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Abstract

In this paper, more general versions of O’Neil’s projection the-
orems and other related theorems. In particular, we study the re-
lationship between the w-multifractal dimensions and its orthogonal
projections in Fuclidean space.
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1. Introduction

The dimensional properties of projections of sets and measures have been
the focus of a lot of researchers for the last decades [2, 3, 18, 19, 21, 22, 23,
24, 28, 34]. One of the most fundamental results in this area is Marstrand’s
theorem. In his paper [27], he proved, using geometric arguments, that for
a Borel set E' in the plane,

dim(my (E)) = min (dim E, 1)

for almost every line V (here 7y denotes orthogonal projection onto V). In
[24], Kaufman gave an alternative proof of the same result using potential-
theoretic methods. He also provided a dimension estimate for the set of
exceptional directions. Mattila [28], generalized the latter concept to higher
dimensions, his proof combined the methods of Marstrand and Kaufman.
More specifically, he proved that for a Borel measure p on R™,

dim 7y () = min { dim p , m},

for almost all m-dimensional subspace V. Let us mention that the authors
in [18, 21] have extended these results to packing dimensions of both sets
and measures, such that, for p a Borel measure on R", if Dim pu < m,
then Dim 7y () = Dim p, for almost all m-dimensional subspace V' of R™.
Other works were carried out in this sense for classes of similar measures
in euclidean and symbolic spaces [19, 23, 34].

As a continuity to this research, many authors have been studying the
relationship between multifractal features of a measure y on R™ and those
of the projection of the measure onto m-dimensional subspaces. In [19, 20,
22] the authors studied the behavior of the Li-spectrum of a measure y on
R” under orthogonal projections onto lower dimensional linear subspaces.
O’Neil and Selmi [34, 37] compared the generalized Hausdorff and packing
dimensions of a set E of R™ with respect to a measure p with those of
their projections onto m-dimensional subspaces. In [3], the authors studied
the multifractal analysis of the orthogonal projections onto m-dimensional
linear subspaces of singular measures on R" satisfying the multifractal for-
malism. Later on, Douzi and Selmi [13], considered the relative multifractal
formalism developed by Cole [9], as they studied the relationship between
the relative multifractal spectra of orthogonal projections of a measure p
in Fuclidean space and those of u. Recently, as a generalization of these
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results, Douzi and Selmi proved in [14, 15] a relationship between the mu-
tual multifractal spectra of a couple of measures (i, ) and its orthogonal
projections in Euclidean spaces.

In the present paper, we pursue this direction of work, and that is by
considering the p-multifractal formalism developed in [29]. The aim of this
work is twofold. Firstly, we investigate the behavior of the p-multifractal
Hausdorff and packing dimensions under projection. Secondly, we take
interest in the relationship between the -multifractal spectrum and its
projection onto a lower dimensional linear subspace.

2. Preliminaries and main results

We denote the family of Borel probability measures on R? by P(R%) and
for p € P(RY) supp(y) is the topological support of . In this paper, we
will work with the ¢-multifractal formalism introduced in [29]. Let us recall
the p-multifractal Hausdorff and packing measures.

Let ¢ : R+ — R be such that ¢ is non-decreasing and ¢(r) < 0 for r
small enough. For € P(R"), ¢,t € R, E C R"™ and 6 > 0, we define

527:0,5(]5) = sup {ZM(B(% Ti))qewm)} ., E#£0,

where the supremum is taken over all centered d-packings of . Moreover,

we can set fﬁa,é((b) =0.

The p-multifractal packing pre-measure is then given by

—q,t ey
PZM(E) = ggPZM(;(E).

In a similar way, we define

Hiyios(E) = inf {Z u( B, m)qew“‘”} . E#0,

i
where the infinimum is taken over all centered d-coverings of E. Moreover,

we can set ﬂﬁ’i@ﬁ(@) =0.
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The p-multifractal Hausdorff pre-measure is defined by
.t
Hyo(B) = supHy, 5(E).

6>0
We also have the following conventions 09 = oo for ¢ < 0 and 09 = 0 for
q > 0.

ﬂ# o 1s o-subadditive but not increasing whereas 73 @ is increasing but not
o-subadditive. For this particular reason, the authors introduced the fol-
lowing modifications on the ¢-multifractal Hausdorff and packing measures
HZ: and P f/,,

7t 7t J—
HY L (E )—;1&%7'[ ( ) and Pl (E) _EclLrjfE ZP

The functions HZ”Z@ and Pg’fp are metric outer measures and hence,

measures on the Borel family of subsets of R". It is clear that P, < PZZ,
there exists an integer £ € N such that H¢ f < 577‘17"/

The measures HZ’L and ngp and the pre-measure fZ’L assign, in the
usual way, a multifractal dimension to each subset FE of R™. More precisely,
we have the following result.

Proposition 1. [29]

1. There exists a unique number dim? (E) € [—oo, +0o0] such that

uso(

oo if t<dimf ,(E),
Hio(E) =
0 if dim} ,(F) <t

2. There exists a unique number Dim{, ,(E) € [~oo, +oc] such that

P

oo if t< Dim{ ,(E),

Piie(E) =
0 if Dimf (E) <t

3. There exists a unique number Af, (E) € [~oco, +oc] such that
oo if t<Af (E),

J— ,t
Pl(E) =
0 if AL (E)<t.
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Remark 1. In the case ¢ = log, we have

.0 . .0 . 0
dim, ,(E) = dim(E), Dim, (F)= Dim(E)and A, ,(E) = A(E),

where dim, Dim and A are respectively the Hausdorff dimension, the pack-
ing dimension and the Bouligand-Minkowski dimension.

Next, for ¢ € R, we define the separator functions b, By, and A,
by

bu,s@(Q) = dim(u), p?(supp(n)),
By.4(q) = Dim{, ,supp(u)

and Ay, o(q) = AZ,QQ(SUPP(N))-

It is well known that

(2.1) by
Proposition 2. [29] One has

1. b, and B,,, are non decreasing with respect to the inclusion prop-
erty in R"™.

2. by, and B, , are o-stable.
3. 0<buy(q) < Bpuylq) < Apuy(q), whenever g < 1.

5. bue(q) < Buo(q) < Aup(q) <0 whenever g > 1.

Now, we define both upper and lower multifractal bouligand-minkowski
p-dimensions in R™. Let p € P(R") and ¢ € R. For E C R™ and r > 0,

we write
St (E) = sup {ZM(B($1‘7T)>Q} :
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where {B(:ri,r)} is a centered packing of E N supp(p). The upper and

lower Bouligand—lz\/ﬁnkowski p-dimensions of E denoted respectively by
ﬁfw and Efw are defined s follows:

R loge S? (E
R/qmo(E) = lim sup M

log S? .(E)
and RYI (E) = liminf —#&——.
PP () Be(2)

r=0" —p(r)

When the two limits coincide, we denote the common value by RY, .
Another natural way to define the Bouligand-Minkowski (-dimensions
is given by

T} ,(E) = inf {Zu(Bm,r))q} :

where {B (4, r)} is a centered covering of F¥ N suppu. Now, we write

(2

logT?,.(E) logT?,.(F)
L (E) =limsup —"——= and LI (F)=liminf ——&——=
e E) = B =00 Fiel ) = I o)

If Z, ,(E) = LY

1 ,(E), their common value at ¢ is denoted by L, ,(E).

Remark 2. In the special case ¢ = 0 and ¢ = log, the Bouligand-Minkowski
(p-dimensions represent the upper and lower box-dimension, i.e.,

0

Zg,log(E) = ﬁé);,log(E') = %B(E)
L,u,log(E) - E,u,log(E> - Ch—mB (E)

Next, for ¢ € R, we denote by
P\ _ T3l
R,u(Q) - Bu,p(supp(lj’))a

Bf(q) = BY, ,(supp(p))
and
L(q) = Ly ,(supp(p),  Li(q) = LL ,(supp(p))-

Now, we define a subclass of measures. For u € P(R") and a > 1, we

write
w( B(x,ar)
To(p) =limsup [ sup M .
m™\0 TESuppy p(B(:r,r))
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We will now say that the measure u satisfies the doubling condition if there
exists a > 1 such that 7,(u) < oco. It is easily seen that the exact value of
the parameter a is unimportant: 7,(u) < oo, for some a > 1 if and only
if 7,(pn) < oo, for all @ > 1. Also, we will write Py(R") for the family of
Borel probability measures on R™ which satisfy the doubling condition.

Proposition 3. [29] For ¢ € R and E C R"™ we have
vl T4 n
1. L, (E) <R, (FE) and L} (E)<Ri (F), for p € P(R").

2. L}, (BE)=TR, (E) and L% (E)=R4(E), for un € Py(R").

Theorem 1. [29] Let ¢ € R and pp € P(R"). Then for E C R", we have
Al (E)=TR, ,(E).

Theorem 2. [29] Let g € R and p € Pg(R"™). Then for E C R", we have
dim}? ,(E) < L} ,(E).

In the next, let m be an integer with 0 < m < n and G, ,, stand for the
Grassmannian manifold of all m-dimensional linear subspaces of R™ and we
denote vy, the invariant Haar measure on Gy, »,, such that vy, (Gpom) = 1.
For V € Gy, m, we define the projection map, my : R" — V as the usual
orthogonal projection onto V. Now, for a Borel probability measure ;1 on
R", supported on the compact set suppp and for V' € G, ,,, we define py,
the projection of p onto V' by

pv(A) = p(my ' (4)), VACV.

Since p has a compact support, supp(uy) = my (supp(p)) for all V e Gy,
then for any continuous function f:V — R

[ s = [ 1w (@)dute)

whenever these integrals exist.

Proposition 4. Let p be a compactly supported Borel probability mea-
sure on R™ and E C supp(p). Then, for ¢ < 1 and all V € Gy, ,, we
have

AL, o(wv(E)) < AL (B),
Corollary 1. Let p be a compactly supported Borel probability measure
on R". Then, for ¢ <1 and all V € Gy, ,, we have

Auvw@) < A#,eo(@-
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Proof.  The proof is a straightforward consequence of Proposition 4. O

Proposition 5. Let p be a compactly supported Borel probability mea-
sure on R". Then, for ¢ <1 and all V € G, ,,, we have

B#v#(‘]) < B,u,go(‘])-

Proposition 6. Let p be a compactly supported Borel probability mea-
sure on R™ and E C supp(p). Then, for all V € Gy, 1, we have

Lobl, o (B) < b, o (E), for ¢ < 0.

2. buy.o(q) > buo(q), for ¢ > 1.

Remark 3. If ¢ = log, we obtain the results of O’Neil (see [34]).

In the sequel, we focus on the behavior of the Bouligand-Minkowski
(p-dimensions under orthogonal projections.

Theorem 3. Let i be a compactly supported Borel probability measure on
R"™ and E C supp(p). Then for ¢ < 1 and for all m-dimensional subspaces
V', we have

and

(2.2) Ry o(1v(E)) < Ry, o(B).

Theorem 4. Let i be a compactly supported Borel probability measure on
R"™ and E C supp(u). Then for ¢ < 1 and for all m-dimensional subspaces
V', we have

ézv,g@( ( ))SLELQO( ) and E;J,ch(ﬂ—v( ))SZZ7@(‘E>

Theorem 5. Let i be a compactly supported Borel probability measure on
R"™ and E C supp(u). Then for ¢ > 1 and for all m-dimensional subspaces
v,

L], ,(mv(E)) =2 L] ,(E) and L  (7v(E)) = L] (E).

=[P
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3. Proofs of the main results

Proof of Proposition 4. We have too cases :

eCasel : ¢ < 0. It is easy to see that if (B (24, r,)) is a centered d-packing

7

of my (E), then (B (Yis 7“,)) is a centered d-packing of E' (where y; € E such
that x; = my(y;)). Then, oine has
w(Byi,ri)) < playt (Blzi, i),
which implies that
pv (B ri))? < p(B(yi, 7i))".

Hence, we get the desired result.

eCase2 :0 < g <1 Lett e R such that A, ,(q) < ¢t and consider
V € Gpm. Fix 6 > 0 and let (B(mi,ri)) be a centered d-packing of

(2

my (F). There exists an integer k,, depending only on m such that the balls
B(x;,2r;) can be divided into K < k,, families of disjoint balls By, ..., Bx.
Let 1 < /¢ < K. For each B(x;,7;) € By, denote E; = E N 7r‘71 (B(mi,n)>.
We have E; C U B(y,r;), so Besicovitch’s covering theorem provides a

yek;
positive integer &, as well as K; < &, families of pairwise disjoint balls B; j, =

{B(y(i’k),rijk> D Tijk = %}, 1 < k < K;, extracted from (B(y,m)
such that

yeE;

K; )
Ecl UB(y§Z7k)7Tijk)-

k=1 j
Therefore, we get

K; ‘
ZMV(B(LITZ‘,M))"BW(”) < Zu( U UB(y](-Z’k),rl-jk))qetW(ri)

i k=1 j

K; )
D30 By rige)) e

i j k=1

Ki '
I “(B(yj('l’k), 2rij1,)) 1€l 2rian)

i j k=1

IN

IN
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In both cases and by construction, since the balls B(x;,2r;) € By are
pairwise disjoint, if B(y,r) € B;; and B(y',r’) € By with ¢ # 4/, then
B(y,r) N B(y',r") = 0. So, we can collect the balls B(y,r) invoked in
the above sum into at most &, centered packing of E. This holds for all
1</<K,so

Z“V (2i,7:)) 7" < ko sup { > u(Blyj, 27“j))qew(2rj)},
j

where the supremum is taken over all centered packing of £ by closed balls
of radius r. It results that

P 5TV (E)) < km&n Pyl 05(E).

When ¢ | 0 in the above expression, we obtain

(3.1) P (m

V(E) < kn&nPLL(B).

Proof of Proposition 5. Let ¢t € R such that B, ,(¢) < t. Consider
F CR" and V € Gy ;. By the inequality (3.1), one has

P (v (F)) < kmé&aPo,(F).

As By, ,(q) < t, then PEL (supp(u)) < 0o, and there exists (E;); a covering
of supp(p) such that
_q7t
zm,w

We clearly have 7y (supp)(u) C U 7y (E;), and then one gets

Pit o(supp(uv)) < 3Py o(mv(E))

< kpé, < .

IN

It results that
Buyo(q) <t, Vt> B,,(q).

Therefore, we can deduce that

Buvm@) < Buvs@(Q)-
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Proof of Proposition 6.
1. The proof is similar to that of case one in Proposition 4.

2. Fix V € Gy, and 6 > 0 and suppose that (B(:cl-, m)) is a d-cover

3
of my(E). For each i, we may use the Besicovitch covering theo-
rem to find a constant &, depending only on n and a family of balls

{B(acl-j, nj)} with r;; = %, which is a §-cover of 7r‘71 (B(xi, rl)) NE
such that U B(zij, ;) C myt (B(mi, 2r;) N V), which leads to
J

v

Zuv (i, 2r;)) 9P i)

(St
= - Z Z /’[‘ ‘TZ] Y TZ] t@(”‘z]) .

Then, as (B(:ri, rz)) represent a d-cover of 7y (F), we deduce that

2

t

H,ugo 6( ) < §qﬁz7v,go,26(7rv(E))‘
When § tends to 0, we get

HE(B) < €HY (nv(E)).

Since E C supp(u), 7y (E) C supp(py) and we find

9.t
Hy(B) < ETHD (mv(E)) < E7HEL (supp(uv)).
Finaly, the arbitrary on E, means that
M (supp(p)) < ETHE supp((uyv),

and we deduce the desired result.
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Proof of Theorem 3. Fix V € G, ,, and let (B(:ri,r)) be a centered

(2
packing of 7y (E). There exists an integer k,, depending only on m such

that we can divide up the balls B(z;,2r) into K < k,, families of dis-
joint balls By,...,Bg. Let 1 < ¢ < K. For each B(z;,r) € By, denote

E; = Enmyt (B(mi,r)>. We have E; C U B(y, ), so Besicovitch’s cov-
yeE;
ering theorem provides a positive integer &, as well as k; < &, families of

pairwise disjoint balls B;;, = {B(yj(-i’k),r) }, 1 < k < k;, extracted from

{B(y, T) such that
yek;

e Casel : If ¢ < 0, we get

;ux/(B(xi,T))q < Zu<B<y§-i’k),T)>q

VAN
]
]
=
N
S
/Q;\
oL~
:jj
P
——
<

e Case2 If 0 < ¢ <1, then

Zi:/i\/(B(wiaT))q < Z”(UL}B@J(‘M)’T))(I

VAN
™
™
=
VN
sl
TN
<.~

=
o
N——
2

We remark that the balls B(z;,2r) € B, are pairwise disjoint therefore,
in both cases and by construction, if B(y,r) € B;; and B(y',r) € By
with ¢ # ¢ then B(y,7) N B(y',r) = 0. Then, we can collect the balls
B(y,r) involved in the above sum into at most &, centered packings of E.
This holds for all 1 < /¢ < K and thus

> (Blain)” < ki Sup{Zu(B(yj, r))q},
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where the supremum is taken over all centered packing of E by closed balls
of radius r. Which implies that

Siy TV (E)) < km&nSi 1 (E)-

Proof of Theorem 4. Consider V' € G, 1,,. Let {B (x, r)} be a centered

covering of 7y (E). Denote by E; = EN\m;,* <B(scl-, r))

We have E; C U B (y, Z). From Besicovitch covering the-
n

yeEiﬁﬂ";l({l‘i})
orem, there exists an integer &,, depending only on n as well as k; < &,

families of pairwise disjoint balls {B(yj(i’k), %) }, 1 < k < k; such that

Enm! (sz, )gULjJB( )

k=1

e Casel : If ¢ < 0, then
Zuv( (2i,m))" < Zu( (“k, ))q
5 u (o)

3,j k=1

IN

e Case2 : If 0 < ¢ <1, one gets

(s

ZMV( (ier )q = i k=1
< TR(afe))

Therefore
T, (v (E)) <T7 (E).

v ,r

Proof of Theorem 5. Fix V € G, and let {B(yz, )} be a centered
covering of 7y (E). For each i, let E; = my, (B(y;, ) N E.
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Since E; C U B (z, r), by Besicovitch covering theorem, we
z€EiNmy ({vi})
find a constant £, depending only on n, and a family of balls {B(scl-j, r)}
jeN
which is a centered packing of F; such that

UB zij,7) C Y <B(yi,2r)ﬂv>.

Then, one gets

ZW( yz,27’> > £_q;u<UB($ijaT))q
- QZ(ZM )q
> qZM (ij,r

Nest, since {B(yi,r)} may be any a centered covering of 7y (F), we
obtain '

T (E) < ET5 o, (v (E)).

Appendix

Besicovitch covering theorem. There exists a constant £ = £(n), de-
pending only on n such that: if C is a collection of nondegenerate closed
balls in R™ with

sup {diam B; B¢ C} < 400

and if C' is the set of centres of balls in C, then there exist C1,Cy, ...,C¢ CC
such that each C; is a countable collection of disjoint balls in C and

CQCJU B.

1=1 BeC;
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