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Abstract

Our main goal is to study the periodic orbits of linear flows on a
real, connected Lie group. Since each linear flow ϕt has a derivation
associated D, we show that the existence of periodic orbits of ϕt is
based on the eigenvalues of the derivation D. From this, we study
periodic orbits of a linear flow on noncompact, semisimple Lie groups,
and we work with periodic orbits of a linear flow on a connected,
simply connected, solvable Lie groups of dimension 2 or 3.
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1. Introduction

The study of periodic orbits is a recurrent issue. In sprayed literature,
many theories and techniques are presented to find and classify periodic
orbits. For a fuller treatment the reader we refer the reader to [4], [5], and
[8] among others. In [11], the author study the periodic orbits of a linear
flow on a real, connected, compact, semisimple Lie group. Here, our wish
is to study periodic orbits of a linear flow in a real, connected Lie group.

Let G be a real, connected Lie group and g its Lie algebra. We recall
that a vector field X on G is called linear if its flow (ϕt)t∈R is a family
of automorphism of the Lie group G. Namely, the linear flow ϕt is the
solution of dynamical system

ġ = X (g), g ∈ G.(1.1)

Furthermore, the linear vector field X yields the derivationD = −ad(X )
of the Lie algebra g.

In our work, we begin by seeing that the periodicity of the flow etD

is equivalent to a condition over eigenvalues of derivation D. After, we
show that periodicity of the flow etD implies one of the linear flow ϕt. A
little more, assuming that G is an exponential Lie group we show that the
latter is an equivalence. Also, if we adopt an inner derivation on a simple
connected, triangular Lie group, we show that there are not periodic orbits
of the linear flow ϕt.

When G is noncompact, semisimple Lie group, we have an Iwasawa’s
decomposition g = k⊕a⊕n. Thus, given an inner derivation D = −ad(H+
X) with H ∈ a and X ∈ n, we show that there are not periodic orbits ϕt(x)
if x ∈ AN . Furthermore, we show a necessary condition to exist periodic
orbits in Sl(2,R).

Finally, we study periodic orbits of a linear flow on a real, simply con-
nected, connected, solvable Lie groups of dimension 2 or 3. In fact, we
present the derivations of these Lie algebra and apply our results to clas-
sify the periodic orbits of the linear flow in these Lie groups.

This paper is organized as follows. Section 2 briefly reviews the notions
of linear vector fields. Section 3 works with periodic orbits of the linear
flows on a real, connected Lie group. Section 4 studies periodic orbits on
noncompact, semisimple Lie groups. Section 5 works with periodic orbits
of a linear flow ϕt on a connected, simply connected, solvable Lie group of
dimension 2 or 3.
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2. Linear vector fields

In this section we recall some basic facts about linear vector fields. For a
fuller treatment we refer to [1], [3], and [6]. Let G be a connected Lie group,
and let us denote by g its Lie algebra. A vector field X on G is called linear
if its flow (ϕt)t∈R is a family of automorphisms of the Lie group G. For a
linear vector field X it is possible to associated a derivation of Lie algebra
g:

D(Y ) = −[X , Y ], Y ∈ g.

For the convenience of the reader we resume some facts about a linear
vector field X and its flow ϕt. The proof of these facts can be found in [6].

Proposition 2.1. Let X be a linear vector field and ϕt its flow. The
following assertions are equivalent:

(i) the linear flow ϕt is an automorphism of Lie groups for each t;

(ii) for g, h ∈ G it follows that X is linear iff X (gh) = Rh∗X (g)+Lg∗X (h);

(iii) at identity e, we have (dϕt)e = etD for all t ∈ R.

It is known that G = Rn is a Euclidean Lie Group. For any n × n
matrix A it is true that X = A is a linear vector field. Furthermore,
Dx(b) = −[Ax, b] = Ab. In this sense, we can view the dynamical system

ġ = X (g), g ∈ G,

as a generalization of dynamical system on Rn given by

ẋ = Ax, x ∈ Rn.

Let X be a linear vector field on G. In a natural way, we define a
derivation D = −ad(X ) on the Lie algebra g associated to X . On contrary,
it is not true that a derivation yields a linear vector field if G is only
connected. However, if G is connected and simply connected, then there is
a one-to-one relation between derivations and linear vector fields (see [10]
for more details).
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3. Periodic orbits

In this section we assume thatG is a connected Lie group. Let X be a vector
linear vector field on G. Let us denote by D the associated derivation of
X and by ϕt the linear flow associated of X . We going to show that if the
flow etD is periodic then the linear flow ϕt is too. Furthermore, we going
to present a condition for the flow etD to be periodic.

Theorem 3.1. Let G be a connected Lie group. Assume that X is a
linear vector field on G, and denote by D and ϕt their derivation and flow,
respectively. If the flow etD is periodic with period T > 0, then every orbit
ϕt(g) is too if g ∈ G is not fixed point.

Proof. Suppose that the flow etD is periodic with period T > 0. It
means that e(t+T )D = etD for any t ∈ R. Since G is connected, for g ∈ G
we have g = exp(Y1) exp(Y2) . . . exp(Yk) for Y1, Y2, . . . , Yk ∈ g. Thus, using
the fact that ϕt is automorphism we have

ϕt+T (g) = ϕt+T (exp(Y1) exp(Y2) . . . exp(Yk))

= ϕt+T (exp(Y1))ϕt+T (exp(Y2)) . . . ϕt+T (exp(Yk))

= exp(e(t+T )D(Y1)) exp(e
(t+T )D(Y2)) . . . exp(e

(t+T )D(Yk))

= exp(etD(Y1)) exp(e
tD(Y2)) . . . exp(e

tD(Yk)) = ϕt(g),

which proves the theorem. 2

We can improve the result above if we ask that G be an exponential
Lie group. We remember that a Lie group G is said to be exponential if
the exponential mapping exp : g ⇒ G is a diffeomorphism. As example of
exponential Lie groups we have any simply-connected nilpotent Lie group.

Theorem 3.2. LetG be an exponential Lie group. Let X be a linear vector
field on G and denote by D and ϕt their derivation and flow, respectively.
The flow etD is periodic with period T > 0 if and only if every orbit ϕt(g)
is too if g ∈ G is not fixed point.

Proof. We begin by observing that every g ∈ G can be written as
g = exp(X) for some X ∈ g because G is exponential Lie group. Then

ϕt(g) = ϕt(exp(X)) = exp(e
tDX).

Suppose that the flow etD is periodic with period T > 0, that is,
e(t+T )D = etD for all t ∈ R. Then
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ϕt+T (g) = exp(e
(t+T )DX) = exp(etDX) = ϕt(g),

which means that ϕt(g) is periodic orbit with period T > 0 since g ∈ G is
not fixed point.

On contrary, suppose that ϕt(g) is a periodic with period T > 0, that
is, ϕ(t+T )(g) = ϕt(g) for any t ∈ R. Thus

exp(e(t+T )DX) = exp(etDX)⇒ e(t+T )DX = etDX, ∀X ∈ g.

It implies that e(t+T )D = etD, which means that etD is periodic orbit
with period T > 0. 2

Our next step is to find some conditions to the flow etD be periodic. Be-
fore we need to introduce some concepts. Following [5], if for an eigenvalue
µ all complex Jordan blocks are one-dimensional, i.e., a complete set of
eigenvectors exists, it is called semisimple. Equivalently, the corresponding
real Jordan blocks are one-dimensional if µ is real, and two-dimensional if
µ and µ̄ ∈ C \R.

Proposition 3.3. Let g be a Lie algebra. If D is a derivation of g, then
the following conditions are equivalent:

i) the flow etD is periodic;

ii) the eigenvalues of the derivation D are semisimple and they are null or
±α1i, . . . ,±αri with rational quotient αi/αj for i, j = 1, . . . r.

Proof. We first suppose that the flow etD is periodic. It means that
there exists T > 0 such that

e(t+T )D = etD.

A simple calculus shows that eTD = Id. If J is the Jordan form of D,
then eTJ = Id.

We break the proof in two steps:
i) real eigenvalues: Let µ be a real eigenvalue of derivation D. Let us
denote by Jµ the m-dimensional Jordan block of µ. We thus get e

TJµ = Im.
Consider m > 1. From Jordan block Jµ we see that e

Tµ(T ) = 0. It implies
that T = 0, a contradiction. Therefore m = 1. It means that µ is a
semisimple eigenvalue. Consequently, eTJµ = I1, which gives e

Tµ = 1. We
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thus get Tµ = 0. Since T > 0, it follows that µ = 0. It shows that unique
real eigenvalue of derivation D is 0.
ii) complex eigenvalues: suppose that µ = α ± iβ are conjugate, complex
eigenvalues of derivation D. Write

R = R(t) =

Ã
cos(tβ) − sin(tβ)
sin(tβ) cos(tβ)

!
.

Let Jµ denote the 2m-dimensional Jordan block of µ. Suppose that
m > 1. From eTJµ = I2m we see that

eαT · T ·R =
Ã
0 0
0 0

!
.

A simple account shows that T = 0, a contradiction. Therefore m = 1.
It means that µ is semisimple. Hence the Jordan block Jµ is two dimen-
sional. It gives eTJµ = I2. From this equality we conclude that

eαT cos(βT ) = 1 and eαT sin(βT ) = 0.

The second equality implies that sin(βT ) = 0. It follows that βT = nπ
for any n ∈ Z. Substituting this in the first equation gives

eαT cos(nπ) = 1.

Because eαT > 0, it follows that n = 2m for some m ∈ Z. Hence
eαT = 1. So αT = 0. Since T > 0, we have α = 0. It means that complex
eigenvalues of derivation D are of the form µ = ±βi.

Now we proved that nonnull complex eigenvalues±αi ofD yield rational
quotient.

Suppose that there are non null complex eigenvalues ±αii, i = 1, . . . , r.
By proved above, its real Jordan blocks areÃ

cos(tαi) − sin(tαi)
sin(tαi) cos(tαi)

!
, i = 1, . . . r.

As eTJ = Id we have αi · T = pi · 2π for some pi ∈ Z, i = 1, . . . , r. It
means for any i, j = 1, . . . , r that αi/αj = pi/pj is a rational number.

Reciprocally, assume that the eigenvalues of D are semsimple and they
are 0 or ±α1i, . . . ,±αri with αi 6= 0, i = 1, . . . , r, and αi/αj is rational for
i, j = 1, . . . n. Trivially the solution is constant for the eigenvalue 0. We
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thus work with the eigenvalues ±αii with αi 6= 0. By assumption, ±αii
is semisimple eigenvalue for i = 1, . . . , r. It implies that every real Jordan
block has dimension two and the solution applied at this block gives the
following matrix Ã

cos(tαi) − sin(tαi)
sin(tαi) cos(tαi)

!
.

On the other hand, we know that there exists pij , qij ∈ Z with qij > 0
such that αi/αj = pij/qij for i, j = 1, . . . r. In particular, we can written
αi = (pi1/qi1)α1 for i = 2, . . . , r. Supposing that α1 > 0 it is sufficient
to take T = q21q31 . . . qr1(2π/α1) to get satisfies e

TJ = Id, where J is the
Jordan form. This gives eTD = Id. We thus conclude that etD is periodic
with period T > 0. 2

We now presents a necessary condition to a linear flow to have periodic
orbits.

Theorem 3.4. Let G be a connected Lie group. Suppose that X is a
linear vector field on G, and denote by D and ϕt their derivation and flow,
respectively. If the eigenvalues of the derivation D are semisimple and they
are null or ±α1i, . . . ,±αri with rational quotient αi/αj for i, j = 1, . . . r,
then there exist periodic orbits for the linear flow ϕt.

Proof. It follows directly from Proposition 3.3 and Theorem 3.1. 2

In the sequel, we use the results above to study periodic orbits on in-
variant flow. Let X be a right invariant vector field on G. Define a vector
field by X = X + I∗X, where I∗X is the left invariant vector field asso-
ciated to X. Here I∗ is the differential of inverse map i(g) = g−1 (more
details is founded in [10]). It is possible to show that X is linear and its
associated derivation is given by D = −ad(X ) = −ad(X). Furthermore,
the differential equation (1.1) is written as

ġ = X(g) + (I∗X)(g), g ∈ G.

It is possible to show that linear flow ϕt is solution of (1.1) if and only
if ϕt(g) · exp(tX) is solution of ġ = X(g).

Proposition 3.5. Let G be a connected Lie group and X be a right in-
variant vector field on G. If there exists a periodic orbit for the right
invariant flow exp(tX), then the eigenvalues of the derivation D = −ad(X)
are semisimple and they are null or ±α1i, . . . ,±αri with rational quotient
αi/αj for i, j = 1, . . . r.
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Proof. Assume that there exists a g ∈ G such that exp(tX)g is periodic
with period T > 0. It is equivalent to exp(tX) be periodic with period
T > 0. From this we deduce that

exp((t+ T )X) = exp(tX) ⇒ Ad(exp(−(t+ T )X)) = Ad(exp(−tX))
⇒ e(t+T )D = etD,

which means that the flow etD is periodic. By Proposition 3.3, the eigen-
values of the derivation D are semisimple and they are 0 or ±α1i, . . . ,±αri
where αi 6= 0, i = 1, . . . , r, with αi/αj a rational number for i, j = 1, . . . r.
2

Next, we show a class of linear and invariant flow that does not have
periodic obits.

Theorem 3.6. Let G be a simply connected, triangular Lie group. Let X
be an invariant vector field and D = −ad(X) its inner derivation. Then:

1. there is not periodic orbits for the linear flow ϕt associated to deriva-
tion D.

2. there is not periodic orbits for the invariant flow exp(tX).

Proof. We begin by remember that G is an exponential Lie group.
Furthermore, by definition of triangular Lie group, for any X ∈ g we have
that eigenvalues of ad(X) are real. It implies that etD is not periodic from
Proposition 3.3. Respectively, Theorem 3.2 and Theorem 3.5 assures that
the linear flow ϕt and the invariant flow exp(tX) do not have periodic
orbits. 2

The next example show that a case that there exists periodic orbit to
linear flow and the condition ii) of Proposition 3.3 fails.

Example 3.1. Let SO(3) be the orthogonal Lie group of dimension 3. The
canonical basis of Lie algebra so3 is given by

e1 =

⎛⎜⎝ 0 0 0
0 0 −1
0 1 0

⎞⎟⎠ , e2 =

⎛⎜⎝ 0 0 1
0 0 0
−1 0 0

⎞⎟⎠ , e3 =

⎛⎜⎝ 0 −1 0
1 0 0
0 0 0

⎞⎟⎠ .

It follows directly that [e1, e2] = e3, [e3, e1] = e2, and [e2, e3] = e1.
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Let α an irrational real number. Consider in the Lie group G =
SO(3) × SO(3) the right-invariant vector field X = (e1, αe1). The deriva-
tion associated to X, D = −ad((e1, αe1)), has as eigenvalue 0, ±i, and ±αi.
periodic by Proposition 3.3.

Now the linear flow ϕt is given by

ϕt(g1, g2) = (exp(te1)g1 exp(−te1), exp(tαe1)g1 exp(−tαe1)).

It is easily to see that ϕt(g1, e) and ϕt(e, g2) are periodic orbits for any
(g1, e) and (e, g2) in G. it is not sufficient to assures that etD is periodic to
conclude that ϕt has periodic orbit.

4. Semisimple Lie group

In [11], the author study periodic orbits on compact, semisimple Lie groups.
We now presents some results about the noncompact case. Let G be a
noncompact, semisimple Lie group. From Iwasawa’s decomposition there
exists three Lie subalgebra k, a, and n such that g = k⊕a⊕n. Let us denote
by G = K · (AN) the global decomposition of G following the Iwasawa’s
decomposition. Our first purpose is to study periodic orbits of the linear
flow ϕt acting only in AN .

Proposition 4.1. Under assumptions above, if H ∈ a,X ∈ n and if D =
−ad(H +X) is a inner derivation, then for any x ∈ AN that is not fixed
point of ϕt we have that the orbit ϕt(x) is not periodic.

Proof. We first write for any x ∈ AN the linear flow as

ϕt(x) = exp(t(H +X)) · x · exp(−t(H +X)).

Since H + X ∈ a ⊕ n, it follows that exp(t(H + X)) ∈ A · N . Therefore
ϕt(x) ∈ AN . It means that AN is ϕt-invariant. It is well known that AN
is simply connected and that the Lie subalgebra a ⊕ n is a triangular Lie
algebra. Now from Proposition 3.5 we see that ϕt(x) is not periodic. 2

Under assumptions of Proposition above, it is direct that the invariant
flow restrict to AN does not have periodic orbits from Theorem 3.6. This
invariant case was first proved by Kawan, Rocio and Santana in [7].

In the general case, that is, when g ∈ G = K · (AN) and the derivation
is arbitrary, some answer about periodic orbit is not known. To contribute
in this question we present a result about periodic orbits on special linear
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group Sl(2,R). Let us denote by sl(2,R) the Lie algebra of Sl(2,R).
Since Sl(2,R) is a semisimple non-compact Lie group, its Lie algebra has
the following Iwasawa’s decomposition:

sl(2,R) =

(Ã
0 −α
α 0

!
, α ∈ R

)
⊕
(Ã

a 0
0 −a

!
, a ∈ R

)

⊕
(Ã

0 ν
0 0

!
, ν ∈ R

)
.

It is clear that

β =

(
Y =

Ã
0 −1
1 0

!
,H =

Ã
1 0
0 −1

!
, Z =

Ã
0 1
0 0

!)
form a basis of sl(2,R). Furthermore, they brackets are given by

[Y,H] = 2Y X + 4Z, [Y,Z] = −H, [H,Z] = 2Z.

Let X be a linear vector field on Sl(2,R) and D its derivation. Then
there exist a right invariant vector field X ∈ sl(2,R) such that D =
−ad(X). Write X as

X = aY + bH + cZ, a, b, c ∈ R.

In the basis β, the matrix of derivation is written as

D = −ad(X) =

⎛⎜⎝ 2b −2a 0
−c 0 a
4b −4a+ 2c −2b

⎞⎟⎠ .

From this we see that the eigenvalues of D aren
0, −2

p
−a2 + ac+ b2, 2

p
−a2 + ac+ b2

o
.(4.1)

We are in a position to show a condition to an orbit of linear flow be
periodic.

Proposition 4.2. Let X be a linear vector field on Sl(2,R) and X its
associated right invariant vector field. Writing X = aY + bH + cZ in the
basis β of sl(2,R), we have that:

1. orbits of the linear flow ϕt of X has periodic if a2 > ac+ b2.

2. there are not periodic orbits of the invariant flow exp(tX) if a2 ≤
ac+ b2.
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Proof. It is a direct application of Theorem 3.4 and Proposition 3.5
with eigenvalues (4.1). 2

The meaning of the Proposition above is that to study periodic orbits of
linear or invariant flows on Sl(2,R) is necessary to consider the compact,
abelian, and nilpotent parts of Iwasawa’s decomposition. In other words, we
need to consider derivations of the D = −ad(Y +H+X) with Y ∈ k,H ∈ a
and X ∈ n.

5. Solvable Lie groups of dimension 3

In this section we study periodic orbits of linear flow on connected, simply
connected, and solvable Lie groups of 3. In the semisimple case, SL(2,R)
was studied in the section above, and the unitary group SU(2) and the
orthogonal group SO(3) were studied in [11].

5.1. Dimension 2

Let g be a Lie algebra of dimension 2. It is well know that there exists two
possibilities of Lie algebras: abelian and solvable.

5.1.1. Abelian case

The simply-connected, abelian Lie group of dimension 2 is R2, which is
exponential Lie group. In this case any derivation is given by

D =
Ã

a b
c d

!
.

A simple account shows that the eigenvalues are½
1

2

µ
a+ d−

q
(a− d)2 + 4bc

¶
,
1

2

µ
a+ d+

q
(a− d)2 + 4bc

¶¾
.

By Proposition 3.3 and Theorem 3.2, the linear flow associated for the
derivation D has periodic orbits if and only if a+d = 0 and (a−d)2+4bc < 0.

5.1.2. Solvable case

The solvable, connected, simply connected Lie group of dimension 2 is the
affine group Aff0(2). A first fact about Aff0(2) is that it is exponential
Lie group. In [6], it is showed that derivations are inner and they are given
by
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D =
Ã
0 0
c d

!
.

It is easy to see that eigenvalues are {0, d}. By Proposition 3.3 and
Theorem 3.2, any linear flow in Aff0(2) do not have periodic orbit.

5.2. Dimension 3

Let G be a connected Lie group of dimension 3. In [9] it is classified all
connected Lie groups of dimension 3, and in [2] we find a clear presentation
of this classification. In [2], we find that for an (appropriate) ordered basis
(E1, E2, E3) of g the Lie bracket of a connected Lie group of dimension 3
are given by

[E1, E2] = n3E3
[E3, E1] = aE1 + n2E2
[E2, E3] = n1E1 − aE2,

(5.1)

where a, n1, n2 e n3 are given by table 1 in [2]. In each case bellow, we
give values of a, n1, n2 and n3.

Let D be a derivation on the Lie algebra g. In the basis (E1, E2, E3),
we can write the derivation D as

D(E1) = x1E1 + y1E2 + z1E3

D(E2) = x2E1 + y2E2 + z2E3

D(E3) = x3E1 + y3E2 + z3E3

with x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ R. Applying Lie Brackets (5.1) at
equalities

D[Ei, Ej ] = [D(Ei), Ej ] + [Ei,D(Ej)], for i, j = 1, 2, 3 and i 6= j,

we obtain the following equation system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n3x3 + n1z1 + az2 = 0
n3y3 + n2z3 − az1 = 0
n3z3 − n3x1 − n3y2 = 0
n2x2 + n1y1 − az3 = 0
n2y2 − n2x1 − n2z3 = 0
n2z2 + n3y3 + az1 = 0
n1x1 − n1y2 − n1z3 = 0
n1y1 + n2x2 + az3 = 0
−n2x2 + n3x3 − ay2 = 0.

(5.2)

Thus, taking values to a, n1, n2 and n3 in Table 1 in [2] we can find
derivations in each class of connected, simply connected, solvable Lie groups
of dimension 3.

5.2.1. Type 3g1 (Abelian Groups)

In this class the simply connected Lie group G with Lie algebra g ∼= 3g1
is isomorphic to R3. It is clear that G is an exponential Lie group. Here,
Lie brackets (5.1) assume values a = n1 = n2 = n3 = 0. Trivially, by linear
system (4), the matrix of any derivation is written as

D =

⎛⎜⎝ x1 x2 x3
y1 y2 y3
z1 z3 z3

⎞⎟⎠ .

The characteristic polynomial of D is p(λ) = −λ3 + tr(D)λ2 + Aλ +
det(D) where A = x2y1 − x1y2 + x3z1 − x1z3 + y3z2 − y2z3. By Theorem
3.2, we want to work with derivation with one null eigenvalue and two
conjugate complex eigenvalues. It is direct that det(D) = 0. Then p(λ) =
λ(−λ2 + tr(D)λ+A) where A = x2y1 − x1y2 + x3z1 − x1z3 + y3z2 − y2z3 .
Now consider the polynomial q(λ) = −λ2 + tr(D)λ+A. A simple account
shows that the roots are λ = (tr(D)±

p
tr(D)2 + 4A)/2. By Theorem 3.2

again, we want that tr(D) = 0, whit implies that λ1 =
√
A and λ2 = −

√
A.

Summarizing, we have the conditions to the linear flow has periodic orbits.

Proposition 5.1. Let ϕt be a linear flow on the simply connected with
Lie algebra of type 3g1. Then ϕt has periodic orbit if and only if tr(D) =
det(D) = 0 and x2y1 − y1x2 + x3z1 − x1z3 + y3z2 − y2z3 < 0.

Now let X be a invariant vector field. Since 3g1 is abelian, it follows
that ad(X) = 0. Consequently, D = −ad(X) = 0. From Proposition 3.5
we conclude that the invariant flow exp(tX) is not periodic.
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5.3. Type g2,1 ⊕ g1
If a Lie algebra g ∼= g2,1⊕g1, then the semisimple Lie group G is isomorphic
to Aff(R)0×R. It is directed that this group is exponential Lie group. In
this case, the Lie bracket (5.1) is characterized by a = 1, n1 = 1, n2 = −1,
and n3 = 0. From linear system (4) it follows that the matrix of any
derivation is

D =

⎛⎜⎝ x1 x2 x3
x2 x1 y3
0 0 0

⎞⎟⎠ ,

and its eigenvalues are {0, x1 − x2, x1 + x2}.

Proposition 5.2. Any linear flow on a Lie group with Lie algebra of type
g2,1 ⊕ g1 do not have periodic orbits.

5.3.1. Type g3,1

The simply connected, matrix group with Lie algebra of type g3,1 is isomor-
phic to Heisenberg group H3, which is trivially an exponential Lie group.
In this case, we adopt a = 0, n1 = 1, n2 = 0, and n3 = 0. From linear
system (4) we see that the matrix of any derivation is written as

D =

⎛⎜⎝ y2 + z3 x2 x3
0 y2 y3
0 z2 z3

⎞⎟⎠ .

The eigenvalues of derivation D are

{y2 + z3,
1
2

³
y2 + z3 −

p
(y2 − z3)2 + 4x3z2

´
,

1
2

³
y2 + z3 +

p
(y2 − z3)2 + 4x3z2

´o
.

Proposition 5.3. Let ϕt be a linear flow on a simply connected Lie group
with Lie algebra of type g3,1. Then ϕt has periodic orbit if and only if
y2 + z3 = 0 and and (y2 − z3)

2 + 4x3z2 < 0.

5.4. Type g3,2

The simply connected Lie group G with Lie algebra g ∼= g3,2 is isomorphic
to G3,2, which is an exponential Lie group (see for instance [9]). The Lie



Periodic orbits of linear flows on connected Lie groups 677

bracket is given by a = 1, n1 = 1, n2 = 0, and n3 = 0. It follows, by linear
system (4), that the matrix of any derivation is written as

D =

⎛⎜⎝ 0 x2 x3
0 0 y3
0 0 0

⎞⎟⎠ ,

and its eigenvalues are {0, 0, 0}.

Proposition 5.4. Let ϕt be a linear flow on a simply connected Lie group
with Lie algebra of type g3,2. Then ϕt does not have periodic orbits.

5.5. Type g3,3

The simply connected Lie groupG with Lie algebra of g ∼= g3,3 is isomorphic
to G3,3 and its Lie bracket is given by a = 1, n1 = 0, n2 = 0, and n3 = 0.
Furthermore, G3,3 is an exponential Lie Group (see for instance [9]). From
linear system (4) we deduce that the matrix of any derivation is given by

D =

⎛⎜⎝ x1 x2 x3
y1 y2 y3
0 0 0

⎞⎟⎠ ,

and its eigenvalues are½
0,
1

2

µ
x1 + y2 −

q
(x2 − y2)2 + 4x2y1

¶
,
1

2

µ
x1 + y2 +

q
(x2 − y2)2 + 4x2y1

¶¾
.

Proposition 5.5. Let ϕt be a linear flow on a simply connected Lie group
with Lie algebra of type g3,3. Then ϕt has periodic orbit if and only if
x1 + y2 = 0 and (x2 − y2)

2 + 4x2y1 < 0.

5.6. Type g03,4

In this class, any simply connected Lie group G with Lie algebra g ∼= g03,4
is isomorphic to SE(1, 1). Furthermore, Lie bracket is obtained by a = 0,
n1 = 1, n2 = −1, and n3 = 0, and it is an exponential Lie group (see
for instance [9]). From linear system (4) we see that the matrix of any
derivation is

D =

⎛⎜⎝ x1 x2 x3
x2 x1 y3
0 0 0

⎞⎟⎠ ,

and its eigenvalues are {0, x1 − x2, x1 + x2}.
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Proposition 5.6. Any linear flow on a Lie group with Lie algebra of type
g03,4 do not have periodic orbits.

5.7. Type ga3,4

Here, we have a family of Lie algebra of type ga3,4 given by conditions
a > 0 and a 6= 1, n1 = 1, n2 = −1, and n3 = 0. Furthermore, a simply
connected Lie group G with Lie algebra ga3,4 is isomorphic to Ga

3,4, which
is an exponential Lie group (see for instance [9]). By linear system (4), the
matrix of any derivation is written as

D =

⎛⎜⎝ −y2 ay2 x3
ay2 y2 y3
0 0 0

⎞⎟⎠ ,

which yields as eigenvalues

½
0,−

q
(1 + a)y22,

q
(1 + a)y22

¾
.

Proposition 5.7. For a > 0 and a 6= 1, any linear flow on a simply con-
nected Lie group with Lie algebra of type ga3,4 do not have periodic orbits.

5.8. Type ga3,5

A family of Lie algebra ga3,5 is characterize by a > 0, n1 = 1, n2 = 1, and
n3 = 0. In this case, simply connected Lie groups with Lie algebra are
isomorphic to Ga

3,5, which is an exponential Lie group (see for instance [9]).
Solving linear system (4) we can write the matrix of any derivation as

D =

⎛⎜⎝ y2 −ay2 x3
ay2 −ay2 y3
0 0 0

⎞⎟⎠ ,

which yields as eigenvalues

{0, 1
2

µ
(−a− 1)y2 −

q
(−5a+ 1)y22

¶
,

1
2

µ
(−a− 1)y2 +

q
(−5a+ 1)y22

¶
}.

By Proposition 3.3, a first condition to for the flow etD to be periodic is
that (−a − 1)y2 = 0. Since a > 0, it implies that −a − 1 6= 0. We must
have y2 = 0, which implies that eigenvalues are null.
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Proposition 5.8. i) A linear flow on a simply connected Lie group with
Lie algebra of type ga3,5 for some a > 0 does not have periodic orbits.
ii) Any invariant flow on a simply connected Lie group with Lie algebra of
type ga3,5 for some a > 0 does not have periodic orbits
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