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Abstract

An anti-magic labeling of a graph G is a one-to-one correspondence
between E(G) and {1, 2, · · · , |E|} such that the vertex-sum for distinct
vertices are different. Vertex-sum of a vertex u ∈ V (G) is the sum of
labels assigned to edges incident to the vertex u. It was conjectured by
Hartsfield and Ringel that every tree other than K2 has an anti-magic
labeling. In this paper, we consider various binary graph products such
as corona, edge corona and rooted products to generate anti-magic
graphs. We prove that corona products of an anti-magic regular graph
G with K1 and K2 are anti-magic. Further, we prove that rooted
product of two anti-magic trees are anti-magic. Also, we prove that
rooted product of an anti-magic graph with an anti-magic tree admits
anti-magic labeling.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Terms
that are not defined in this paper can be refered from book [13]. Let
G = (V,E) be a graph and f : E → {1, 2, · · · , |E|} is a bijective function.
For each vertex u ∈ V (G), the vertex-sum ϕf (u) at u is defined as ϕf (u) =P
e∈E(u)

f(e), where E(u) is the set of edges incident to u. If ϕf (u) 6= ϕf (v)

for any two distinct vertices u, v of G, then f is called an anti-magic labeling
of G. A graph G is called anti-magic if G has an anti-magic labeling. The
problem of anti-magic labeling of graphs was introduced by Hartsfield and
Ringel [7]. They posed the following conjectures on anti-magic labeling of
graphs.

Conjecture 1.[7] Every connected graph other than K2 is anti-magic.

Conjecture 2.[7] Every tree other than K2 is anti-magic.

In spite of much attention given by many researchers, both conjectures
remain open. Alon et al.[1] proved that there is an absolute constant C
such that graphs with minimum degree δ(G) ≥ C log|V (G)| are anti-magic.
Also they proved that all complete partite graphs exceptK2 are anti-magic.
Liang and Zhu [10] proved that cubic graphs are anti-magic. Cranston,
Liang and Zhu [3] proved that odd degree regular graphs are anti-magic.

For Conjecture 2, J. Shang [12] proved that spiders are antimagic. Ka-
plan et al. [9] showed that trees without vertices of degree 2 are anti-magic.
Liang, Wong and Zhu [11] studied trees with many degree 2 vertices, with
restriction on the subgraph induced by degree 2 vertices and its comple-
ment. They proved that such trees are anti-magic. For an exhaustive survey
on anti-magic graphs, we refer the dynamic survey by Gallian [5].

2. Anti-magic labeling of corona product of graphs

In this section, we prove that the corona product of an anti-magic graph
G with K1 and G with K2 is anti-magic. For that, let us define the corona
product of two graphs.

Definition 2.1. [4][Corona Product of Graphs]
Let G and H be two graphs and let n be the order of G. The corona

product, or simply the corona, of graphs G and H is the graph G ◦ H
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obtained by taking one copy of G and n copies of H and then joining by an
edge the ith vertex of G to every vertex in the ith copy of H. The corona
product of graphs G and H are denoted as G ◦H.

Theorem 2.2. Let G be an anti-magic regular graph with p vertices and
q edges. Then G ◦K1 is anti-magic.

Proof. Let f be the anti-magic labeling of a regular graph G. For
convenience, let us label and arrange the edges of G as e1, e2, · · · , eq such
that f(ei) = i, for 1 ≤ i ≤ q. Similarly, let us arrange the vertices ofG based
on their vertex-sums. That is, arrange the vertices of G as u1, u2, · · · , up
such that ϕf (u1) < ϕf (u2) < · · · < ϕf (up).

To construct a graph G ◦ K1 from G, consider the graph G and for
1 ≤ i ≤ p, add a vertex u0i for the vertex ui and add an edge e

0
i between the

vertices ui and u0i. Now, let us define a bijective function ψ : E(G ◦K1)→
{1, 2, 3, · · · , p+ q} as follows:

ψ(ei) = f(ei) + p, for 1 ≤ i ≤ q(2.1)

ψ(e0i) = i, for 1 ≤ i ≤ p(2.2)

From equation (2.1) and equation (2.2), it is clear that the edge labels
of p+ q edges of E(G ◦K1) are from the set {1, 2, 3, · · · , p+ q}. Therefore,
ψ is bijective. Since G is a regular graph and observe that the vertex-sum
of vertices of G ◦K1 form a monotonically increasing sequence as follows:
ϕψ(u

0
1), ϕψ(u

0
2), ϕψ(u

0
3), · · · , ϕψ(u0p)

followed by ϕψ(u1), ϕψ(u2), ϕψ(u3), · · · , ϕψ(up) since ϕψ(u
0
1) < ϕψ(u

0
2) <

ϕψ(u
0
3) < · · · < ϕψ(u

0
m+1) < ϕψ(u1) < ϕψ(u2) < ϕψ(u3) < · · · < ϕψ(up).

Thus, the vertex-sum of vertices of G ◦ K1 are distinct. This implies
that ψ satisfies the conditions of anti-magic labeling. Therefore, G ◦K1 is
an anti-magic graph. Hence the proof. 2

Theorem 2.3. Let G be an anti-magic regular graph with p vertices and
q edges. Then G ◦K2 is anti-magic.

Proof. Let f be the anti-magic labeling of regular graph G. For con-
venience, let us label and arrange the edges of G as e1, e2, · · · , eq such that
f(ei) = i, for 1 ≤ i ≤ q. Similarly, let us arrange the vertices of G based on
their vertex-sums. That is, arrange the vertices of G as u1, u2, · · · , up such
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that ϕf (u1) < ϕf (u2) < · · · < ϕf (up).

To construct a graph G ◦ K2 from G, consider the graph G and for
1 ≤ i ≤ p, add an edge wi = (u

0
i, v

0
i) for every vertex ui and correspondingly

add edges x0i = (ui, u
0
i) and y

0
i = (ui, v

0
i). Observe that, by the construction,

for every vertex in G, we are adding three edges in G ◦ K2. Now, let us
define a bijective function ψ : E(G ◦K2)→ {1, 2, 3, · · · , q + 3p} as follows:

ψ(ei) = f(ei) + 3p, for 1 ≤ i ≤ q(2.3)

ψ(wi) = 3i− 2, for 1 ≤ i ≤ p(2.4)

ψ(x0i) = 3i− 1, for 1 ≤ i ≤ p(2.5)

ψ(y0i) = 3i, for 1 ≤ i ≤ p(2.6)

From the above equations, it is clear that the edge labels of 3p+q edges
of E(G◦K2) are from the set {1, 2, 3, · · · , 3p+ q}. Therefore, ψ is bijective.
Since G is a regular graph and we observe that the vertex-sum of vertices
of G ◦K2 form a monotonically increasing sequence as follows:

ϕψ(u
0
1), ϕψ(v

0
1), ϕψ(u

0
2), ϕψ(v

0
2), · · · , ϕψ(u0i), ϕψ(v0i), · · ·ϕψ(u0p), ϕψ(v0p) fol-

lowed by
ϕψ(u1), ϕψ(u2), · · · , ϕψ(ui), · · · , ϕψ(up)

Thus, the vertex-sum of vertices of G ◦ K2 are distinct. This implies
that ψ satisfies the conditions of anti-magic labeling. Therefore, G ◦K2 is
an anti-magic graph. Hence the proof. 2

3. Anti-magicness of edge corona product of graphs

In this section, we prove that the edge corona product of an anti-magic
regular graph G with K1 is anti-magic. To prove one of our main results,
let us define the edge corona product of two graphs.

Definition 3.1. [8][Edge corona of two graphs]
Let G and H be two graphs and let m be the number of edges in G. The
edge corona of G and H, denoted by G¦H, is the graph obtained by taking
one copy of G and m copies of H, and then joining two end vertices of the
i-th edge of G to every vertex in the ith copy of H.
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Theorem 3.2. Let G be an anti-magic regular graph with p vertices and
q edges such that δ(G) ≥ 2. Then G ¦K1 is anti-magic.

Proof. Let f be the anti-magic labeling of regular graph G. For con-
venience, let us label and arrange the edges of G as e1, e2, · · · , eq such
that f(ei) = i, for 1 ≤ i ≤ q. Similarly, let us arrange the vertices of
G based on their vertex-sums. That is, label and arrange the vertices of
G as u1, u2, · · · , up such that ϕf (u1) < ϕf (u2) < · · · < ϕf (up). By the
edge corona product of graph G with K1, for 1 ≤ i ≤ q, a vertex u0i is
added corresponding to the edge ei = (uj , uk) ∈ E(G). With out loss of
generality, let us assume that ϕf (uj) < ϕf (uk). Further, we add the edges
xi = (u

0
i, uj) and yi = (u

0
i, uk). Note that G ¦K1 has p+ q vertices and 3q

edges. Now, let us define a function ψ : E(G ¦K1) → {1, 2, 3, · · · , 3q} as
follows:

ψ(xi) = 2i− 1, for 1 ≤ i ≤ q(3.1)

ψ(yi) = 2i, for 1 ≤ i ≤ q(3.2)

ψ(ei) = f(ei) + 2q, for 1 ≤ i ≤ q(3.3)

From the above equations, it is clear that the edge labels of 3q edges of
E(G ¦K1) are from the set {1, 2, 3, · · · , 3q}. Therefore, ψ is bijective.

Since δ(G) ≥ 2, implies that degree of any vertex ui for any 1 ≤ i ≤ p, is
at least 4. Also, deg(u0i) = 2 for 1 ≤ i ≤ q. This leads that the vertex-sum
of vertices of G ¦K1 form a monotonically increasing sequence as follows:

ϕψ(u
0
1), ϕψ(u

0
2), · · · , ϕψ(u0i), · · · , ϕψ(u0q) followed by

ϕψ(u1), ϕψ(u2), · · · , ϕψ(ui), · · · , ϕψ(up)

Thus, the vertex-sum of vertices of G ¦ K1 are distinct. This implies
that ψ satisfies the conditions of anti-magic labeling. Therefore, G ¦K2 is
an anti-magic graph. Hence the proof. 2

Theorem 3.3. K1,n ¦K1 is anti-magic, for n ≥ 1.
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Proof. Let f be the anti-magic labeling of the star graph K1,n. For
convenience, let us label and arrange the edges of K1,n as e1, e2, · · · , en
such that f(ei) = i, for 1 ≤ i ≤ n. Let us denote the central vertex of
the star as u and the pendant vertices of star can be labeled and arranged
as u1, u2, · · · , un such that ϕf (u1) < ϕf (u2) < · · · < ϕf (un). By the edge
corona product of graph K1,n with K1, for 1 ≤ i ≤ n, a vertex u0i is added
corresponding to the edge ei = (u, ui) ∈ E(G). Further, we add the edges
xi = (u

0
i, ui) and yi = (u

0
i, u). Note that K1,n ¦K1 has 2n+ 1 vertices and

3n edges. Now, let us define a function ψ : E(K1,n ¦K1)→ {1, 2, 3, · · · , 3n}
as follows:

ψ(ei) = 3i− 2, for 1 ≤ i ≤ n(3.4)

ψ(xi) = 3i− 1, for 1 ≤ i ≤ n(3.5)

ψ(yi) = 3i, for 1 ≤ i ≤ n(3.6)

From the above equations, it is clear that the edge labels of 3n edges of
E(K1,n ¦K1) are from the set {1, 2, 3, · · · , 3n}. Therefore, ψ is bijective.

Further the vertex-sum of vertices of K1,n ¦ K1 form a monotonically
increasing sequence as follows:
ϕψ(u1), ϕψ(u

0
1), ϕψ(u2), ϕψ(u

0
2), · · · , ϕψ(ui), ϕψ(u0i), · · · , ϕψ(u)

Thus, the vertex-sum of vertices of K1,n ¦K1 are distinct. This implies
that ψ satisfies the conditions of anti-magic labeling. Therefore, K1,n ¦K2

is an anti-magic graph. Hence the proof. 2

4. Anti-magic labeling of rooted product of two graphs

In this section, we prove that rooted product of two anti-magic graphs is
also anti-magic. Now, we introduce some basic definitions to prove our
main results.

Definition 4.1. [6][Rooted product of graphs] Given a graph G of order
n and a graph H with root vertex v, the rooted product G •H is defined
as the graph obtained from G and H by taking one copy of G and n copies
of H and identifying the vertex ui of G with the vertex v in the ith copy
of H for every 1 ≤ i ≤ n.



Generation of anti-magic graphs from binary graph products 657

Remark 4.1. Suppose T1 is a tree with m edges and T2 is a tree with
n edges. Then, rooted product of a tree T1 with T2 is also a tree with
mn+m+ n edges.

Definition 4.2. Let G be an anti-magic graph whose anti-magic label-
ing is given by bijective function f : E(G) → {1, 2, · · · , |E|}. Let k =
max

u∈V (G)
{ϕf (u)}. A vertex u ∈ V (G) is said to be anti-magic maximum

vertex if ϕf (u) = k and we denote such vertex as û.

Theorem 4.3. Rooted product of anti-magic trees T1 and T2 is anti-magic.

Proof. Let T1 be an anti-magic tree with m edges. Let f1 : E(T1) →
{1, 2, · · · ,m} be the anti-magic labeling. Let us call and arrange the edges of
T1 as y1, y2, · · · , ym such that f1(yi) = i, for 1 ≤ i ≤ m. Let us label and ar-
range the vertices of T1 as v1, v2, · · · , vm+1 such that their vertex-sum form
a monotonically increasing sequence ϕf1(v1) < ϕf1(v2) < · · · < ϕf1(vm+1).

Let T2 be an anti-magic tree with n edges. Let f2 : E(T2)→ {1, 2, · · · , n}
be the anti-magic labeling. Let us call and arrange the edges of T2 as
x1, x2, · · · , xn such that f2(xi) = i, for 1 ≤ i ≤ n. Let us label and ar-
range the vertices of T2 as u1, u2, · · · , un+1 such that their vertex-sum form
a monotonically increasing sequence ϕf2(u1) < ϕf2(u2) < · · · < ϕf2(un+1).

In the above set up, the anti-magic maximum vertex of T2 is û = un+1
and consider û as the root vertex of the tree T2 in the rooted product of

T1 with T2. For 1 ≤ i ≤ m + 1, denote T
(i)
2 is the ith copy of the tree

T2 for the ith vertex of the tree T1. Denote x
(i)
j is the jth edge in the

arrangement of edges of T2 in its ith copy. Denote u
(i)
j is the jth vertex

in the arrangement of vertices of T2 in its ith copy. Now, let us define a
function θ : E(T1 • T2)→ {1, 2, 3, · · · ,mn+m+ n} as follows:

θ(yj) = f1(yj) + (m+ 1)n, for 1 ≤ j ≤ m(4.1)

θ
³
x
(i)
j

´
= f2(xj)+(i−1)+m(j−1), for 1 ≤ i ≤ m+1 and for 1 ≤ j ≤ n

(4.2)
It is clear that from equation (4.1), θ assigns the edge values from

the set {mn + n + 1,mn + n + 2, · · · ,mn + n + m}. For the ith copy
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of the tree T2, the difference between two consecutively arranged edge la-
bels of edges xij and xij+1 is always m + 1. Further, the minimum edge
label assigned by the function θ in the ith copy of the tree T2 always i.

The edge labels of the edges of T
(1)
2 assigned by θ form an arithmetic

progression 1, 1 + (m + 1), 1 + 2(m + 1), · · · , 1 + (n − 1)(m + 1). The

edge labels of the edges of T
(2)
2 assigned by θ form an arithmetic pro-

gression 2, 2 + (m + 1), 2 + 2(m + 1), · · · , 2 + (n − 1)(m + 1). Similarly,

the edge labels of the edges of T
(i)
2 assigned by θ form an arithmetic pro-

gression i, i + (m + 1), i + 2(m + 1), · · · , i + (n − 1)(m + 1). The edge

labels of the edges of T
(m+1)
2 assigned by θ form an arithmetic progression

m + 1,m + 1 + (m + 1),m + 1 + 2(m + 1), · · · ,m + 1 + (n − 1)(m + 1).
Therefore, the edge labels assigned by the function θ is distinct and are
from the set {1, 2, · · · ,mn+m+ n}. Hence θ is bijective.

Now, let us prove that vertex-sum of vertices of T1 • T2 is distinct. Ob-
serve that vertex-sum of vertices of T1 •T2 form a monotonically increasing
sequence as follows:

ϕθ(u
(1)
1 ), ϕθ(u

(2)
1 ), ϕθ(u

(3)
1 ), · · · , ϕθ(u

(m+1)
1 ), ϕθ(u

(1)
2 ), ϕθ(u

(2)
2 ), ϕθ(u

(3)
2 ), · · · ,

ϕθ(u
(m+1)
2 ), · · · , ϕθ(u(1)n ), ϕθ(u

(2)
n ), ϕθ(u

(3)
n ), · · · , ϕθ(u(m+1)n )

followed by ϕθ(v1), ϕθ(v2), · · · , ϕθ(vm+1)

This implies that the vertex-sum of vertices of T1•T2 is distinct. There-
fore T1 • T2 is anti-magic. 2

Theorem 4.4. Let G be an anti-magic graph with p vertices and q edges
and let T be an anti-magic tree with m edges. Then, G • T is anti-magic.

Proof. Let f1 be the anti-magic labeling of graph G. For convenience,
let us label and arrange the edges of G as e1, e2, · · · , eq such that f1(ei) = i,
for 1 ≤ i ≤ q. Similarly, let us arrange the vertices of G based on their
vertex-sums. That is, label and arrange the vertices of G as v1, v2, · · · , vp
such that ϕ(f1)(v1) < ϕ(f1)(v2) < · · · < ϕ(f1)(vp).

Let f2 : E(T ) → {1, 2, · · · ,m} be the anti-magic labeling. Let us call
and arrange the edges of T as x1, x2, · · · , xm such that f2(xi) = i, for 1 ≤
i ≤ m. Let us label and arrange the vertices of T as u1, u2, · · · , um+1 such
that their vertex-sum form a monotonically increasing sequence ϕf2(u1) <
ϕf2(u2) < · · · < ϕf2(um+1).
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In the above arrangement of vertices of T , the anti-magic maximum
vertex of T is û = um+1. Consider û as the root vertex of T in the rooted
product of G and T . For 1 ≤ i ≤ p, denote T (i) is the ith copy of the

tree T for the ith vertex of the graph G. Denote x
(i)
j is the jth edge in

the arrangement of edges of T in its ith copy. Denote u
(i)
j is the jth vertex

in the arrangement of vertices of T in its ith copy. Now, let us define a
function θ : E(G • T )→ {1, 2, 3, · · · ,mp+ q} as follows:

θ(ej) = f1(ej) +mp, for 1 ≤ j ≤ q(4.3)

θ
³
x
(i)
j

´
= f2(xj)+(i−1)+(p−1)(j−1), for 1 ≤ i ≤ p and for 1 ≤ j ≤ m

(4.4)

It is clear that from equation (4.3), θ assigns the edge values from the set
{mp+1,mp+2, · · · ,mp+ q}. For the ith copy of the tree T , the difference
between two consecutively arranged edge labels of edges xij and xij+1 is al-
ways p. Further, the minimum edge label assigned by the function θ in the
ith copy of the tree T always i. The edge labels of the edges of T (1) assigned
by θ form an arithmetic progression 1, 1 + p, 1 + 2p, · · · , 1 + (m− 1)p. The
edge labels of the edges of T (2) assigned by θ form an arithmetic progression
2, 2+p, 2+2p, · · · , 2+(m−1)p. Similarly, the edge labels of the edges of T (i)
assigned by θ form an arithmetic progression i, i+p, i+2p, · · · , i+(m−1)p.
The edge labels of the edges of T (p) assigned by θ form an arithmetic pro-
gression p, p+p, p+2p, · · · , p+(m−1)p. Therefore, the edge labels assigned
by the function θ is distinct and are from the set {1, 2, · · · ,mp+ q}. Hence
θ is bijective.

Now, let us prove that vertex-sum of vertices of G • T is distinct. Ob-
serve that vertex-sum of vertices of G • T form a monotonically increasing
sequence as follows:

ϕθ(u
(1)
1 ), ϕθ(u

(2)
1 ), ϕθ(u

(3)
1 ), · · · , ϕθ(u

(m+1)
1 ), ϕθ(u

(1)
2 ), ϕθ(u

(2)
2 ), ϕθ(u

(3)
2 ), · · · ,

ϕθ(u
(m+1)
2 ), · · · , ϕθ(u(1)m ), ϕθ(u

(2)
m ), ϕθ(u

(3)
m ), · · · , ϕθ(u(m+1)m ) followed by

ϕθ(v1), ϕθ(v2), · · · , ϕθ(vp)

This implies that the vertex-sum of vertices of G •T is distinct. There-
fore G • T is anti-magic. 2
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5. Conclusion

Our results in this paper extensively support the conjectures posed by
Hartsfield and Ringel. In this paper, we considered various binary graph
products such as corona, edge corona and rooted products to generate anti-
magic graphs. We proved that the corona product of an anti-magic regular
graph with K1 is anti-magic. Further, we proved that the rooted product
of two anti-magic trees are also anti-magic. Also, our results can be used to
generate various families of anti-magic graphs. Our results generate anti-
magic graphs from regular graphs using various binary products of graphs.
In this connection, we raise a related questions that: “Is it possible to gen-
erate anti-magic graphs from non-regular anti-magic graphs using binary
products?”. In general, is it possible to construct anti-magic graphs from
the corona products of two arbitrary anti-magic graphs.
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