Mappings preserving sum of products $a \diamond b+b^{*} a$ (resp., $a^{*} \diamond b+a b^{*}$) on $*$-algebras

Ali Taghavi
University of Mazandaran, Iran
João Carlos da Motta Ferreira
Federal University of ABC, Brazil and
Maria das Graças Bruno Marietto
Federal University of ABC, Brazil
Received: September 2021. Accepted: November 2022

Abstract

Let \mathcal{A} and \mathcal{B} be two prime complex $*$-algebras. We proved that every bijective mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ satisfying $\Phi\left(a \diamond b+b^{*} a\right)=\Phi(a) \diamond$ $\Phi(b)+\Phi(b)^{*} \Phi(a)\left(r e s p ., \Phi\left(a^{*} \diamond b+a b^{*}\right)=\Phi(a)^{*} \diamond \Phi(b)+\Phi(a) \Phi(b)^{*}\right)$, where $a \diamond b=a b+b a^{*}$, for all elements $a, b \in \mathcal{A}$, is $a *$-ring isomorphism.

Keyw ords: *ring isomorphisms, prime algebras, *algebras.

2010 Mathematical Subject Classification. $47 B 48,46 L 10$.

1. Introduction

Throughout this paper all algebras are assumed to be complex. Let \mathcal{A} and \mathcal{B} be algebras. For $a, b \in \mathcal{A}$ (resp., $a, b \in \mathcal{B}$), denote by $a \circ b=$ $a b+b a$ the Jordan product of \mathcal{A} (resp., Jordan product of \mathcal{B}) and denote by $[a, b]=a b-b a$ the Lie product of \mathcal{A} (resp., Lie product of \mathcal{B}). We say that a mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ preserves product if $\Phi(a b)=\Phi(a) \Phi(b)$, for all elements $a, b \in \mathcal{A}$, preserves Jordan product if $\Phi(a \circ b)=\Phi(a) \circ \Phi(b)$, for all elements $a, b \in \mathcal{A}$ and preserves Lie product if $\Phi([a, b])=[\Phi(a), \Phi(b)]$, for all elements $a, b \in \mathcal{A}$. We say that a mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is additive if $\Phi(a+b)=\Phi(a)+\Phi(b)$, for all elements $a, b \in \mathcal{A}$ and that is a ring isomorphism if Φ is an additive bijection that preserves product.

An algebra \mathcal{A} is called prime if for $a, b \in \mathcal{A}, a \mathcal{A} b=\{0\}$ (or simply $a \mathcal{A} b=0$) implies that either $a=0$ or $b=0$.

Let \mathcal{A} be an algebra. An involution in \mathcal{A} is a mapping $a \rightarrow a^{*}$ of \mathcal{A} onto itself satisfying the following involution axioms:
(i) $\left(a^{*}\right)^{*}=a$, for all element $a \in \mathcal{A}$,
(ii) $(a+b)^{*}=a^{*}+b^{*}$, for all elements $a, b \in \mathcal{A}$,
(iii) $(\lambda a)^{*}=\bar{\lambda} a^{*}$, for all elements $\lambda \in \mathbf{C}$ and $a \in \mathcal{A}$,
(iv) $(a b)^{*}=b^{*} a^{*}$, for all elements $a, b \in \mathcal{A}$.

An algebra with an involution is called a $*$-algebra (or involution alge$b r a)$. A projection is any idempotent element $p \in \mathcal{A}$ satisfying the condition $p^{*}=p$. A projection which is neither the zero nor the identity element is said to be nontrivial.

We say that a $*$-algebra \mathcal{A} is prime if the associated algebra is prime.
Let \mathcal{A} and \mathcal{B} be $*$-algebras. We say that a mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ preserves involution if $\Phi\left(a^{*}\right)=\Phi(a)^{*}$, for all element $a \in \mathcal{A}$, and that Φ is a $*$-ring isomorphism if Φ is a ring isomorphism that preserves involution. For $a, b \in \mathcal{A}$ (resp., $a, b \in \mathcal{B}$), consider the following new products on \mathcal{A} (resp., $\mathcal{B}):[a, b]_{*}=a b-b a^{*}, a \diamond b=a b+b a^{*}, a \bullet b=a^{*} b+b^{*} a$ and $a^{*} \circ b=a^{*} b+b a^{*}$. These products play an important role in some research topics and their studies have recently attracted the attention of some authors (for example, see [1], [4], [5] and [6] and for other products see [2], [3], [7] and [8]). In particular, the authors in [1], [4] and [6] studied bijective mappings preserving the new products mentioned above. They showed that such mappings on factor von Neumann algebras are *-ring isomorphisms.

Let \mathcal{A} and \mathcal{B} be two $*$-algebras. We say that a mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ preserves sum of products $a \diamond b+b^{*} a$ (resp., $\left.a^{*} \diamond b+a b^{*}\right)$ if $\Phi\left(a \diamond b+b^{*} a\right)=$ $\Phi(a) \diamond \Phi(b)+\Phi(b)^{*} \Phi(a)\left(r e s p ., \Phi\left(a^{*} \diamond b+a b^{*}\right)=\Phi(a)^{*} \diamond \Phi(b)+\Phi(a) \Phi(b)^{*}\right)$, for all elements $a, b \in \mathcal{A}$.

The following lemma follows directly from the above definition and hence its proof is omitted.

Lemma 1.1. Let \mathcal{A} and \mathcal{B} be two $*$-algebras and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ a mapping. Then, the following statements are equivalents:
(i) Φ preserves sum of products $a \diamond b+b^{*} a$,
(ii) Φ preserves sum of products $a^{*} \diamond b+a b^{*}$.

Inspired by the research described in [1], [4], [6], the aim of this paper is to prove that a bijective mapping preserving sum of products $a \diamond b+b^{*} a$ (resp., $a^{*} \diamond b+a b^{*}$) on prime $*$-algebras is a $*$-ring isomorphism.

Our main result reads as follows.
Main Theorem. Let \mathcal{A} and \mathcal{B} be two prime $*$-algebras with $1_{\mathcal{A}}$ and $1_{\mathcal{B}}$ the identities of them, respectively, and such that \mathcal{A} has a nontrivial projection. Then every bijective mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ satisfying $\Phi\left(a \diamond b+b^{*} a\right)=\Phi(a) \diamond$ $\Phi(b)+\Phi(b)^{*} \Phi(a)\left(\right.$ resp., $\left.\Phi\left(a^{*} \diamond b+a b^{*}\right)=\Phi(a)^{*} \diamond \Phi(b)+\Phi(a) \Phi(b)^{*}\right)$, for all elements $a, b \in \mathcal{A}$, is $a *$-ring isomorphism.

2. The proof of main theorem

Due to Lemma 1.1, the proof of the Main Theorem is made by proving several lemmas, considering only the mapping that preserves sums of products $a^{*} \diamond b+a b^{*}$. We begin with the following lemma.

Lemma 2.1. Let \mathcal{A} and \mathcal{B} be two $*$-algebras and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ a mapping that preserves sum of products $a^{*} \diamond b+a b^{*}$. If $\Phi(c)=\Phi(a)+\Phi(b)$, for some elements $a, b, c \in \mathcal{A}$, then hold the following identities:
(i) $\Phi\left(t^{*} \diamond c+t c^{*}\right)=\Phi\left(t^{*} \diamond a+t a^{*}\right)+\Phi\left(t^{*} \diamond b+t b^{*}\right)$, for all element $t \in \mathcal{A}$,
(ii) $\Phi\left(c^{*} \diamond t+c t^{*}\right)=\Phi\left(a^{*} \diamond t+a t^{*}\right)+\Phi\left(b^{*} \diamond t+b t^{*}\right)$, for all element $t \in \mathcal{A}$.

Proof. For an arbitrary element $t \in \mathcal{A}$, we have

$$
\begin{aligned}
\Phi\left(t^{*} \diamond c+t c^{*}\right) & =\Phi(t)^{*} \diamond \Phi(c)+\Phi(t) \Phi(c)^{*} \\
& =\Phi(t)^{*} \diamond(\Phi(a)+\Phi(b))+\Phi(t)(\Phi(a)+\Phi(b))^{*} \\
& =\Phi(t)^{*} \diamond \Phi(a)+\Phi(t) \Phi(a)^{*}+\Phi(t)^{*} \diamond \Phi(b)+\Phi(t) \Phi(b)^{*} \\
& =\Phi\left(t^{*} \diamond a+t a^{*}\right)+\Phi\left(t^{*} \diamond b+t b^{*}\right)
\end{aligned}
$$

Similarly, we obtain (ii).

Lemma 2.2. Let \mathcal{A} and \mathcal{B} be two $*$-algebras and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ a surjective mapping that preserves sum of products $a^{*} \diamond b+a b^{*}$. Then $\Phi(0)=0$.

Proof. From the surjectivity of Φ there exists an element $b \in \mathcal{A}$ such that $\Phi(b)=0$. It follows that

$$
\begin{aligned}
& \Phi(0)=\Phi\left(0^{*} \diamond b+0 b^{*}\right)=\Phi(0)^{*} \diamond \Phi(b)+\Phi(0) \Phi(b)^{*} \\
& =\Phi(0)^{*} \diamond 0+\Phi(0) 0^{*}=0 .
\end{aligned}
$$

Lemma 2.3. Let \mathcal{A} and \mathcal{B} be two prime $*$-algebras such that \mathcal{A} has the identity $1_{\mathcal{A}}$ and a nontrivial projection. Then every bijective mapping $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ that preserves sum of products $a^{*} \diamond b+a b^{*}$ is additive.

We will establish the proof of Lemma 2.3 in a series of Properties, based on the techniques used in [1], [2], [3], [4] and [6]. We begin, though, with a well-known result that will be used throughout this paper.

Let p_{1} be an arbitrary nontrivial projection of \mathcal{A} and write $p_{2}=1_{\mathcal{A}}-p_{1}$. Then \mathcal{A} has a Peirce decomposition $\mathcal{A}=\mathcal{A}_{11} \oplus \mathcal{A}_{12} \oplus \mathcal{A}_{21} \oplus \mathcal{A}_{22}$, where $\mathcal{A}_{i j}=p_{i} \mathcal{A} p_{j}(i, j=1,2)$, satisfying the following multiplicative relations: $\mathcal{A}_{i j} \mathcal{A}_{k l} \subseteq \delta_{j k} \mathcal{A}_{i l}$, where $\delta_{j k}$ is the Kronecker delta function.

Property 2.1. For arbitrary elements $a_{11} \in \mathcal{A}_{11}, b_{12} \in \mathcal{A}_{12}, c_{21} \in \mathcal{A}_{21}$ and $d_{22} \in \mathcal{A}_{22}$ hold:
(i) $\Phi\left(a_{11}+b_{12}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)$,
(ii) $\Phi\left(a_{11}+c_{21}\right)=\Phi\left(a_{11}\right)+\Phi\left(c_{21}\right)$,
(iii) $\Phi\left(b_{12}+d_{22}\right)=\Phi\left(b_{12}\right)+\Phi\left(d_{22}\right)$,
(iv) $\Phi\left(c_{21}+d_{22}\right)=\Phi\left(c_{21}\right)+\Phi\left(d_{22}\right)$.

Proof. From the surjectivity of Φ there exists $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)$. By Lemma 2.1(i), we have

$$
\begin{aligned}
& \Phi\left(p_{2}^{*} \diamond f+p_{2} f^{*}\right)=\Phi\left(p_{2}^{*} \diamond a_{11}+p_{2} a_{11}^{*}\right)+\Phi\left(p_{2}^{*} \diamond b_{12}+p_{2} b_{12}^{*}\right) \\
& =\Phi\left(b_{12}+b_{12}^{*}\right)
\end{aligned}
$$

This implies that $p_{2}^{*} \diamond f+p_{2} f^{*}=b_{12}+b_{12}^{*}$ resulting that $f_{12}=b_{12}$, $f_{21}=0$ and $f_{22}=0$. Thus, $\Phi\left(f_{11}+b_{12}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)$. It follows that, for an arbitrary element $d_{21} \in \mathcal{A}_{21}$, we have

$$
\begin{aligned}
& \Phi\left(d_{21}^{*} \diamond\left(f_{11}+b_{12}\right)+d_{21}\left(f_{11}+b_{12}\right)^{*}\right) \\
& =\Phi\left(d_{21}^{*} \diamond a_{11}+d_{21} a_{11}^{*}\right)+\Phi\left(d_{21}^{*} \diamond b_{12}+d_{21} b_{12}^{*}\right)
\end{aligned}
$$

which implies that $\Phi\left(d_{21} f_{11}^{*}+b_{12} d_{21}\right)=\Phi\left(d_{21} a_{11}^{*}\right)+\Phi\left(b_{12} d_{21}\right)$. Hence,

$$
\begin{aligned}
& \Phi\left(p_{2}^{*} \diamond\left(d_{21} f_{11}^{*}+b_{12} d_{21}\right)+p_{2}\left(d_{21} f_{11}^{*}+b_{12} d_{21}\right)^{*}\right) \\
& =\Phi\left(p_{2}^{*} \diamond\left(d_{21} a_{11}^{*}\right)+p_{2}\left(d_{21} a_{11}^{*}\right)^{*}\right)+\Phi\left(p_{2}^{*} \diamond\left(b_{12} d_{21}\right)+p_{2}\left(b_{12} d_{21}\right)^{*}\right)
\end{aligned}
$$

which yields $\Phi\left(d_{21} f_{11}^{*}\right)=\Phi\left(d_{21} a_{11}^{*}\right)$. This shows that $d_{21} f_{11}^{*}=d_{21} a_{11}^{*}$. Therefore $f_{11}=a_{11}$.

Similarly, we prove the cases (ii), (iii) and (iv).
Property 2.2. For arbitrary elements $a_{11} \in \mathcal{A}_{11}, b_{12} \in \mathcal{A}_{12}, c_{21} \in \mathcal{A}_{21}$ and $d_{22} \in \mathcal{A}_{22}$ hold:
(i) $\Phi\left(a_{11}+b_{12}+d_{22}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(d_{22}\right)$,
(ii) $\Phi\left(a_{11}+c_{21}+d_{22}\right)=\Phi\left(a_{11}\right)+\Phi\left(c_{21}\right)+\Phi\left(d_{22}\right)$.

Proof. From the surjectivity of Φ there exists $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(d_{22}\right)$. By Lemma 2.1(i) and Property 2.1(i), we have

$$
\begin{aligned}
& \Phi\left(p_{1}^{*} \diamond f+p_{1} f^{*}\right)=\Phi\left(p_{1}^{*} \diamond a_{11}+p_{1} a_{11}^{*}\right)+\Phi\left(p_{1}^{*} \diamond b_{12}+p_{1} b_{12}^{*}\right) \\
& +\Phi\left(p_{1}^{*} \diamond d_{22}+p_{1} d_{22}^{*}\right)=\Phi\left(2 a_{11}+a_{11}^{*}\right)+\Phi\left(b_{12}\right)=\Phi\left(2 a_{11}+a_{11}^{*}+b_{12}\right)
\end{aligned}
$$

which implies that $p_{1}^{*} \diamond f+p_{1} f^{*}=2 a_{11}+a_{11}^{*}+b_{12}$. As consequence we obtain $f_{11}=a_{11}, f_{12}=b_{12}$ and $f_{21}=0$. Now, by Lemma 2.1(ii) we have

$$
\begin{aligned}
& \Phi\left(f^{*} \diamond p_{2}+f p_{2}^{*}\right)=\Phi\left(a_{11}^{*} \diamond p_{2}+a_{11} p_{2}^{*}\right)+\Phi\left(b_{12}^{*} \diamond p_{2}+b_{12} p_{2}^{*}\right) \\
& +\Phi\left(d_{22}^{*} \diamond p_{2}+d_{22} p_{2}^{*}\right)=\Phi\left(b_{12}\right)+\Phi\left(2 d_{22}+d_{22}^{*}\right)=\Phi\left(b_{12}+2 d_{22}+d_{22}^{*}\right)
\end{aligned}
$$

that allows us to obtain $f_{22}=d_{22}$.
Similarly, we prove the case (ii).
Property 2.3. For arbitrary elements $a_{12}, b_{12} \in \mathcal{A}_{12}$ and $b_{21}, c_{21} \in \mathcal{A}_{21}$ hold:
(i) $\Phi\left(a_{12}+b_{12}\right)=\Phi\left(a_{12}\right)+\Phi\left(b_{12}\right)$,
(ii) $\Phi\left(b_{21}+c_{21}\right)=\Phi\left(b_{21}\right)+\Phi\left(c_{21}\right)$.

Proof. First, we note that the following identity is valid

$$
\begin{aligned}
& \left(p_{1}+a_{12}\right)^{*} \diamond\left(p_{2}+b_{12}\right)+\left(p_{1}+a_{12}\right)\left(p_{2}+b_{12}\right)^{*} \\
& =a_{12}+b_{12}+a_{12} b_{12}^{*}+a_{12}^{*} b_{12} .
\end{aligned}
$$

Hence, by Property 2.2(i) we have

$$
\begin{aligned}
& \Phi\left(a_{12}+b_{12}\right)+\Phi\left(a_{12} b_{12}^{*}\right)+\Phi\left(a_{12}^{*} b_{12}\right) \\
& =\Phi\left(a_{12}+b_{12}+a_{12} b_{12}^{*}+a_{12}^{*} b_{12}\right) \\
& =\Phi\left(\left(p_{1}+a_{12}\right)^{*} \diamond\left(p_{2}+b_{12}\right)+\left(p_{1}+a_{12}\right)\left(p_{2}+b_{12}\right)^{*}\right) \\
& =\Phi\left(p_{1}+a_{12}\right)^{*} \diamond \Phi\left(p_{2}+b_{12}\right)+\Phi\left(p_{1}+a_{12}\right) \Phi\left(p_{2}+b_{12}\right)^{*} \\
& =\left(\Phi\left(p_{1}\right)^{*}+\Phi\left(a_{12}\right)^{*}\right) \diamond\left(\Phi\left(p_{2}\right)+\Phi\left(b_{12}\right)\right) \\
& +\left(\Phi\left(p_{1}\right)+\Phi\left(a_{12}\right)\right)\left(\Phi\left(p_{2}\right)^{*}+\Phi\left(b_{12}\right)^{*}\right) \\
& =\Phi\left(p_{1}\right)^{*} \diamond \Phi\left(p_{2}\right)+\Phi\left(p_{1}\right) \Phi\left(p_{2}\right)^{*} \\
& +\Phi\left(p_{1}\right)^{*} \diamond \Phi\left(b_{12}\right)+\Phi\left(p_{1}\right) \Phi\left(b_{12}\right)^{*} \\
& +\Phi\left(a_{12}\right)^{*} \diamond \Phi\left(p_{2}\right)+\Phi\left(a_{12}\right) \Phi\left(p_{2}\right)^{*} \\
& +\Phi\left(a_{12}\right)^{*} \diamond \Phi\left(b_{12}\right)+\Phi\left(a_{12}\right) \Phi\left(b_{12}\right)^{*} \\
& =\Phi\left(p_{1}^{*} \diamond p_{2}+p_{1} p_{2}^{*}\right)+\Phi\left(p_{1}^{*} \diamond b_{12}+p_{1} b_{12}^{*}\right) \\
& +\Phi\left(a_{12}^{*} \diamond p_{2}+a_{12} p_{2}^{*}\right)+\Phi\left(a_{12}^{*} \diamond b_{12}+a_{12} b_{12}^{*}\right) \\
& =\Phi\left(b_{12}\right)+\Phi\left(a_{12}\right)+\Phi\left(a_{12}^{*} b_{12}+a_{12} b_{12}^{*}\right) .
\end{aligned}
$$

This permits us to conclude that $\Phi\left(a_{12}+b_{12}\right)=\Phi\left(a_{12}\right)+\Phi\left(b_{12}\right)$.
Similarly, we prove the case (ii) using the Property 2(ii) and the identity

$$
\begin{aligned}
& \left(p_{2}+b_{21}\right)^{*} \diamond\left(p_{1}+c_{21}\right)+\left(p_{2}+b_{21}\right)\left(p_{1}+c_{21}\right)^{*} \\
& =b_{21}+c_{21}+b_{21}^{*} c_{21}+b_{21} c_{21}^{*} .
\end{aligned}
$$

Property 2.4. For arbitrary elements $b_{12} \in \mathcal{A}_{12}$ and $c_{21} \in \mathcal{A}_{21}$ holds $\Phi\left(b_{12}+c_{21}\right)=\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)$.

Proof. From the surjectivity of Φ choose $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)$. Hence, for an arbitrary element $d_{12} \in \mathcal{A}_{12}$, we have

$$
\begin{aligned}
& \Phi\left(d_{12}^{*} \diamond f+d_{12} f^{*}\right)=\Phi\left(d_{12}^{*} \diamond b_{12}+d_{12} b_{12}^{*}\right)+\Phi\left(d_{12}^{*} \diamond c_{21}+d_{12} c_{21}^{*}\right) \\
& =\Phi\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)+\Phi\left(c_{21} d_{12}\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \Phi\left(p_{1}^{*} \diamond\left(d_{12}^{*} \diamond f+d_{12} f^{*}\right)+p_{1}\left(d_{12}^{*} \diamond f+d_{12} f^{*}\right)^{*}\right) \\
& =\Phi\left(p_{1}^{*} \diamond\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)+p_{1}\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)^{*}\right) \\
& +\Phi\left(p_{1}^{*} \diamond\left(c_{21} d_{12}\right)+p_{1}\left(c_{21} d_{12}\right)^{*}\right)=\Phi\left(2 d_{12} b_{12}^{*}+b_{12} d_{12}^{*}\right) .
\end{aligned}
$$

This results that $p_{1}^{*} \diamond\left(d_{12}^{*} \diamond f+d_{12} f^{*}\right)+p_{1}\left(d_{12}^{*} \diamond f+d_{12} f^{*}\right)^{*}=2 d_{12} b_{12}^{*}+$ $b_{12} d_{12}^{*}$ which yields that $f_{11}=0, f_{12}=b_{12}$ and $f_{22}=0$. Thus, $\Phi\left(b_{12}+f_{21}\right)=$ $\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)$. Next, for an arbitrary element $d_{21} \in \mathcal{A}_{21}$, we have

$$
\begin{aligned}
& \Phi\left(d_{21}^{*} \diamond\left(b_{12}+f_{21}\right)+d_{21}\left(b_{12}+f_{21}\right)^{*}\right)=\Phi\left(d_{21}^{*} \diamond b_{12}+d_{21} b_{12}^{*}\right) \\
& +\Phi\left(d_{21}^{*} \diamond c_{21}+d_{21} c_{21}^{*}\right)=\Phi\left(b_{12} d_{21}\right)+\Phi\left(d_{21}^{*} c_{21}+d_{21} c_{21}^{*}\right)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \Phi\left(p_{2}^{*} \diamond\left(d_{21}^{*} \diamond\left(b_{12}+f_{21}\right)+d_{21}\left(b_{12}+f_{21}\right)^{*}\right)\right. \\
& \left.+p_{2}\left(d_{21}^{*} \diamond\left(b_{12}+f_{21}\right)+d_{21}\left(b_{12}+f_{21}\right)^{*}\right)^{*}\right) \\
& =\Phi\left(p_{2}^{*} \diamond\left(b_{12} d_{21}\right)+p_{2}\left(b_{12} d_{21}\right)^{*}\right) \\
& +\Phi\left(p_{2}^{*} \diamond\left(d_{21}^{*} c_{21}+d_{21} c_{21}^{*}\right)+p_{2}\left(d_{21}^{*} c_{21}+d_{21} c_{21}^{*}\right)^{*}\right) \\
& =\Phi\left(2 d_{21} c_{21}^{*}+c_{21} d_{21}^{*}\right) .
\end{aligned}
$$

As a consequence, we have $p_{2}^{*} \diamond\left(d_{21}^{*} \diamond\left(b_{12}+f_{21}\right)+d_{21}\left(b_{12}+f_{21}\right)^{*}\right)+$ $p_{2}\left(d_{21}^{*} \diamond\left(b_{12}+f_{21}\right)+d_{21}\left(b_{12}+f_{21}\right)^{*}\right)^{*}=2 d_{21} c_{21}^{*}+c_{21} d_{21}^{*}$ which allows us to conclude that $f_{21}=c_{21}$.

Property 2.5. For arbitrary elements $a_{11} \in \mathcal{A}_{11}, b_{12} \in \mathcal{A}_{12}, c_{21} \in \mathcal{A}_{21}$ and $d_{22} \in \mathcal{A}_{22}$ hold:
(i) $\Phi\left(a_{11}+b_{12}+c_{21}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)$,
(ii) $\Phi\left(b_{12}+c_{21}+d_{22}\right)=\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)+\Phi\left(d_{22}\right)$.

Proof. From the surjectivity of Φ choose $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)$. Hence, by Properties 2.3 and 2.4
we have

$$
\begin{aligned}
& \Phi\left(p_{2}^{*} \diamond f+p_{2} f^{*}\right)=\Phi\left(p_{2}^{*} \diamond a_{11}+p_{2} a_{11}^{*}\right)+\Phi\left(p_{2}^{*} \diamond b_{12}+p_{2} b_{12}^{*}\right) \\
& +\Phi\left(p_{2}^{*} \diamond c_{21}+p_{2} c_{21}^{*}\right)=\Phi\left(b_{12}+b_{12}^{*}\right)+\Phi\left(c_{21}\right)=\Phi\left(b_{12}+b_{12}^{*}+c_{21}\right)
\end{aligned}
$$

which shows that $p_{2}^{*} \diamond f+p_{2} f^{*}=b_{12}+b_{12}^{*}+c_{21}$. This results that $f_{12}=b_{12}$, $f_{21}=c_{21}$ and $f_{22}=0$ which yields that

$$
\Phi\left(f_{11}+b_{12}+c_{21}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)
$$

Next, for an arbitrary element $d_{12} \in \mathcal{A}_{12}$, we have

$$
\begin{aligned}
& \Phi\left(d_{12}^{*} \diamond\left(f_{11}+b_{12}+c_{21}\right)+d_{12}\left(f_{11}+b_{12}+c_{21}\right)^{*}\right) \\
& =\Phi\left(d_{12}^{*} \diamond a_{11}+d_{12} a_{11}^{*}\right)+\Phi\left(d_{12}^{*} \diamond b_{12}+d_{12} b_{12}^{*}\right)+\Phi\left(d_{12}^{*} \diamond c_{21}+d_{12} c_{21}^{*}\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \Phi\left(d_{12}^{*} f_{11}+d_{12}^{*} b_{12}+f_{11} d_{12}+c_{21} d_{12}+d_{12} b_{12}^{*}\right) \\
& =\Phi\left(d_{12}^{*} a_{11}+a_{11} d_{12}\right)+\Phi\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)+\Phi\left(c_{21} d_{12}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \Phi\left(p_{1}^{*} \diamond\left(d_{12}^{*} f_{11}+d_{12}^{*} b_{12}+f_{11} d_{12}+c_{21} d_{12}+d_{12} b_{12}^{*}\right)\right. \\
& \left.+p_{1}\left(d_{12}^{*} f_{11}+d_{12}^{*} b_{12}+f_{11} d_{12}+c_{21} d_{12}+d_{12} b_{12}^{*}\right)^{*}\right) \\
& =\Phi\left(p_{1}^{*} \diamond\left(d_{12}^{*} a_{11}+a_{11} d_{12}\right)+p_{1}\left(d_{12}^{*} a_{11}+a_{11} d_{12}\right)^{*}\right) \\
& +\Phi\left(p_{1}^{*} \diamond\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)+p_{1}\left(d_{12}^{*} b_{12}+d_{12} b_{12}^{*}\right)^{*}\right) \\
& +\Phi\left(p_{1}^{*} \diamond\left(c_{21} d_{12}\right)+p_{1}\left(c_{21} d_{12}\right)^{*}\right)
\end{aligned}
$$

which results

$$
\begin{aligned}
& \Phi\left(f_{11} d_{12}+d_{12}^{*} f_{11}+2 d_{12} b_{12}^{*}+f_{11}^{*} d_{12}+b_{12} d_{12}^{*}\right) \\
& =\Phi\left(d_{12}^{*} a_{11}+a_{11} d_{12}+a_{11}^{*} d_{12}\right)+\Phi\left(2 d_{12} b_{12}^{*}+b_{12} d_{12}^{*}\right) .
\end{aligned}
$$

As consequence, we obtain

$$
\Phi\left(p_{2}^{*} \diamond\left(f_{11} d_{12}+d_{12}^{*} f_{11}+2 d_{12} b_{12}^{*}+f_{11}^{*} d_{12}+b_{12} d_{12}^{*}\right)\right.
$$

$$
\left.+p_{2}\left(f_{11} d_{12}+d_{12}^{*} f_{11}+2 d_{12} b_{12}^{*}+f_{11}^{*} d_{12}+b_{12} d_{12}^{*}\right)^{*}\right)
$$

$$
=\Phi\left(p_{2}^{*} \diamond\left(d_{12}^{*} a_{11}+a_{11} d_{12}+a_{11}^{*} d_{12}\right)+p_{2}\left(d_{12}^{*} a_{11}+a_{11} d_{12}+a_{11}^{*} d_{12}\right)^{*}\right)
$$

$$
+\Phi\left(p_{2}^{*} \diamond\left(2 d_{12} b_{12}^{*}+b_{12} d_{12}^{*}\right)+p_{2}\left(2 d_{12} b_{12}^{*}+b_{12} d_{12}^{*}\right)^{*}\right)
$$

which yields that

$$
\begin{aligned}
& \Phi\left(2 d_{12}^{*} f_{11}+f_{11} d_{12}+f_{11}^{*} d_{12}+d_{12}^{*} f_{11}^{*}\right) \\
& =\Phi\left(2 d_{12}^{*} a_{11}+a_{11} d_{12}+a_{11}^{*} d_{12}+d_{12}^{*} a_{11}^{*}\right)
\end{aligned}
$$

This shows that $2 d_{12}^{*} f_{11}+f_{11} d_{12}+f_{11}^{*} d_{12}+d_{12}^{*} f_{11}^{*}=2 d_{12}^{*} a_{11}+a_{11} d_{12}+$ $a_{11}^{*} d_{12}+d_{12}^{*} a_{11}^{*}$ which implies that $d_{12}^{*}\left(2 f_{11}+f_{11}^{*}\right)=d_{12}^{*}\left(2 a_{11}+a_{11}^{*}\right)$ and $\left(f_{11}+f_{11}^{*}\right) d_{12}=\left(a_{11}+a_{11}^{*}\right) d_{12}$. It follows that $2 f_{11}+f_{11}^{*}=2 a_{11}+a_{11}^{*}$ and $f_{11}+f_{11}^{*}=a_{11}+a_{11}^{*}$ which shows that $f_{11}=a_{11}$.

Similarly, we prove the case (ii).
Property 2.6. For arbitrary elements $a_{11} \in \mathcal{A}_{11}, b_{12} \in \mathcal{A}_{12}, c_{21} \in \mathcal{A}_{21}$ and $d_{22} \in \mathcal{A}_{22}$ holds $\Phi\left(a_{11}+b_{12}+c_{21}+d_{22}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)+\Phi\left(d_{22}\right)$.

Proof. From the surjectivity of Φ choose $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(a_{11}\right)+\Phi\left(b_{12}\right)+\Phi\left(c_{21}\right)+\Phi\left(d_{22}\right)$. By Properties 2.3(i), 2.4 and $2.5(\mathrm{i})$, we have

$$
\begin{aligned}
& \Phi\left(p_{1}^{*} \diamond f+p_{1} f^{*}\right)=\Phi\left(p_{1}^{*} \diamond a_{11}+p_{1} a_{11}^{*}\right)+\Phi\left(p_{1}^{*} \diamond b_{12}+p_{1} b_{12}^{*}\right) \\
& +\Phi\left(p_{1}^{*} \diamond c_{21}+p_{1} c_{21}^{*}\right)+\Phi\left(p_{1}^{*} \diamond d_{22}+p_{1} d_{22}^{*}\right)=\Phi\left(2 a_{11}+a_{11}^{*}\right)+\Phi\left(b_{12}\right) \\
& +\Phi\left(c_{21}+c_{21}^{*}\right)=\Phi\left(2 a_{11}+a_{11}^{*}+b_{12}+c_{21}+c_{21}^{*}\right)
\end{aligned}
$$

It follows that $p_{1}^{*} \diamond f+p_{1} f^{*}=2 a_{11}+a_{11}^{*}+b_{12}+c_{21}+c_{21}^{*}$ which implies that $f_{11}=a_{11}, f_{12}=b_{12}$ and $f_{21}=c_{21}$. Also,

$$
\begin{aligned}
& \Phi\left(p_{2}^{*} \diamond f+p_{2} f^{*}\right)=\Phi\left(p_{2}^{*} \diamond a_{11}+p_{2} a_{11}^{*}\right)+\Phi\left(p_{2}^{*} \diamond b_{12}+p_{2} b_{12}^{*}\right) \\
& +\Phi\left(p_{2}^{*} \diamond c_{21}+p_{2} c_{21}^{*}\right)+\Phi\left(p_{2}^{*} \diamond d_{22}+p_{2} d_{22}^{*}\right)=\Phi\left(b_{12}+b_{12}^{*}\right) \\
& +\Phi\left(c_{21}\right)+\Phi\left(2 d_{22}+d_{22}^{*}\right)=\Phi\left(b_{12}+b_{12}^{*}+c_{21}+2 d_{22}+d_{22}^{*}\right)
\end{aligned}
$$

This results that $p_{2}^{*} \diamond f+p_{2} f^{*}=b_{12}+b_{12}^{*}+c_{21}+2 d_{22}+d_{22}^{*}$ which yields that $f_{22}=d_{22}$.

Property 2.7. For arbitrary elements $a_{11}, b_{11} \in \mathcal{A}_{11}$ and $c_{22}, d_{22} \in \mathcal{A}_{22}$ hold:
(i) $\Phi\left(a_{11}+b_{11}\right)=\Phi\left(a_{11}\right)+\Phi\left(b_{11}\right)$,
(ii) $\Phi\left(c_{22}+d_{22}\right)=\Phi\left(c_{22}\right)+\Phi\left(d_{22}\right)$.

Proof. From the surjectivity of Φ there exists $f=f_{11}+f_{12}+f_{21}+f_{22} \in \mathcal{A}$ such that $\Phi(f)=\Phi\left(a_{11}\right)+\Phi\left(b_{11}\right)$. By Property $2.3($ ii $)$, for an arbitrary element $d_{21} \in \mathcal{A}_{12}$ we have

$$
\begin{aligned}
& \Phi\left(d_{21}^{*} \diamond f+d_{21} f^{*}\right)=\Phi\left(d_{21}^{*} \diamond a_{11}+d_{21} a_{11}^{*}\right)+\Phi\left(d_{21}^{*} \diamond b_{11}+d_{21} b_{11}^{*}\right) \\
& =\Phi\left(d_{21} a_{11}^{*}\right)+\Phi\left(d_{21} b_{11}^{*}\right)=\Phi\left(d_{21}\left(a_{11}+b_{11}\right)^{*}\right)
\end{aligned}
$$

This implies that $d_{21}^{*} \diamond f+d_{21} f^{*}=d_{21}\left(a_{11}+b_{11}\right)^{*}$ which results that $f_{11}=a_{11}+b_{11}$ and $f_{12}=f_{21}=f_{22}=0$.

Similarly, we prove the case (ii).
Property 2.8. Φ is an additive mapping.

Proof. The result is an immediate consequence of Properties 2.3, 2.6 and 2.7.

Lemma 2.4. $\Phi\left(1_{\mathcal{A}}\right)=1_{\mathcal{B}}$.

Proof. Choose $a \in \mathcal{A}$ such that $\Phi(a)=1_{\mathcal{B}}$. Note that

$$
\begin{aligned}
\Phi\left(i a^{*}\right) & =\Phi\left(a^{*} \diamond i 1_{\mathcal{A}}+a\left(i 1_{\mathcal{A}}\right)^{*}\right) \\
& =\Phi(a)^{*} \diamond \Phi\left(i 1_{\mathcal{A}}\right)+\Phi(a) \Phi\left(i 1_{\mathcal{A}}\right)^{*} \\
& =\Phi(a)^{*} \Phi\left(i 1_{\mathcal{A}}\right)+\Phi\left(i 1_{\mathcal{A}}\right) \Phi(a)+\Phi(a) \Phi\left(i 1_{\mathcal{A}}\right)^{*} \\
& =2 \Phi\left(i 1_{\mathcal{A}}\right)+\Phi\left(i 1_{\mathcal{A}}\right)^{*}
\end{aligned}
$$

This results that $\Phi\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)=\Phi\left(i 1_{\mathcal{A}}\right)+\Phi\left(i 1_{\mathcal{A}}\right)^{*}$ which shows that $\Phi\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)$ is a self-adjoint element. It follows that

$$
\begin{aligned}
\Phi\left(3 i\left(a^{*}-1_{\mathcal{A}}\right)\right) & =\Phi(a)^{*} \diamond \Phi\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)+\Phi(a) \Phi\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)^{*} \\
& =\Phi\left(a^{*} \diamond\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)+a\left(i\left(a^{*}-1_{\mathcal{A}}\right)\right)^{*}\right) \\
& =\Phi\left(i\left(a^{* 2}-a^{*}+a^{*} a-a^{2}\right)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
3\left(a^{*}-1_{\mathcal{A}}\right)=a^{* 2}-a^{*}+a^{*} a-a^{2} \tag{2.1}
\end{equation*}
$$

and by taking $*$ on both sides of the equation (2.1), we get

$$
\begin{equation*}
3\left(a-1_{\mathcal{A}}\right)=a^{2}-a+a^{*} a-a^{* 2} \tag{2.2}
\end{equation*}
$$

Thus subtracting (2.2) from (2.1), we obtain

$$
\begin{equation*}
a^{2}-a^{* 2}=2\left(a-a^{*}\right) \tag{2.3}
\end{equation*}
$$

Next, note also that
$\Phi\left(a^{*} \diamond a+a a^{*}\right)=\Phi(a)^{*} \diamond \Phi(a)+\Phi(a) \Phi(a)^{*}=31_{\mathcal{B}}=\Phi(3 a)$
which shows that
$\mathrm{a}^{*} a+a^{2}+a a^{*}=3 a$.
It follows from the last equation that $a^{2}-3 a$ is a self-adjoint element, that is, $\left(a^{2}-3 a\right)^{*}=a^{2}-3 a$. Hence

$$
\begin{equation*}
a^{2}-a^{* 2}=3\left(a-a^{*}\right) \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we can conclude $a=a^{*}$. Yet, we have
$31_{\mathcal{B}}=\Phi(3 a)$
$=\Phi\left(a^{*} \diamond 1_{\mathcal{A}}+a 1_{\mathcal{A}}^{*}\right)$
$=\Phi(a)^{*} \diamond \Phi\left(1_{\mathcal{A}}\right)+\Phi(a) \Phi\left(1_{\mathcal{A}}\right)^{*}$
$=\Phi(a)^{*} \Phi\left(1_{\mathcal{A}}\right)+\Phi\left(1_{\mathcal{A}}\right) \Phi(a)+\Phi(a) \Phi\left(1_{\mathcal{A}}\right)^{*}$
$=2 \Phi\left(1_{\mathcal{A}}\right)+\Phi\left(1_{\mathcal{A}}\right)^{*}$,
and by taking $*$ on both sides of the above equation, we obtain

$$
\begin{equation*}
31_{\mathcal{B}}=2 \Phi\left(1_{\mathcal{A}}\right)^{*}+\Phi\left(1_{\mathcal{A}}\right) \tag{2.5}
\end{equation*}
$$

which leads to $\Phi\left(1_{\mathcal{A}}\right)^{*}=\Phi\left(1_{\mathcal{A}}\right)$. By substituting it in (2.5) we obtain $\Phi\left(1_{\mathcal{A}}\right)=1_{\mathcal{B}}$.

Lemma 2.5. Φ preserves involution on the both sides.

Proof. For an arbitrary element $a \in \mathcal{A}$ we have

$$
\Phi\left(a^{*} \diamond 1_{\mathcal{A}}+a 1_{\mathcal{A}}^{*}\right)=\Phi(a)^{*} \diamond \Phi\left(1_{\mathcal{A}}\right)+\Phi(a) \Phi\left(1_{\mathcal{A}}\right)^{*}
$$

$$
=\Phi(a)^{*} \Phi\left(1_{\mathcal{A}}\right)+\Phi\left(1_{\mathcal{A}}\right) \Phi(a)+\Phi(a) \Phi\left(1_{\mathcal{A}}\right)^{*}=\Phi(a)^{*}+2 \Phi(a)
$$

which implies that $\Phi\left(a^{*}+2 a\right)=\Phi(a)^{*}+2 \Phi(a)$. As consequence, we obtain $\Phi\left(a^{*}\right)=\Phi(a)^{*}$. Since Φ^{-1} has the same characteristics of Φ, then Φ preserves involution on the both sides.

Lemma 2.6. The following hold:
(i) $\Phi\left(i 1_{\mathcal{A}}\right)^{2}=-1_{\mathcal{B}}$,
(ii) $\Phi(i a)=\Phi\left(i 1_{\mathcal{A}}\right) \Phi(a)=\Phi(a) \Phi\left(i 1_{\mathcal{A}}\right)$, for all element $a \in \mathcal{A}$.

Proof. (i) By Lemmas 2.4 and 2.5 we obtain

$$
\begin{aligned}
\Phi\left(1_{\mathcal{A}}\right) & =\Phi\left(\left(i 1_{\mathcal{A}}\right)^{*} \diamond\left(i 1_{\mathcal{A}}\right)+\left(i 1_{\mathcal{A}}\right)\left(i 1_{\mathcal{A}}\right)^{*}\right) \\
& =\Phi\left(i 1_{\mathcal{A}}^{*} \diamond \Phi\left(i 1_{\mathcal{A}}\right)+\Phi\left(i 1_{\mathcal{A}}\right) \Phi\left(i 1_{\mathcal{A}}\right)^{*}\right. \\
& =-\Phi\left(i 1_{\mathcal{A}}\right)^{2},
\end{aligned}
$$

which implies that $\Phi\left(i 1_{\mathcal{A}}\right)^{2}=-1_{\mathcal{B}}$.
(ii) For every element $a \in \mathcal{A}$ with $a^{*}=a$, we have

$$
\begin{aligned}
\Phi(i a) & =\Phi\left(a^{*} \diamond\left(i 1_{\mathcal{A}}\right)+a\left(i 1_{\mathcal{A}}\right)^{*}\right)=\Phi(a)^{*} \diamond \Phi\left(i 1_{\mathcal{A}}\right)+\Phi(a) \Phi\left(i 1_{\mathcal{A}}\right)^{*} \\
& =\Phi\left(i 1_{\mathcal{A}}\right) \Phi(a),
\end{aligned}
$$

and by taking $*$ on both sides of the above equation, we conclude that
$\Phi(i a)=\Phi\left(i 1_{\mathcal{A}}\right) \Phi(a)=\Phi(a) \Phi\left(i 1_{\mathcal{A}}\right)$.
Thus, for an arbitrary element $a \in \mathcal{A}$, we can write it as $a=a_{1}+i a_{2}$, where a_{1} and a_{2} are self-adjoint elements. As consequence, using identity (i) we obtain

$$
\begin{aligned}
\Phi(i a)=\Phi\left(i a_{1}-a_{2}\right) & =\Phi\left(i 1_{\mathcal{A}}\right) \Phi\left(a_{1}\right)+\Phi\left(i 1_{\mathcal{A}}\right)^{2} \Phi\left(a_{2}\right) \\
& =\Phi\left(i 1_{\mathcal{A}}\right)\left(\Phi\left(a_{1}\right)+\Phi\left(i 1_{\mathcal{A}}\right) \Phi\left(a_{2}\right)\right) \\
& =\Phi\left(i 1_{\mathcal{A}}\right)\left(\Phi\left(a_{1}\right)+\Phi\left(i a_{2}\right)\right) \\
& =\Phi\left(i 1_{\mathcal{A}}\right) \Phi(a)
\end{aligned}
$$

Lemma 2.7. $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ preserves product.
Proof. By Lemma 2.5, for two arbitrary self-adjoint elements $a, b \in \mathcal{A}$ we have

$$
\begin{aligned}
\Phi(2 a b+b a) & =\Phi\left(a^{*} \diamond b+a b^{*}\right)=\Phi(a)^{*} \diamond \Phi(b)+\Phi(a) \Phi(b)^{*} \\
& =2 \Phi(a) \Phi(b)+\Phi(b) \Phi(a),
\end{aligned}
$$

which implies that

$$
2 \Phi(a b)+\Phi(b a)=2 \Phi(a) \Phi(b)+\Phi(b) \Phi(a) .
$$

Substituting a by b and b by a, in the above identity, we also get

$$
2 \Phi(b a)+\Phi(a b)=2 \Phi(b) \Phi(a)+\Phi(a) \Phi(b) .
$$

Multiplying the first identity by 2 and subtracting from the second identity, we obtain $\Phi(a b)=\Phi(a) \Phi(b)$. As consequence of this last result and the Lemma 2.6(i), for two arbitrary elements $a=a_{1}+i a_{2}, b=b_{1}+i b_{2} \in \mathcal{A}$, where $a_{1}, a_{2}, b_{1}, b_{2}$ are self-adjoint elements, we obtain that

$$
\begin{aligned}
\Phi(a b) & =\Phi\left(\left(a_{1}+i a_{2}\right)\left(b_{1}+i b_{2}\right)\right) \\
& =\Phi\left(a_{1} b_{1}+i a_{1} b_{2}+i a_{2} b_{1}-a_{2} b_{2}\right) \\
& =\Phi\left(a_{1}\right) \Phi\left(b_{1}\right)+\Phi\left(a_{1}\right) \Phi\left(i b_{2}\right)+\Phi\left(i a_{2}\right) \Phi\left(b_{1}\right)+\Phi\left(i a_{2}\right) \Phi\left(i b_{2}\right) \\
& =\left(\Phi\left(a_{1}\right)+\Phi\left(i a_{2}\right) \Phi\left(b_{1}\right)+\left(\Phi\left(a_{1}\right)+\Phi\left(i a_{2}\right)\right) \Phi\left(i b_{2}\right)\right. \\
& =\Phi\left(a_{1}+i a_{2}\right) \Phi\left(b_{1}+i b_{2}\right)=\Phi(a) \Phi(b) .
\end{aligned}
$$

Finalizing the proof of the Main Theorem, we conclude that Φ is an *-ring isomorphism, by Property 2.8 and the Lemmas 2.5 and 2.7.

References

[1] J. Cui and C. K. Li, "M aps preserving product XY - Y X *on factor von N eumann algebras", Linear Algebra and its Applications, vol. 431, pp. 833-842, 2009. doi: 10.1016/j.laa.2009.03.036
[2] J. C. M. Ferreira and M. G. B. M arietto, "M appings preserving sum of products $a b-b \circ a * o n$ factor von Neumann algebras", Algebras, Groups, and Geometries, vol. 37, pp. 1-13, 2021 doi:10.29083/AGG.37.012021
[3] J. C. M. Ferreira and M. G. B. M arietto, "M appings preserving sum of products $a \circ b-b a * o n$ factor von N eumann algebras", Bulletin of the I ranian Mathematical Society, vol. 47, pp. 679-688, 2021 doi: 10.1007/s41980-020-00406-5
[4] C. Li, F. Lu and X. Fang, "N onlinear mappings preserving product $X Y+Y X *$ on factor von N eumann algebras", Linear Algebra and its A pplications, vol. 438, pp. 2339-2345, 2013. doi: 10.1016/j.Iaa.2012.10.015
[5] C. Li, F. Zhao and Q. Chen, "N onlinear maps preserving product $X *+Y *$ on von N eumann algebras", Bulletin of the I ranian M athematical Society, vol. 44, pp. 729-738, 2018. doi: 10.1007/s41980-018-0048-3
[6] L. Liu and G. X. Ji, "M aps preserving product $X *+Y X$ *on factor von N ew mann algebras", Linear and M ultilinear Algebra, vol. 59, pp. 951-955, 2011 doi: 10.1080/03081087.2010.495390
[7] A. Taghavi, M. Razeghi, M. Nouri and V. Darvish, "M aps preserving triple product $A * B+B A * o n * a l g e b r a s ", A$ sian-European Journal of M athematics, vol. 12, 2019 1950038. doi: 10.1142/s1793557119500384
[8] Y. Zhao, C. Li and Q. Chen, "N onlinear maps preserving mixed product on factors", Bulletin of the I ranian M athematical Society, vol. 47, pp. 1325-1335, 2021 doi: 10.1007/s41980-020-00444-z

Ali Taghavi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran
e-mail: taghavi@umz.ac.ir
João Carlos da Motta Ferreira
Center for Mathematics,
Computing and Cognition,
Federal University of ABC,
Avenida dos Estados, 5001, 09210-580, Santo André, Brazil
e-mail: joao.cmferreira@ufabc.edu.br
and
Maria das Graças Bruno Marietto
Center for Mathematics,
Computing and Cognition,
Federal University of ABC,
Avenida dos Estados, 5001, 09210-580, Santo André, Brazil
e-mail: graca.marietto@ufabc.edu.br
Corresponding author

