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Abstract

In this work, we investigate the existence of periodic or nonnega-

tive periodic solutions for a totally nonlinear neutral differential equa-

tion with infinite delay. In the process, we convert the given neutral

differential equation into an equivalent integral equation. Then, we

employ Krasnoselskĭı-Burton’s fixed point theorem to prove the exis-

tence of periodic or nonnegative periodic solutions. Two examples are

provided to illustrate the obtained results.
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1. Introduction

Delay differential equations have attracted considerable attention in math-

ematics during recent years since these equations have been showed to

be valuable tools in the modeling of many phenomena in various fields of

science, physics, chemistry and engineering, etc. In particular, problems

concerning qualitative analysis such as periodicity, positivity and stability

of solutions for delay differential equations have been studied extensively by

many authors, see the references [1]—[15]. In the current paper, we present

sufficient conditions for the existence of periodic or nonnegative periodic

solutions of the totally nonlinear neutral differential equation with infinite

delay

d

dt
x (t) = −a (t)h (x (t− τ (t)))+

d

dt
Q (t, x (t− g (t)))+

Z t

−∞
D (t, s) f (x (s)) ds,

(1.1)

where a is a positive continuous function. The functions h, f : R → R

are continuous, Q : R × R → R satisfying the Carathéodory condition.

The main purpose of this work is to use Krasnoselskĭı-Burton’s fixed point

theorem (see [11]) to prove the existence of periodic or nonnegative peri-

odic solutions for (1.1). During the process, we employ the variation of

parameter formula and the integration by parts to transform (1.1) into

an equivalent integral equation written as a sum of two mappings; one is

a large contraction and the other is compact. After that, we use Kras-

noselskĭı-Burton’s fixed point theorem, to prove the existence of periodic

or nonnegative periodic solutions. Two examples are given to illustrate the

obtained results.

2. Preliminaries

For T > 0 define

PT = {ϕ ∈ C (R,R) , ϕ (t+ T ) = ϕ (t)} ,

where C (R,R) is the space of all real valued continuous functions. Then

PT is a Banach space when it is endowed with the supremum norm

kxk = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)| .
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In this paper, we assume that

a(t− T ) = a(t), D(t− T, s− T ) = D(t, s),

τ(t− T ) = τ(t) ≥ τ∗ > 0, g(t− T ) = g(t) ≥ g∗ > 0.(2.1)

with τ and g are continuously differentiable functions, τ∗ and g∗ are positive
constants, a is a positive function and

1− e
−
R t
t−T a(k)dk ≡ 1

η
6= 0.(2.2)

The function Q(t, x) is periodic in t of period T , that is

Q(t+ T, x) = Q(t, x).(2.3)

Also, there is a positive constant E such that,

Z t

−∞
|D (t, s)| ds ≤ E <∞.(2.4)

The following lemma is fundamental to our results.

Lemma 1. Suppose (2.1)—(2.3) hold. If x ∈ PT , then x is a solution of

(1.1) if and only if

x (t) = η
R t
t−T a (u)H (x (u)) e

−
R t
u
a(k)dkdu+Q (t, x (t− g (t)))

+
R t
t−τ(t) a (u)h (x (u)) du− η

R t
t−T

hR u
u−τ(u) a (s)h (x (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

+η
R t
t−T b (u)h (x (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, x (u− g (u))) +

R u
−∞D (u, s) f (x (s)) ds

i
e−
R t
u
a(k)dkdu,

(2.5)

where

H (x) = x− h (x) ,(2.6)

and

b (u) =
¡
1− τ 0 (u)

¢
a (u− τ (u))− a (u) .
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Proof. Let x ∈ PT be a solution of (1.1). Rewrite (1.1) as
d
dt [x (t)−Q (t, x (t− g (t)))] + a (t) [x (t)−Q (t, x (t− g (t)))]

= a (t) [x (t)−Q (t, x (t− g (t)))]− a (t)h (x (t)) + a (t)h (x (t))

−a (t)h (x (t− τ (t))) +
R t
−∞D (t, s) f (x (s)) ds

= a (t) [x (t)− h (x (t))] + d
dt

R t
t−τ(t) a (s)h (x (s)) ds

+ [(1− τ 0 (t)) a (t− τ (t))− a (t)]h (x (t− τ (t)))

−a (t)Q (t, x (t− g (t))) +
R t
−∞D (t, s) f (x (s)) ds.

Multiply both sides of the above equation by exp
³R t
0 a (k) dk

´
and then

integrate from t− T to t, we getR t
t−T

∙
[x (u)−Q (u, x (u− g (u)))] e

R u
0
a(k)dk

¸0
du

=
R t
t−T a (u) [x (u)− h (x (u))] e

R u
0
a(k)dkdu

+
R t
t−T

h
d
du

R u
u−τ(u) a (s)h (x (s)) ds

i
e
R u
0
a(k)dkdu

+
R t
t−T b (u)h (x (u− τ (u))) e

R u
0
a(k)dkdu

+
R t
t−T

h
−a (u)Q (u, x (u− g (u))) +

R u
−∞D (u, s) f (x (s)) ds

i
e
R u
0
a(k)dkdu,

with b (u) = (1− τ 0 (u)) a (u− τ (u))− a (u). As a consequence, we have

[x (t)−Q (t, x (t− g (t)))] e
R t
0
a(k)dk

− [x (t− T )−Q (t− T, x (t− T − g (t− T )))] e
R t−T
0

a(k)dk

=
R t
t−T a (u) [x (u)− h (x (u))] e

R u
0
a(k)dkdu

+
R t
t−T

h
d
du

R u
u−τ(u) a (s)h (x (s)) ds

i
e
R u
0
a(k)dkdu

+
R t
t−T b (u)h (x (u− τ (u))) e

R u
0
a(k)dkdu

+
R t
t−T

h
−a (u)Q (u, x (u− g (u))) +

R u
−∞D (u, s) f (x (s)) ds

i
e
R u
0
a(k)dkdu.

By dividing both sides of the above equation by exp
³R t
0 a (u) du

´
and

using the fact that x(t) = x(t− T ), we obtain

x (t)−Q (t, x (t− g (t)))

= η
R t
t−T a (u) [x (u)− h (x (u))] e−

R t
u
a(k)dkdu

+η
R t
t−T

h
d
du

R u
u−τ(u) a (s)h (x (s)) ds

i
e−
R t
u
a(k)dkdu

+η
R t
t−T b (u)h (x (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, x (u− g (u))) +

R u
−∞D (u, s) f (x (s)) ds

i
e−
R t
u
a(k)dkdu.

(2.7)

Integration by parts the second integral in the above expression, we get
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R t
t−T

h
d
du

R u
u−τ(u) a (s)h (x (s)) ds

i
e−
R t
u
a(k)dkdu

=

∙R u
u−τ(u) a (s)h (x (s)) dse

−
R t
u
a(k)dk

¸t
t−T

−
R t
t−T

hR u
u−τ(u) a (s)h (x (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

=

∙R t
t−τ(t) a (s)h (x (s)) ds−

R t−T
t−T−τ(t) a (s)h (x (s)) dse

−
R t
t−T a(k)dk

¸
−
R t
t−T

hR u
u−τ(u) a (s)h (x (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

= −
R t
t−T

hR u
u−τ(u) a (s)h (x (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

+ 1
η

R t
t−τ(t) a (u)h (x (u)) du.

(2.8)

Then substituting the result of (2.8) into (2.7) to obtain (2.5). The

converse implication is easily obtained and the proof is complete. 2

Definition 1. The map P : [0, T ]×Rn → R is said to satisfy Carathéodory

conditions with respect to L1[0, T ] if the following conditions hold. (i) For

each z ∈ Rn, the mapping t 7−→ P (t, z) is Lebesgue measurable. (ii) For
almost all t ∈ [0, T ], the mapping t 7−→ P (t, z) is continuous on Rn. (iii)

For each r > 0, there exists αr ∈ L1 ([0, T ] ,R) such that for almost all

t ∈ [0, T ] and for all z such that |z| < r, we have |P (t, z)| ≤ αr (t).

Definition 2 ([11]). Let (M, d) be a metric space and suppose that B :

M→M. B is said to be a large contraction, if for ϕ,ψ ∈M, with ϕ 6= ψ,

we have d (Bϕ,Bψ) ≤ d (ϕ,ψ) and if ∀� > 0, ∃δ < 1 such that

[ϕ,ψ ∈M, d (ϕ,ψ) ≥ �]⇒ d (Bϕ,Bψ) ≤ δd (ϕ,ψ) .

Theorem 1 (Krasnoselskĭı-Burton [11]). Let M be a closed bounded

convex nonempty subset of a Banach space (B, k.k). Suppose that A and

B map M intoM such that

(i) A is completely continuous, (ii) B is large contraction, (iii) x, y ∈M,
implies Ax+By ∈M.
Then there exists z ∈M with z = Az +Bz.

Theorem 2 ([1]). Let k.k be the supremum norm,M = {ϕ ∈ PT : kϕk ≤ L},
where L is a positive constant. Suppose that h is satisfying the following

conditions
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(H1) h : R→ R is continuous on [−L,L] and differentiable on (−L,L),
(H2) the function h is strictly increasing on [−L,L],
(H3) supt∈(−L,L) h

0 (t) ≤ 1.

Then the mapping H define by (2.6) is a large contraction on the set M.

3. Existence of periodic solutions

To apply Theorem 1, we need to define a Banach space B, a closed bounded

convex subset M of B and construct two mappings; one is a completely

continuous and the other is a large contraction. So, we let (B, k.k) =
(PT , k.k) and

M = {ϕ ∈ PT , kϕk ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} ,
(3.1)

with L ∈ (0, 1] and K > 0. M is a closed convex and bounded subset of

PT .

Define a mapping S : PT → PT by

(Sϕ) (t) = η
R t
t−T a (u)H (ϕ (u)) e

−
R t
u
a(k)dkdu+Q (t, ϕ (t− g (t)))

+
R t
t−τ(t) a (u)h (ϕ (u)) du− η

R t
t−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

+η
R t
t−T b (u)h (ϕ (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t
u
a(k)dkdu.

(3.2)

Therefore, we express the above mapping as

Sϕ = Aϕ+Bϕ,

where A,B : PT → PT are given by
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(Aϕ) (t) = Q (t, ϕ (t− g (t))) +
R t
t−τ(t) a (u)h (ϕ (u)) du

−η
R t
t−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t
u
a(k)dkdu

+η
R t
t−T b (u)h (ϕ (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t
u
a(k)dkdu,

(3.3)

and

(Bϕ) (t) = η

Z t

t−T
a (u)H (ϕ (u)) e−

R t
u
a(k)dkdu.(3.4)

We will assume that the following conditions hold.

(H4) a ∈ L1 [0, T ] is bounded.

(H5) h, f , Q are locally Lipschitz continuous, then for t ≥ 0 and x, y ∈M
there exists constants E1, E2, E3 > 0, such that

|h (x)− h (y)| ≤ E1 kx− yk ,
|f (x)− f (y)| ≤ E2 kx− yk ,
|Q (t, x)−Q (t, y)| ≤ E3 kx− yk .

(H6) Q satisfies Carathéodory condition with respect to L1 [0, T ].

(H7) There exist positive periodic functions q1, q2 ∈ L1 [0, T ], with period

T , such that

|Q (t, x)| ≤ q1 (t) |x|+ q2 (t) .

(H8) The function Q (t, x) is also supposed locally Lipschitz in t, i.e, there

exists KQ > 0 such that

|Q (t2, x)−Q (t1, x)| ≤ KQ |t2 − t1| .

Now, we need the following assumptions

β1β2 (E1L+ |h (0)|) ≤
γ1
2
L,(3.5)

where β1 = maxt∈[0,T ] |τ (t)| and β2 = maxt∈[0,T ] {a (t)},

q1 (t)L+ q2 (t) ≤
γ2
2
L,(3.6)
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|b (u)| (E1L+ |h (0)|) ≤ γ3a (u)L,(3.7)

TEηβ3 (E2L+ |f (0)|) ≤ γ4L,(3.8)

where β3 = maxu∈[t−T,t]

½
e−
R t
u
a(k)dk

¾
,

J [γ1 + γ2 + γ3 + γ4] ≤ 1.(3.9)

where γ1, γ2, γ3, γ4 and J are positive constants with J ≥ 3. Also, suppose
that there are constants k1, k2, k3 > 0 such that for 0 ≤ t1 < t2

|τ (t2)− τ (t1)| ≤ k1 |t2 − t1| ,(3.10)

|g (t2)− g (t1)| ≤ k2 |t2 − t1| ,(3.11)

Z t2

t1
a (u) du ≤ k3 |t2 − t1| ,(3.12)

and

KQ + (1 + k2)E3K + 2γ4β2β3L+ [(2 + k1)E1 + (1 + 4η) γ3

+
³
η + 1

2

´
γ2 + γ4 +

³
η + 1

2

´
γ1
i
k3L ≤ K

J .
(3.13)

Lemma 2. For A defined in (3.3), suppose that (2.1)—(2.4), (3.5)—(3.13)

and (H4)—(H8) hold. Then A :M→M.

Proof. Let A be defined by (3.3). First by (2.1) and (2.3), a change

of variable in (3.3) shows that (Aϕ)(t + T ) = (Aϕ)(t). That is, if ϕ ∈ PT
then Aϕ is periodic with period T . For having Aϕ ∈M, we will prove that
kAϕk ≤ L and |(Aϕ) (t2)− (Aϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. By
(H5), we have

|h (x)| ≤ E1 |x|+ |h (0)| and |f (x)| ≤ E2 |x|+ |f (0)| .

Then, let ϕ ∈M, by (3.5)—(3.9) and (H4)—(H7), we have
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|(Aϕ) (t)| ≤ |Q (t, ϕ (t− g (t)))|+
R t
t−τ(t) a (u) |h (ϕ (u))| du

+η
R t
t−T a (u)

R u
u−τ(u) a (s) |h (ϕ (s))| dse

−
R t
u
a(k)dkdu

+η
R t
t−T |b (u)| |h (ϕ (u− τ (u)))| e−

R t
u
a(k)dkdu

+η
R t
t−T

h
a (u) |Q (u, ϕ (u− g (u)))|+

R u
−∞ |D (u, s)| |f (ϕ (s))| ds

i
e−
R t
u
a(k)dkdu

≤ q1 (t) |ϕ (t− g (t))|+ q2 (t) + β1β2 (E1L+ |h (0)|)
×
µ
1 + η

R t
t−T a (u) e

−
R t
u
a(k)dkdu

¶
+η

R t
t−T |b (u)| (E1L+ |h (0)|) e

−
R t
u
a(k)dkdu

+η
R t
t−T a (u) [q1 (u) |ϕ (u− g (u))|+ q2 (u)] e

−
R t
u
a(k)dkdu

+η
R t
t−T E (E2L+ |f (0)|) e

−
R t
u
a(k)dkdu

≤ γ2
2 L+ γ1L+ γ3L+

γ2
2 L+ γ4L ≤ L

J ≤ L.

Let t1, t2 ∈ R with t1 < t2, we get

|(Aϕ) (t2)− (Aϕ) (t1)|
≤ |Q (t2, ϕ (t2 − g (t2)))−Q (t1, ϕ (t1 − g (t1)))|
+
¯̄̄R t2
t2−τ(t2) a (u)h (ϕ (u)) du−

R t1
t1−τ(t1) a (u)h (ϕ (u)) du

¯̄̄
+η

¯̄̄̄R t2
t2−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t2
u

a(k)dkdu

−
R t1
t1−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t1
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t2
t2−T b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu

−
R t1
t1−T b (u)h (ϕ (u− τ (u))) e−

R t1
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t2
t2−T

h
−a (u)Q (u,ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t2
u

a(k)dkdu

−
R t1
t1−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t1
u

a(k)dkdu

¯̄̄̄
.

(3.14)

By hypotheses (H5) and (3.10)—(3.12), we obtain¯̄̄R t2
t2−τ(t2) a (u)h (ϕ (u)) du−

R t1
t1−τ(t1) a (u)h (ϕ (u)) du

¯̄̄
≤ E1L

³R t2
t1
a (u) du+

R t2−τ(t2)
t1−τ(t1) a (u) du

´
≤ E1Lk3 |t2 − t1|+E1Lk3 (1 + k1) |t2 − t1|
= (2E1Lk3 +E1Lk3k1) |t2 − t1| ,

(3.15)

and
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|Q (t2, ϕ (t2 − g (t2)))−Q (t1, ϕ (t1 − g (t1)))|
≤ KQ |t2 − t1|+E3K |(t2 − t1)− (g (t2)− g (t1))|
≤ (KQ +E3K +E3Kk2) |t2 − t1| ,

(3.16)

where K is the Lipschitz constant of ϕ. By the hypotheses (H5), (3.7) and

(3.12), we get

η

¯̄̄̄R t2
t2−T b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu−
R t1
t1−T b (u)h (ϕ (u− τ (u)))

e−
R t1
u

a(k)dkdu

¯̄̄̄
≤ η

¯̄̄̄R t2
t1
b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t1
t1−T b (u)h (ϕ (u− τ (u)))

µ
e−
R t2
u

a(k)dk − e−
R t1
u

a(k)dk
¶
du

¯̄̄̄
+η

¯̄̄̄R t2−T
t1−T b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu

¯̄̄̄
≤ 2η

¯̄̄̄R t2
t1
b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t1
t1−T b (u)h (ϕ (u− τ (u))) e−

R t1
u

a(k)dk
µ
e
−
R t2
t1

a(k)dk − 1
¶
du

¯̄̄̄
≤ 2η (E1L+ |h (0)|)

R t2
t1
|b (u)| e−

R t2
u

a(k)dkdu

+ηγ3L

¯̄̄̄
e
−
R t2
t1

a(k)dk − 1
¯̄̄̄ R t1

t1−T a (u) e
−
R t1
u

a(k)dkdu.

Consequently,

η

¯̄̄̄R t2
t2−T b (u)h (ϕ (u− τ (u))) e−

R t2
u

a(k)dkdu−
R t1
t1−T b (u)h (ϕ (u− τ (u)))

e−
R t1
u

a(k)dkdu

¯̄̄̄
≤ γ3L

R t2
t1
a (u) du+ 2η (E1L+ |h (0)|)

R t2
t1
d
³R u

t1
|b (r)| dr

´
e−
R t2
u

a(k)dkdu

= γ3L
R t2
t1
a (u) du+ 2η (E1L+ |h (0)|)

∙R u
t1
|b (r)| dre−

R t2
u

a(k)dk
¸t2
t1

+2η (E1L+ |h (0)|)
R t2
t1

³R u
t1
|b (r)| dr

´
a (u) e−

R t2
u

a(k)dkdu

≤ γ3L
R t2
t1
a (u) du+ 2η (E1L+ |h (0)|)

R t2
t1
|b (u)| duµ

1 +
R t2
t1
a (u) e−

R t2
u

a(k)dkdu

¶
≤ γ3L

R t2
t1
a (u) du+ 4η

R t2
t1
|b (u)| (E1L+ |h (0)|) du

≤ γ3L
R t2
t1
a (u) du+ 4ηγ3L

R t2
t1
a (u) du ≤ (1 + 4η) γ3Lk3 |t2 − t1| .

(3.17)
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In the same way, by (3.6)—(3.8) and (3.12), we have

η

¯̄̄̄R t2
t2−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t2
u

a(k)dkdu

−
R t1
t1−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t1
u

a(k)dkdu

¯̄̄̄
≤ η

¯̄̄̄R t2
t1

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄R t1
t1−T

h
−a (u)Q (u,ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
×
µ
e−
R t2
u

a(k)dk − e−
R t1
u

a(k)dk
¶
du

¯̄̄̄
+η

¯̄̄̄R t2−T
t1−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t2
u

a(k)dkdu

¯̄̄̄
≤ 2η

¯̄̄̄R t2
t1

h
−a (u)Q (u,ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄R t1
t1−T

h
−a (u)Q (u,ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
×e−

R t1
u

a(k)dk
µ
e
−
R t2
t1

a(k)dk − 1
¶
du

¯̄̄̄
≤ 2η

R t2
t1

h
a (u) γ22 L+ (E2L+ |f (0)|)

R u
−∞ |D (u, s)| ds

i
e−
R t2
u

a(k)dkdu

+η

¯̄̄̄
e
−
R t2
t1

a(k)dk − 1
¯̄̄̄ ¯̄̄R t1

t1−T

h
a (u) γ22 L+ (E2L+ |f (0)|)

R u
−∞ |D (u, s)| ds

i
e−
R t1
u

a(k)dkdu

¯̄̄̄
≤ ηγ2L

R t2
t1
a (u) du+ 2γ4Lβ2β3 |t2 − t1|+

£γ2
2 L+ γ4L

¤ R t2
t1
a (u) du

≤
hh³

η + 1
2

´
γ2 + γ4

i
k3 + 2γ4β2β3

i
L |t2 − t1| ,

(3.18)

and
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η

¯̄̄̄R t2
t2−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t2
u

a(k)dkdu

−
R t1
t1−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t1
u

a(k)dkdu

¯̄̄̄
≤ η

¯̄̄̄R t2
t1

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t1
t1−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u)

µ
e−
R t2
u

a(k)dk − e−
R t1
u

a(k)dk
¶
du

¯̄̄̄
+η

¯̄̄̄R t2−T
t1−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t2
u

a(k)dkdu

¯̄̄̄
≤ 2η

¯̄̄̄R t2
t1

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t1
t1−T

hR u
u−τ(u) a (s)h (ϕ (s)) ds

i
a (u) e−

R t1
u

a(k)dk
µ
e
−
R t2
t1

a(k)dk − 1
¶
du

¯̄̄̄
≤ 2η γ12 L

R t2
t1
a (u) e−

R t2
u

a(k)dkdu+ η

¯̄̄̄
e
−
R t2
t1

a(k)dk − 1
¯̄̄̄
γ1
2 L

R t1
t1−T a (u)

e−
R t1
u

a(k)dkdu

≤ ηγ1L
R t2
t1
a (u) du+ γ1

2 L
R t2
t1
a (u) du ≤

h
η + 1

2

i
γ1Lk3 |t2 − t1| .

(3.19)

Thus, by substituting (3.15)—(3.19) in (3.14), we obtain
|(Aϕ) (t2)− (Aϕ) (t1)|
≤ (2E1Lk3 +E1Lk3k1) |t2 − t1|+ (KQ +E3K +E3Kk2) |t2 − t1|
+(1 + 4η) γ3Lk3 |t2 − t1|+

hh³
η + 1

2

´
γ2 + γ4

i
k3 + 2γ4β2β3

i
L |t2 − t1|

+
h
η + 1

2

i
γ1Lk3 |t2 − t1|

≤ K
3 |t2 − t1| ≤ K |t2 − t1| .

That is Aϕ ∈M. 2

Lemma 3. For A : M → M defined in (3.3), suppose that (2.1)—(2.4),

(3.5)—(3.13) and (H4)—(H8) hold. Then A is completely continuous.

Proof. Since M is a uniformly bounded and equicontinuous subset

of the space of continuous functions on the compact [0, T ], we can apply

the Arzela-Ascoli theorem to confirm thatM is a compact subset from this

space. Also, since any continuous operator maps compact sets into compact

sets, then to prove that A is a compact operator it suffices to prove that it

is continuous.

We prove that A is continuous in the supremum norm, let ϕn ∈ M
where n is a positive integer such that ϕn → ϕ as n→∞. Then
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|(Aϕn) (t)− (Aϕ) (t)|
≤ |Q (t, ϕn (t− g (t)))−Q (t, ϕ (t− g (t)))|
+
R t
t−τ(t) a (u) |h (ϕn (u))− h (ϕ (u))| du

+η
R t
t−T

hR u
u−τ(u) a (s) |h (ϕn (s))− h (ϕ (s))| ds

i
a (u) e−

R t
u
a(k)dkdu

+η
R t
t−T |b (u)| |h (ϕn (u− τ (u)))− h (ϕ (u− τ (u)))−

R t
u
a(k)dk du

+η
R t
t−T [a (u) |Q (u, ϕn (u− g (u)))−Q (u, ϕ (u− g (u)))|

+
R u
−∞ |D (u, s)| |f (ϕn (s))− f (ϕ (s))| ds

i
e−
R t
u
a(k)dkdu.

By the dominated convergence theorem, limn→∞ |(Aϕn) (t)− (Aϕ) (t)| =
0. Then A is continuous. Therefore, A is compact. 2

The next result shows the relationship between the mappings H and B

in the sense of large contractions. Assume that

max {|H (−L)| , |H (L)|} ≤ (J − 1)L
J

,(3.20)

and

[2η + 1]Lk3 ≤ K.(3.21)

Lemma 4. Let B be defined by (3.4), suppose (3.12), (3.20), (3.21) and

all conditions of Theorem 2 hold. Then B :M→M is a large contraction.

Proof. Let B be defined by (3.4). Obviously, B is continuous and it is

easy to show that (Bϕ)(t + T ) = (Bϕ)(t). For having Bϕ ∈ M, we will
show that kBϕk ≤ L

and

|(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ] .

Let ϕ ∈M by (3.20), we get

|(Bϕ) (t)| ≤ η

Z t

t−T
a (u)max {|H (−L)| , |H (L)|} e−

R t
u
a(k)dkdu ≤ (J − 1)L

J
≤ L.

Let t1, t2 ∈ [0, T ] with t1 < t2, by (3.12), (3.20), (3.21), we have
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|(Bϕ) (t1)− (Bϕ) (t2)|
≤ η

¯̄̄̄R t2
t2−T a (u)H (ϕ (u)) e

−
R t2
u

a(k)dkdu−
R t1
t1−T a (u)H (ϕ (u))

e−
R t1
u

a(k)dkdu

¯̄̄̄
≤ η

¯̄̄̄R t2
t1
a (u)H (ϕ (u)) e−

R t2
u

a(k)dkdu

¯̄̄̄
+η

¯̄̄̄R t1
t1−T a (u)H (ϕ (u))

µ
e−
R t2
u

a(k)dk − e−
R t1
u

a(k)dk
¶
du

¯̄̄̄
+η

¯̄̄̄R t2−T
t1−T a (u)H (ϕ (u)) e−

R t2
u

a(k)dkdu

¯̄̄̄
≤ 2η

R t2
t1
a (u) |H (ϕ (u))| e−

R t2
u

a(k)dkdu

+η

¯̄̄̄
e
−
R t2
t1

a(k)dk − 1
¯̄̄̄ R t1

t1−T a (u) |H (ϕ (u))| e−
R t1
u

a(k)dkdu

≤ 2 (J−1)J Lη
R t2
t1
a (u) du+ (J−1)

J L
R t2
t1
a (u) du

≤ [2η + 1] (J−1)J Lk3 |t2 − t1|
≤ (J−1)

J K |t2 − t1| ≤ K |t2 − t1| ,

which implies B :M→M.

By Theorem 2, H is large contraction on M, then for any ϕ,ψ ∈ M
with ϕ 6= ψ, we get

kBϕ−Bψk ≤ kϕ− ψk .

Now, let ε ∈ (0, 1) be given and let ϕ,ψ ∈M, with kϕ− ψk ≥ ε, from

the proof of Theorem 2, we have found a δ ∈ (0, 1), such that

|(Hϕ) (t)− (Hψ) (t)| ≤ δ kϕ− ψk .

Thus,

|(Bϕ) (t)− (Bψ) (t)| ≤
¯̄̄̄
η
R t
t−T a (u) [H (ϕ (u))−H (ψ (u))] e−

R t
u
a(k)dkdu

¯̄̄̄
≤ δ kϕ− ψk η

R t
t−T a (u) e

−
R t
u
a(k)dkdu ≤ δ kϕ− ψk .

The proof is complete. 2

Theorem 3. Suppose the hypotheses of Lemmas 2—4 hold. LetM defined

by (3.1), then (1.1) has a T -periodic solution inM.
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Proof. By Lemmas 2 and 3 A :M→M is continuous and A(M) is con-

tained in a compact set. Also, from Lemma 4, the mapping B :M→M is a

large contraction. Next, we show that if ϕ,ψ ∈M, we have kAϕ+Bψk ≤ L

and |(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)| ≤ K |t2 − t1|, ∀t1, t2 ∈ [0, T ]. Let
ϕ,ψ ∈M with kϕk , kψk ≤ L. By (3.5)—(3.9) and (3.20), we get

kAϕ+Bφk ≤ [γ1 + γ2 + γ3 + γ4]L+
(J − 1)L

J
≤ L

J
+
(J − 1)L

J
= L.

Now, let ϕ,ψ ∈M and t1, t2 ∈ [0, T ]. By (3.5)—(3.13), (3.20) and (3.21),
we have

|(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)|

≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K
J |t2 − t1|+ (J−1)K

J |t2 − t1|

= K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskĭı-Burton’s theorem are satis-

fied. Thus there exists a fixed point z ∈ M such that z = Az + Bz. By

Lemma 1 this fixed point is a solution of (1.1). Hence (1.1) has a T -periodic

solution. 2

Example 1. Consider the nonlinear neutral differential equation

d

dt
[x (t)−Q (t, x (t− g (t)))] = −a (t)h (x (t− τ (t)))+

Z t

−∞
D (t, s) f (x (s)) ds,

(3.22)

where

T = 2π, a (t) = 2, τ (t) =
10−2√
3
, g (t) = 2× 10−2e−t, h (x) = x3,

Q (t, x) = 10−4 sin (x) , D (t, s) = es−t, f (x) = x2.

Then (3.22) has a 2π-periodic solution.
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Proof. We have h : R → R is continuous on
h
−
√
3/3,
√
3/3

i
, dif-

ferentiable on
³
−
√
3/3,
√
3/3

´
, strictly increasing on

h
−
√
3/3,
√
3/3

i
and

supt∈(−
√
3/3,

√
3/3) h

0 (t) ≤ 1. By Theorem 2, the mapping H(x) = x− x3 is

a large contraction on the set

M =
n
ϕ ∈ P2π, kϕk ≤

√
3/3, |ϕ (t2)− ϕ (t1)| ≤ 100 |t2 − t1| , ∀t1, t2 ∈ [0, 2π]

o
,

where L =
√
3/3 and K = 100. Doing straightforward computations, we

obtain

E = 1, β1 =
10−2√
3
, β2 = 2, β3 = e−4π, E1 = 1, E2 = 2

√
3/3, E3 = 10

−4,

q1 (t) = 10−4, q2 (t) = 0, η =
³
1− e−4π

´−1
, γ1 =

4√
3
10−2, γ2 = 2× 10−4,

γ3 = 0, γ4 = 4π
³
1− e−4π

´−1
e−4π, J ∈ [3, 42] , k1 = 0, k2 = 2× 10−2, k3 = 2.

All hypotheses of Theorem 3 are fulfilled and so (3.22) has a 2π-periodic

solution belonging toM. 2

4. Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution

of (1.1). By applying Theorem 1, we need to define a closed, convex, and

bounded subsetM of PT . So, let

M = {ϕ ∈ PT : 0 ≤ ϕ ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} ,
(4.1)

where L and K are positive constants. To simplify notation, we let

F (t, x (t)) =

Z t

t−τ(t)
a (u)h (x (u)) du,(4.2)

and

m = min
u∈[t−T,t]

e−
R t
u
a(k)dk, M = max

u∈[t−T,t]
e−
R t
u
a(k)dk.(4.3)
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It is easy to see that for all (t, u) ∈ [0, 2T ]2,

m ≤ e−
R t
u
a(k)dk ≤M.(4.4)

Then, we obtain the existence of a nonnegative periodic solution of (1.1)

by considering the two cases

(1) F (t, x (t)) ≥ 0, ∀t ∈ [0, T ] , x ∈M.

(2) F (t, x (t)) ≤ 0, ∀t ∈ [0, T ] , x ∈M.

In the case one, we assume for all t ∈ [0, T ], x ∈ M, that there exist

positive constants c1 and c2 such that

0 ≤ Q (t, x (t)) ≤ c1L,(4.5)

0 ≤ F (t, x (t)) ≤ c2L,(4.6)

c1 + c2 < 1,(4.7)

0 ≤ −a (u)F (t, x (t))+b (t)h (x (t))−a (t)Q (t, x (t))+
Z t

−∞
D (t, s) f (x (s)) ds,

(4.8)

−a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

−a (t)Q (t, x (t)) +
R t
−∞D (t, s) f (x (s)) ds ≤ L(1−c1−c2)

MηT .
(4.9)

Lemma 5. Let A, B given by (3.3), (3.4), respectively. Assume (4.5)—(4.9)

hold, then A,B :M→M.

Proof. For having Aϕ,Bϕ ∈ M, we show that 0 ≤ Aϕ,Bϕ ≤ L and

|(Aϕ) (t2)− (Aϕ) (t1)| |t2 − t1| , |(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈
[0, T ]. Let A defined by (3.3). So, for any ϕ ∈M, we have

0 ≤ (Aϕ) (t) ≤ Q (t, ϕ (t− g (t))) + F (t, ϕ (t))− η
R t
t−T F (t, ϕ (u)) a (u) e

−
R t
u
a(k)dkdu

+η
R t
t−T b (u)h (ϕ (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t
u
a(k)dkdu

≤ η
R t
t−T M

L(1−c1−c2)
MηT du+ c1L+ c2L = L.
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From Lemma 2, we see that

|(Aϕ) (t2)− (Aϕ) (t1)| ≤
K

J
|t2 − t1| ≤ K |t2 − t1| .

That is Aϕ ∈M.

Now, let B defined by (3.4). So, for any ϕ ∈M, we have

0 ≤ (Bϕ) (t) ≤ η

Z t

t−T
M

L (1− c1 − c2)

MηT
du ≤ ηMT

L

MηT
= L,

and from Lemma 4, we see that

|(Bϕ) (t2)− (Bϕ) (t1)| ≤
(J − 1)K

J
|t2 − t1| ≤ K |t2 − t1|

That is Bϕ ∈M. 2

Theorem 4. Suppose the hypotheses of Lemmas 3—5 hold. Then (1.1) has

a nonnegative T -periodic solution x in the subsetM.

Proof. By Lemma 3, A is completely continuous. Also, from Lemma

4, the mapping B is a large contraction. By Lemma 5, A,B : M →
M. Next, we show that if ϕ,ψ ∈ M, we have 0 ≤ Aϕ + Bψ ≤ L

and |(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let
ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ L. By (4.5)—(4.9), we get

(Aϕ) (t) + (Bψ) (t)

= η
R t
t−T a (u)H (ψ (u)) e

−
R t
u
a(k)dkdu+Q (t, ϕ (t− g (t)))

+F (t, ϕ (t))− η
R t
t−T F (t, ϕ (u)) a (u) e

−
R t
u
a(k)dkdu

+η
R t
t−T b (u)h (ϕ (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t
u
a(k)dkdu

≤ η
R t
t−T M

L(1−c1−c2)
MηT du+ c1L+ c2L = L.

On the other hand, we have

(Aϕ)(t) + (Bψ)(t) ≥ 0.

Now, let ϕ,ψ ∈M and t1, t2 ∈ [0, T ]. By Lemmas 2, 4, we have
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|(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|
≤ K

J |t2 − t1|+ (J−1)K
J |t2 − t1|

≤ K |t2 − t1| .
Clearly, all the hypotheses of Krasnoselskĭı-Burton’s theorem are satis-

fied. Thus there exists a fixed point z ∈M such that z = Az + Bz. By

Lemma 1 this fixed point is a solution of (1.1) and the proof is complete.

2

Example 2. Consider the equation

d

dt
[x (t)−Q (t, x (t− g (t)))] = −a (t)h (x (t− τ (t)))+

Z t

−∞
D (t, s) f (x (s)) ds,

(4.10)

where
T = 2π, a (t) = 10−2

4 , τ (t) = 2π, h (x) = x3, Q (t, x) = 10−4x,

F (t, x (t)) = 10−2

4

R t
t−2π x

3 (u) du, D (t, s) = es−t, f (x) = 10−4
³
x+ π4

4

´
.

Then (4.10) has a nonnegative 2π-periodic solution.

Proof. By Example 1, the mapping H (x) = x−x3 is a large contraction
on the set

M =
n
ϕ ∈ P2π, 0 ≤ ϕ ≤

√
3/3, |ϕ (t2)− ϕ (t1)| ≤ 100 |t2 − t1| , ∀t1, t2 ∈ [0, T ]

o
.

A simple calculation yields

F (t, x (t)) =
10−2

4

Z t

t−2π
x3 (u) du =

1

4

Z 2π

0
x3 (u) du =

10−2

4

"
x4

4

#2π
0

= 10−2π4 ≥ 0,

m = e−
10−2
2

π, M = 1, η =

µ
1− e−

10−2
2

π
¶−1

, c1 = 10
−4, c2 =

10−2

6
π.

Then for x ∈
h
0,
√
3/3

i
, we have

0 ≤ −a (t)F (t, x (t))+b (t)h (x (t))−a (t)Q (t, x (t))+
Z t

−∞
D (t, s) f (x (s)) ds.
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On the other hand, we have
−a (t)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

−a (t)Q (t, x (t)) +
R t
−∞D (t, s) f (x (s)) ds

≤ 1.006× 10−3 < 1.425× 10−3 ' L(1−c1−c2)
MηT .

All conditions of Theorem 4 hold and so (4.10) has a nonnegative 2π-

periodic solution belonging toM. 2

In the case two, we substitute conditions (4.6)—(4.9) with the following

conditions, respectively. We assume that there exist a negative constant c3
such that

c3L ≤ F (t, x (t)) ≤ 0,(4.11)

− c3 + c1 < 1,(4.12)

−c3L
mηT ≤ −a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

−a (t)Q (t, x (t)) +
R t
−∞D (t, s) f (x (s)) ds,

(4.13)

and

−a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

−a (t)Q (t, x (t)) +
R t
−∞D (t, s) f (x (s)) ds ≤ L(1−c1)

MηT .
(4.14)

Theorem 5. Suppose (4.5), (4.11)—(4.14) and the hypotheses of Lemmas

2— 4 hold. Then (1.1) has a nonnegative T -periodic solution x in the subset

M.

Proof. By Lemma 3, A is completely continuous. Also, from Lemma

4, the mapping B is a large contraction. By Lemma 5, A,B : M →
M. Next, we show that if ϕ,ψ ∈ M, we have 0 ≤ Aϕ + Bψ ≤ L

and |(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let
ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ L. By (4.5) and (4.11)—(4.14) we get
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(Aϕ) (t) + (Bψ) (t)

= η
R t
t−T a (u)H (ψ (u)) e

−
R t
u
a(k)dkdu+Q (t, ϕ (t− g (t)))

+F (t, ϕ (t))− η
R t
t−T F (t, ϕ (u)) a (u) e

−
R t
u
a(k)dkdu

+η
R t
t−T b (u)h (ϕ (u− τ (u))) e−

R t
u
a(k)dkdu

+η
R t
t−T

h
−a (u)Q (u, ϕ (u− g (u))) +

R u
−∞D (u, s) f (ϕ (s)) ds

i
e−
R t
u
a(k)dkdu

≤ η
R t
t−T M

L(1−c1)
MηT du+ c1L = L.

On the other hand, we have

(Aϕ)(t) + (Bψ)(t) ≥ η

Z t

t−T
m
−c3L
mηT

du+ c3L = 0.

Now, let ϕ,ψ ∈M and t1, t2 ∈ [0, T ]. By Lemmas 2 and 4, we have
|(Aϕ+Bψ) (t2)− (Aϕ+Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|
≤ K

J |t2 − t1|+ (J−1)K
J |t2 − t1|

= K |t2 − t1| .
Clearly, all the hypotheses of Krasnoselskĭı-Burton’s theorem are satis-

fied. Thus there exists a fixed point z ∈M such that z = Az + Bz. By

Lemma 1 this fixed point is a solution of (1.1) and the proof is complete.

2
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