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1. Introduction

The dimensional properties of projections of sets and measures have been
the focus of a lot of researchers for the last decades [2, 3, 18, 19, 21, 22, 23,
24, 28, 34]. One of the most fundamental results in this area is Marstrand’s
theorem. In his paper [27], he proved, using geometric arguments, that for
a Borel set E in the plane,

dim(πV (E)) = min
�
dimE, 1

�

for almost every line V (here πV denotes orthogonal projection onto V). In
[24], Kaufman gave an alternative proof of the same result using potential-
theoretic methods. He also provided a dimension estimate for the set of
exceptional directions. Mattila [28], generalized the latter concept to higher
dimensions, his proof combined the methods of Marstrand and Kaufman.
More specifically, he proved that for a Borel measure µ on Rn,

dimπV (µ) = min
�
dimµ , m

�
,

for almost all m-dimensional subspace V. Let us mention that the authors
in [18, 21] have extended these results to packing dimensions of both sets
and measures, such that, for µ a Borel measure on Rn, if Dim µ ≤ m,
then Dim πV (µ) = Dim µ, for almost all m-dimensional subspace V of Rn.
Other works were carried out in this sense for classes of similar measures
in euclidean and symbolic spaces [19, 23, 34].

As a continuity to this research, many authors have been studying the
relationship between multifractal features of a measure µ on Rn and those
of the projection of the measure onto m-dimensional subspaces. In [19, 20,
22] the authors studied the behavior of the Lq-spectrum of a measure µ on
Rn under orthogonal projections onto lower dimensional linear subspaces.
O’Neil and Selmi [34, 37] compared the generalized Hausdorff and packing
dimensions of a set E of Rn with respect to a measure µ with those of
their projections onto m-dimensional subspaces. In [3], the authors studied
the multifractal analysis of the orthogonal projections onto m-dimensional
linear subspaces of singular measures on Rn satisfying the multifractal for-
malism. Later on, Douzi and Selmi [13], considered the relative multifractal
formalism developed by Cole [9], as they studied the relationship between
the relative multifractal spectra of orthogonal projections of a measure µ
in Euclidean space and those of µ. Recently, as a generalization of these
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results, Douzi and Selmi proved in [14, 15] a relationship between the mu-
tual multifractal spectra of a couple of measures (µ, ν) and its orthogonal
projections in Euclidean spaces.

In the present paper, we pursue this direction of work, and that is by
considering the ϕ-multifractal formalism developed in [29]. The aim of this
work is twofold. Firstly, we investigate the behavior of the ϕ-multifractal
Hausdorff and packing dimensions under projection. Secondly, we take
interest in the relationship between the ϕ-multifractal spectrum and its
projection onto a lower dimensional linear subspace.

2. Preliminaries and main results

We denote the family of Borel probability measures on Rd by P(Rd) and
for µ ∈ P(Rd) supp(µ) is the topological support of µ. In this paper, we
will work with the ϕ-multifractal formalism introduced in [29]. Let us recall
the ϕ-multifractal Hausdorff and packing measures.

Let ϕ : R+ −→ R be such that ϕ is non-decreasing and ϕ(r) < 0 for r
small enough. For µ ∈ P(Rn), q, t ∈ R, E ⊆ Rn and δ > 0, we define

P
q,t
µ,ϕ,δ(E) = sup

�
�

i

µ
�
B(xi, ri)

�q
etϕ(ri)

�

, E �= ∅,

where the supremum is taken over all centered δ-packings of E. Moreover,
we can set P

q,t
µ,ϕ,δ(∅) = 0.

The ϕ-multifractal packing pre-measure is then given by

P
q,t
µ,ϕ(E) = inf

δ>0
P
q,t
µ,ϕ,δ(E).

In a similar way, we define

H
q,t
µ,ϕ,δ(E) = inf

�
�

i

µ
�
B(xi, ri)

�q
etϕ(ri)

�

, E �= ∅,

where the infinimum is taken over all centered δ-coverings of E. Moreover,
we can set H

q,t
µ,ϕ,δ(∅) = 0.
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The ϕ-multifractal Hausdorff pre-measure is defined by

H
q,t
µ,ϕ(E) = sup

δ>0
H
q,t
µ,ϕ,δ(E).

We also have the following conventions 0q = ∞ for q ≤ 0 and 0q = 0 for
q > 0.

H
q,t
µ,ϕ is σ-subadditive but not increasing whereas P

q,t
µ,ϕ is increasing but not

σ-subadditive. For this particular reason, the authors introduced the fol-
lowing modifications on the ϕ-multifractal Hausdorff and packing measures
Hq,tµ,ϕ and Pq,tµ,ϕ,

Hq,tµ,ϕ(E) = sup
F⊆E

H
q,t
µ,ϕ(F ) and Pq,tµ,ϕ(E) = inf

E⊆
�
i
Ei

�

i

P
q,t
µ,ϕ(Ei).

The functions Hq,tµ,ϕ and Pq,tµ,ϕ are metric outer measures and hence,

measures on the Borel family of subsets of Rn. It is clear that Pq,tµ,ϕ ≤ P
q,t
µ,ϕ,

there exists an integer ξ ∈N such that Hq,tµ,ϕ ≤ ξPq,tµ,ϕ.

The measures Hq,tµ,ϕ and Pq,tµ,ϕ and the pre-measure P
q,t
µ,ϕ assign, in the

usual way, a multifractal dimension to each subset E ofRn. More precisely,
we have the following result.

Proposition 1. [29]

1. There exists a unique number dimq
µ,ϕ(E) ∈ [−∞,+∞] such that

Hq,tµ,ϕ(E) =






∞ if t < dimq
µ,ϕ(E),

0 if dimq
µ,ϕ(E) < t.

2. There exists a unique number Dimq
µ,ϕ(E) ∈ [−∞,+∞] such that

Pq,tµ,ϕ(E) =






∞ if t < Dimq
µ,ϕ(E),

0 if Dimq
µ,ϕ(E) < t.

3. There exists a unique number ∆q
µ,ϕ(E) ∈ [−∞,+∞] such that

P
q,t
µ,ϕ(E) =






∞ if t < ∆q
µ,ϕ(E),

0 if ∆q
µ,ϕ(E) < t.
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Remark 1. In the case ϕ = log, we have

dim0
µ,ϕ(E) = dim(E), Dim0

µ,ϕ(E) = Dim(E) and∆0
µ,ϕ(E) = ∆(E),

where dim, Dim and ∆ are respectively the Hausdorff dimension, the pack-
ing dimension and the Bouligand-Minkowski dimension.

Next, for q ∈ R, we define the separator functions bµ,ϕ, Bµ,ϕ and Λµ,ψ
by

bµ,ϕ(q) = dim(µ), ϕq(supp(µ)),

Bµ,ϕ(q) = Dimq
µ,ϕsupp(µ)

and Λµ,ϕ(q) = ∆q
µ,ϕ(supp(µ)).

It is well known that

bµ,ϕ ≤ Bµ,ϕ ≤ Λµ,ϕ.(2.1)

Proposition 2. [29] One has

1. bµ,ϕ and Bµ,ϕ are non decreasing with respect to the inclusion prop-
erty in Rn.

2. bµ,ϕ and Bµ,ϕ are σ-stable.

3. 0 ≤ bµ,ϕ(q) ≤ Bµ,ϕ(q) ≤ Λµ,ϕ(q), whenever q < 1.

4. bµ,ϕ(1) = Bµ,ϕ(1) = Λµ,ϕ(1) = 0.

5. bµ,ϕ(q) ≤ Bµ,ϕ(q) ≤ Λµ,ϕ(q) ≤ 0 whenever q > 1.

Now, we define both upper and lower multifractal bouligand-minkowski
ϕ-dimensions in Rn. Let µ ∈ P(Rn) and q ∈ R. For E ⊆ Rn and r > 0,
we write

Sqµ,r(E) = sup

�
�

i

µ
�
B(xi, r)

�q
�

,
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where


B(xi, r)

�

i

is a centered packing of E ∩ supp(µ). The upper and

lower Bouligand-Minkowski ϕ-dimensions of E denoted respectively by
R
q
µ,ϕ and Rqµ,ϕ are defined s follows:

R
q
µ,ϕ(E) = lim sup

r→0

logSqµ,r(E)

−ϕ(r)
and Rqµ,ϕ(E) = lim inf

r→0

logSqµ,r(E)

−ϕ(r)
.

When the two limits coincide, we denote the common value by Rqµ,ϕ.
Another natural way to define the Bouligand-Minkowski ϕ-dimensions

is given by

T qµ,r(E) = inf

�
�

i

µ
�
B(xi, r)

�q
�

,

where


B(xi, r)

�

i

is a centered covering of E ∩ suppµ. Now, we write

L
q
µ,ϕ(E) = lim sup

r→0

logT qµ,r(E)

−ϕ(r)
and Lqµ,ϕ(E) = lim inf

r→0

logT qµ,r(E)

−ϕ(r)
.

If L
q
µ,ϕ(E) = L

q
µ,ϕ(E), their common value at q is denoted by Lqµ,ϕ(E).

Remark 2. In the special case q = 0 and ϕ = log, the Bouligand-Minkowski
ϕ-dimensions represent the upper and lower box-dimension, i.e.,

L
0
µ,log(E) = R

0
µ,log(E) = dimB(E)

L0µ,log(E) = R
0
µ,log(E) = dimB(E)

Next, for q ∈ R, we denote by

R
ϕ
µ(q) = B

q
µ,ϕ(supp(µ)),

Bϕµ(q) = B
q
µ,ϕ(supp(µ))

and
L
ϕ
µ(q) = L

q
µ,ϕ(supp(µ)), Lϕµ(q) = L

q
µ,ϕ(supp(µ)).

Now, we define a subclass of measures. For µ ∈ P(Rn) and a > 1, we
write

Ta(µ) = lim sup
rց0



 sup
x∈suppµ

µ
�
B(x, ar)

�

µ
�
B(x, r)

�



 .
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We will now say that the measure µ satisfies the doubling condition if there
exists a > 1 such that Ta(µ) <∞. It is easily seen that the exact value of
the parameter a is unimportant: Ta(µ) < ∞, for some a > 1 if and only
if Ta(µ) < ∞, for all a > 1. Also, we will write Pd(R

n) for the family of
Borel probability measures on Rn which satisfy the doubling condition.

Proposition 3. [29] For q ∈ R and E ⊆ Rn we have

1. L
q
µ,ϕ(E) ≤ R

q
µ,ϕ(E) and Lqµ,ϕ(E) ≤ R

q
µ,ϕ(E), for µ ∈ P(R

n).

2. L
q
µ,ϕ(E) = R

q
µ,ϕ(E) and Lqµ,ϕ(E) = R

q
µ,ϕ(E), for µ ∈ Pd(R

n).

Theorem 1. [29] Let q ∈ R and µ ∈ P(Rn). Then for E ⊆ Rn, we have
∆q
µ,ϕ(E) = R

q
µ,ϕ(E).

Theorem 2. [29] Let q ∈ R and µ ∈ Pd(R
n). Then for E ⊆ Rn, we have

dimq
µ,ϕ(E) ≤ L

q
µ,ϕ(E).

In the next, let m be an integer with 0 < m < n and Gn,m stand for the
Grassmannian manifold of allm-dimensional linear subspaces ofRn and we
denote γn,m the invariant Haar measure on Gn,m such that γn,m(Gn,m) = 1.
For V ∈ Gn,m, we define the projection map, πV : Rn −→ V as the usual
orthogonal projection onto V . Now, for a Borel probability measure µ on
Rn, supported on the compact set suppµ and for V ∈ Gn,m we define µV ,
the projection of µ onto V by

µV (A) = µ(π−1V (A)), ∀A ⊆ V.

Since µ has a compact support, supp(µV ) = πV (supp(µ)) for all V ∈ Gn,m
then for any continuous function f : V −→ R

�

V
fdµV =

�
f(πV (x))dµ(x)

whenever these integrals exist.

Proposition 4. Let µ be a compactly supported Borel probability mea-
sure on Rn and E ⊆ supp(µ). Then, for q ≤ 1 and all V ∈ Gn,m, we
have

∆qµV ,ϕ(πV (E)) ≤ ∆q
µ,ϕ(E).

Corollary 1. Let µ be a compactly supported Borel probability measure
on Rn. Then, for q ≤ 1 and all V ∈ Gn,m, we have

ΛµV ,ϕ(q) ≤ Λµ,ϕ(q).
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Proof. The proof is a straightforward consequence of Proposition 4. �

Proposition 5. Let µ be a compactly supported Borel probability mea-
sure on Rn. Then, for q ≤ 1 and all V ∈ Gn,m, we have

BµV ,ϕ(q) ≤ Bµ,ϕ(q).

Proposition 6. Let µ be a compactly supported Borel probability mea-
sure on Rn and E ⊆ supp(µ). Then, for all V ∈ Gn,m, we have

1. bqµV ,ϕ(E) ≤ bqµ,ϕ(E), for q ≤ 0.

2. bµV ,ϕ(q) ≥ bµ,ϕ(q), for q ≥ 1.

Remark 3. If ϕ = log, we obtain the results of O’Neil (see [34]).

In the sequel, we focus on the behavior of the Bouligand-Minkowski
ϕ-dimensions under orthogonal projections.

Theorem 3. Let µ be a compactly supported Borel probability measure on
Rn and E ⊆ supp(µ). Then for q ≤ 1 and for all m-dimensional subspaces
V , we have

RqµV ,ϕ(πV (E)) ≤ R
q
µ,ϕ(E)

and

R
q
µV ,ϕ

(πV (E)) ≤ R
q
µV ,ϕ

(E).(2.2)

Theorem 4. Let µ be a compactly supported Borel probability measure on
Rn and E ⊆ supp(µ). Then for q ≤ 1 and for all m-dimensional subspaces
V , we have

LqµV ,ϕ(πV (E)) ≤ L
q
µ,ϕ(E) and L

q
µV ,ϕ

(πV (E)) ≤ L
q
µ,ϕ(E).

Theorem 5. Let µ be a compactly supported Borel probability measure on
Rn and E ⊆ supp(µ). Then for q ≥ 1 and for all m-dimensional subspaces
V ,

LqµV ,ϕ(πV (E)) ≥ L
q
µ,ϕ(E) and LqµV ,ϕ(πV (E)) ≥ L

q
µ,ϕ(E).
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3. Proofs of the main results

Proof of Proposition 4. We have too cases :

•Case1 : q < 0. It is easy to see that if

�
B(xi, ri)

�

i

is a centered δ-packing

of πV (E), then

�
B(yi, ri)

�

i

is a centered δ-packing of E (where yi ∈ E such

that xi = πV (yi)). Then, one has

µ(B(yi, ri)) ≤ µ(π−1V (B(xi, ri))),

which implies that

µV (B(xi, ri))
q ≤ µ(B(yi, ri))q.

Hence, we get the desired result.

• Case 2 : 0 ≤ q ≤ 1. Let t ∈ R such that ∆µ,ϕ(q) < t and consider

V ∈ Gn,m. Fix δ > 0 and let

�
B(xi, ri)

�

i

be a centered δ-packing of

πV (E). There exists an integer km depending only on m such that the balls
B(xi, 2ri) can be divided into K ≤ km families of disjoint balls B1, . . . ,BK .

Let 1 ≤ ℓ ≤ K. For each B(xi, ri) ∈ Bℓ, denote Ei = E ∩ π−1V

�
B(xi, ri)

�
.

We have Ei ⊆
�

y∈Ei

B(y, ri), so Besicovitch’s covering theorem provides a

positive integer ξn as well asKi ≤ ξn families of pairwise disjoint balls Bi,k =
B

�
y
(i,k)
j , rijk

�
: rijk =

ri

2

�
, 1 ≤ k ≤ Ki, extracted from

�
B(y, ri)

�

y∈Ei
such that

Ei ⊆
Ki�

k=1

�

j

B

�
y
(i,k)
j , rijk

�
.

Therefore, we get

�

i

µV (B(xi, ri))
qetϕ(ri) ≤

�

i

µ

� Ki�

k=1

�

j

B(y
(i,k)
j , rijk)

�q
etϕ(ri)

≤
�

i

�

j

Ki�

k=1

µ(B(y
(i,k)
j , rijk))

qetϕ(ri)

≤
�

i

�

j

Ki�

k=1

µ(B(y
(i,k)
j , 2rijk))

qetϕ(2rijk).
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In both cases and by construction, since the balls B(xi, 2ri) ∈ Bℓ are
pairwise disjoint, if B(y, r) ∈ Bi,k and B(y′, r′) ∈ Bi′,k′ with i �= i′, then
B(y, r) ∩ B(y′, r′) = ∅. So, we can collect the balls B(y, r) invoked in
the above sum into at most ξn centered packing of E. This holds for all
1 ≤ ℓ ≤ K, so

�

i

µV (B(xi, ri))
qetϕ(ri) ≤ kmξn sup

�

j

µ(B(yj, 2rj))
qetϕ(2rj)

�
,

where the supremum is taken over all centered packing of E by closed balls
of radius r. It results that

P
q,t
µV ,ϕ,δ

(πV (E)) ≤ kmξnP
q,t
µ,ϕ,2δ(E).

When δ ↓ 0 in the above expression, we obtain

P
q,t
µV ,ϕ

(πV (E)) ≤ kmξnP
q,t
µ,ϕ(E).(3.1)

Proof of Proposition 5. Let t ∈ R such that Bµ,ϕ(q) < t. Consider
F ⊆ Rn and V ∈ Gn,m. By the inequality (3.1), one has

P
q,t
µV ,ϕ

(πV (F )) ≤ kmξnP
q,t
µ,ϕ(F ).

As Bµ,ϕ(q) < t, then Pq,tµ,ϕ(supp(µ)) <∞, and there exists (Ei)i a covering
of supp(µ) such that �

i

P
q,t
µ,ϕ(Ei) < 1.

We clearly have πV (supp)(µ) ⊆
�

i

πV (Ei), and then one gets

Pq,tµV ,ϕ(supp(µV )) ≤
�

i

P
q,t
µV ,ϕ

(πV (Ei))

≤ kmξn
�

i

P
q,t
µ,ϕ(Ei)

≤ kmξn <∞.

It results that
BµV ,ϕ(q) ≤ t, ∀t > Bµ,ϕ(q).

Therefore, we can deduce that

BµV ,ϕ(q) ≤ Bµ,ϕ(q).
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Proof of Proposition 6.

1. The proof is similar to that of case one in Proposition 4.

2. Fix V ∈ Gn,m and δ > 0 and suppose that

�
B(xi, ri)

�

i

is a δ-cover

of πV (E). For each i, we may use the Besicovitch covering theo-
rem to find a constant ξ, depending only on n and a family of balls
B(xij , rij)

�
with rij =

ri

2
, which is a δ-cover of π−1V

�
B(xi, ri)

�
∩E

such that
�

j

B(xij, rij) ⊆ π−1V

�
B(xi, 2ri) ∩ V

�
, which leads to

�

i

µV (B(xi, 2ri))
qetϕ(2ri) ≥ ξ−q

�

i

��

j

µ(B(xij , rij))

�q
etϕ(2ri)

= ξ−q
�

i

�

j

µ(B(xij , rij))
qetϕ(rij).

Then, as

�
B(xi, ri)

�

i

represent a δ-cover of πV (E), we deduce that

H
q,t
µ,ϕ,δ(E) ≤ ξqH

q,t
µV ,ϕ,2δ

(πV (E)).

When δ tends to 0, we get

H
q,t
µ,ϕ(E) ≤ ξqH

q,t
µV ,ϕ

(πV (E)).

Since E ⊆ supp(µ), πV (E) ⊆ supp(µV ) and we find

H
q,t
µ,ϕ(E) ≤ ξqH

q,t
µV ,ϕ

(πV (E)) ≤ ξqHq,tµV ,ϕ(supp(µV )).

Finaly, the arbitrary on E, means that

Hq,tµ,ϕ(supp(µ)) ≤ ξqHq,t
µV ,ϕ

supp((µV )),

and we deduce the desired result.
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Proof of Theorem 3. Fix V ∈ Gn,m and let

�
B(xi, r)

�

i

be a centered

packing of πV (E). There exists an integer km depending only on m such
that we can divide up the balls B(xi, 2r) into K ≤ km families of dis-
joint balls B1, . . . ,BK . Let 1 ≤ ℓ ≤ K. For each B(xi, r) ∈ Bℓ, denote

Ei = E ∩ π−1V

�
B(xi, r)

�
. We have Ei ⊆

�

y∈Ei

B(y, r), so Besicovitch’s cov-

ering theorem provides a positive integer ξn as well as ki ≤ ξn families of

pairwise disjoint balls Bi,k =


B

�
y
(i,k)
j , r

��
, 1 ≤ k ≤ ki, extracted from


B(y, r)

�

y∈Ei

such that

Ei ⊆
ki�

k=1

�

j

B

�
y
(i,k)
j , r

�
.

•Case1 : If q < 0, we get

�

i

µV

�
B(xi, r)

�q
≤

�

i

µ

�
B

�
y
(i,k)
j , r

��q

≤
�

i,j

ki�

k=1

µ

�
B

�
y
(i,k)
j , r

��q
.

•Case2 If 0 ≤ q ≤ 1, then

�

i

µV

�
B(xi, r)

�q
≤

�

i

µ

� ki�

k=1

�

j

B

�
y
(i,k)
j , r

��q

≤
�

i,j

ki�

k=1

µ

�
B

�
y
(i,k)
j , r

��q
.

We remark that the balls B(xi, 2r) ∈ Bℓ are pairwise disjoint therefore,
in both cases and by construction, if B(y, r) ∈ Bi,k and B(y′, r) ∈ Bi′,k′

with i �= i′ then B(y, r) ∩ B(y′, r) = ∅. Then, we can collect the balls
B(y, r) involved in the above sum into at most ξn centered packings of E.
This holds for all 1 ≤ ℓ ≤ K and thus

�

i

µV

�
B(xi, r)

�q
≤ kmξn sup

�

j

µ
�
B(yj, r)

�q�
,
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where the supremum is taken over all centered packing of E by closed balls
of radius r. Which implies that

SqµV ,r(πV (E)) ≤ kmξnS
q
µ,r(E).

Proof of Theorem 4. Consider V ∈ Gn,m. Let


B(xi, r)

�

i

be a centered

covering of πV (E). Denote by Ei = E
�
π−1V

�
B(xi, r)

�
.

We have Ei ⊆
�

y∈Ei∩π
−1

V
({xi})

B

�
y,
r

n

�
. From Besicovitch covering the-

orem, there exists an integer ξn, depending only on n as well as ki ≤ ξn

families of pairwise disjoint balls


B

�
y
(i,k)
j ,

r

n

��
, 1 ≤ k ≤ ki such that

E ∩ π−1V

�
B(xi, r)

�
⊆

ki�

k=1

�

j

B

�
y
(i,k)
j , r

�
.

•Case1 : If q < 0, then

�

i

µV

�
B(xi, r)

�q
≤

�

i

µ

�
B

�
y
(i,k)
j , r

��q

≤
�

i,j

ki�

k=1

µ

�
B

�
y
(i,k)
j , r

��q
.

•Case2 : If 0 ≤ q ≤ 1, one gets

�

i

µV

�
B(xi, r)

�q
≤

�

i

µ

� ki�

k=1

�

j

B

�
y
(i,k)
j , r

��q

≤
�

i,j

ki�

k=1

µ

�
B

�
y
(i,k)
j , r

��q
.

Therefore
T qµV ,r(πV (E)) ≤ T qµ,r(E).

Proof of Theorem 5. Fix V ∈ Gn,m and let


B(yi, r)

�

i

be a centered

covering of πV (E). For each i, let Ei = π−1V (B(yi, r))
�
E.
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Since Ei ⊆
�

z∈Ei∩π
−1

V
({yi})

B
�
z, r

�
, by Besicovitch covering theorem, we

find a constant ξ, depending only on n, and a family of balls


B(xij , r)

�

j∈N

which is a centered packing of Ei such that

�

j

B(xij, r) ⊆ π−1V

�
B(yi, 2r) ∩ V

�
.

Then, one gets

�

i

µV

�
B(yi, 2r)

�q
≥ ξ−q

�

i

µ

��

j

B(xij , r)

�q

= ξ−q
�

i

��

j

µ (B(xij , r))

�q

≥ ξ−q
�

i,j

µ(B(xij , r))
q.

Nest, since


B(yi, r)

�

i

may be any a centered covering of πV (E), we

obtain

T qµ,r(E) ≤ ξqT
q
µV ,2r

(πV (E)).

Appendix

Besicovitch covering theorem. There exists a constant ξ = ξ(n), de-
pending only on n such that: if C is a collection of nondegenerate closed
balls in Rn with

sup


diam B; B ∈ C

�
< +∞

and if C is the set of centres of balls in C, then there exist C1, C2, ..., Cξ ⊂ C
such that each Ci is a countable collection of disjoint balls in C and

C ⊆
ξ�

i=1

�

B∈Ci

B.
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