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Abstract

Suppose that G = (V (G), E(G)) is a graph and |V (G)| = p. If
there exists a bijective function f : V (G) → {1, 2, 3, ..., p} such that
an fc : E(G)→ N defined by f c(uv) =

¡f(u)
f(v)

¢
when f(u) > f(v) and

fc(uv) =
¡f(v)
f(u)

¢
when f(v) > f(u) is an injection function, then f is

called a combination labelings and G is called a combination graph.
This article considers a suitable bijective function f and prove that
G(Cn, Cm, Pk) which are graphs related to two cycles and one path
containing three parameters, are combination graphs
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1. Introduction

For a simple, connected, undirected graph G = (V (G), E(G)) several re-
searchers have been studied a mathematical recreation problem, namely
graph labeling. Usually graph labeling is a function from V (G) or E(G)
to a set of numbers with some special properties. For a complete source of
graph labelings, one can see from a dynamic survey by Gallian [1]. Not so
long ago, Hedge and Shetty [2] define graph labelings called permutation,
combination and strong k-combination labeling. If we can find a bijection
f : V (G)→ {1, 2, 3, . . . , |V (G)|} such that, for uv ∈ E(G),

(i) the induced fp(uv) =

(
f(u)Pf(v) if f(u) > f(v)
f(v)Pf(u) if f(v) > f(u)

is injective, where

aPb denotes the number of permutations of a things taken b at a
time, then f is called a permutation labeling for G and G is called a
permutation graph; or

(ii) the induced f c(uv) =

⎧⎨⎩
¡f(u)
f(v)

¢
if f(u) > f(v)¡f(v)

f(u)

¢
if f(v) > f(u)

is injective, then f

is called a combination labeling for G and G is called a combination
graph; or

(iii) the induced f c(uv) =

⎧⎨⎩
¡f(u)
f(v)

¢
if f(u) > f(v)¡f(v)

f(u)

¢
if f(v) > f(u)

is injective and

fc(E(G)) = {k, k + 1, k + 2, . . . , k + |E(G)| − 1} for some positive
integer k, then f is called a strong k-combination labeling for G and
G is called a strong k-combination graph.

Hedge and Shetty [2] proved that the complete graph Kn is a permu-
tation graph if and only if n ≤ 5, while, it is a combination graph if and
only if n ≤ 2. In [2], they gave a necessary condition for a graph to be a
combination graph and also proved that the cycle Cn admits a combination
labeling for all n > 3, the complete bipartite graph Kr,r is a combination
graph if and only if r ≤ 2 and the wheel graph Wn is not a combination
graph for all n ≤ 6.

In 2012, Li [3] considered a large family of graphs which is a tree. He
proved that for a rooted tree T with the property that the depth of any two
leaf nodes are the same, T is a combination graph and the complete k-ary
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tree is also a combinatorial graph. He also explored some conditions on a
caterpillar that made it to be a combination graph. For graphs containing
cycles, he proved that the generalized Petersen Graph GP (n, 1) for n ≥ 4
and GP (n, 2) for n ≥ 5 are combination graph. He also continued the work
of [2] by proving that if n ≥ 7, then the wheel graph Wn is a combination
graph. He gave a condition on n and k that implies the k×n grid graph to be
combination graph. Conditions on the number of elements in each partite
set also given to make sure that a complete k partite graph is a combination
graph. Finally, he gave some results on the combination graph involving
degree, |V (G)| and E(G).

In 2017, Thitiwatthanakan and Leeratanavalee [4] wrote an article in
Thai language to prove that the generalized Petersen graphs GP (n, 3) and
a lollipop graphs Hg,l for some cases of g and l are combination graphs.

We can see from the lituratures that [2], [3] and [4] considered only
graphs involving at most two parameters. From these motivation, we then
try to construct a combination labeling for two families of graphs. The first
one is G(Cn, Cm, Pk) with three parameters n, m and k which is a graph
containing two cycles with different sizes and a path with arbitrary length.
The second one is Gk(Cn) consisting of k cycles of the same size Cn each
of which having one vertex incidents to one extra vertex.

Definition 1.1. Let m,n and k be positive integers such that m,n ≥
3. The graph G(Cn, Cm, Pk) consists of two cycles Cn and Cm and a
path Pk connecting between these two cycle. That is V (G(Cn, Cm, Pk)) =
{u1, u2, u3, . . . , un} ∪ {v1, v2, v3, . . . , vm} ∪ {s1, s2, s3, . . . , sk} = V (Cn) ∪
V (Cm) ∪ V (Pk) and
E(G(Cn, Cm, Pk)) = {u1u2, u2u3, u3u4, . . . , unu1}∪{v1v2, v2v3, v3v4, . . . , vmv1}
∪ {s1s2, s2s3, s3s4, . . . , sk−1sk}∪ {uns1, skvm} = E(Cn)∪E(Cm)∪E(Pk)∪
{uns1, skvm}.

Figure 1 showsG(Cn, Cm, Pk) and the way we define each vertex’s name.



1156 B. Aiewcharoen, R. Boonklurb and S. Promvichitkul

Figure 1: G(Cn, Cm, Pk)

Definition 1.2. Let n and k be positive integers such that n ≥ 3 and

k ≥ 2. The graph Gk(Cn) consists of k cycles of the same size C
(i)
n ’s

each of which having one vertex incidents to one extra vertex. That is

V (Gk(Cn)) =
³Sk

i=1{ui,1, ui,2, ui,3, ..., ui,n}
´
∪ {s} =

³Sk
i=1 V (C

(i)
n )
´
∪ {s}

and E(Gk(Cn)) =
³Sk

i=1E(C
(i)
n )
´
∪ {u1,ns, u2,ns, u3,ns, . . . , uk,ns}.

Note that G2(Cn) is G(Cn, Cn, P1). Figure 2 shows Gk(Cn) and the
way we define each vertex’s name.

Figure 2: Gk(Cn)

pc
fa-1

pc
fa-2
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In Section 2, some binomial inequalities that will be used to prove that
the induced edge labelings are injective. Section 3 shows the vertex label-
ings which will be proved that they are combination labelings for the two
families of graphs that we consider.

2. Some Binomial inequalities

Before we go to the main result, let us prove some inequalities involving
binomial coefficients.

Lemma 2.1. If α > β ≥ 1, then
¡α+1

β

¢
>
¡α
β

¢
and

¡α+1
β+1

¢
>
¡α
β

¢
.

Proof. Let α > β ≥ 1. Then, α + 1 > α + 1 − β and α + 1 > β + 1.
Therefore, (α + 1)!(α − β)! > α!(α + 1 − β)! and (α + 1)!β! > (β + 1)!α!.

That is
¡α+1

β

¢
= (α+1)!

(α+1−β)!β! >
α!

(α−β)!β! =
¡α
β

¢
and

¡α+1
β+1

¢
= (α+1)!

(α−β)!(β+1)! >
α!

(α−β)!β! =
¡α
β

¢
. 2

Lemma 2.2. If α ≥ 4, then
(i)

¡α
β

¢
> α for 2 ≤ β ≤ α− 2.

(ii)
¡α+2
2

¢
> 3α+ 1.

Proof. (i) Let α ≥ 4 and 2 ≤ β ≤ α− 2. Then, 1 < β − γ + 1 < α− γ for
γ such that 1 ≤ γ ≤ β − 1. Thus,

(α− 1)(α− 2)(α− 3) · · · (α− γ − 1) > β(β − 1)(β − 2) · · · (β − γ).

Let γ = β − 2. Then,

(α− 1)(α− 2)(α− 3) · · · (α− β + 1) > β(β − 1)(β − 2) · · · (2) = β!.

Therefore, α(α− 1)(α− 2)(α− 3) · · · (α− β + 1) > αβ!, i.e.,
¡α
β

¢
> α.

(ii) Since α ≥ 4, direct computation gives 2
¡α+2
2

¢
= (α + 2)(α + 1) =

α2 + 3α+ 2 ≥ 4α+ 3α+ 2 > 2(3α+ 1). 2

Lemma 2.3.
¡α+β
α−1

¢
>
¡α+β−1

α

¢
> α+ β + 1 for α ≥ 4 and 3 ≤ β ≤ α− 1.
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Proof. Let α ≥ 4 and 3 ≤ β ≤ α− 1. Then,Ã
α+ β

α− 1

!
=
(α+ β)α

(β + 1)β

Ã
α+ β − 1

α

!
>
(β + 1)α

(β + 1)β

Ã
α+ β − 1

α

!
>

Ã
α+ β − 1

α

!
.

By Lemma 2.1, we haveÃ
α+ β − 1

α

!
≥
Ã
α+ 2

α

!
=
(α+ 2)(α+ 1)

2
>
4α+ 2

2
= 2α+ 1

Since β ≤ α− 1, 2α+ 1 > α+ β + 1. Then,
¡α+β−1

α

¢
> α+ β + 1. 2

Lemma 2.4. If α ≥ 3 and β ≥ 1, then (i)
¡2α+β

2

¢
6=
¡α+β+1

β+2

¢
and (ii)¡α+β+1

β+2

¢
> 2α+ β.

Proof. Let α ≥ 3 and β ≥ 1.
(i) We separate the proof into 9 cases as follows.

Case 1 3 ≤ α ≤ 9 and β = 1. This case can be proved by direct calculation.

Case 2 α ≥ 10 and β = 1. Then,Ã
α+ β + 1

β + 2

!
=

Ã
α+ 2

3

!
≥ 12(α+ 1)α

6
>

Ã
2α+ 1

2

!
=

Ã
2α+ β

2

!
.

Case 3 3 ≤ α ≤ 4 and β = 2. This case can be proved by direct calculation.

Case 4 α ≥ 5 and β = 2. Then,

Ã
α+ β + 1

β + 2

!
=

Ã
α+ 3

4

!
≥
(2α+ 2)

µ
2α+

α

3

¶
2

>
(2α+ 2)(2α+ 1)

2

=

Ã
2α+ 2

2

!
.

Case 5 α ≥ 4 and 3 ≤ β < α. We prove our assertion by using mathemat-
ical induction on α.

Basic step
¡α+β+1

β+2

¢
=
¡8
5

¢
= 56 > 55 =

¡11
2

¢
=
¡2α+β

2

¢
.
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Inductive step Let p, q ∈ Z such that p ≥ 4 and 3 ≤ q < p. Assume that¡p+q+1
q+2

¢
>
¡2p+q
2

¢
. Let r ∈ Z such that 3 ≤ r < p+1. We claim in this step

that
¡p+r+2

r+2

¢
>
¡2p+r+2

2

¢
.

If 3 ≤ r < p, then
¡p+r+2

r+2

¢
> p+r+2

r+2

¡2p+r
2

¢
. Direct computation gives,

for p ≥ 4 and 3 ≤ r < p, that (p+ r+2)(2p+ r− 1)(2p+ r) > (r+2)(2p+

r + 1)(2p+ r + 2) which implies p+r+2
r+2 > (2p+r+1)(2p+r+2)

(2p+r−1)(2p+r) . Thus,

p+ r + 2

r + 2

µ
(2p+ r)!

2!(2p+ r − 2)!

¶
>
(2p+ r + 1)(2p+ r + 2)

(2p+ r − 1)(2p+ r)

µ
(2p+ r)!

2!(2p+ r − 2)!

¶

=

Ã
2p+ r + 2

2

!
.

Therefore,
¡p+r+2

r+2

¢
>
¡2p+r+2

2

¢
.

If r = p, then we claim that
¡p+r+2

r+2

¢
=
¡2p+2
p+2

¢
>
¡3p+2

2

¢
=
¡2p+r+2

2

¢
for

p ≥ 4 by using mathematical induction.

Basic step
¡2p+2
p+2

¢
=
¡10
6

¢
= 210 > 91 =

¡14
2

¢
=
¡3p+2

2

¢
.

Inductive step Let t ∈ Z such that t ≥ 4. Assume that
¡2t+2
t+2

¢
>
¡3t+2
2

¢
.

Then, Ã
2t+ 4

t+ 3

!
>
(2t+ 4)(2t+ 3)

(t+ 3)(t+ 1)

Ã
3t+ 2

2

!
.

Direct computation shows, for t ≥ 4, that (2t+4)(2t+3)(3t+1)(3t+2) >
9t4+63t3+155t2+161t+60 which implies (2t+4)(2t+3)(t+3)(t+1) > (3t+4)(3t+5)

(3t+1)(3t+2) . Thus,

(2t+ 4)(2t+ 3)

(t+ 3)(t+ 1)

µ
(3t+ 2)!

2!(3t)!

¶
>
(3t+ 4)(3t+ 5)

(3t+ 1)(3t+ 2)

µ
(3t+ 2)!

2!(3t)!

¶
=

Ã
3t+ 5

2

!
.

Therefore,
¡2t+4
t+3

¢
>
¡3t+5
2

¢
.

Case 6 α = β = 3. This case can be proved by direct calculation.

Case 7 α = β ≥ 4. We show that
¡α+β+1

β+2

¢
=
¡2α+1
α+2

¢
>
¡3α
2

¢
=
¡2α+β

2

¢
by

using mathematical induction.

Basic step
¡2α+1
α+2

¢
=
¡9
6

¢
= 84 > 66 =

¡12
2

¢
=
¡3α
2

¢
.
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Inductive step Let p ∈ Z such that p ≥ 4. Assume that
¡2p+1
p+2

¢
>
¡3p
2

¢
.

Then, Ã
2p+ 3

p+ 3

!
>
(2p+ 3)(2p+ 2)

(p+ 3)p

Ã
3p

2

!
.

Direct computation shows, for p ≥ 4, that (2p + 3)(2p + 2)(3p − 1)(3p) >
9p4 + 42p3 + 51p2 + 18p which implies (2p+3)(2p+2)(p+3)p > (3p+2)(3p+3)

(3p−1)3p . Thus,

(2p+ 3)(2p+ 2)

(p+ 3)p

µ
(3p)!

2!(3p− 2)!

¶
>
(3p+ 2)(3p+ 3)

(3p− 1)3p

µ
(3p)!

2!(3p− 2)!

¶
=

Ã
3p+ 3

2

!
.

Therefore,
¡2p+3
p+3

¢
>
¡3p+3

2

¢
.

Case 8 β > α = 3. By Lemma 2.1, we have
¡2α+β

2

¢
=
¡β+6
2

¢
>
¡β+4
2

¢
=¡β+4

β+2

¢
=
¡α+β+1

β+2

¢
.

Case 9 β ≥ 5 and 4 ≤ α < β. We prove our assertion by using mathemat-
ical induction on β.

Basic step
¡α+β+1

β+2

¢
=
¡10
7

¢
= 120 > 78 =

¡13
2

¢
=
¡2α+β

2

¢
.

Inductive step Let p, q ∈ Z such that q ≥ 5 and 4 ≤ p < q. Assume that¡p+q+1
q+2

¢
>
¡2p+q
2

¢
. Let r ∈ Z such that 4 ≤ r < q + 1.

If 4 ≤ r < q, then
¡r+q+2

q+3

¢
> r+q+2

q+3

¡2r+q
2

¢
. Direct computation gives, for

q ≥ 5 and 4 ≤ r < q, that (r+ q+2)(2r+ q− 1) > q2+(2r+4)q+(6r+3)
which implies r+q+2

q+3 > 2r+q+1
2r+q−1 . Thus,

r + q + 2

q + 3

µ
(2r + q)!

2!(2r + q − 2)!

¶
>
2r + q + 1

2r + q − 1

µ
(2r + q)!

2!(2r + q − 2)!

¶
=

Ã
2r + q + 1

2

!
.

Therefore,
¡r+q+2

q+3

¢
>
¡2r+q+1

2

¢
.

If r = q, then we cliam that
¡r+q+2

q+3

¢
=
¡2q+2
q+3

¢
>
¡3q+1
2

¢
=
¡2r+q+1

2

¢
for

q ≥ 5 by using mathematical induction.

Basic step
¡2q+2
q+3

¢
=
¡12
8

¢
= 495 > 120 =

¡16
2

¢
=
¡3q+1

2

¢
.

Inductive step Let t ∈ Z such that t ≥ 5. Assume that
¡2t+2
t+3

¢
>
¡3t+1
2

¢
.

Then, Ã
2t+ 4

t+ 4

!
>
(2t+ 4)(2t+ 3)

(t+ 4)t

Ã
3t+ 1

2

!
.
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Direct computation shows, for t ≥ 5, that (2t+4)(2t+3)(3t)(3t+1) >
9t4 + 57t3 + 96t2 + 48t which implies (2t+4)(2t+3)(t+4)t > (3t+3)(3t+4)

3t(3t+1) . Thus,

(2t+ 4)(2t+ 3)

(t+ 4)t

µ
(3t+ 1)!

2!(3t− 1)!

¶
>
(3t+ 3)(3t+ 4)

3t(3t+ 1)

µ
(3t+ 1)!

2!(3t− 1)!

¶
=

Ã
3t+ 4

2

!
.

Therefore,
¡2t+4
t+4

¢
>
¡3t+4
2

¢
.

(ii) We separate the proof into 2 cases as follows.

Case 1 α ≥ β. By Lemma 2.1, we have
¡α+β+1

β+2

¢
≥
¡α+2
3

¢
≥ 20α

6 > 3α ≥
2α+ β.

Case 2 β > α. Then, β ≥ 4. By Lemma 2.1, we have
¡α+β+1

β+2

¢
≥
¡β+4
β+2

¢
>

11β
2 > 3β > 2α+ β. 2

Lemma 2.5. If α ≥ 4, β ≥ 3, γ ≥ 2 and α > β, then (i)
¡α+γ+1

γ+2

¢
6=
¡α+β+γ

2

¢
and (ii)

¡α+γ+1
γ+2

¢
> α+ β + γ.

Proof. Let α ≥ 4, β ≥ 3, γ ≥ 2 and α > β.
(i) We separate the proof into 5 cases as follows.

Case 1 α = γ and α > β. Then, α ≥ 4, β ≥ 3 and γ ≥ 4. By Lemma 2.1,
we have Ã

α+ β + γ

2

!
=

Ã
2α+ β

2

!
<

Ã
3α

2

!
<
10α2

2
= 5α2.

We show that
¡α+γ+1

γ+2

¢
=
¡2α+1
α+2

¢
> 5α2 for α ≥ 4 by using mathematical

induction.

Basic step
¡2α+1
α+2

¢
=
¡9
6

¢
= 84 > 80 = 5α2.

Inductive step Let p ∈ Z such that p ≥ 4. Assume that
¡2p+1
p+2

¢
> 5p2. Then,¡2p+3

p+3

¢
=
(2p+ 3)(2p+ 2)

(p+ 3)p

¡2p+1
p+2

¢
>
(2p+ 3)(2p+ 2)(5p2)

(p+ 3)p
>
(2p2 + 6p)(5p2)

p2 + 3p
= 5(2p2) > 5(p+ 1)2.

Case 2 β = γ and α > β. Then, α ≥ 4, β ≥ 3 and γ ≥ 3. There-
fore,

¡α+γ+1
γ+2

¢
=
¡α+β+1

β+2

¢
and

¡α+β+γ
2

¢
=
¡α+2β

2

¢
. By Lemma 2.1, we have
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¡α+β+1
β+2

¢
≥
¡α+4
5

¢
and

¡α+2β
2

¢
≤
¡3α−2

2

¢
. We show that

¡α+4
5

¢
>
¡3α−2

2

¢
, for

α ≥ 4 by using mathematical induction.

Basic step
¡α+4
5

¢
=
¡8
5

¢
= 56 > 45 =

¡10
2

¢
=
¡3α−2

2

¢
.

Inductive step Let p ∈ Z such that p ≥ 4. Assume that
¡p+4
5

¢
>
¡3p−2

2

¢
.

Then, Ã
p+ 5

5

!
=

p+ 5

p

Ã
p+ 4

5

!
>

p+ 5

p

Ã
3p− 2
2

!
.

Direct computation shows, for p ≥ 4, that (p+5)(3p−3)(3p−2) > 9p3+3p2
which implies p+5

p > (3p)(3p+1)
(3p−3)(3p−2) . Thus,

p+ 5

p

µ
(3p− 2)!
2!(3p− 4)!

¶
>

3p(3p+ 1)

(3p− 3)(3p− 2)

µ
(3p− 2)!
2!(3p− 4)!

¶
=
¡3p+1

2

¢
.

Therefore,
¡p+5
5

¢
>
¡3p+1

2

¢
.

Case 3 α > β > γ. Then, α ≥ 4, β ≥ 3 and γ ≥ 2.

Case 3.1 α = 4, β = 3 and γ = 2. Then,
¡α+γ+1

γ+2

¢
=
¡7
4

¢
= 35 < 36 =

¡9
2

¢
=¡α+β+γ

2

¢
.

Case 3.2 α ≥ 5, β ≥ 3 and γ ≥ 2. By Lemma 2.1, we have
¡α+γ+1

γ+2

¢
≥
¡α+3
4

¢
and

¡α+β+γ
2

¢
≤
¡3α−3

2

¢
. We show that

¡α+3
4

¢
>
¡3α−3

2

¢
for α ≥ 5 by using

mathematical induction.

Basic step
¡α+3
4

¢
=
¡8
4

¢
= 70 > 66 =

¡12
2

¢
=
¡3α−3

2

¢
.

Inductive step Let p ∈ Z such that p ≥ 4. Assume that
¡p+3
4

¢
>
¡3p−3

2

¢
.

Then, Ã
p+ 4

4

!
=

p+ 4

p

Ã
p+ 3

4

!
>

p+ 4

p

Ã
3p− 3
2

!
.

Direct computation gives, for p ≥ 5, that (p + 4)(3p − 4)(3p − 3) >
9p3 − 3p2 which implies p+4

p > (3p−1)(3p)
(3p−4)(3p−3) . Thus,

p+ 4

p

µ
(3p− 3)!
2!(3p− 5)!

¶
>

(3p− 1)3p
(3p− 4)(3p− 3)

µ
(3p− 3)!
2!(3p− 5)!

¶
=
¡3p
2

¢
.

Therefore,
¡p+4
4

¢
>
¡3p
2

¢
.

Case 4 α > γ > β. Then, α ≥ 5, β ≥ 3 and γ ≥ 4. By Lemma 2.1, we have,¡α+γ+1
γ+2

¢
≥
¡α+5
6

¢
>
¡α+3
4

¢
and

¡α+β+γ
2

¢
≤
¡3α−3

2

¢
. By using mathematical

induction similar to Case 3, we have
¡α+3
4

¢
>
¡3α−3

2

¢
for α ≥ 5.
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Case 5 γ > α > β. Then, α ≥ 4, β ≥ 3 and γ ≥ 5. By Lemma 2.1,
we have

¡α+γ+1
γ+2

¢
≥
¡γ+5
γ+2

¢
=
¡γ+5
3

¢
and

¡α+β+γ
2

¢
≤
¡3γ−3

2

¢
. We show that¡γ+5

3

¢
>
¡3γ−3

2

¢
for γ ≥ 5 by using mathematical induction.

Basic step For γ ∈ {5, 6, 7, 8, 9, 10, 11, 12}, direct computation gives
¡γ+5
3

¢
>¡3γ−3

2

¢
.

Inductive step Let p ∈ Z such that p ≥ 12. Assume that
¡p+5
3

¢
>
¡3p−3

2

¢
.

Then, Ã
p+ 6

3

!
=

p+ 6

p+ 3

Ã
p+ 5

3

!
>

p+ 6

p+ 3

Ã
3p− 3
2

!
.

Direct computation gives, for p ≥ 12, that (p+ 6)(3p− 4)(3p− 3) > 9p3 +
24p2 − 9p which implies p+6

p+3 >
(3p−1)3p

(3p−4)(3p−3) . Thus,

p+ 6

p+ 3

µ
(3p− 3)!
2!(3p− 5)!

¶
>

(3p− 1)3p
(3p− 4)(3p− 3)

µ
(3p− 3)!
2!(3p− 5)!

¶
=

Ã
3p

2

!
.

Therefore,
¡p+6
3

¢
>
¡3p
2

¢
.

(ii) By Lemma 2.1, we haveÃ
α+ γ + 1

γ + 2

!
>

Ã
α+ 2

3

!
≥ 30α

6
> 3α− 3 ≥ α+ β + γ.

2

Lemma 2.6. If α ≥ 4, β ≥ 3 and α ≥ β, then
¡2α−1
α−1

¢
> βα+ 1.

Proof. Since α ≥ β, α2 + 1 ≥ βα + 1. Thus, we will show that¡2α−1
α−1

¢
> α2 + 1 for α ≥ 4.

Basic step
¡2α−1
α−1

¢
=
¡7
3

¢
= 35 > 17 = α2 + 1.

Inductive step Let p ∈ Z such that p ≥ 4. Assume that
¡2p−1
p−1

¢
> p2 + 1.

Then, Ã
2p+ 1

p

!
=
(2p+ 1)2p

p(p+ 1)

Ã
2p− 1
p− 1

!
> 2(p2 + 1) > (p+ 1)2 + 1.

2

Lemma 2.7. If α ≥ 4, β ≥ 3 and α ≥ β, then
(i)

¡βα+1
α

¢
<
¡βα+1

γα

¢
for 2 ≤ γ ≤ β − 1.

(ii)
¡βα+1

γα

¢
6=
¡βα+1

δα

¢
for 1 ≤ γ, δ ≤ β − 1 and γ 6= δ.
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Proof. (i) Since γ ≤ β− 1, we have γα ≤ βα−α < βα−α+1. By Lemma

2.1,
¡βα−α+1

γα−α
¢
>
¡ γα
γα−α

¢
and thus, α!(βα−α+1)!

(γα)!(βα−γα+1)! > 1. Therefore,Ã
βα+ 1

γα

!
=

µ
α!(βα− α+ 1)!

(γα)!(βα− γα+ 1)!

¶µ
(βα+ 1)!

α!(βα− α+ 1)!

¶
>

Ã
βα+ 1

α

!
.

(ii) Assume that
¡βα+1

γα

¢
=
¡βα+1

δα

¢
. Without loss of generality, let γ > δ.

Case 1 γα = βα+1−δα. Then, (γ+δ−β)α = 1. Since α ≥ 4 and γ+δ−β
is an integer, we obtain a contradiction.

Case 2 γα 6= βα+1− δα. Without loss of generality, let γα > βα+1− δα.
Since γ ≤ β−1 < β, we have γα−δα < βα−δα < βα+1−δα. By Lemma
2.1,

¡ γα
γα−δα

¢
>
¡βα+1−δα

γα−δα
¢
and thus,

(βα+ 1− δα)!(δα)!

(βα+ 1− γα)!(γα)!
< 1. Therefore,

Ã
βα+ 1

γα

!
=

µ
(δα)!(βα+ 1− δα)!

(γα)!(βα− γα+ 1)!

¶µ
(βα+ 1)!

(δα)!(βα+ 1− δα)!

¶
<

Ã
βα+ 1

δα

!
,

which is a contradiction. 2

3. Main results

Now, we are ready to establish the main results for G(Cn, Cm, Pk) and
Gk(Cn).

Theorem 3.1. Let n ≥ 3, m ≥ 3 and k ≥ 1. G(Cn, Cm, Pk) is a combina-
tion graph.

Proof. Let n ≥ 3, m ≥ 3, k ≥ 1 and G = G(Cn, Cm, Pk).

Case 1 n = m and k ≥ 1. Define f : V (G)→ {1, 2, 3, . . . , 2n+ k} by

f(ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ k + i+ 1 if 1 ≤ i ≤ n− 3
2n+ k if i = n− 2
2n+ k − 1 if i = n− 1
1 if i = n

,

f(vi) =

(
k + i+ 2 if 1 ≤ i ≤ n− 1
k + 2 if i = n
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and f(si) = i+ 1; 1 ≤ i ≤ k.

It can be seen easily that f is a bijective function. Now, f c : E(G)→N
can be written as follows.

f c(uiui+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¡n+k+i+2
n+k+i+1

¢
if 1 ≤ i ≤ n− 4¡ 2n+k

2n+k−2
¢

if i = n− 3¡ 2n+k
2n+k−1

¢
if i = n− 2¡2n+k−1

1

¢
if i = n− 1

,

fc(vivi+1) =

( ¡k+i+3
k+i+2

¢
if 1 ≤ i ≤ n− 2¡n+k+1

k+2

¢
if i = n− 1 ,

fc(u1un) =

Ã
n+ k + 2

1

!
, f c(v1vn) =

Ã
k + 3

k + 2

!
, f c(uns1) =

Ã
2

1

!
, f c(vnsk)

=

Ã
k + 2

k + 1

!
and f c(sisi+1) =

Ã
i+ 2

i+ 1

!
; 1 ≤ i ≤ k − 1.

Notice that

{f c(uiui+1)}n−1i=1 = {n+ k + 3, n+ k + 4, n+ k + 5, . . . ,

2n+ k − 3, 2n+ k − 2,
¡2n+k

2

¢
, 2n+ k, 2n+ k − 1

o
,

{f c(vivi+1)}n−1i=1 =
n
k + 4, k + 5, k + 6, . . . , n+ k − 1, n+ k, n+ k + 1,

¡n+k+1
k+2

¢o
,

f c(u1un) = n+ k + 2, f c(v1vn) = k + 3, f c(uns1) = 2, f
c(vnsk) = k + 2

and
n
f c(sisi+1)}k−1i=1 = 3, 4, 5, . . . , k − 1, k, k + 1

o
.

Some of fc values can be seen that they are distinct and they can even
be ordered as follows.

2 < 3 < · · · < k < k+1 < k+2 < k+3 < k+4 < · · · < n+k−1 < n+k < n+k+1

< n+k+2 < n+k+3 < · · · < 2n+k−3 < 2n+k−2 < 2n+k−1 < 2n+k.

In addition, by Lemmas 2.2 and 2.4, we can conclude that

2n+ k <

Ã
2n+ k

2

!
, 2n+ k <

Ã
n+ k + 1

k + 2

!
and

Ã
2n+ k

2

!
6=
Ã
n+ k + 1

k + 2

!
.
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Therefore, fc is an injective function and G is a combination graph.

Case 2 n 6= m and k = 1. Without loss of generality, let n > m. Define
f : V (G)→ {1, 2, 3, ..., n+m+ 1} by

f(ui) =

⎧⎪⎨⎪⎩
i+ 1 if 1 ≤ i ≤ n− 2
n+m if i = n− 1
1 if i = n

, f(vi) =

(
n+ i if 1 ≤ i ≤ m− 1
n if i = m

and f(s1) = n+m+ 1.

It can be seen easily that f is a bijective function. Now, fc : E(G) → N
can be written as follows.

f c(uiui+1) =

⎧⎪⎨⎪⎩
¡i+2
i+1

¢
if 1 ≤ i ≤ n− 3¡n+m

n−1
¢
if i = n− 2¡n+m

1

¢
if i = n− 1

,

fc(vivi+1) =

( ¡n+i+1
n+i

¢
if 1 ≤ i ≤ m− 2¡n+m−1

n

¢
if i = m− 1 , f c(u1un) =

Ã
2

1

!
,

f c(v1vm) =

Ã
n+ 1

n

!
, f c(uns1) =

Ã
n+m+ 1

1

!

and f c(vms1) =

Ã
n+m+ 1

n

!
.

Notice that

{f c(uiui+1)}n−1i=1 =
n
3, 4, 5, ..., n− 2, n− 1,

¡n+m
n−1

¢
, n+m

o
,

{f c(vivi+1)}m−1i=1 =
n
n+ 2, n+ 3, ..., n+m− 2, n+m− 1,

¡n+m−1
n

¢o
,

f c(u1un) = 2, f c(v1vm) = n+ 1, f c(uns1) = n+m+ 1

and fc(vms1) =
¡n+m+1

n

¢
.

Since n ≥ 3, m ≥ 3 and n > m, 3 ≤ m ≤ n− 1 and n ≥ 4. By Lemmas
2.2 and 2.3, the values of f c are all distinct and actually can be ordered as
follows.

2 < 3 < · · · < n− 1 < n+ 1 < · · · < n+m− 1 < n+m < n+m+ 1

<

Ã
n+m− 1

n

!
<

Ã
n+m

n− 1

!
<

Ã
n+m+ 1

n

!
.
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Therefore, f c is an injective function and G is a combination graph.

Case 3 n 6= m and k ≥ 2. Without loss of generality, let m > n. Define
f : V (G)→ {1, 2, 3, ..., n+m+ k} by

f(ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m+ k + i+ 1 if 1 ≤ i ≤ n− 3
n+m+ k if i = n− 2
n+m+ k − 1 if i = n− 1
1 if i = n

,

f(vi) =

(
k + i+ 2 if 1 ≤ i ≤ m− 1
k + 2 if i = m

and f(si) = i+ 1, 1 ≤ i ≤ k.

It can be seen easily that f is a bijective function. Now, f c : E(G)→N
can be written as follows.

fc(uiui+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¡m+k+i+2
m+k+i+1

¢
if 1 ≤ i ≤ n− 4¡ n+m+k

n+m+k−2
¢
if i = n− 3¡ n+m+k

n+m+k−1
¢
if i = n− 2¡n+m+k−1

1

¢
if i = n− 1

,

fc(vivi+1) =

( ¡k+i+3
k+i+2

¢
if 1 ≤ i ≤ m− 2¡m+k+1

k+2

¢
if i = m− 1 ,

f c(u1un) =

Ã
m+ k + 2

1

!
, f c(v1vm) =

Ã
k + 3

k + 2

!
, f c(uns1) =

Ã
2

1

!
,

f c(vmsk) =

Ã
k + 2

k + 1

!
and f c(sisi+1) =

Ã
i+ 2

i+ 1

!
; 1 ≤ i ≤ k − 1.

Notice that

{f c(uiui+1)}n−1i=1 =

½
m+ k + 3,m+ k + 4, ..., n+m+ k − 4,
n+m+ k − 3, n+m+ k − 2,¡n+m+k

2

¢
, n+m+ k, n+m+ k − 1

¾
,

{f c(vivi+1)}m−1i=1 =
n
k + 4, k + 5, ...,m+ k − 1,m+ k,m+ k + 1,

¡m+k+1
k+2

¢o
,

f c(u1un) = m+ k + 2, f c(v1vm) = k + 3, f c(uns1) = 2,
f c(vmsk) = k + 2 and

{f c(sisi+1)}k−1i=1 = {3, 4, 5, ..., k − 1, k, k + 1}.
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Some of fc values can be seen that they are distinct and they can even
be ordered as follows.

2 < 3 < · · · < k < k+1 < k+2 < k+3 < k+4 < · · · < m+k− 1 < m+k

< m+ k + 1 < m+ k + 2

< m+k+3 < · · · < n+m+k−4 < n+m+k−3 < n+m+k−2 < n+m+k−1

< n+m+ k.

In addition, since, in this case, we assume that m > n ≥ 3, we have m ≥ 4.
By Lemmas 2.2 and 2.5, we can conclude that

n+m+ k <

Ã
m+ k + 1

k + 2

!
, n+m+ k <

Ã
n+m+ k

2

!
and

Ã
m+ k + 1

k + 2

!

6=
Ã
n+m+ k

2

!
.

Therefore, fc is an injective function and G is a combination graph. 2

Theorem 3.2. If (i) n = k = 3 or (ii) n ≥ 4 and n ≥ k ≥ 3 or (iii) n = 3
and k ≥ 4, then Gk(Cn) is a combination graph.

Proof. Let n ≥ 3, k ≥ 2 and G = Gk(Cn).

Case 1 n = k = 3. We show that G is a combination graph by illustrating
the vertex and edge labelings in the following Figure 3.
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Figure 3: vertex labeling and edge labeling for G3(C3)

Case 2 n ≥ 4, k ≥ 3 and n ≥ k. Define f : V (G)→ {1, 2, 3, ..., kn+ 1} by

f(ui,j) =

⎧⎪⎨⎪⎩
in+ j − n if 1 ≤ i ≤ k and j 6= n
kn if i = 1 and j = n
in− n if 2 ≤ i ≤ k and j = n

and f(s) = kn+ 1.

It can be seen easily that f is a bijective function. Now, fc : E(G) → N
can be written as follows.

f c(ui,jui,j+1) =

⎧⎪⎨⎪⎩
¡in+j−n+1

in+j−n
¢
if 1 ≤ i ≤ k, 1 ≤ j ≤ n− 2¡ kn

n−1
¢

if i = 1, j = n− 1¡in−1
in−n

¢
if 2 ≤ i ≤ k, j = n− 1

,

f c(ui,1ui,n) =

( ¡kn
1

¢
if i = 1¡in−n+1

in−n
¢
if 2 ≤ i ≤ k

and

f c(ui,ns) =

( ¡kn+1
kn

¢
if i = 1¡kn+1

in−n
¢
if 2 ≤ i ≤ k

.

Notice that

pc
fa-3
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³Sn
i=1{f c(ui,jui,j+1)}n−2j=1

´
∪{f c(ui,1ui,n)}ki=1 ∪ {f c(u1,ns)}
= {2, 3, ..., n− 1, n+ 1, n+ 2, ...,

2n− 1, 2n+ 1, 2n+ 2, ..., kn− n+ 1,
kn− n+ 2, ..., kn− 1, kn, kn+ 1} ,

f c(ui,n−1ui,n)}ki=1 =
n¡2n−1

n−1
¢
,
¡3n−1
n−1

¢
, ...,

¡kn−1
n−1

¢
,
¡ kn
n−1

¢o
and

f c(ui,ns)}ki=2 =
n¡kn+1

n

¢
,
¡kn+1
2n

¢
, ...,

¡kn+1
kn−n

¢o
.

Some of f c values can be seen that they are distinct and they can even be
ordered as follows.

2 < 3 < · · · < n− 1 < n+1 < n+2 < · · · < 2n− 1 < 2n+1 < 2n+2 < · · ·

< kn− n+ 1 < kn− n+ 2 < · · · < kn− 1 < kn < kn+ 1

In addition, by using Lemma 2.6 we obtain the first inequality and by
Lemma 2.1 we obtain the followings inequalities

kn+1 <

Ã
2n− 1
n− 1

!
<

Ã
3n− 1
n− 1

!
< · · · <

Ã
kn− 1
n− 1

!
<

Ã
kn

n− 1

!
<

Ã
kn+ 1

n

!
.

Finally, by Lemma 2.7, we have
¡kn+1

n

¢
<
¡kn+1

in

¢
for 2 ≤ i ≤ k − 1 and¡kn+1

in

¢
6=
¡kn+1

ln

¢
for 1 ≤ i, l ≤ k − 1 and i 6= l. Therefore, f c is an injective

function and G is a combination graph.

Case 3 n = 3 and k ≥ 4. Define f : V (G)→ {1, 2, 3, ..., 3k + 1} by

f(ui,j) =

(
k + 2i+ j − 1 if ≤ i ≤ k and j 6= 3
i+ 1 if 1 ≤ i ≤ k and j = 3

and f(s) = 1.

It can be seen easily that f is a bijective function. Now, fc : E(G) → N
can be written as follows. For 1 ≤ i ≤ k,

f c(ui,1ui,2) =

Ã
k + 2i+ 1

k + 2i

!
, f c(ui,1ui,3) =

Ã
k + 2i

i+ 1

!
,

f c(ui,2ui,3) =

Ã
k + 2i+ 1

i+ 1

!
and fc(ui,3s) =

Ã
i+ 1

1

!
.

Notice that
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f c(ui,1ui,2)
k
i=1 ∪ fc(ui,3s)}ki=1

= {2, 3, ...i, ..., k + 1, k + 3, k + 5, ..., k + 2(i− 1) + 1, ..., 3k + 1} and

f c(ui,1ui,3)
k
i=1 ∪ fc(ui,2ui,3)

k
i=1

=
n¡k+2

2

¢
,
¡k+3
2

¢
,
¡k+4
3

¢
,
¡k+5
3

¢
, ...,

¡k+2(i−1)
i

¢
,
¡k+2(i−1)+1

i

¢
, ...,

¡ 3k
k+1

¢
,
¡3k+1
k+1

¢o
.

Some of f c values can be seen that they are distinct and they can even be
ordered as follows.

2 < 3 < · · · < i < · · · < k+1 < k+3 < k+5 < · · · < k+2(i−1)+1 < · · · < 3k+1.

In addition, by using Lemmas 2.1 and 2.2, we obtain

3k + 1 <

Ã
k + 2

2

!
<

Ã
k + 3

2

!
<

Ã
k + 4

3

!
<

Ã
k + 5

3

!

< · · · <
Ã
k + 2(i− 1)

i

!
<

Ã
k + 2(i− 1) + 1

i

!

< · · · <
Ã
3k

k + 1

!
<

Ã
3k + 1

k + 1

!
.

Therefore, fc is an injective function and G is a combination graph. 2

4. Conclusion and discussion

We construct vertex labelings for G(Cn, Cm, Pk) and prove that they are
combination labeling. For G(Cn), under some conditions of n and k, we
can prove that it is a combination graph. We expect in the future that we
may be able to construct a combination labeling for Gk(Cn) in the case
that k > n ≥ 4 as well as generalize the result of Gk(Cn) so that it can
be a combination labeling for the graph that consists of cycles of different
sizes or may contain a longer path.
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