A generalization of O'Neil's theorems for projections of measures and dimensions

Zied Douzi
University of Monastir, Tunisia
Received: September 2021. Accepted: June 2023

Abstract

In this paper, more general versions of $O^{\prime} N e i l ' s$ projection theorems and other related theorems. In particular, we study the relationship between the φ-multifractal dimensions and its orthogonal projections in Euclidean space.

Subjclass [2000]: 28A78, 28A80.

Keywords: Projection, φ-multifractal Hausdorff and packing measures, φ-multifractal Hausdorff and packing dimensions, BouligandMinkowski φ-dimensions.

1. Introduction

The dimensional properties of projections of sets and measures have been the focus of a lot of researchers for the last decades $[2,3,18,19,21,22,23$, $24,28,34]$. One of the most fundamental results in this area is Marstrand's theorem. In his paper [27], he proved, using geometric arguments, that for a Borel set E in the plane,

$$
\operatorname{dim}\left(\pi_{V}(E)\right)=\min (\operatorname{dim} E, 1)
$$

for almost every line V (here π_{V} denotes orthogonal projection onto V). In [24], Kaufman gave an alternative proof of the same result using potentialtheoretic methods. He also provided a dimension estimate for the set of exceptional directions. Mattila [28], generalized the latter concept to higher dimensions, his proof combined the methods of Marstrand and Kaufman. More specifically, he proved that for a Borel measure μ on \mathbf{R}^{n},

$$
\operatorname{dim} \pi_{V}(\mu)=\min \{\operatorname{dim} \mu, m\}
$$

for almost all m-dimensional subspace V. Let us mention that the authors in $[18,21]$ have extended these results to packing dimensions of both sets and measures, such that, for μ a Borel measure on \mathbf{R}^{n}, if $\operatorname{Dim} \mu \leq m$, then $\operatorname{Dim} \pi_{V}(\mu)=\operatorname{Dim} \mu$, for almost all m-dimensional subspace V of \mathbf{R}^{n}. Other works were carried out in this sense for classes of similar measures in euclidean and symbolic spaces [19, 23, 34].

As a continuity to this research, many authors have been studying the relationship between multifractal features of a measure μ on \mathbf{R}^{n} and those of the projection of the measure onto m-dimensional subspaces. In $[19,20$, 22] the authors studied the behavior of the L^{q}-spectrum of a measure μ on \mathbf{R}^{n} under orthogonal projections onto lower dimensional linear subspaces. O'Neil and Selmi [34, 37] compared the generalized Hausdorff and packing dimensions of a set E of \mathbf{R}^{n} with respect to a measure μ with those of their projections onto m-dimensional subspaces. In [3], the authors studied the multifractal analysis of the orthogonal projections onto m-dimensional linear subspaces of singular measures on \mathbf{R}^{n} satisfying the multifractal formalism. Later on, Douzi and Selmi [13], considered the relative multifractal formalism developed by Cole [9], as they studied the relationship between the relative multifractal spectra of orthogonal projections of a measure μ in Euclidean space and those of μ. Recently, as a generalization of these
results, Douzi and Selmi proved in $[14,15]$ a relationship between the mutual multifractal spectra of a couple of measures (μ, ν) and its orthogonal projections in Euclidean spaces.

In the present paper, we pursue this direction of work, and that is by considering the φ-multifractal formalism developed in [29]. The aim of this work is twofold. Firstly, we investigate the behavior of the φ-multifractal Hausdorff and packing dimensions under projection. Secondly, we take interest in the relationship between the φ-multifractal spectrum and its projection onto a lower dimensional linear subspace.

2. Preliminaries and main results

We denote the family of Borel probability measures on \mathbf{R}^{d} by $\mathcal{P}\left(\mathbf{R}^{d}\right)$ and for $\mu \in \mathcal{P}\left(\mathbf{R}^{d}\right) \operatorname{supp}(\mu)$ is the topological support of μ. In this paper, we will work with the φ-multifractal formalism introduced in [29]. Let us recall the φ-multifractal Hausdorff and packing measures.

Let $\varphi: \mathbf{R}_{+} \longrightarrow \mathbf{R}$ be such that φ is non-decreasing and $\varphi(r)<0$ for r small enough. For $\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right), q, t \in \mathbf{R}, E \subseteq \mathbf{R}^{n}$ and $\delta>0$, we define

$$
\overline{\mathcal{P}}_{\mu, \varphi, \delta}^{q, t}(E)=\sup \left\{\sum_{i} \mu\left(B\left(x_{i}, r_{i}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)}\right\}, \quad E \neq \emptyset
$$

where the supremum is taken over all centered δ-packings of E. Moreover, we can set $\overline{\mathcal{P}}_{\mu, \varphi, \delta}^{q, t}(\emptyset)=0$.

The φ-multifractal packing pre-measure is then given by

$$
\overline{\mathcal{P}}_{\mu, \varphi}^{q, t}(E)=\inf _{\delta>0} \overline{\mathcal{P}}_{\mu, \varphi, \delta}^{q, t}(E) .
$$

In a similar way, we define

$$
\overline{\mathcal{H}}_{\mu, \varphi, \delta}^{q, t}(E)=\inf \left\{\sum_{i} \mu\left(B\left(x_{i}, r_{i}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)}\right\}, \quad E \neq \emptyset
$$

where the infinimum is taken over all centered δ-coverings of E . Moreover, we can set $\overline{\mathcal{H}}_{\mu, \varphi, \delta}^{q, t}(\emptyset)=0$.

The φ-multifractal Hausdorff pre-measure is defined by

$$
\overline{\mathcal{H}}_{\mu, \varphi}^{q, t}(E)=\sup _{\delta>0} \overline{\mathcal{H}}_{\mu, \varphi, \delta}^{q, t}(E) .
$$

We also have the following conventions $0^{q}=\infty$ for $q \leq 0$ and $0^{q}=0$ for $q>0$.
$\overline{\mathcal{H}}_{\mu, \varphi}^{q, t}$ is σ-subadditive but not increasing whereas $\overline{\mathcal{P}}_{\mu, \varphi}^{q, t}$ is increasing but not σ-subadditive. For this particular reason, the authors introduced the following modifications on the φ-multifractal Hausdorff and packing measures $\mathcal{H}_{\mu, \varphi}^{q, t}$ and $\mathcal{P}_{\mu, \varphi}^{q, t}$,

$$
\mathcal{H}_{\mu, \varphi}^{q, t}(E)=\sup _{F \subseteq E} \overline{\mathcal{H}}_{\mu, \varphi}^{q, t}(F) \quad \text { and } \quad \mathcal{P}_{\mu, \varphi}^{q, t}(E)=\inf _{E \subseteq \bigcup_{i} E_{i}} \sum_{i} \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}\left(E_{i}\right) .
$$

The functions $\mathcal{H}_{\mu, \varphi}^{q, t}$ and $\mathcal{P}_{\mu, \varphi}^{q, t}$ are metric outer measures and hence, measures on the Borel family of subsets of \mathbf{R}^{n}. It is clear that $\mathcal{P}_{\mu, \varphi}^{q, t} \leq \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}$, there exists an integer $\xi \in \mathbf{N}$ such that $\mathcal{H}_{\mu, \varphi}^{q, t} \leq \xi \mathcal{P}_{\mu, \varphi}^{q, t}$.

The measures $\mathcal{H}_{\mu, \varphi}^{q, t}$ and $\mathcal{P}_{\mu, \varphi}^{q, t}$ and the pre-measure $\overline{\mathcal{P}}_{\mu, \varphi}^{q, t}$ assign, in the usual way, a multifractal dimension to each subset E of \mathbf{R}^{n}. More precisely, we have the following result.

Proposition 1. [29]

1. There exists a unique number $\operatorname{dim}_{\mu, \varphi}^{q}(E) \in[-\infty,+\infty]$ such that

$$
\mathcal{H}_{\mu, \varphi}^{q, t}(E)= \begin{cases}\infty & \text { if } \quad t<\operatorname{dim}_{\mu, \varphi}^{q}(E), \\ 0 & \text { if } \quad \operatorname{dim}_{\mu, \varphi}^{q}(E)<t .\end{cases}
$$

2. There exists a unique number $\operatorname{Dim}_{\mu, \varphi}^{q}(E) \in[-\infty,+\infty]$ such that

$$
\mathcal{P}_{\mu, \varphi}^{q, t}(E)=\left\{\begin{array}{lc}
\infty & \text { if } \quad t<\operatorname{Dim}_{\mu, \varphi}^{q}(E) \\
0 & \text { if } \quad \operatorname{Dim}_{\mu, \varphi}^{q}(E)<t .
\end{array}\right.
$$

3. There exists a unique number $\Delta_{\mu, \varphi}^{q}(E) \in[-\infty,+\infty]$ such that

$$
\overline{\mathcal{P}}_{\mu, \varphi}^{q, t}(E)=\left\{\begin{array}{lcc}
\infty & \text { if } \quad t<\Delta_{\mu, \varphi}^{q}(E), \\
0 & \text { if } & \Delta_{\mu, \varphi}^{q}(E)<t .
\end{array}\right.
$$

Remark 1. In the case $\varphi=\log$, we have

$$
\operatorname{dim}_{\mu, \varphi}^{0}(E)=\operatorname{dim}(E), \quad \operatorname{Dim}_{\mu, \varphi}^{0}(E)=\operatorname{Dim}(E) \text { and } \Delta_{\mu, \varphi}^{0}(E)=\Delta(E),
$$

where dim, Dim and Δ are respectively the Hausdorff dimension, the packing dimension and the Bouligand-Minkowski dimension.

Next, for $q \in \mathbf{R}$, we define the separator functions $b_{\mu, \varphi}, B_{\mu, \varphi}$ and $\Lambda_{\mu, \psi}$ by

$$
\begin{gathered}
b_{\mu, \varphi}(q)=\operatorname{dim}(\mu), \varphi^{q}(\operatorname{supp}(\mu)), \\
B_{\mu, \varphi}(q)=\operatorname{Dim}_{\mu, \varphi}^{q} \operatorname{supp}(\mu) \\
\text { and } \Lambda_{\mu, \varphi}(q)=\Delta_{\mu, \varphi}^{q}(\operatorname{supp}(\mu)) .
\end{gathered}
$$

It is well known that

$$
\begin{equation*}
b_{\mu, \varphi} \leq B_{\mu, \varphi} \leq \Lambda_{\mu, \varphi} . \tag{2.1}
\end{equation*}
$$

Proposition 2. [29] One has

1. $b_{\mu, \varphi}$ and $B_{\mu, \varphi}$ are non decreasing with respect to the inclusion property in \mathbf{R}^{n}.
2. $b_{\mu, \varphi}$ and $B_{\mu, \varphi}$ are σ-stable.
3. $0 \leq b_{\mu, \varphi}(q) \leq B_{\mu, \varphi}(q) \leq \Lambda_{\mu, \varphi}(q)$, whenever $q<1$.
4. $b_{\mu, \varphi}(1)=B_{\mu, \varphi}(1)=\Lambda_{\mu, \varphi}(1)=0$.
5. $b_{\mu, \varphi}(q) \leq B_{\mu, \varphi}(q) \leq \Lambda_{\mu, \varphi}(q) \leq 0$ whenever $q>1$.

Now, we define both upper and lower multifractal bouligand-minkowski φ-dimensions in \mathbf{R}^{n}. Let $\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right)$ and $q \in \mathbf{R}$. For $E \subseteq \mathbf{R}^{n}$ and $r>0$, we write

$$
S_{\mu, r}^{q}(E)=\sup \left\{\sum_{i} \mu\left(B\left(x_{i}, r\right)\right)^{q}\right\},
$$

where $\left\{B\left(x_{i}, r\right)\right\}_{i}$ is a centered packing of $E \cap \operatorname{supp}(\mu)$. The upper and lower Bouligand-Minkowski φ-dimensions of E denoted respectively by $\overline{\mathcal{R}}_{\mu, \varphi}^{q}$ and $\mathcal{\mathcal { R }}_{\mu, \varphi}^{q}$ are defined s follows:

$$
\overline{\mathcal{R}}_{\mu, \varphi}^{q}(E)=\limsup _{r \rightarrow 0} \frac{\log S_{\mu, r}^{q}(E)}{-\varphi(r)} \quad \text { and } \quad \underline{\mathcal{R}}_{\mu, \varphi}^{q}(E)=\liminf _{r \rightarrow 0} \frac{\log S_{\mu, r}^{q}(E)}{-\varphi(r)} .
$$

When the two limits coincide, we denote the common value by $\mathcal{R}_{\mu, \varphi}^{q}$.
Another natural way to define the Bouligand-Minkowski φ-dimensions is given by

$$
T_{\mu, r}^{q}(E)=\inf \left\{\sum_{i} \mu\left(B\left(x_{i}, r\right)\right)^{q}\right\},
$$

where $\left\{B\left(x_{i}, r\right)\right\}_{i}$ is a centered covering of $E \cap \operatorname{supp} \mu$. Now, we write

$$
\overline{\mathcal{L}}_{\mu, \varphi}^{q}(E)=\limsup _{r \rightarrow 0} \frac{\log T_{\mu, r}^{q}(E)}{-\varphi(r)} \quad \text { and } \quad \mathcal{L}_{\mu, \varphi}^{q}(E)=\liminf _{r \rightarrow 0} \frac{\log T_{\mu, r}^{q}(E)}{-\varphi(r)} .
$$

If $\overline{\mathcal{L}}_{\mu, \varphi}^{q}(E)=\underline{\mathcal{L}}_{\mu, \varphi}^{q}(E)$, their common value at q is denoted by $\mathcal{L}_{\mu, \varphi}^{q}(E)$.

Remark 2. In the special case $q=0$ and $\varphi=\log$, the Bouligand-Minkowski φ-dimensions represent the upper and lower box-dimension, i.e.,

$$
\begin{aligned}
& \overline{\mathcal{L}}_{\mu, \log }^{0}(E)=\overline{\mathcal{R}}_{\mu, \log }^{0}(E)=\overline{\operatorname{dim}}_{B}(E) \\
& \underline{\mathcal{L}}_{\mu, \log }^{0}(E)=\underline{\mathcal{R}}_{\mu, \log }^{0}(E)=\underline{\operatorname{dim}}_{B}(E)
\end{aligned}
$$

Next, for $q \in \mathbf{R}$, we denote by

$$
\begin{aligned}
\overline{\mathcal{R}}_{\mu}^{\varphi}(q) & =\overline{\mathcal{B}}_{\mu, \varphi}^{q}(\operatorname{supp}(\mu)), \\
\underline{\mathcal{B}}_{\mu}^{\varphi}(q) & =\underline{\mathcal{B}}_{\mu, \varphi}^{q}(\operatorname{supp}(\mu))
\end{aligned}
$$

and

$$
\overline{\mathcal{L}}_{\mu}^{\varphi}(q)=\overline{\mathcal{L}}_{\mu, \varphi}^{q}(\operatorname{supp}(\mu)), \quad \underline{\mathcal{L}}_{\mu}^{\varphi}(q)=\mathcal{\mathcal { L }}_{\mu, \varphi}^{q}(\operatorname{supp}(\mu)) .
$$

Now, we define a subclass of measures. For $\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right)$ and $a>1$, we write

$$
\mathcal{T}_{a}(\mu)=\limsup _{r \backslash 0}\left(\sup _{x \in \operatorname{supp} \mu} \frac{\mu(B(x, a r))}{\mu(B(x, r))}\right) .
$$

We will now say that the measure μ satisfies the doubling condition if there exists $a>1$ such that $\mathcal{T}_{a}(\mu)<\infty$. It is easily seen that the exact value of the parameter a is unimportant: $\mathcal{T}_{a}(\mu)<\infty$, for some $a>1$ if and only if $\mathcal{T}_{a}(\mu)<\infty$, for all $a>1$. Also, we will write $\mathcal{P}_{d}\left(\mathbf{R}^{n}\right)$ for the family of Borel probability measures on \mathbf{R}^{n} which satisfy the doubling condition.

Proposition 3. [29] For $q \in \mathbf{R}$ and $E \subseteq \mathbf{R}^{n}$ we have

1. $\overline{\mathcal{L}}_{\mu, \varphi}^{q}(E) \leq \overline{\mathcal{R}}_{\mu, \varphi}^{q}(E) \quad$ and $\quad \underline{\mathcal{L}}_{\mu, \varphi}^{q}(E) \leq \underline{\mathcal{R}}_{\mu, \varphi}^{q}(E)$, for $\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right)$.
2. $\overline{\mathcal{L}}_{\mu, \varphi}^{q}(E)=\overline{\mathcal{R}}_{\mu, \varphi}^{q}(E) \quad$ and $\quad \underline{\mathcal{L}}_{\mu, \varphi}^{q}(E)=\underline{\mathcal{R}}_{\mu, \varphi}^{q}(E)$, for $\mu \in \mathcal{P}_{d}\left(\mathbf{R}^{n}\right)$.

Theorem 1. [29] Let $q \in \mathbf{R}$ and $\mu \in \mathcal{P}\left(\mathbf{R}^{n}\right)$. Then for $E \subseteq \mathbf{R}^{n}$, we have $\Delta_{\mu, \varphi}^{q}(E)=\overline{\mathcal{R}}_{\mu, \varphi}^{q}(E)$.
Theorem 2. [29] Let $q \in \mathbf{R}$ and $\mu \in \mathcal{P}_{d}\left(\mathbf{R}^{n}\right)$. Then for $E \subseteq \mathbf{R}^{n}$, we have $\operatorname{dim}_{\mu, \varphi}^{q}(E) \leq \mathcal{L}_{\mu, \varphi}^{q}(E)$.

In the next, let m be an integer with $0<m<n$ and $G_{n, m}$ stand for the Grassmannian manifold of all m-dimensional linear subspaces of \mathbf{R}^{n} and we denote $\gamma_{n, m}$ the invariant Haar measure on $G_{n, m}$ such that $\gamma_{n, m}\left(G_{n, m}\right)=1$. For $V \in G_{n, m}$, we define the projection map, $\pi_{V}: \mathbf{R}^{n} \longrightarrow V$ as the usual orthogonal projection onto V. Now, for a Borel probability measure μ on \mathbf{R}^{n}, supported on the compact set $\operatorname{supp} \mu$ and for $V \in G_{n, m}$ we define μ_{V}, the projection of μ onto V by

$$
\mu_{V}(A)=\mu\left(\pi_{V}^{-1}(A)\right), \quad \forall A \subseteq V .
$$

Since μ has a compact support, $\operatorname{supp}\left(\mu_{V}\right)=\pi_{V}(\operatorname{supp}(\mu))$ for all $V \in G_{n, m}$ then for any continuous function $f: V \longrightarrow \mathbf{R}$

$$
\int_{V} f d \mu_{V}=\int f\left(\pi_{V}(x)\right) d \mu(x)
$$

whenever these integrals exist.
Proposition 4. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n} and $E \subseteq \operatorname{supp}(\mu)$. Then, for $q \leq 1$ and all $V \in G_{n, m}$, we have

$$
\Delta_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \leq \Delta_{\mu, \varphi}^{q}(E) .
$$

Corollary 1. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n}. Then, for $q \leq 1$ and all $V \in G_{n, m}$, we have

$$
\Lambda_{\mu_{V}, \varphi}(q) \leq \Lambda_{\mu, \varphi}(q) .
$$

Proof. The proof is a straightforward consequence of Proposition 4.
Proposition 5. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n}. Then, for $q \leq 1$ and all $V \in G_{n, m}$, we have

$$
B_{\mu_{V}, \varphi}(q) \leq B_{\mu, \varphi}(q) .
$$

Proposition 6. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n} and $E \subseteq \operatorname{supp}(\mu)$. Then, for all $V \in G_{n, m}$, we have

1. $b_{\mu_{V}, \varphi}^{q}(E) \leq b_{\mu, \varphi}^{q}(E)$, for $q \leq 0$.
2. $b_{\mu_{V}, \varphi}(q) \geq b_{\mu, \varphi}(q)$, for $q \geq 1$.

Remark 3. If $\varphi=\log$, we obtain the results of O'Neil (see [34]).

In the sequel, we focus on the behavior of the Bouligand-Minkowski φ-dimensions under orthogonal projections.

Theorem 3. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n} and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \leq 1$ and for all m-dimensional subspaces V, we have

$$
\underline{\mathcal{R}}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \leq \underline{\mathcal{R}}_{\mu, \varphi}^{q}(E)
$$

and

$$
\begin{equation*}
\overline{\mathcal{R}}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \leq \overline{\mathcal{R}}_{\mu_{V}, \varphi}^{q}(E) . \tag{2.2}
\end{equation*}
$$

Theorem 4. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n} and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \leq 1$ and for all m-dimensional subspaces V, we have

$$
\mathcal{L}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \leq \underline{\mathcal{L}}_{\mu, \varphi}^{q}(E) \quad \text { and } \quad \overline{\mathcal{L}}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \leq \overline{\mathcal{L}}_{\mu, \varphi}^{q}(E) .
$$

Theorem 5. Let μ be a compactly supported Borel probability measure on \mathbf{R}^{n} and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \geq 1$ and for all m-dimensional subspaces V,

$$
\underline{\mathcal{L}}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \geq \underline{\mathcal{L}}_{\mu, \varphi}^{q}(E) \quad \text { and } \quad \mathcal{L}_{\mu_{V}, \varphi}^{q}\left(\pi_{V}(E)\right) \geq \underline{\mathcal{L}}_{\mu, \varphi}^{q}(E) .
$$

3. Proofs of the main results

Proof of Proposition 4. We have too cases :

- Case $1: q<0$. It is easy to see that if $\left(B\left(x_{i}, r_{i}\right)\right)_{i}$ is a centered δ-packing of $\pi_{V}(E)$, then $\left(B\left(y_{i}, r_{i}\right)\right)_{i}$ is a centered δ-packing of E (where $y_{i} \in E$ such that $\left.x_{i}=\pi_{V}\left(y_{i}\right)\right)$. Then, one has

$$
\mu\left(B\left(y_{i}, r_{i}\right)\right) \leq \mu\left(\pi_{V}^{-1}\left(B\left(x_{i}, r_{i}\right)\right)\right)
$$

which implies that

$$
\mu_{V}\left(B\left(x_{i}, r_{i}\right)\right)^{q} \leq \mu\left(B\left(y_{i}, r_{i}\right)\right)^{q} .
$$

Hence, we get the desired result.

- Case 2: $0 \leq q \leq 1$. Let $t \in \mathbf{R}$ such that $\Delta_{\mu, \varphi}(q)<t$ and consider $V \in G_{n, m}$. Fix $\delta>0$ and let $\left(B\left(x_{i}, r_{i}\right)\right)_{i}$ be a centered δ-packing of $\pi_{V}(E)$. There exists an integer k_{m} depending only on m such that the balls $B\left(x_{i}, 2 r_{i}\right)$ can be divided into $K \leq k_{m}$ families of disjoint balls $\mathcal{B}_{1}, \ldots, \mathcal{B}_{K}$. Let $1 \leq \ell \leq K$. For each $B\left(x_{i}, r_{i}\right) \in \mathcal{B}_{\ell}$, denote $E_{i}=E \cap \pi_{V}^{-1}\left(B\left(x_{i}, r_{i}\right)\right)$. We have $E_{i} \subseteq \bigcup_{y \in E_{i}} B\left(y, r_{i}\right)$, so Besicovitch's covering theorem provides a positive integer ξ_{n} as well as $K_{i} \leq \xi_{n}$ families of pairwise disjoint balls $\mathcal{B}_{i, k}=$ $\left\{B\left(y_{j}^{(i, k)}, r_{i j k}\right): r_{i j k}=\frac{r_{i}}{2}\right\}, 1 \leq k \leq K_{i}$, extracted from $\left(B\left(y, r_{i}\right)\right)_{y \in E_{i}}$ such that

$$
E_{i} \subseteq \bigcup_{k=1}^{K_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r_{i j k}\right)
$$

Therefore, we get

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, r_{i}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)} & \leq \sum_{i} \mu\left(\bigcup_{k=1}^{K_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r_{i j k}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)} \\
& \leq \sum_{i} \sum_{j} \sum_{k=1}^{K_{i}} \mu\left(B\left(y_{j}^{(i, k)}, r_{i j k}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)} \\
& \leq \sum_{i} \sum_{j} \sum_{k=1}^{K_{i}} \mu\left(B\left(y_{j}^{(i, k)}, 2 r_{i j k}\right)\right)^{q} e^{t \varphi\left(2 r_{i j k}\right)} .
\end{aligned}
$$

In both cases and by construction, since the balls $B\left(x_{i}, 2 r_{i}\right) \in \mathcal{B}_{\ell}$ are pairwise disjoint, if $B(y, r) \in \mathcal{B}_{i, k}$ and $B\left(y^{\prime}, r^{\prime}\right) \in \mathcal{B}_{i^{\prime}, k^{\prime}}$ with $i \neq i^{\prime}$, then $B(y, r) \cap B\left(y^{\prime}, r^{\prime}\right)=\emptyset$. So, we can collect the balls $B(y, r)$ invoked in the above sum into at most ξ_{n} centered packing of E. This holds for all $1 \leq \ell \leq K$, so

$$
\sum_{i} \mu_{V}\left(B\left(x_{i}, r_{i}\right)\right)^{q} e^{t \varphi\left(r_{i}\right)} \leq k_{m} \xi_{n} \sup \left\{\sum_{j} \mu\left(B\left(y_{j}, 2 r_{j}\right)\right)^{q} e^{t \varphi\left(2 r_{j}\right)}\right\}
$$

where the supremum is taken over all centered packing of E by closed balls of radius r. It results that

$$
\overline{\mathcal{P}}_{\mu_{V}, \varphi, \delta}^{q, t}\left(\pi_{V}(E)\right) \leq k_{m} \xi_{n} \overline{\mathcal{P}}_{\mu, \varphi, 2 \delta}^{q, t}(E)
$$

When $\delta \downarrow 0$ in the above expression, we obtain

$$
\begin{equation*}
\overline{\mathcal{P}}_{\mu_{V}, \varphi}^{q, t}\left(\pi_{V}(E)\right) \leq k_{m} \xi_{n} \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}(E) \tag{3.1}
\end{equation*}
$$

Proof of Proposition 5. Let $t \in \mathbf{R}$ such that $B_{\mu, \varphi}(q)<t$. Consider $F \subseteq \mathbf{R}^{n}$ and $V \in G_{n, m}$. By the inequality (3.1), one has

$$
\overline{\mathcal{P}}_{\mu_{V}, \varphi}^{q, t}\left(\pi_{V}(F)\right) \leq k_{m} \xi_{n} \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}(F)
$$

As $B_{\mu, \varphi}(q)<t$, then $\mathcal{P}_{\mu, \varphi}^{q, t}(\operatorname{supp}(\mu))<\infty$, and there exists $\left(E_{i}\right)_{i}$ a covering of $\operatorname{supp}(\mu)$ such that

$$
\sum_{i} \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}\left(E_{i}\right)<1
$$

We clearly have $\pi_{V}(\operatorname{supp})(\mu) \subseteq \bigcup_{i} \pi_{V}\left(E_{i}\right)$, and then one gets

$$
\begin{aligned}
\mathcal{P}_{\mu_{V}, \varphi}^{q, t}\left(\operatorname{supp}\left(\mu_{V}\right)\right) & \leq \sum_{i} \overline{\mathcal{P}}_{\mu_{V}, \varphi}^{q, t}\left(\pi_{V}\left(E_{i}\right)\right) \\
& \leq k_{m} \xi_{n} \sum_{i} \overline{\mathcal{P}}_{\mu, \varphi}^{q, t}\left(E_{i}\right) \\
& \leq k_{m} \xi_{n}<\infty
\end{aligned}
$$

It results that

$$
B_{\mu_{V}, \varphi}(q) \leq t, \quad \forall t>B_{\mu, \varphi}(q)
$$

Therefore, we can deduce that

$$
B_{\mu_{V}, \varphi}(q) \leq B_{\mu, \varphi}(q)
$$

Proof of Proposition 6.

1. The proof is similar to that of case one in Proposition 4.
2. Fix $V \in G_{n, m}$ and $\delta>0$ and suppose that $\left(B\left(x_{i}, r_{i}\right)\right)_{i}$ is a δ-cover of $\pi_{V}(E)$. For each i, we may use the Besicovitch covering theorem to find a constant ξ, depending only on n and a family of balls $\left\{B\left(x_{i j}, r_{i j}\right)\right\}$ with $r_{i j}=\frac{r_{i}}{2}$, which is a δ-cover of $\pi_{V}^{-1}\left(B\left(x_{i}, r_{i}\right)\right) \cap E$ such that $\bigcup_{j} B\left(x_{i j}, r_{i j}\right) \subseteq \pi_{V}^{-1}\left(B\left(x_{i}, 2 r_{i}\right) \cap V\right)$, which leads to

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, 2 r_{i}\right)\right)^{q} e^{t \varphi\left(2 r_{i}\right)} & \geq \xi^{-q} \sum_{i}\left(\sum_{j} \mu\left(B\left(x_{i j}, r_{i j}\right)\right)\right)^{q} e^{t \varphi\left(2 r_{i}\right)} \\
& =\xi^{-q} \sum_{i} \sum_{j} \mu\left(B\left(x_{i j}, r_{i j}\right)\right)^{q} e^{t \varphi\left(r_{i j}\right)}
\end{aligned}
$$

Then, as $\left(B\left(x_{i}, r_{i}\right)\right)_{i}$ represent a δ-cover of $\pi_{V}(E)$, we deduce that

$$
\overline{\mathcal{H}}_{\mu, \varphi, \delta}^{q, t}(E) \leq \xi^{q} \overline{\mathcal{H}}_{\mu_{V}, \varphi, 2 \delta}^{q, t}\left(\pi_{V}(E)\right) .
$$

When δ tends to 0 , we get

$$
\overline{\mathcal{H}}_{\mu, \varphi}^{q, t}(E) \leq \xi^{q} \overline{\mathcal{H}}_{\mu_{V}, \varphi}^{q, t}\left(\pi_{V}(E)\right) .
$$

Since $E \subseteq \operatorname{supp}(\mu), \pi_{V}(E) \subseteq \operatorname{supp}\left(\mu_{V}\right)$ and we find

$$
\overline{\mathcal{H}}_{\mu, \varphi}^{q, t}(E) \leq \xi^{q} \overline{\mathcal{H}}_{\mu_{V}, \varphi}^{q, t}\left(\pi_{V}(E)\right) \leq \xi^{q} \mathcal{H}_{\mu_{V}, \varphi}^{q, t}\left(\operatorname{supp}\left(\mu_{V}\right)\right) .
$$

Finaly, the arbitrary on E, means that

$$
\mathcal{H}_{\mu, \varphi}^{q, t}(\operatorname{supp}(\mu)) \leq \xi^{q} H_{\mu_{V}, \varphi}^{q, t} \operatorname{supp}\left(\left(\mu_{V}\right)\right),
$$

and we deduce the desired result.

Proof of Theorem 3. Fix $V \in G_{n, m}$ and let $\left(B\left(x_{i}, r\right)\right)_{i}$ be a centered packing of $\pi_{V}(E)$. There exists an integer k_{m} depending only on m such that we can divide up the balls $B\left(x_{i}, 2 r\right)$ into $K \leq k_{m}$ families of disjoint balls $\mathcal{B}_{1}, \ldots, \mathcal{B}_{K}$. Let $1 \leq \ell \leq K$. For each $B\left(x_{i}, r\right) \in \mathcal{B}_{\ell}$, denote $E_{i}=E \cap \pi_{V}^{-1}\left(B\left(x_{i}, r\right)\right)$. We have $E_{i} \subseteq \bigcup_{y \in E_{i}} B(y, r)$, so Besicovitch's covering theorem provides a positive integer ξ_{n} as well as $k_{i} \leq \xi_{n}$ families of pairwise disjoint balls $\mathcal{B}_{i, k}=\left\{B\left(y_{j}^{(i, k)}, r\right)\right\}, 1 \leq k \leq k_{i}$, extracted from $\{B(y, r)\}_{y \in E_{i}}$ such that

$$
E_{i} \subseteq \bigcup_{k=1}^{k_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r\right)
$$

- Case1: If $q<0$, we get

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, r\right)\right)^{q} & \leq \sum_{i} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q} \\
& \leq \sum_{i, j} \sum_{k=1}^{k_{i}} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q}
\end{aligned}
$$

- Case2 If $0 \leq q \leq 1$, then

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, r\right)\right)^{q} & \leq \sum_{i} \mu\left(\bigcup_{k=1}^{k_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r\right)\right)^{q} \\
& \leq \sum_{i, j} \sum_{k=1}^{k_{i}} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q}
\end{aligned}
$$

We remark that the balls $B\left(x_{i}, 2 r\right) \in \mathcal{B}_{\ell}$ are pairwise disjoint therefore, in both cases and by construction, if $B(y, r) \in B_{i, k}$ and $B\left(y^{\prime}, r\right) \in B_{i^{\prime}, k^{\prime}}$ with $i \neq i^{\prime}$ then $B(y, r) \cap B\left(y^{\prime}, r\right)=\emptyset$. Then, we can collect the balls $B(y, r)$ involved in the above sum into at most ξ_{n} centered packings of E. This holds for all $1 \leq \ell \leq K$ and thus

$$
\sum_{i} \mu_{V}\left(B\left(x_{i}, r\right)\right)^{q} \leq k_{m} \xi_{n} \sup \left\{\sum_{j} \mu\left(B\left(y_{j}, r\right)\right)^{q}\right\},
$$

where the supremum is taken over all centered packing of E by closed balls of radius r. Which implies that

$$
S_{\mu V, r}^{q}\left(\pi_{V}(E)\right) \leq k_{m} \xi_{n} S_{\mu, r}^{q}(E) .
$$

Proof of Theorem 4. Consider $V \in G_{n, m}$. Let $\left\{B\left(x_{i}, r\right)\right\}_{i}$ be a centered covering of $\pi_{V}(E)$. Denote by $E_{i}=E \bigcap \pi_{V}^{-1}\left(B\left(x_{i}, r\right)\right)$.

We have $E_{i} \subseteq \bigcup_{y \in E_{i} \cap \pi_{V}^{-1}\left(\left\{x_{i}\right\}\right)} B\left(y, \frac{r}{n}\right)$. From Besicovitch covering theorem, there exists an integer ξ_{n}, depending only on n as well as $k_{i} \leq \xi_{n}$ families of pairwise disjoint balls $\left\{B\left(y_{j}^{(i, k)}, \frac{r}{n}\right)\right\}, 1 \leq k \leq k_{i}$ such that

$$
E \cap \pi_{V}^{-1}\left(B\left(x_{i}, r\right)\right) \subseteq \bigcup_{k=1}^{k_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r\right) .
$$

- Case1: If $q<0$, then

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, r\right)\right)^{q} & \leq \sum_{i} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q} \\
& \leq \sum_{i, j} \sum_{k=1}^{k_{i}} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q}
\end{aligned}
$$

- Case2 : If $0 \leq q \leq 1$, one gets

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(x_{i}, r\right)\right)^{q} & \leq \sum_{i} \mu\left(\bigcup_{k=1}^{k_{i}} \bigcup_{j} B\left(y_{j}^{(i, k)}, r\right)\right)^{q} \\
& \leq \sum_{i, j} \sum_{k=1}^{k_{i}} \mu\left(B\left(y_{j}^{(i, k)}, r\right)\right)^{q}
\end{aligned}
$$

Therefore

$$
T_{\mu_{V}, r}^{q}\left(\pi_{V}(E)\right) \leq T_{\mu, r}^{q}(E) .
$$

Proof of Theorem 5. Fix $V \in G_{n, m}$ and let $\left\{B\left(y_{i}, r\right)\right\}_{i}$ be a centered covering of $\pi_{V}(E)$. For each i, let $E_{i}=\pi_{V}^{-1}\left(B\left(y_{i}, r\right)\right) \cap E$.

Since $E_{i} \subseteq \bigcup_{z \in E_{i} \cap \pi_{V}^{-1}\left(\left\{y_{i}\right\}\right)} B(z, r)$, by Besicovitch covering theorem, we find a constant ξ, depending only on n, and a family of balls $\left\{B\left(x_{i j}, r\right)\right\}_{j \in \mathbf{N}}$ which is a centered packing of E_{i} such that

$$
\bigcup_{j} B\left(x_{i j}, r\right) \subseteq \pi_{V}^{-1}\left(B\left(y_{i}, 2 r\right) \cap V\right)
$$

Then, one gets

$$
\begin{aligned}
\sum_{i} \mu_{V}\left(B\left(y_{i}, 2 r\right)\right)^{q} & \geq \xi^{-q} \sum_{i} \mu\left(\bigcup_{j} B\left(x_{i j}, r\right)\right)^{q} \\
& =\xi^{-q} \sum_{i}\left(\sum_{j} \mu\left(B\left(x_{i j}, r\right)\right)\right)^{q} \\
& \geq \xi^{-q} \sum_{i, j} \mu\left(B\left(x_{i j}, r\right)\right)^{q} .
\end{aligned}
$$

Nest, since $\left\{B\left(y_{i}, r\right)\right\}_{i}$ may be any a centered covering of $\pi_{V}(E)$, we obtain

$$
T_{\mu, r}^{q}(E) \leq \xi^{q} T_{\mu_{V}, 2 r}^{q}\left(\pi_{V}(E)\right) .
$$

Appendix

Besicovitch covering theorem. There exists a constant $\xi=\xi(n)$, depending only on n such that: if \mathcal{C} is a collection of nondegenerate closed balls in \mathbf{R}^{n} with

$$
\sup \{\operatorname{diam} B ; \quad B \in \mathcal{C}\}<+\infty
$$

and if C is the set of centres of balls in \mathcal{C}, then there exist $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{\xi} \subset \mathcal{C}$ such that each \mathcal{C}_{i} is a countable collection of disjoint balls in \mathcal{C} and

$$
C \subseteq \bigcup_{i=1}^{\xi} \bigcup_{B \in \mathcal{C}_{i}} B .
$$

References

[1] N. Attia, B. Selmi. "Relative multifractal box-dimensions", Filomat, vol. 33, pp. 2841-2859, 2019.
[2] I. Bhouri. "On the projections of generalized upper L9-spectrum", Chaos, Solitons \& Fractals, vol. 42, pp. 1451-1462, 2009.
[3] J. Barral, I. Bhouri, "M ultifractal analysis for projections of Gibbs and related measures", Ergodic Theory and Dynamic systems, vol. 31, pp. 673-701, 2011
[4] P. Billingsley, Ergodic theory and information. W iley, N ew York. 1965.
[5] L. Barreira, P. Doutor, "Almost additive multifractal analysis", J. M ath. Pures A ppl., vol. 92, pp. 1-17, 2009.
[6] G. Brown, G . M ichon, J. Peyrire,"On the multifractal analysis of measures", J.Stat. Phys., vol. 66, pp. 775-790, 1992.
[7] L. Barreira, B. Saussol, "Variational principles and mixed multifractal spectra", Trans. A mer. M ath. Soc., vol. 353, pp. 3919-3944, 2001
[8] L. Barreira, B. Saussol, J. Schmeling, "Higher-dimensional multifractal analysis",J.M ath. Pures A ppl., vol. 81, pp. 67-91, 2002.
[9] J. Cole, "Relative multifractal analysis", Chaos, Solitons \& Fractals, vol. 11, pp. 2233-2250, 2000.
[10] M . Dai, "M ixed self-conformal multifractal measures", A nalysis in Theory and A pplications, vol. 25, pp. 154-165, 2009.
[11] M. Dai, W. Li, "The mixed La-spectra of self-conformal measures satisfying the weak separation condition", J. Math. A nal. Appl., vol. 382, pp. 140-147, 2011
[12] M. Dai, Y. Shi, "Typical behavior of mixed L9-dimensions", Nonlinear A nalysis: Theory, M ethods \& Applications, vol. 72, pp. 2318-2325, 2010.
[13] Z. Douzi, B. Selmi, "M ultifractal variation for projections of measures", Chaos, Solitons \& Fractals, vol. 91, pp. 414-420, 2016.
[14] Z. Douzi, B. Selmi, "A relative multifractal analysis: Box-dimensions, densities, and projections", Quaestiones Mathematicae, vol. 45, no. 8, pp. 1243-1296, 2022.
[15] Z. Douzi, B. Selmi, "On the projections of the mutual multifractal R 'enyi dimensions", A nal. Theory A ppl., vol. 36, no. 2, pp. 1-20, 2020.
[16] M. Dai, C. W ang, H. Sun, "M ixed generalized dimensions of random self-similar measures", Int. J. Nonlinear. Sci., vol. 13, pp. 123-128, 2012.
[17] K. J. Falconer, The geometry of fractal sets. Cambridge univ. Press New. York-London, 1985.
[18] K. J. Falconer, J. D. How royd, "Packing Dimensions of Projections and Dimensions Profiles", M ath. Proc. Cambridge Philos. Soc., vol. 121, pp. 269-286, 1997.
[19] K. J. Falconer, X. Jim, "Exact dimensionality and projections of random self-similar measures and sets", J. Lond. Math. Soc., vol. 90, pp. 388-412, 2014.
[20] K. J. Falconer, T. C. O'N eil, "Convolutions and the geometry of multifractal measures", M athematische N achrichten, vol. 204, pp. 61-82, 1999.
[21] K. J. Falconer, P. M attila, "Strong M arstrand theorems and dimensions of sets formed by subsets of hyperplanes", Journal of Fractal Geometry, vol. 3, pp. 319-329, 2016.
[22] B. R. Hunt, V. Y. Kaloshin, "How projections affect the dimension spectrum of fractal measures", N onlinearity, vol. 10, pp. 1031-1046, 1997.
[23] M. Hochman, P. Shmerkin, "Local entropy averages and projections of fractal measures", 2009. [On line]. Available: https://arxiv.org/abs/0910.1956
[24] R. Kaufman, "On Hausdorff dimension of projections", M athematika, vol. 15, pp. 153-155, 1968.
[25] M . Kessebohmer, "Large deviation for weak Gibbs measures and multifractal spectra", N onlinearity, vol. 14, pp. 395-409, 2001
[26] B. M andelbrot, "Negative Fractal Dimensions and M ultifractals", Physica A., vol. 163, pp. 306-315, 1990.
[27] J. M . M arstrand, "Some fundamental geometrical properties of plane sets of fractional dimensions", Proceedings of the London Mathematical Society, vol. 4, pp 257-302, 1954.
[28] P. M attila, The geometry of sets and measures in Euclidean spaces. Cambridge University Press. C ambrdige, 1995.
[29] M . M enceur, A. Ben M abrouk, "A mixed multifractal formalism for finitely many non Gibbs Frostman-like measures", 2018. [On line]. Available: https://arxiv.org/abs/1804.09034
[30] M. M enceur, A. Ben M abrouk, K. Betina, "The multifractal formalism for measures, review and extension to mixed cases", A nal. Theory A ppl., vol. 32, pp. 77-106, 2016.
[31] L. Olsen, "A multifractal formalism", Advances in Mathematics, vol. 116, pp. 82-196, 1995.
[32] L. Olsen, "M ixed generalized dimensions of self-similar measures", J. Math. Anal. A ppl., vol. 306, pp. 516-539, 2005.
[33] T. C. O'N eil, "The multifractal spectrum of quasi self-similar measures", Journal of Mathematical Analysis and its Applications, vol. 211, pp. 233-257, 1997.
[34] T. C. O'N eil, "The multifractal spectra of projected measures in Euclidean spaces", Chaos, Solitons \& Fractals, vol. 11, pp. 901-921, 2000.
[35] Y. Peres, W . Schalg, "Smoothness of projections, bernoulli convolutions, and the dimensions of exceptions", Duke Math. J., vol. 102, no. 2, pp. 193251, 2000.
[36] R. H. Riedi, "C onditional and relative multifractal spectra", Fractals, vol. 5, pp. 153-168, 1997.
[37] B. Selmi, "On the projections of the multifractal packing dimension for $q>$ 1", A nnali di M atematica Pura ed A pplicata, vol. 199, pp. 1519-1532, 2020.
[38] B. Selmi, "On the effect of projections on the Billingsley dimensions", A sian-Eur. J. M ath., vol. 13, 2020,
[39] N. Yu. Svetova,"The relative Renyi dimention", Probl. A nal. Issues A nal, vol. 1, pp. 15-23, 2012.
[40] B. Selmi and N. Yu. Svetova, "On the projections of mutual Lq,t- spectrum", Probl. A nal. Issues A nal., vol 6, no. 24, pp. 94-108, 2017.

Zied Douzi

Analysis, Probability \& Fractals Laboratory LR18ES17
Department of Mathematics,
Faculty of Sciences of Monastir,
University of Monastir,
5000-Monastir,
Tunisia
e-mail. douzi.fsm@gmail.com

