥ 0 [21, 106, 19];
moreover, if d ≤ 2n, all the non-empty moduli spaces are irreducible of
the expected dimension [19]. More generally, if we drop the “only if” from
(a) and (b) and slightly modify (b), this is again true with the same value
of d0(n, k) as is given by Teixidor’s bound mentioned in connection with
Question 3.2 [106].

For k < n, the moduli space GL(n, d, k) is described explicitly in [16]
(see also [17]). There are also good results for k = n and k = n + 1 and
some information for k > n + 1. [17] contains also a description of the
flip loci and estimates of their codimensions. If both flip loci have positive
codimension, then there exist (E, V ) belonging to both Gi−1(n, d, k) and
Gi(n, d, k). Some cases for low values of k are worked out in detail. Very
much related to this is the following question.

Question 8.5. Suppose that C is general and k > n. Is it true that, if
G(α;n, d, k) 6= ∅ for some α > 0, then GL(n, d, k) 6= ∅?

One expects that this question usually has an affirmative answer, but
there are counter-examples [19]. This shows in particular that the answer
to Question 8.4 may also be negative. Without any assumption about C,
one can also ask the following question, which is simpler than the previous
two questions.



Higher rank Brill—Noether theory and coherent systems 469

Question 8.6. When is Us(n, d, k) (U(n, d, k)) non-empty?

Papers which address this question directly include [20, 26, 27, 24, 23].
When C is general and k = n + 1, the problem is related to Butler’s
Conjecture and is completely solved for Us(n, d, n+ 1) and solved in most
cases for U(n, d, n + 1) [13]. For n = 2, k = 4, see [104, 40, 24]; here,
U(2, d, 4) is non-empty for g ≥ 4 and d ≥ g+3 and this is best possible for
g odd. For g even, Us(2, g + 2, 4) = ∅ (hence also U(2, g + 2, 4) = ∅) for
g ≤ 10. The following question (a version of Question 3.9) remains.

Question 8.7. For a general curve C of even genus g ≥ 12, is Us(2, g+2, 4)
non-empty?

Finally, we consider the question of a more detailed study of the wall-
crossings, leading to a comparison of the cohomology of Gi−1(n, d, k) and
that of Gi(n, d, k) and hopefully, by induction, relating the cohomology of
G0(n, d, k) to that of GL(n, d, k).

Question 8.8. Can one obtain an expression for the change in the Hodge-
Deligne polynomial (or Poincaré polynomial) when crossing the critical
value αi?

We use the term Hodge-Deligne polynomial because of the possibility
of singularities in the moduli spaces. We have already discussed the case
g = 0 (Question 6.3, where there are complete results for (n, d, 1), and g = 1
(Question 7.2). For type (2, L, 1), with L a line bundle of degree d, this has
been worked out by Thaddeus [109], and it is easy to deduce the results for
type (2, d, 1). In this case, the wall-crossings are genuine flips, which makes
the calculations easier. These results were reproved in [84]. The geometry
of flips was discussed in the nicest case in [18] and results obtained for type
(n, d, n− 2) with n ≥ 3 and critical values close to the upper bound d

2 for
α. For (3, d, 1), see [83]. The case (4, d, 1) is partially covered in the thesis
of M. Tommasini and a start made on (2, d, 2) (unpublished - I hope that
some of this work might be published soon). The related topic of triples of
rank (2, 2) is discussed in [85].

9. Final remarks

In this section, we look at some topics not covered above.
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Remark 9.1. One can study Brill-Noether loci for singular curves; the
definition of coherent systems in [51] works for any polarised curve (con-
nected scheme of pure dimension 1 with a polarisation). Most work has
concentrated on the case of a curve with nodal (or possibly cuspidal) sin-
gularities. Brill-Noether theory on irreducible nodal and cuspidal curves
has been studied, for example, in [9, 15]. In particular, the results of [21]
are generalised in [9], while kernel bundles are discussed in [15], including
a proof of semistability (stability) in the case d ≥ 2ng (d > 2ng) (compare
[32]); [15] also contains generalisations of the results of [76], [78]. Coherent
systems on integral curves are discussed in [6, 7] and on irreducible nodal
curves in [10], where results from [16] and [17] are generalised, including
a description of GL(α;n, d, k) when k ≤ n. The case of a nodal curve of
(arithmetic) genus 1 is discussed in [11]. Open questions are in general
similar to those for smooth curves. One problem which has been solved in
the smooth case, but remains open in the nodal case is the following.

Question 9.1. For a general (E, V ) ∈ G(1, d, k) on a general nodal curve,
is DE,V semistable?

The paper [14] is interesting in its own right, but contains results which
are necessary for solving this problem.

For a reducible nodal curve, the components of the moduli spaceM(n, d)
were determined in [100, 101] together with a useful criterion for the exis-
tence of stable bundles. For recent work on coherent systems on reducible
nodal curves, see [30, 31]. The failure of Butler’s conjecture on a reducible
nodal curve with 2 components and one node is discussed in [29].

Remark 9.2. The constructions in [51] also work in finite characteristic.
There is no doubt that much of the theory applies in that case, but, to my
knowledge, there has been no systematic work on this.

Remark 9.3. If E is a bundle of rank n, one can define the Segre invariant
of rank r in terms of the maximal degree of a subbundle of rank r. There is
substantial study of these invariants, including the stratifications ofM(n, d)
which they determine [22, 96].

Question 9.2. How are the Segre stratifications related to the stratifica-
tion induced by the Brill-Noether loci in M(n, d)?

Segre stratifications for the moduli space of coherent systems are defined in
[95]. These should give information on Question 9.2 and can also be used
to describe certain wall-crossings [95].
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Remark 9.4. The problem of Brill-Noether loci in rank 1 for general
curves of fixed gonality m := d1,2 has recently been solved [71](following
[93, 37, 72]). The methods involve degeneration to a chain of elliptic curves
and some intricate combinatorial computations using the splitting type of
the direct images of line bundles under the naturalm-fold covering C → P1.

Question 9.3. Study the Brill-Noether loci and coherent systems in higher
rank for a curve C through the morphism C → P1 induced by a line bundle
of degree d1,2.

In view of the somewhat complicated arguments of [71], this looks a
hard problem in general. One could start with the trigonal case, where the
rank-1 situation has been well understood for some time.

Remark 9.5. One can ask for Torelli theorems for Brill-Noether loci and
moduli spaces of coherent systems, in other words, whether these loci de-
termine the curve.

Question 9.4. To what extent do Brill-Noether loci and moduli spaces of
coherent systems determine the curve C?
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