Proyecciones Journal of Mathematics Vol. 42, N^o 6, pp. 1417-1434, December 2023. Universidad Católica del Norte Antofagasta - Chile

A generalization of O'Neil's theorems for projections of measures and dimensions

Zied Douzi University of Monastir, Tunisia Received : September 2021. Accepted : June 2023

Abstract

In this paper, more general versions of O'Neil's projection theorems and other related theorems. In particular, we study the relationship between the φ -multifractal dimensions and its orthogonal projections in Euclidean space.

Subjclass [2000]: 28A78, 28A80.

Keywords: Projection, φ -multifractal Hausdorff and packing measures, φ -multifractal Hausdorff and packing dimensions, Bouligand-Minkowski φ -dimensions.

1. Introduction

The dimensional properties of projections of sets and measures have been the focus of a lot of researchers for the last decades [2, 3, 18, 19, 21, 22, 23, 24, 28, 34]. One of the most fundamental results in this area is Marstrand's theorem. In his paper [27], he proved, using geometric arguments, that for a Borel set E in the plane,

$$\dim(\pi_V(E)) = \min\left(\dim E, 1\right)$$

for almost every line V (here π_V denotes orthogonal projection onto V). In [24], Kaufman gave an alternative proof of the same result using potentialtheoretic methods. He also provided a dimension estimate for the set of exceptional directions. Mattila [28], generalized the latter concept to higher dimensions, his proof combined the methods of Marstrand and Kaufman. More specifically, he proved that for a Borel measure μ on \mathbf{R}^n ,

$$\dim \pi_V(\mu) = \min \Big\{ \dim \mu \,, \, m \Big\},\,$$

for almost all *m*-dimensional subspace V. Let us mention that the authors in [18, 21] have extended these results to packing dimensions of both sets and measures, such that, for μ a Borel measure on \mathbf{R}^n , if $\text{Dim } \mu \leq m$, then $\text{Dim } \pi_V(\mu) = \text{Dim } \mu$, for almost all *m*-dimensional subspace V of \mathbf{R}^n . Other works were carried out in this sense for classes of similar measures in euclidean and symbolic spaces [19, 23, 34].

As a continuity to this research, many authors have been studying the relationship between multifractal features of a measure μ on \mathbf{R}^n and those of the projection of the measure onto *m*-dimensional subspaces. In [19, 20, 22] the authors studied the behavior of the L^q -spectrum of a measure μ on \mathbf{R}^n under orthogonal projections onto lower dimensional linear subspaces. O'Neil and Selmi [34, 37] compared the generalized Hausdorff and packing dimensions of a set E of \mathbf{R}^n with respect to a measure μ with those of their projections onto *m*-dimensional subspaces. In [3], the authors studied the multifractal analysis of the orthogonal projections onto *m*-dimensional linear subspaces of singular measures on \mathbf{R}^n satisfying the multifractal formalism. Later on, Douzi and Selmi [13], considered the relative multifractal formalism developed by Cole [9], as they studied the relationship between the relative multifractal spectra of orthogonal projections of a measure μ in Euclidean space and those of μ . Recently, as a generalization of these

results, Douzi and Selmi proved in [14, 15] a relationship between the mutual multifractal spectra of a couple of measures (μ, ν) and its orthogonal projections in Euclidean spaces.

In the present paper, we pursue this direction of work, and that is by considering the φ -multifractal formalism developed in [29]. The aim of this work is twofold. Firstly, we investigate the behavior of the φ -multifractal Hausdorff and packing dimensions under projection. Secondly, we take interest in the relationship between the φ -multifractal spectrum and its projection onto a lower dimensional linear subspace.

2. Preliminaries and main results

We denote the family of Borel probability measures on \mathbf{R}^d by $\mathcal{P}(\mathbf{R}^d)$ and for $\mu \in \mathcal{P}(\mathbf{R}^d)$ $supp(\mu)$ is the topological support of μ . In this paper, we will work with the φ -multifractal formalism introduced in [29]. Let us recall the φ -multifractal Hausdorff and packing measures.

Let $\varphi : \mathbf{R}_+ \longrightarrow \mathbf{R}$ be such that φ is non-decreasing and $\varphi(r) < 0$ for r small enough. For $\mu \in \mathcal{P}(\mathbf{R}^n)$, $q, t \in \mathbf{R}$, $E \subseteq \mathbf{R}^n$ and $\delta > 0$, we define

$$\overline{\mathcal{P}}_{\mu,\varphi,\delta}^{q,t}(E) = \sup\left\{\sum_{i} \mu \left(B(x_i, r_i)\right)^q e^{t\varphi(r_i)}\right\}, \quad E \neq \emptyset,$$

where the supremum is taken over all centered δ -packings of E. Moreover, we can set $\overline{\mathcal{P}}_{\mu,\varphi,\delta}^{q,t}(\emptyset) = 0$.

The φ -multifractal packing pre-measure is then given by

$$\overline{\mathcal{P}}_{\mu,\varphi}^{q,t}(E) = \inf_{\delta > 0} \overline{\mathcal{P}}_{\mu,\varphi,\delta}^{q,t}(E).$$

In a similar way, we define

$$\overline{\mathcal{H}}^{q,t}_{\mu,\varphi,\delta}(E) = \inf\left\{\sum_{i} \mu \Big(B(x_i, r_i)\Big)^q e^{t\varphi(r_i)}\right\}, \quad E \neq \emptyset,$$

where the infinimum is taken over all centered δ -coverings of E. Moreover, we can set $\overline{\mathcal{H}}^{q,t}_{\mu,\varphi,\delta}(\emptyset) = 0$.

The φ -multifractal Hausdorff pre-measure is defined by

$$\overline{\mathcal{H}}_{\mu,\varphi}^{q,t}(E) = \sup_{\delta > 0} \overline{\mathcal{H}}_{\mu,\varphi,\delta}^{q,t}(E).$$

We also have the following conventions $0^q = \infty$ for $q \le 0$ and $0^q = 0$ for q > 0.

 $\overline{\mathcal{H}}^{q,t}_{\mu,\varphi}$ is σ -subadditive but not increasing whereas $\overline{\mathcal{P}}^{q,t}_{\mu,\varphi}$ is increasing but not σ -subadditive. For this particular reason, the authors introduced the following modifications on the φ -multifractal Hausdorff and packing measures $\mathcal{H}^{q,t}_{\mu,\varphi}$ and $\mathcal{P}^{q,t}_{\mu,\varphi}$,

$$\mathcal{H}^{q,t}_{\mu,\varphi}(E) = \sup_{F \subseteq E} \overline{\mathcal{H}}^{q,t}_{\mu,\varphi}(F) \quad \text{and} \quad \mathcal{P}^{q,t}_{\mu,\varphi}(E) = \inf_{E \subseteq \bigcup_i E_i} \sum_i \overline{\mathcal{P}}^{q,t}_{\mu,\varphi}(E_i).$$

The functions $\mathcal{H}^{q,t}_{\mu,\varphi}$ and $\mathcal{P}^{q,t}_{\mu,\varphi}$ are metric outer measures and hence, measures on the Borel family of subsets of \mathbf{R}^n . It is clear that $\mathcal{P}^{q,t}_{\mu,\varphi} \leq \overline{\mathcal{P}}^{q,t}_{\mu,\varphi}$, there exists an integer $\xi \in \mathbf{N}$ such that $\mathcal{H}^{q,t}_{\mu,\varphi} \leq \xi \mathcal{P}^{q,t}_{\mu,\varphi}$.

The measures $\mathcal{H}^{q,t}_{\mu,\varphi}$ and $\mathcal{P}^{q,t}_{\mu,\varphi}$ and the pre-measure $\overline{\mathcal{P}}^{q,t}_{\mu,\varphi}$ assign, in the usual way, a multifractal dimension to each subset E of \mathbf{R}^n . More precisely, we have the following result.

Proposition 1. [29]

1. There exists a unique number $\dim_{\mu,\varphi}^{q}(E) \in [-\infty, +\infty]$ such that

$$\mathcal{H}^{q,t}_{\mu,\varphi}(E) = \begin{cases} \infty & \text{if } t < \dim^q_{\mu,\varphi}(E), \\ 0 & \text{if } \dim^q_{\mu,\varphi}(E) < t. \end{cases}$$

2. There exists a unique number $Dim^q_{\mu,\varphi}(E) \in [-\infty, +\infty]$ such that

$$\mathcal{P}^{q,t}_{\mu,\varphi}(E) = \begin{cases} \infty & \text{if } t < \text{Dim}^q_{\mu,\varphi}(E), \\ \\ 0 & \text{if } \text{Dim}^q_{\mu,\varphi}(E) < t. \end{cases}$$

3. There exists a unique number $\Delta^q_{\mu,\varphi}(E) \in [-\infty, +\infty]$ such that

$$\overline{\mathcal{P}}^{q,t}_{\mu,\varphi}(E) = \begin{cases} \infty & \text{if } t < \Delta^q_{\mu,\varphi}(E), \\ 0 & \text{if } \Delta^q_{\mu,\varphi}(E) < t. \end{cases}$$

Remark 1. In the case $\varphi = \log$, we have

$$\dim_{\mu,\varphi}^{0}(E) = \dim(E), \quad Dim_{\mu,\varphi}^{0}(E) = Dim(E) \text{ and } \Delta_{\mu,\varphi}^{0}(E) = \Delta(E),$$

where dim, Dim and Δ are respectively the Hausdorff dimension, the packing dimension and the Bouligand-Minkowski dimension.

Next, for $q \in \mathbf{R}$, we define the separator functions $b_{\mu,\varphi}$, $B_{\mu,\varphi}$ and $\Lambda_{\mu,\psi}$ by $b_{\mu,\varphi} = \dim(\mu) \circ g^{q}(\operatorname{supp}(\mu))$

$$b_{\mu,\varphi}(q) = \dim(\mu), \varphi^{q}(\operatorname{supp}(\mu)),$$
$$B_{\mu,\varphi}(q) = \operatorname{Dim}_{\mu,\varphi}^{q}\operatorname{supp}(\mu)$$
and $\Lambda_{\mu,\varphi}(q) = \Delta_{\mu,\varphi}^{q}(\operatorname{supp}(\mu)).$

It is well known that

(2.1)
$$b_{\mu,\varphi} \le B_{\mu,\varphi} \le \Lambda_{\mu,\varphi}$$

Proposition 2. [29] One has

- 1. $b_{\mu,\varphi}$ and $B_{\mu,\varphi}$ are non decreasing with respect to the inclusion property in \mathbb{R}^n .
- 2. $b_{\mu,\varphi}$ and $B_{\mu,\varphi}$ are σ -stable.
- 3. $0 \le b_{\mu,\varphi}(q) \le B_{\mu,\varphi}(q) \le \Lambda_{\mu,\varphi}(q)$, whenever q < 1.
- 4. $b_{\mu,\varphi}(1) = B_{\mu,\varphi}(1) = \Lambda_{\mu,\varphi}(1) = 0.$
- 5. $b_{\mu,\varphi}(q) \leq B_{\mu,\varphi}(q) \leq \Lambda_{\mu,\varphi}(q) \leq 0$ whenever q > 1.

Now, we define both upper and lower multifractal bouligand-minkowski φ -dimensions in \mathbf{R}^n . Let $\mu \in \mathcal{P}(\mathbf{R}^n)$ and $q \in \mathbf{R}$. For $E \subseteq \mathbf{R}^n$ and r > 0, we write

$$S^q_{\mu,r}(E) = \sup\left\{\sum_i \mu\left(B(x_i,r)\right)^q\right\},$$

where $\left\{B(x_i, r)\right\}_i$ is a centered packing of $E \cap \operatorname{supp}(\mu)$. The upper and lower Bouligand-Minkowski φ -dimensions of E denoted respectively by $\overline{\mathcal{R}}^q_{\mu,\varphi}$ and $\underline{\mathcal{R}}^q_{\mu,\varphi}$ are defined s follows:

$$\overline{\mathcal{R}}^{q}_{\mu,\varphi}(E) = \limsup_{r \to 0} \frac{\log S^{q}_{\mu,r}(E)}{-\varphi(r)} \quad \text{and} \quad \underline{\mathcal{R}}^{q}_{\mu,\varphi}(E) = \liminf_{r \to 0} \frac{\log S^{q}_{\mu,r}(E)}{-\varphi(r)}.$$

When the two limits coincide, we denote the common value by $\mathcal{R}^{q}_{\mu,\varphi}$.

Another natural way to define the Bouligand-Minkowski $\varphi\text{-dimensions}$ is given by

$$T^q_{\mu,r}(E) = \inf\left\{\sum_i \mu \left(B(x_i,r)\right)^q\right\},\$$

where $\left\{B(x_i, r)\right\}_i$ is a centered covering of $E \cap \text{supp}\mu$. Now, we write

$$\overline{\mathcal{L}}^{q}_{\mu,\varphi}(E) = \limsup_{r \to 0} \frac{\log T^{q}_{\mu,r}(E)}{-\varphi(r)} \quad \text{and} \quad \underline{\mathcal{L}}^{q}_{\mu,\varphi}(E) = \liminf_{r \to 0} \frac{\log T^{q}_{\mu,r}(E)}{-\varphi(r)}$$

If $\overline{\mathcal{L}}^{q}_{\mu,\varphi}(E) = \underline{\mathcal{L}}^{q}_{\mu,\varphi}(E)$, their common value at q is denoted by $\mathcal{L}^{q}_{\mu,\varphi}(E)$.

Remark 2. In the special case q = 0 and $\varphi = \log$, the Bouligand-Minkowski φ -dimensions represent the upper and lower box-dimension, i.e.,

$$\overline{\mathcal{L}}^{0}_{\mu,\log}(E) = \overline{\mathcal{R}}^{0}_{\mu,\log}(E) = \overline{\dim}_{B}(E)$$
$$\underline{\mathcal{L}}^{0}_{\mu,\log}(E) = \underline{\mathcal{R}}^{0}_{\mu,\log}(E) = \underline{\dim}_{B}(E)$$

Next, for $q \in \mathbf{R}$, we denote by

$$\begin{aligned} \overline{\mathcal{R}}^{\varphi}_{\mu}(q) &= \overline{\mathcal{B}}^{q}_{\mu,\varphi}(\mathrm{supp}(\mu)), \\ \underline{\mathcal{B}}^{\varphi}_{\mu}(q) &= \underline{\mathcal{B}}^{q}_{\mu,\varphi}(\mathrm{supp}(\mu)) \end{aligned}$$

and

$$\overline{\mathcal{L}}^{\varphi}_{\mu}(q) = \overline{\mathcal{L}}^{q}_{\mu,\varphi}(\operatorname{supp}(\mu)), \quad \underline{\mathcal{L}}^{\varphi}_{\mu}(q) = \underline{\mathcal{L}}^{q}_{\mu,\varphi}(\operatorname{supp}(\mu)).$$

Now, we define a subclass of measures. For $\mu \in \mathcal{P}(\mathbf{R}^n)$ and a > 1, we write

$$\mathcal{T}_{a}(\mu) = \limsup_{r \searrow 0} \left(\sup_{x \in \mathrm{supp}\mu} \frac{\mu(B(x, ar))}{\mu(B(x, r))} \right).$$

We will now say that the measure μ satisfies the doubling condition if there exists a > 1 such that $\mathcal{T}_a(\mu) < \infty$. It is easily seen that the exact value of the parameter a is unimportant: $\mathcal{T}_a(\mu) < \infty$, for some a > 1 if and only if $\mathcal{T}_a(\mu) < \infty$, for all a > 1. Also, we will write $\mathcal{P}_d(\mathbf{R}^n)$ for the family of Borel probability measures on \mathbf{R}^n which satisfy the doubling condition.

Proposition 3. [29] For $q \in \mathbf{R}$ and $E \subseteq \mathbf{R}^n$ we have

- 1. $\overline{\mathcal{L}}^q_{\mu,\varphi}(E) \leq \overline{\mathcal{R}}^q_{\mu,\varphi}(E)$ and $\underline{\mathcal{L}}^q_{\mu,\varphi}(E) \leq \underline{\mathcal{R}}^q_{\mu,\varphi}(E)$, for $\mu \in \mathcal{P}(\mathbf{R}^n)$.
- 2. $\overline{\mathcal{L}}^{q}_{\mu,\varphi}(E) = \overline{\mathcal{R}}^{q}_{\mu,\varphi}(E)$ and $\underline{\mathcal{L}}^{q}_{\mu,\varphi}(E) = \underline{\mathcal{R}}^{q}_{\mu,\varphi}(E)$, for $\mu \in \mathcal{P}_{d}(\mathbf{R}^{n})$.

Theorem 1. [29] Let $q \in \mathbf{R}$ and $\mu \in \mathcal{P}(\mathbf{R}^n)$. Then for $E \subseteq \mathbf{R}^n$, we have $\Delta^q_{\mu,\varphi}(E) = \overline{\mathcal{R}}^q_{\mu,\varphi}(E)$.

Theorem 2. [29] Let $q \in \mathbf{R}$ and $\mu \in \mathcal{P}_d(\mathbf{R}^n)$. Then for $E \subseteq \mathbf{R}^n$, we have $\dim_{\mu,\varphi}^q(E) \leq \underline{\mathcal{L}}_{\mu,\varphi}^q(E)$.

In the next, let m be an integer with 0 < m < n and $G_{n,m}$ stand for the Grassmannian manifold of all m-dimensional linear subspaces of \mathbf{R}^n and we denote $\gamma_{n,m}$ the invariant Haar measure on $G_{n,m}$ such that $\gamma_{n,m}(G_{n,m}) = 1$. For $V \in G_{n,m}$, we define the projection map, $\pi_V : \mathbf{R}^n \longrightarrow V$ as the usual orthogonal projection onto V. Now, for a Borel probability measure μ on \mathbf{R}^n , supported on the compact set $\mathrm{supp}\mu$ and for $V \in G_{n,m}$ we define μ_V , the projection of μ onto V by

$$\mu_V(A) = \mu(\pi_V^{-1}(A)), \quad \forall A \subseteq V.$$

Since μ has a compact support, $\operatorname{supp}(\mu_V) = \pi_V(\operatorname{supp}(\mu))$ for all $V \in G_{n,m}$ then for any continuous function $f: V \longrightarrow \mathbf{R}$

$$\int_{V} f d\mu_{V} = \int f(\pi_{V}(x)) d\mu(x)$$

whenever these integrals exist.

Proposition 4. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n and $E \subseteq \operatorname{supp}(\mu)$. Then, for $q \leq 1$ and all $V \in G_{n,m}$, we have

$$\Delta^q_{\mu_V,\varphi}(\pi_V(E)) \le \Delta^q_{\mu,\varphi}(E).$$

Corollary 1. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n . Then, for $q \leq 1$ and all $V \in G_{n,m}$, we have

$$\Lambda_{\mu_V,\varphi}(q) \le \Lambda_{\mu,\varphi}(q).$$

Proof. The proof is a straightforward consequence of Proposition 4. \Box

Proposition 5. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n . Then, for $q \leq 1$ and all $V \in G_{n,m}$, we have

$$B_{\mu_V,\varphi}(q) \le B_{\mu,\varphi}(q).$$

Proposition 6. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n and $E \subseteq \operatorname{supp}(\mu)$. Then, for all $V \in G_{n,m}$, we have

- 1. $b^q_{\mu_V,\varphi}(E) \leq b^q_{\mu,\varphi}(E)$, for $q \leq 0$.
- 2. $b_{\mu_V,\varphi}(q) \ge b_{\mu,\varphi}(q)$, for $q \ge 1$.

Remark 3. If $\varphi = \log$, we obtain the results of O'Neil (see [34]).

In the sequel, we focus on the behavior of the Bouligand-Minkowski φ -dimensions under orthogonal projections.

Theorem 3. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \leq 1$ and for all *m*-dimensional subspaces V, we have

$$\underline{\mathcal{R}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \leq \underline{\mathcal{R}}^{q}_{\mu,\varphi}(E)$$

and

(2.2)
$$\overline{\mathcal{R}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \leq \overline{\mathcal{R}}^{q}_{\mu_{V},\varphi}(E).$$

Theorem 4. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \leq 1$ and for all *m*-dimensional subspaces V, we have

$$\underline{\mathcal{L}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \leq \underline{\mathcal{L}}^{q}_{\mu,\varphi}(E) \quad \text{and} \quad \overline{\mathcal{L}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \leq \overline{\mathcal{L}}^{q}_{\mu,\varphi}(E).$$

Theorem 5. Let μ be a compactly supported Borel probability measure on \mathbb{R}^n and $E \subseteq \operatorname{supp}(\mu)$. Then for $q \ge 1$ and for all *m*-dimensional subspaces V,

$$\underline{\mathcal{L}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \geq \underline{\mathcal{L}}^{q}_{\mu,\varphi}(E) \quad \text{and} \quad \underline{\mathcal{L}}^{q}_{\mu_{V},\varphi}(\pi_{V}(E)) \geq \underline{\mathcal{L}}^{q}_{\mu,\varphi}(E).$$

3. Proofs of the main results

Proof of Proposition 4. We have too cases :

• <u>Case</u> 1 : q < 0. It is easy to see that if $(B(x_i, r_i))_i$ is a centered δ -packing of $\pi_V(E)$, then $(B(y_i, r_i))_i$ is a centered δ -packing of E (where $y_i \in E$ such that $x_i = \pi_V(y_i)$). Then, one has

$$\mu(B(y_i, r_i)) \le \mu(\pi_V^{-1}(B(x_i, r_i))),$$

which implies that

$$\mu_V(B(x_i, r_i))^q \le \mu(B(y_i, r_i))^q.$$

Hence, we get the desired result.

• <u>Case</u> 2 : $0 \le q \le 1$. Let $t \in \mathbf{R}$ such that $\Delta_{\mu,\varphi}(q) < t$ and consider $V \in G_{n,m}$. Fix $\delta > 0$ and let $\left(B(x_i, r_i)\right)_i$ be a centered δ -packing of $\pi_V(E)$. There exists an integer k_m depending only on m such that the balls $B(x_i, 2r_i)$ can be divided into $K \le k_m$ families of disjoint balls $\mathcal{B}_1, \ldots, \mathcal{B}_K$. Let $1 \le \ell \le K$. For each $B(x_i, r_i) \in \mathcal{B}_\ell$, denote $E_i = E \cap \pi_V^{-1}(B(x_i, r_i))$. We have $E_i \subseteq \bigcup_{y \in E_i} B(y, r_i)$, so Besicovitch's covering theorem provides a positive integer ξ_n as well as $K_i \le \xi_n$ families of pairwise disjoint balls $\mathcal{B}_{i,k} = \left\{B\left(y_j^{(i,k)}, r_{ijk}\right) : r_{ijk} = \frac{r_i}{2}\right\}, 1 \le k \le K_i$, extracted from $\left(B(y, r_i)\right)_{y \in E_i}$ such that

$$E_i \subseteq \bigcup_{k=1}^{K_i} \bigcup_j B\left(y_j^{(i,k)}, r_{ijk}\right)$$

Therefore, we get

$$\sum_{i} \mu_{V}(B(x_{i}, r_{i}))^{q} e^{t\varphi(r_{i})} \leq \sum_{i} \mu \left(\bigcup_{k=1}^{K_{i}} \bigcup_{j} B(y_{j}^{(i,k)}, r_{ijk}) \right)^{q} e^{t\varphi(r_{i})}$$
$$\leq \sum_{i} \sum_{j} \sum_{k=1}^{K_{i}} \mu (B(y_{j}^{(i,k)}, r_{ijk}))^{q} e^{t\varphi(r_{i})}$$
$$\leq \sum_{i} \sum_{j} \sum_{k=1}^{K_{i}} \mu (B(y_{j}^{(i,k)}, 2r_{ijk}))^{q} e^{t\varphi(2r_{ijk})}$$

In both cases and by construction, since the balls $B(x_i, 2r_i) \in \mathcal{B}_{\ell}$ are pairwise disjoint, if $B(y, r) \in \mathcal{B}_{i,k}$ and $B(y', r') \in \mathcal{B}_{i',k'}$ with $i \neq i'$, then $B(y, r) \cap B(y', r') = \emptyset$. So, we can collect the balls B(y, r) invoked in the above sum into at most ξ_n centered packing of E. This holds for all $1 \leq \ell \leq K$, so

$$\sum_{i} \mu_V(B(x_i, r_i))^q e^{t\varphi(r_i)} \le k_m \xi_n \sup\bigg\{\sum_{j} \mu(B(y_j, 2r_j))^q e^{t\varphi(2r_j)}\bigg\},$$

where the supremum is taken over all centered packing of E by closed balls of radius r. It results that

$$\overline{\mathcal{P}}^{q,t}_{\mu_V,\varphi,\delta}(\pi_V(E)) \le k_m \xi_n \overline{\mathcal{P}}^{q,t}_{\mu,\varphi,2\delta}(E).$$

When $\delta \downarrow 0$ in the above expression, we obtain

(3.1)
$$\overline{\mathcal{P}}_{\mu_V,\varphi}^{q,t}(\pi_V(E)) \le k_m \xi_n \overline{\mathcal{P}}_{\mu,\varphi}^{q,t}(E).$$

Proof of Proposition 5. Let $t \in \mathbf{R}$ such that $B_{\mu,\varphi}(q) < t$. Consider $F \subseteq \mathbf{R}^n$ and $V \in G_{n,m}$. By the inequality (3.1), one has

$$\overline{\mathcal{P}}_{\mu_V,\varphi}^{q,t}(\pi_V(F)) \le k_m \xi_n \overline{\mathcal{P}}_{\mu,\varphi}^{q,t}(F)$$

As $B_{\mu,\varphi}(q) < t$, then $\mathcal{P}_{\mu,\varphi}^{q,t}(\operatorname{supp}(\mu)) < \infty$, and there exists $(E_i)_i$ a covering of $\operatorname{supp}(\mu)$ such that

$$\sum_{i} \overline{\mathcal{P}}_{\mu,\varphi}^{q,t}(E_i) < 1.$$

We clearly have $\pi_V(\text{supp})(\mu) \subseteq \bigcup_i \pi_V(E_i)$, and then one gets

$$\mathcal{P}^{q,t}_{\mu_V,\varphi}(\operatorname{supp}(\mu_V)) \leq \sum_i \overline{\mathcal{P}}^{q,t}_{\mu_V,\varphi}(\pi_V(E_i)) \\
\leq k_m \xi_n \sum_i \overline{\mathcal{P}}^{q,t}_{\mu,\varphi}(E_i) \\
\leq k_m \xi_n < \infty.$$

It results that

$$B_{\mu_V,\varphi}(q) \le t, \quad \forall t > B_{\mu,\varphi}(q).$$

Therefore, we can deduce that

$$B_{\mu_V,\varphi}(q) \le B_{\mu,\varphi}(q).$$

Proof of Proposition 6.

- 1. The proof is similar to that of case one in Proposition 4.
- 2. Fix $V \in G_{n,m}$ and $\delta > 0$ and suppose that $\left(B(x_i, r_i)\right)_i$ is a δ -cover of $\pi_V(E)$. For each i, we may use the Besicovitch covering theorem to find a constant ξ , depending only on n and a family of balls $\left\{B(x_{ij}, r_{ij})\right\}$ with $r_{ij} = \frac{r_i}{2}$, which is a δ -cover of $\pi_V^{-1}(B(x_i, r_i)) \cap E$ such that $\bigcup_j B(x_{ij}, r_{ij}) \subseteq \pi_V^{-1}(B(x_i, 2r_i) \cap V)$, which leads to

$$\sum_{i} \mu_{V}(B(x_{i}, 2r_{i}))^{q} e^{t\varphi(2r_{i})} \geq \xi^{-q} \sum_{i} \left(\sum_{j} \mu(B(x_{ij}, r_{ij})) \right)^{q} e^{t\varphi(2r_{i})}$$
$$= \xi^{-q} \sum_{i} \sum_{j} \mu(B(x_{ij}, r_{ij}))^{q} e^{t\varphi(r_{ij})}.$$

Then, as $(B(x_i, r_i))_i$ represent a δ -cover of $\pi_V(E)$, we deduce that

$$\overline{\mathcal{H}}^{q,t}_{\mu,\varphi,\delta}(E) \le \xi^q \overline{\mathcal{H}}^{q,t}_{\mu_V,\varphi,2\delta}(\pi_V(E)).$$

When δ tends to 0, we get

$$\overline{\mathcal{H}}^{q,t}_{\mu,\varphi}(E) \leq \xi^q \overline{\mathcal{H}}^{q,t}_{\mu_V,\varphi}(\pi_V(E)).$$

Since $E \subseteq \operatorname{supp}(\mu)$, $\pi_V(E) \subseteq \operatorname{supp}(\mu_V)$ and we find

$$\overline{\mathcal{H}}^{q,t}_{\mu,\varphi}(E) \leq \xi^{q} \overline{\mathcal{H}}^{q,t}_{\mu_{V},\varphi}(\pi_{V}(E)) \leq \xi^{q} \mathcal{H}^{q,t}_{\mu_{V},\varphi}(\operatorname{supp}(\mu_{V})).$$

Finaly, the arbitrary on E, means that

$$\mathcal{H}^{q,t}_{\mu,\varphi}(\operatorname{supp}(\mu)) \le \xi^q H^{q,t}_{\mu_V,\varphi} \operatorname{supp}((\mu_V)),$$

and we deduce the desired result.

Proof of Theorem 3. Fix $V \in G_{n,m}$ and let $\left(B(x_i, r)\right)_i$ be a centered packing of $\pi_V(E)$. There exists an integer k_m depending only on m such that we can divide up the balls $B(x_i, 2r)$ into $K \leq k_m$ families of disjoint balls $\mathcal{B}_1, \ldots, \mathcal{B}_K$. Let $1 \leq \ell \leq K$. For each $B(x_i, r) \in \mathcal{B}_\ell$, denote $E_i = E \cap \pi_V^{-1}(B(x_i, r))$. We have $E_i \subseteq \bigcup_{y \in E_i} B(y, r)$, so Besicovitch's covering theorem provides a positive integer ξ_n as well as $k_i \leq \xi_n$ families of pairwise disjoint balls $\mathcal{B}_{i,k} = \left\{B\left(y_j^{(i,k)}, r\right)\right\}, 1 \leq k \leq k_i$, extracted from $\left\{B(y, r)\right\}_{y \in E_i}$ such that

$$E_i \subseteq \bigcup_{k=1}^{\kappa_i} \bigcup_j B\left(y_j^{(i,k)}, r\right).$$

• <u>Case1</u> : If q < 0, we get

$$\begin{split} \sum_{i} \mu_{V} \Big(B(x_{i}, r) \Big)^{q} &\leq \sum_{i} \mu \left(B \Big(y_{j}^{(i,k)}, r \Big) \Big)^{q} \\ &\leq \sum_{i,j} \sum_{k=1}^{k_{i}} \mu \Big(B \Big(y_{j}^{(i,k)}, r \Big) \Big)^{q} \end{split}$$

• <u>Case2</u> If $0 \le q \le 1$, then

$$\sum_{i} \mu_{V} \Big(B(x_{i}, r) \Big)^{q} \leq \sum_{i} \mu \Big(\bigcup_{k=1}^{k_{i}} \bigcup_{j} B\Big(y_{j}^{(i,k)}, r \Big) \Big)^{q}$$
$$\leq \sum_{i,j} \sum_{k=1}^{k_{i}} \mu \Big(B\Big(y_{j}^{(i,k)}, r \Big) \Big)^{q}.$$

We remark that the balls $B(x_i, 2r) \in \mathcal{B}_{\ell}$ are pairwise disjoint therefore, in both cases and by construction, if $B(y,r) \in B_{i,k}$ and $B(y',r) \in B_{i',k'}$ with $i \neq i'$ then $B(y,r) \cap B(y',r) = \emptyset$. Then, we can collect the balls B(y,r) involved in the above sum into at most ξ_n centered packings of E. This holds for all $1 \leq \ell \leq K$ and thus

$$\sum_{i} \mu_V \Big(B(x_i, r) \Big)^q \le k_m \xi_n \sup \bigg\{ \sum_{j} \mu \Big(B(y_j, r) \Big)^q \bigg\},$$

where the supremum is taken over all centered packing of E by closed balls of radius r. Which implies that

$$S^q_{\mu_V,r}(\pi_V(E)) \le k_m \xi_n S^q_{\mu,r}(E).$$

Proof of Theorem 4. Consider $V \in G_{n,m}$. Let $\left\{ B(x_i, r) \right\}_i$ be a centered covering of $\pi_V(E)$. Denote by $E_i = E \cap \pi_V^{-1}(B(x_i, r))$.

We have $E_i \subseteq \bigcup_{y \in E_i \cap \pi_V^{-1}(\{x_i\})} B\left(y, \frac{r}{n}\right)$. From Besicovitch covering the-orem, there exists an integer ξ_n , depending only on n as well as $k_i \leq \xi_n$ families of pairwise disjoint balls $\left\{B\left(y_j^{(i,k)}, \frac{r}{n}\right)\right\}$, $1 \leq k \leq k_i$ such that

$$E \cap \pi_V^{-1}\Big(B(x_i, r)\Big) \subseteq \bigcup_{k=1}^{k_i} \bigcup_j B\Big(y_j^{(i,k)}, r\Big).$$

• <u>Case1</u> : If q < 0, then

$$\sum_{i} \mu_{V} \left(B(x_{i}, r) \right)^{q} \leq \sum_{i} \mu \left(B \left(y_{j}^{(i,k)}, r \right) \right)^{q}$$
$$\leq \sum_{i,j} \sum_{k=1}^{k_{i}} \mu \left(B \left(y_{j}^{(i,k)}, r \right) \right)^{q}.$$

• Case2 : If $0 \le q \le 1$, one gets

$$\sum_{i} \mu_{V} \Big(B(x_{i}, r) \Big)^{q} \leq \sum_{i} \mu \Big(\bigcup_{k=1}^{k_{i}} \bigcup_{j} B\Big(y_{j}^{(i,k)}, r \Big) \Big)^{q}$$
$$\leq \sum_{i,j} \sum_{k=1}^{k_{i}} \mu \Big(B\Big(y_{j}^{(i,k)}, r \Big) \Big)^{q}.$$

Therefore

$$T^q_{\mu_V,r}(\pi_V(E)) \le T^q_{\mu,r}(E).$$

Proof of Theorem 5. Fix $V \in G_{n,m}$ and let $\{B(y_i, r)\}_i$ be a centered covering of $\pi_V(E)$. For each i, let $E_i = \pi_V^{-1}(B(y_i, r)) \cap E$.

Since $E_i \subseteq \bigcup_{z \in E_i \cap \pi_V^{-1}(\{y_i\})} B(z, r)$, by Besicovitch covering theorem, we

find a constant ξ , depending only on n, and a family of balls $\left\{B(x_{ij}, r)\right\}_{j \in \mathbb{N}}$ which is a centered packing of E_i such that

$$\bigcup_{j} B(x_{ij}, r) \subseteq \pi_V^{-1} \Big(B(y_i, 2r) \cap V \Big).$$

Then, one gets

$$\begin{split} \sum_{i} \mu_{V} \Big(B(y_{i}, 2r) \Big)^{q} &\geq \xi^{-q} \sum_{i} \mu \Big(\bigcup_{j} B(x_{ij}, r) \Big)^{q} \\ &= \xi^{-q} \sum_{i} \Big(\sum_{j} \mu \left(B(x_{ij}, r) \right) \Big)^{q} \\ &\geq \xi^{-q} \sum_{i,j} \mu (B(x_{ij}, r))^{q}. \end{split}$$

Nest, since $\left\{B(y_i, r)\right\}_i$ may be any a centered covering of $\pi_V(E)$, we obtain

$$T^{q}_{\mu,r}(E) \le \xi^{q} T^{q}_{\mu_{V},2r}(\pi_{V}(E)).$$

Appendix

Besicovitch covering theorem. There exists a constant $\xi = \xi(n)$, depending only on n such that: if \mathcal{C} is a collection of nondegenerate closed balls in \mathbb{R}^n with

$$\sup\left\{\operatorname{diam} B; \ B \in \mathcal{C}\right\} < +\infty$$

and if C is the set of centres of balls in C, then there exist $C_1, C_2, ..., C_{\xi} \subset C$ such that each C_i is a countable collection of disjoint balls in C and

$$C \subseteq \bigcup_{i=1}^{\xi} \bigcup_{B \in \mathcal{C}_i} B.$$

References

- [1] N. Attia, B. Selmi. "Relative multifractal box-dimensions", *Filomat*, vol. 33, pp. 2841-2859, 2019.
- [2] I. Bhouri. "On the projections of generalized upper L^q-spectrum", *Chaos, Solitons & Fractals*, vol. 42, pp. 1451-1462, 2009.
- [3] J. Barral, I. Bhouri, "Multifractal analysis for projections of Gibbs and related measures", *Ergodic Theory and Dynamic systems*, vol. 31, pp. 673-701, 2011.
- [4] P. Billingsley, *Ergodic theory and information*. Wiley, New York. 1965.
- [5] L. Barreira, P. Doutor, "Almost additive multifractal analysis", *J. Math. Pures Appl.*, vol. 92, pp. 1-17, 2009.
- [6] G. Brown, G. Michon, J. Peyrire, "On the multifractal analysis of measures", *J. Stat. Phys.*, vol. 66, pp. 775-790, 1992.
- [7] L. Barreira, B. Saussol, "Variational principles and mixed multifractal spectra", *Trans. Amer. Math. Soc.*, vol. 353, pp. 3919-3944, 2001.
- [8] L. Barreira, B. Saussol, J. Schmeling, "Higher-dimensional multifractal analysis", *J. Math. Pures Appl.*, vol. 81, pp. 67-91, 2002.
- [9] J. Cole, "Relative multifractal analysis", *Chaos, Solitons & Fractals*, vol. 11, pp. 2233-2250, 2000.
- [10] M. Dai, "Mixed self-conformal multifractal measures", *Analysis in Theory and Applications*, vol. 25, pp. 154-165, 2009.
- [11] M. Dai, W. Li, "The mixed L^q-spectra of self-conformal measures satisfying the weak separation condition", *J. Math. Anal. Appl., vol.* 382, pp. 140-147, 2011.
- [12] M. Dai, Y. Shi, "Typical behavior of mixed L^q-dimensions", Nonlinear Analysis: Theory, Methods & Applications, vol. 72, pp. 2318-2325, 2010.
- [13] Z. Douzi, B. Selmi, "Multifractal variation for projections of measures", Chaos, Solitons & Fractals, vol. 91, pp. 414-420, 2016.

- [14] Z. Douzi, B. Selmi, "A relative multifractal analysis: Box-dimensions, densities, and projections", *Quaestiones Mathematicae*, vol. 45, no. 8, pp. 1243-1296, 2022.
- [15] Z. Douzi, B. Selmi, "On the projections of the mutual multifractal R'enyi dimensions", *Anal. Theory Appl.*, vol. 36, no. 2, pp. 1-20, 2020.
- [16] M. Dai, C. Wang, H. Sun, "Mixed generalized dimensions of random self-similar measures", *Int. J. Nonlinear. Sci.*, vol. 13, pp. 123-128, 2012.
- [17] K. J. Falconer, *The geometry of fractal sets.* Cambridge univ. Press New. York-London, 1985.
- [18] K. J. Falconer, J. D. Howroyd, "Packing Dimensions of Projections and Dimensions Profiles", *Math. Proc. Cambridge Philos. Soc.*, vol. 121, pp. 269-286, 1997.
- [19] K. J. Falconer, X. Jim, "Exact dimensionality and projections of random self-similar measures and sets", *J. Lond. Math. Soc.*, vol. 90, pp. 388- 412, 2014.
- [20] K. J. Falconer, T. C. O'Neil, "Convolutions and the geometry of multifractal measures", *Mathematische Nachrichten*, vol. 204, pp. 61-82, 1999.
- [21] K. J. Falconer, P. Mattila, "Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes", *Journal of Fractal Geometry*, vol. 3, pp. 319-329, 2016.
- [22] B. R. Hunt, V. Y. Kaloshin, "How projections affect the dimension spectrum of fractal measures", *Nonlinearity*, vol. 10, pp. 1031-1046, 1997.
- [23] M. Hochman, P. Shmerkin, "Local entropy averages and projections of fractal measures", 2009. [On line]. Available: https://arxiv.org/abs/0910.1956
- [24] R. Kaufman, "On Hausdorff dimension of projections", *Mathematika*, vol. 15, pp. 153-155, 1968.
- [25] M. Kessebohmer, "Large deviation for weak Gibbs measures and multifractal spectra", *Nonlinearity*, vol. 14, pp. 395-409, 2001.
- [26] B. Mandelbrot, "Negative Fractal Dimensions and Multifractals", *Physica A.*, vol. 163, pp. 306-315, 1990.

- [27] J. M. Marstrand, "Some fundamental geometrical properties of plane sets of fractional dimensions", *Proceedings of the London Mathematical Society*, vol. 4, pp 257-302, 1954.
- [28] P. Mattila, *The geometry of sets and measures in Euclidean spaces*. Cambridge University Press. Cambridge, 1995.
- [29] M. Menceur, A. Ben Mabrouk, "A mixed multifractal formalism for finitely many non Gibbs Frostman-like measures", 2018. [On line]. Available: https://arxiv.org/abs/1804.09034
- [30] M. Menceur, A. Ben Mabrouk, K. Betina, "The multifractal formalism for measures, review and extension to mixed cases", *Anal. Theory Appl.*, vol. 32, pp. 77-106, 2016.
- [31] L. Olsen, "A multifractal formalism", *Advances in Mathematics*, vol. 116, pp. 82-196, 1995.
- [32] L. Olsen, "Mixed generalized dimensions of self-similar measures", *J. Math. Anal. Appl.*, vol. 306, pp. 516-539, 2005.
- [33] T. C. O'Neil, "The multifractal spectrum of quasi self-similar measures", *Journal of Mathematical Analysis and its Applications*, vol. 211, pp. 233-257, 1997.
- [34] T. C. O'Neil, "The multifractal spectra of projected measures in Euclidean spaces", *Chaos, Solitons & Fractals*, vol. 11, pp. 901-921, 2000.
- [35] Y. Peres, W. Schalg, "Smoothness of projections, bernoulli convolutions, and the dimensions of exceptions", *Duke Math. J.*, vol. 102, no. 2, pp. 193-251, 2000.
- [36] R. H. Riedi, "Conditional and relative multifractal spectra", *Fractals*, vol. 5, pp. 153-168, 1997.
- [37] B. Selmi, "On the projections of the multifractal packing dimension for q > 1", *Annali di Matematica Pura ed Applicata*, vol. 199, pp. 1519- 1532, 2020.
- [38] B. Selmi, "On the effect of projections on the Billingsley dimensions", *Asian-Eur. J. Math.*, vol. 13, 2020,

- [39] N. Yu. Svetova,"The relative Renyi dimention", *Probl. Anal. Issues Anal, vol.* 1, pp. 15-23, 2012.
- [40] B. Selmi and N. Yu. Svetova, "On the projections of mutual L^{q.t}- spectrum", *Probl. Anal. Issues Anal.*, vol 6, no. 24, pp. 94-108, 2017.

Zied Douzi

Analysis, Probability & Fractals Laboratory LR18ES17 Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5000-Monastir, Tunisia e-mail. douzi.fsm@gmail.com