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Universidad Católica del Norte
Antofagasta - Chile

Abstract

This paper deals with studying some algebraic structures of the
graphs as an attempt to visualize abstract mathematics. We have used
some binary graph operations to investigated the algebraic structures
of graphs with examples. This work emphasizes specifically the con-
struction of semigroup or monoid and semiring, and their properties.
This manuscript also aims to give a focused introduction of a class of
homomorphism on the semiring of graphs. Some instances of real-life
decision problems are consequently discussed. This article is also in
a nascent stage of relating number theory and graph theory through
mappings.
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1. Introduction

The close association of graph theory and abstract algebra have been ex-
tensively studied in the literatures. For details on the graph of semirings,
we refer to [10, 11]. Study of semiring goes back to at least 1934 [18], when
Vandiver introduce the notion which says that a universal algebra with two
associative binary operations, where one of them distributes over the other
is called semiring. This definition relaxes the requirement of neutral ele-
ments. Some authors consider semirings to posses neutral elements with
respect to both the binary operations defined on it (see [6]). In some litera-
tures, the authors consider algebraic structures with two binary operations,
addition and multiplication such that the structure is additively commuta-
tive monoid, multiplicatively semigroup and multiplication distributes over
addition from both left and right, called “hemirings” (see [1]). It is worth
mentioning that this nomenclature is not 100% settled yet. Needless to
say semirings found their full place in mathematics even before 1934 (e.g.,
the semirings of positive elements in ordered rings) and even more so after
(e.g., various applications in theoretical computer science and algorithm
theory). For background basic and more advanced properties, historical
remarks and further references on semirings (see, for example, [2, 4, 5, 7]).

In this article, we use algebraic graph operations like, union ∪, inter-
section ∩ and join ∇, wherein self loops and multiple edges of the graphs
are dropped. So to say by graph we mean a simple and undirected graph.
The definitions of union and join coincide with the one used by Mokhov
[13]. He calls overlay + and connect→ which deals with directed graphs
that satisfy various algebraic properties and subsequently applied to work-
ing with graphs in Haskell. Being motivated by these works, we develop an
independent approach to study semiring structures and their various prop-
erties. An approach to graph theory in an algebraic setting has also been
found attempted by Bustamante [3], where the graph operation called the
linking between two graphs G and G0, which is akin to what we call join ∇
in this paper, and an algebraic structure called “Link Algebra” is analogous
to the semiring (S,∪,∇, (∅, ∅)). Study of graphs in algebraic settings have
also been investigated by Umbrey and Rahman in 2020 [15, 16, 17].

There are many papers in the literature that deal with the semring of
matrices e.g; Kishka, Z. M. G., et al [9] studies the matrix of matrices over
semiring. An adjacency structure or, an incidence structure of a graph G
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stores all the information of G, hence the specification of any large or com-
plicated graph can be communicated to computers in these matrix forms.
In this line, we see that a set of certain specific graphs forms an algebraic
structure, namely semiring, that is if S is a semiring, then the collection
Mn(S) of all n×n is again a semiring, where n is a positive integer. The cor-
responding addition and multiplication in Mn(S) is given by the usual law
of matrix addition and multiplication, respectively. Treating the graphs as
algebraic elements has several advantages due to the excellent visual prop-
erties of the graphs. Therefore, the graphs in this article are considered
potential elements in visualizing abstract mathematics.

A semiring S is said to be mono-semiring if xy = x + y for all x, y ∈
S. Additive, and multiplicative identities coincide in the case of mono-
semirings. We marked that no semiring (except mono-semiring) in which
additive and multiplicative identities coincide in literature. But in this
article, we present a semiring of graphs (other than mono-semiring) in
which additive and multiplicative identities are the same. Incorporating
graphs into abstract algebraic structures would also open a new avenue to
investigate more such un-explored properties of abstract algebra in future
work.

2. Preliminary

A graph G is an ordered pair (V,E), where V = V (G) is a set of abstract
objects (known as the set of vertices) and E = E(G) is a set of unordered
pair of objects in V (known as the set of edges). An edge is also called an
arc or line. A graph is directed if the edges are directed by arrows, indi-
cating that the relationship represented by the edge only applies from one
vertex to the other, but not the other way around. On the other hand, a
graph whose edges are not directed is called an undirected graph. The set
of directed edges of E ∈ V ×V , where E is a binary relation on V and V ×V
is the Cartesian product of V . The set of undirected edges of G is E ∈ [V ]2,
where [V ]2 is the set of 2-element subsets of V . Here, E can be considered
as a symmetric binary relation on V . If a graph G0 is a subgraph of G00, then
it is abbreviated as G0 ⊆ G00 for convenience. For a graph G, the set of all
its possible subgraphs is denoted by S0 or P (G) unless and otherwise stated.

The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is defined as
the graph G = G1∪G2= (V1∪V2, E1∪E2). The join ∇ of two graphs G and
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H is a graph formed by the union of edge sets of G and H (disregarding
self-loops and multiple edges), and by connecting each vertex of G to each
vertex ofH. It is denoted by G∇H = (V (G)∪V (H), E(G)∪E(H)∪{(u, v) :
u ∈ V (G), v ∈ V (H)} \ {(a, a) : a ∈ V (G) ∩ V (H)}). We define another
binary operation denoted by ∩ called intersection, such that G1 ∩G2 de-
notes the merging of the vertices and the edges of G1 = (V1, E1) to those of
G2 = (V2, E2) which are identical and remaining distinct vertices and edges
are removed and it is defined and denoted by G1 ∩G2 = (V1 ∩V2, E1 ∩E2).
The chromatic number of a graph G is the smallest number of colors re-
quired to color the vertices of G such that no two adjacent vertices get the
same color, and it is denoted by χ(G). A Semiring is usually defined to
be a non-empty set S together with two binary operations namely addition
and multiplication denoted by (S,+, ·) such that (S,+) is monoid and (S, ·)
is semigroup, where addition and multiplication are connected by distribu-
tivity. Apart from this, the additive identity is multiplicatively absorbing.

There are several papers in the literatures which deal with more gen-
eral concept of a semiring which neither require additive identity nor mul-
tiplicative absorbing. Here, we restrict ourselves to the formal definition of
semirings defined by Vandiver in [18] wherein, the requirement of neutral
elements and absorbing property is omitted.

For our purpose, parallel edges connecting any two vertices are merged,
and loops are ignored. Henceforth, we will denote the set of all simple
undirected graphs by S unless and otherwise stated.

3. Semiring Structures on Graphs and their Properties

Theorem 3.1. If S is the set of all graphs, then (S,∪,∇) is a semiring.

Proof. First, we claim that (S,∪) is a semigroup. Since S is the set of all
graphs, for any graphs G1, G2 ∈ S, it follows that G1∪G2 ∈ S. The graphs
are associative under ∪. This associativity inherits from the associativity
of union of edge sets and vertex sets respectively. Hence it follows that
(S,∪) is a semigroup. Next, we claim that G1∇(G2∇G3) = (G1∇G2)∇G3.

The symbols in bold viz., ⊆, ∪ and ∩ distinguish them from the usual set’s subset,
union and intersection, respectively.
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From the associativity of union of sets, it is clear that V (G1∇(G2∇G3)) =
V ((G1∇G2)∇G3). Also, e ∈ E(G1∇(G2∇G3)) if and only if e ∈ E(G1) or (e ∈
E(G2) or e ∈ E(G3)) or e = (u, v), where u ∈ V (G1), v ∈ V (G2) or
u ∈ V (G1), v ∈ V (G3) or u ∈ V (G2), v ∈ V (G3). Then the following cases
arise:

Case I: If e ∈ E(G1) or e ∈ E(G2) or e ∈ E(G3), then it is easy to show
that every edge e in G1∇(G2∇G3) is also an edge of (G1∇G2)∇G3 and
vice-versa.

Case II: If e = (u, v), where u ∈ V (G1), v ∈ V (G2) or u ∈ V (G1), v ∈
V (G3) or u ∈ V (G2), v ∈ V (G3), then the following sub-cases arise.
If e = (u, v), where u ∈ V (G1), v ∈ V (G2), then e is an edge of G1∇G2,
and hence is an edge of (G1∇G2)∇G3. Also, u ∈ V (G1), v ∈ V (G2) imply
that u ∈ V (G1), v ∈ V (G2∇G3) and, thus, e is an edge of G1∇(G2∇G3).
Similar arguments hold true for the remaining cases, viz., e = (u, v), where
u ∈ V (G1), v ∈ V (G3) and e = (u, v), where u ∈ V (G2), v ∈ V (G3). Thus,
the graphs G1∇(G2∇G3) and (G1∇G2)∇G3 have the same sets of vertices
and edges, and consequently, G1∇(G2∇G3)=(G1∇G2)∇G3. Now, we show
that ∇ distributes over ∪. The distributivity of ∇ over ∪ has to be proved
in two parts, namely vertex part and edge part. But the distributivity of
∇ over ∪ on vertex set inherits from the associativity of union of sets.

Let e ∈ E(G1∇(G2 ∪G3))
=⇒ e ∈ E(G1) or e ∈ E(G2) or e ∈ E(G3) or

e = (u, v), where u ∈ V (G1), v ∈ V (G2) ∪ V (G3)
=⇒ e ∈ E(G1) or e ∈ E(G2) or e ∈ E(G3) or

e = (u, v), where u ∈ V (G1), v ∈ V (G2) or V (G3).
In all the above cases, it is easy to observe that every edge of G1∇(G2∪

G3) also belongs to (G1∇G2)∪ (G1∪G3) and vice-versa, and consequently,
G1∇(G2 ∪ G3)=(G1∇G2) ∪ (G1 ∪ G3), which is the left distributivity ∇
over ∪. The right distributivity holds analogously. 2

Remark 1. Theorem 3.1 is a counterexample in which the empty graph
(∅, ∅) is neutral element for both the operations, where S is not mono-
semiring.

Proposition 3.2. Let G be a graph with n vertices and S0 be the set of
all subgraphs of G such that (S0,∪,∇) is a semiring, then G is a complete
graph.
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Proof. Let S0 be the set of all subgraphs of the graph G, then by
definition of the operation ∇, G∇G is a complete graph and G ⊆ G∇G.
But, by closure property of the semiring S0, G∇G ⊆ G. Thus, G = G∇G
is a complete graph. 2

Remark 2. We note that the operation ∪ is commutative and idempotent.
Whereas, the operation ∇ is commutative but non-idempotent on S in
general. Further, it is not difficult to verify that the structure (S,∪,∩) is
an idempotent semiring.

Example 3.1. LetG be a complete graph, and Sk be the set of all complete
subgraphs of G. Then (Sk,∇) is a commutative and an idempotent monoid
with the identity (∅, ∅) and the absorbing element G. Further, we observe
that for all G1, G2 ∈ Sk, G1 ⊆ G2 if and only if G1∪G0 = G2 and G

00∇G1 =
G2 for some G0 and G00 in Sk. Let us see the following illustrations, for
instance:

Figure 1: Graphs satisfying algebraic identities

Here, it is easy to see that the semiring (Sk,∪,∇,⊆) is an ordered
semiring.

Definition 3.1. An undirected graph with n distinct nodes is called a
labeled n-node graph. A labeled 1-node graph contains only one vertex,
i.e., the vertex itself is the only possible graph (if loops are not allowed). A

pc
fig-1
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labeled 2-node graph contains two vertices, so the number of a distinct 2-
node graph is 2. Similarly, an n-node graph contains n distinct vertices that
may have upto n(n−1)

2 edges (if the loops are not allowed). So, the number

of a possible distinct n-node graph is 2
n(n−1)

2 . For a fixed n, consider the
set of all possible labeled n-node graphs (with each graph having same set
of vertices), S

0
= {G1,G2, G3, ..., G

2
n(n−1)

2
}.

Proposition 3.3. If S
0
is the set of all 2

n(n−1)
2 different n-node graphs,

then (S
0
,∪,∇) is a semiring. In particular, S0

is a subsemiring of S.

Proposition 3.4. If G is a complete graph and P (G) is the set of all
possible subgraphs of G, then (P (G),∪,∩) is an idempotent semiring.

The proofs of the above propositions are straightforward and so omitted.

Remark 3. Let S0(G) be the set of all subgraphs of a simple undirected
graph G. For the ease of notation; we denote S0 to mean S0(G) when the
associated graph G is understood. Let P (S0) be the power set of S0. Let
H ∈ S0 be such that S0H denotes the set of all those subgraphs of H whose
vertex set is V (H), and S0(H) be the set of all subgraphs of H, then we
have S0H ⊆ S0(H). It is easy to see that (S0H ,∪, (V (H), ∅)) is a monoid.
Let Hi,Hj ∈ S0H , then Hi ∩ Hj ∈ S0H , i.e., the operation ‘∩’ is closed in
S0H . This is because of the hypothesis that Hi and Hj are subgraphs of
H, whose vertex sets are same, i.e., V (H). It is also easy to see that the
operation ∩ distributes over ∪. Hence (S0H ,∪,∩, (V (H), ∅),H) is a semir-
ing. But the operation ‘∇’ in general is not closed in S0H , so the structure
(S0H ,∪,∇, (V (H), ∅),H) is not a semiring. However, when H is a complete
graph, the operation ‘∇’ is closed in S0H , and consequently, the structure
(S0H ,∪,∇, (V (H), ∅),H) is a semiring (the operation ‘∇’ distributes over
the operation ‘∪’). When G is a complete graph, we see that (S0G,∪,∇) is
a subsemiring of (S0,∪,∇). Let Gg ∈ S0G and Gs ∈ S0, then Gg∇Gs is a
subgraph of G whose vertex set is V (G). Hence Gg∇Gs ∈ S0G. Similarly,
Gs∇Gg ∈ S0G. Therefore, S

0
G is an ideal of S0. Proceeding likewise by

considering a complete subgraph Hk of G, such that S
0
Hk
is the set of all

those subgraphs of Hk whose vertex set is V (Hk), and S0(Hk), the set of
all subgraphs of Hk. Then (S

0
Hk

,∪,∇) is a subsemiring of (S0(Hk),∪,∇).
Also, S0Hk

is an ideal of S0(Hk) under the additive operation ‘∪’ and the
multiplicative operation ‘∇’.
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4. Homomorphisms

This section is an introductory note on the homomorphisms of the semir-
ings built on graphs. We discuss homomorphisms on different domains of
graphs. A homomorphism from semiring of non-negative integer to semir-
ing of graphs could be a potential tool for interchanging some properties of
number theory and graph theory. Matrix operations analogous to the graph
union and intersection are also defined because of the possible requirements
of matrix forms of graphs for computational purposes. However, we left the
implementations of such matrix operations as a future research problem.
Finally, some artificial problems are discussed.

4.1. Homomorphism on Semiring of Non-negative Integers to Semir-
ing of Graphs.

Definition 4.1. Suppose, (S,+, ·, 0, 1) and (S0,⊕,⊗, 00, 10) are two semir-
ings. Then a map f : S → S0 is said to be a semiring homomorphism if
for all a, b ∈ S, f(a + b) = f(a) ⊕ f(b), f(a.b) = f(a) ⊗ f(b), f(0) = 00

and f(1) = 10. Note that f(1) = 10 and f(0) = 00 are disregarded when we
consider the semirings in which the multiplicative and additive identities
are not considered or not defined.

Example 4.1. Let P (Z0) be the power set of the set of non-negative inte-
gers Z0. Then (Z0,+, ·, 0, 1) and (P (Z0),∪,∩, ∅,Z0)) are semirings, where
the operations on Z0 are usual addition and multiplication, while the op-
erations on P (Z0) are usual set union and intersection. We note that if a
mapping φ : Z0 → P (Z0) is a semiring homomorphism, then φ(n) = Z0 for
all n ≥ 1. Since φ is a homomorphism, φ(0) = ∅ and φ(1) = Z0. Now, for
all n ≥ 1, φ(n) = φ(1 + . . .+ 1) = φ(1) ∪ . . . ∪ φ(1) = φ(1) = Z0.

Example 4.2. Let m + n = max{m,n} and m.n = min{m,n} for all
m,n ∈ Z0, where Z0 is the set of non-negative integers. Let [n] be a
subset of Z0 encoded as [n] = {0, 1, 2, ..., n − 1}, where [0] = {} or, ∅;
[1] = {0}; [2] = {0, 1}; [3] = {0, 1, 2}, and so on. Recalling the def-
inition of [V ]2, we have that [[0]]2 = ∅, [[1]]2 = ∅, [[2]]2 = {{0, 1}},
[[3]]2 = {{0, 1}, {0, 2}, {1, 2}}, etc.

Define a mapping φ : Z0 −→ P (Z0) by φ(n) = [n] = {0, 1, 2, ..., n− 1}.
Then we see in the following that φ is a semiring homomorphism. Let
m,n ∈ Z0 and without loss of generality, assume m ≤ n. Then φ(m+n) =
{0, 1, 2, ...,m+n−1} = {0, 1, 2, ...,m−1}∪{0, 1, 2, ..., n−1} = φ(m)∪φ(n).
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Similarly, φ(m·n) = {0, 1, 2, ...,m·n−1} = {0, 1, 2, ...,m−1}∩{0, 1, 2, ..., n−
1} = φ(m) ∩ φ(n). Also, by definition of φ, we have φ(0) = ∅. Hence φ is a
semiring homomorphism.

Note. We consider that a graph is infinite if the corresponding vertex set
is an infinite set, and denote the graph by G.

Let E be a symmetric binary relation on Z0. Then for all a, b ∈ Z0,
aEb implies that bEa, i.e., (a, b) ∈ E,=⇒ (b, a) ∈ E. Hence, the combined
(a, b) and (b, a) can be considered as an unordered pair or a 2-element
subset {a, b} ∈ E. We can consider that for each n ∈ Z0, ([n], En) is a
graph, where En = [[n]]

2∩E such that for allm,n ∈ Z0, m ≤ n implies that
([m], Em) ⊆ ([n], En). As a consequence, we have the following proposition.

Proposition 4.1. Let E be a symmetric binary relation on Z0, and SE be
the set of all simple undirected graphs with vertex sets [n] for all n ∈ Z0,
and edge sets En = [[n]]

2 ∩E. Then (SE,∪,∩) forms an ordered semiring,
and hence is a subsemiring of the semiring of graphs (S,∪,∩).

Proof. Let G1, G2 ∈ SE be arbitrary such that G1 = ([m], Em) and
G2 = ([n], En). Without loss of generality, we assume that m ≤ n. Then,
G1 ⊆ G2, and hence, G1∪G2 = G2 ∈ SE and G1∩G2 = G1 ∈ SE. Thus, SE
is closed. Since SE ⊆ S, the distributivity of ∩ over ∪, and the associativity
of SE is inherited from that of S. Moreover, every pair of elements of SE
are comparable under the subgraph relation ⊆, and the operations ∪ and
∩ preserve this order relation. Thus, (SE,∪,∩) forms an ordered semiring,
and hence is a subsemiring of the semiring of graphs (S,∪,∩). 2

Proposition 4.2. Let E be a symmetric binary relation on Z0, then f :
(Z0,+, ·) −→ (SE,∪,∩) defined by f(n) = ([n], En), where m + n =
max{m,n}, m · n = min{m,n} and En = [[n]]2 ∩ E is a semiring ho-
momorphism.

Proof. We have to prove the following axioms for f to be a semiring
homomorphism

• f(m+ n) = f(m) ∪ f(n)

• f(m.n) = f(m) ∩ f(n) and

• f(0) = (∅, ∅).
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Let m,n ∈ Z0. When m = n, then f(m+ n) = f(m) ∪ f(n) and f(m.n) =
f(m) ∩ f(n) trivially hold. If m < n, then [m] ⊂ [n]. Consequently,
([m], Em) ⊆ ([n], En). Therefore, f(m) ∪ f(n) = ([m], Em) ∪ ([n], En) =
([n], En) = f(n) = f(m+ n). Also, f(m) ∩ f(n) = ([m], Em) ∩ ([n], En) =
([m], Em) = f(m) = f(m · n). Similarly, the proof also holds for m > n.
Also, f(0) = (∅, ∅). 2

Note that Z0 and SE are both semirings with unity ∞ (infinity) and
infinite graph G (say), respectively such that f(∞) = G. The kernel of
the semiring homomorphism f : Z0 −→ S is kerf = {m ∈ Z0 : f(m) =
(∅, ∅)} = {0}, and hence f is one-one. The image of the semiring homomor-
phism f : Z0 −→ SE is {f(m) : m ∈ Z0}. Note that the kerf is a two sided
ideal of S. The image of f is a subsemiring. Since for each G ∈ SE, there
exists n ∈ Z0, such that G = ([n], En), and hence f(n) = ([n], En) = G.
Thus, f is surjective. Moreover, f is injective also, hence f is an isomor-
phism.

Remark 4. Since f is isomorphic, many properties of SE can be studied
in Z0. Let us see some instances of this fact. For any a, b ∈ Z0, a ≤ b or,
b ≤ a which implies that f(a) ⊆ f(b) or, f(b) ⊆ f(a) for all f(a), f(b) ∈ SE.
Thus, the order relation in Z0 is preserved in SE by isomorphism f . The
relation ≤ is linear in Z0, that is, (Z0,≤) is a chain or, the structure
(Z0,+, ·,≤) is a chain semiring. Consequently, (SE,∪,∩,⊆) is also a chain
semiring. Now, it is obvious that for all G1,G2, G3 ∈ S, if G1 ⊆ G2 then
G1 ∪ G3 ⊆ G2 ∪ G3, and G1 ∩ G3 ⊆ G2 ∩ G3 or, G3 ∩ G1 ⊆ G3 ∩ G2.
In particular, if G1,G2, ...,Gn; H1,H2, ...,Hn are elements of S, satisfying

the condition that Gi ⊆ Hi for i = 1, 2, ..., n, then
nS
i=0

Gi ⊆
nS
i=0

Hi and

nT
i=0

Gi ⊆
nT
i=0

Hi. Consequently, the semiring SE is positive (since (∅, ∅) ⊆ G

for each G ∈ SE), and a zerosumfree (since any positive partially ordered
semiring is zerosumfree).

Example 4.3. Let E be a relation on Z0 defined by mEn if and only if
either m|n or n|m for all m,n ∈ Z0. Then the elements of the set SE
are given by f(0) = (∅, ∅), f(1) = ({0}, ∅) (a graph of isolated vertex 0),
f(2) = ({0, 1}, {0, 1}), f(3) = ({0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}}),... and so
on. It can be easily verified f(0) ⊆ f(1) ⊆ f(2) ⊆ f(3) ⊆ ... That is, the
set of graphs are linearly ordered.

Again, if E = {(m,n) : gcd(m,n) = 1, i.e., m and n are co-primes},
then f(0) = (∅, ∅), f(1) = ({0}, ∅), f(2) = ({0, 1}, {0, 1}),
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f(3) = ({0, 1, 2}, {{0, 1}, {1, 2}}), etc.

Remark 5. Considering such kind of examples may motivate us to study
further some properties of number theory in terms of abstract algebra via
graph theory and vice-versa.

4.2. Homomorphism between Graph Semirings to the Power Set
of Semiring of Graphs.

Consider a simple graph G, and S0, the set of all subgraphs of G. Let P (S0)
be the power set of S0 and for any two subsets A, B ∈ P (S0), define:

A tB =

⎧⎪⎨⎪⎩
A, if B = ∅;
B, if A = ∅;
{Gi ∪Gj : Gi ∈ A,Gj ∈ B}, otherwise.

and

A uB =

(
∅, when A = ∅ or B = ∅;
{Gi ∩Gj : Gi ∈ A,Gj ∈ B}, otherwise.

Consider that S0G is the collection of all those subgraphs of G each of
whose vertex set is V (G), and P (S0G) is the power set of S

0
G. Then it

is not hard to see that (S0G,∪,∩) and (P (S0G) \ {∅},t,u) are semirings.
The multiplicative identities in S0G and P (S0G) are G and S0G, respectively.
The additive identity of S0G is (V (G), ∅) while, {(V (G), ∅)} is the additive
identity of P (S0G) \ {∅}. Define a mapping f : (S0G,∪,∩) → (P (S0G) \
{∅},t,u) by f(H) = S0H for all H ∈ S0G and S0H is the set of all those
subgraphs of H each of whose vertex set is V (H) (in fact, V (H) = V (G)).
Then the following proposition 4.3 is a consequence of this definition:

Remark 6. Although, it is nowhere mentioned in literature, the additive
identity of a subsemiring may be different from that of the semiring (if exist)
as we noted from the above discussion. Clearly, (S0G,∪,∩) is a subsemiring
of (S0,∪,∩), but the additive identity of S0 is an empty graph (∅, ∅).

Proposition 4.3. The mapping
f : (S0G,∪,∩) −→ (P (S0G) \ {∅},t,u) is a homomorphism (f is defined
above).
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Proof. By definition of f , we have
f((V (G), ∅)) = {(V (G), ∅)} and f(G) = S0G. Let H1,H2 ∈ S0G be two ar-
bitrary subgraphs of G (i.e., both of whose vertex sets are V (G) ). Then
f(H1 ∪H2) = S0H1∪H2

=Set of all subgraphs of H1 ∪H2 whose vertex set
is V (H1 ∪H2) or, V(G). Let S

0
H1
be the set of all subgraphs of H1 whose

vertex set is V (G), and S0H2
, the set of all subgraphs of H2 whose vertex set

is V (G), then definition of t suffices that S0H1
t S0H2

=Set of all subgraphs
of H1 ∪H2 whose vertex set is V (H1 ∪H2) or, V (G). First, we claim that
S0H1∪H2

= S0H1
tS0H2

. A graph G1 ∈ S0H1∪H2
implies that V (G1) = V (H1 ∪

H2) = V (H1)∪V (H2) = V (G). Since G1 is a subgraph of H1∪H2, for any
e ∈ E(G1) implies that e ∈ E(H1 ∪H2) = E(H1) ∪E(H2), i.e., e ∈ E(H1)
or e ∈ E(H2). Thus, G1 = H 0

1 ∪ H 0
2 for some H

0
1 ∈ S0H1

and H 0
2 ∈ S0H2

,
which implies that G1 ∈ S0H1

tS0H2
, thus we get S0H1∪H2

⊆ S0H1
tS0H2

. Con-
versely, for any graph G1 ∈ S0H1

t S0H2
, there exists H 0

1 and H 0
2 in S0H1

and
S0H2

, respectively such G1 = H 0
1 ∪H 0

2, where H
0
1 ⊆ H1 and H 0

2 ⊆ H2, i.e.,
H 0
1∪H 0

2 ⊆ H1∪H2 or, G1 ⊆ H1∪H2, which means that G1 ∈ S0H1∪H2
, and

thus we get S0H1
tS0H2

⊆ S0H1∪H2
. Hence the claim, i.e., S0H1∪H2

= S0H1
tS0H2

.
Consequently, f(H1 ∪H2) = S0H1∪H2

= S0H1
t S0H2

= f(H1) t f(H2).

By using a similar arguments, we see that f(H1 ∩ H2) = S0H1∩H2
=

S0H1
u S0H2

= f(H1) u f(H2). Hence f is a semiring homomorphism. 2

Let a non-empty A0 ⊆ S0, and consider Hi ∈ S0 and Gi ∈ A0 such
that if Hi ⊆ Gi for all Gi. Then H 0

j ⊆ Gi for all H
0
j ∈ S0Hi

and Gi ∈ A0.
Consequently, S0Hi

uA0 = S0Hi
. Also, if Gi ⊂ Hi for all Gi ∈ A0, then we get

S0Hi
u A0 ⊆ S0Hi

. Suppose, neither Hi ⊆ Gi nor Gi ⊂ Hi, then also we get
S0Hi

uA0 ⊆ S0Hi
.

Remark 7. More generally, (S0,∪,∩, (∅, ∅), G) and (P (S0),t,u, ∅, S0) are
semirings. Define f : S0 → P (S0) by f(H) = P (S0H), where P (S

0
H) is the

power set of S0H , and S0H is the set of all subgraphs of H each of whose
vertex set is V (H), then f is a semiring homomorphism. The range (image)
of f is a subset of P (S0) denoted by f(S0) = {P (S0H) ∈ P (S0) : P (S0H) =
f(H) for some H ∈ S0}. Let S0(H) be the set of all subgraphs of H; then
we have S0H ⊆ S0(H).

Proposition 4.4. Consider a map f : S0 → P (S0) such that for allH ∈ S0,
define f(H) = S0(H), where S0(H) is the set of all subgraphs of H. Then
f is a one-one homomorphism and (f(S0),t,u) is an ideal of (P (S0),t,u).

Proof. It is defined that f(H) = S0(H), where S0(H) is the set of
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all subgraphs of H. We get f((∅, ∅)) = {(∅, ∅)} and f(G) = S0, where
(∅, ∅) and G are additive identity and multiplicative identity, respectively
in S0. For any H1,H2 ∈ S, f(H1∪H2) = S0(H1∪H2) = S0(H1)tS0(H2) =
f(H1)tf(H2). Similarly, we get f(H1∩H2) = f(H1)uf(H2). Therefore, f
is a semiring homomorphism. Also, it is observed that for all H1,H2 ∈ S0,
H1 ⊆ H2 implies that f(H1) ⊆ f(H2). Hence f preserves the semiring
operations and the order relations too. By definition, f maps an arbitrary
graph H of S0 to the set S0(H), which exclusively contains all subgraphs
of H. But, such a set is unique for each graph H, hence f is one-one.
Since f((∅, ∅)) = {(∅, ∅)} ∈ f(S0), f(S0) 6= ∅. Let f(H1), f(H2) ∈ f(S0),
then f(H1) t f(H2) = S0H1

t S0H2
= S0H1∪H2

= f(H1 ∪H2) ∈ f(S0) (since
H1 ∪H2 ∈ S0 =⇒ f(H1 ∪H2) ∈ f(S0)). Let f(H1) ∈ f(S0) and A0 ∈ P (S0).
If for a graph Hi ∈ S0, there exists a graph Gi ∈ A0 such that Hi ⊆ Gi,
then H 0

j ⊆ Gi for all H
0
j ∈ S0Hi

, hence by definition of u, we get S0Hi
uA0 =

S0Hi
= f(Hi) ∈ f(S0), that is, f(Hi) u A0 ∈ f(S0). Also, if Gi ⊂ Hi, then

S0Hi
u A0 ⊆ S0Hi

, which implies that f(Hi) u A0 ⊆ f(Hi) ∈ f(S0). Even
if the graphs Hi and Gi are such that neither Hi ⊆ Gi nor Gi ⊂ Hi, it
doesn’t create any problem to see that f(Hi) u A0 ⊆ f(Hi), which is in
f(S0). Hence f(S0) is the right ideal of P (S0). Similarly, f(S0) holds good
as the left ideal of P (S0). 2

Remark 8. Alternatively, the homomorphism f being one-one can also be
shown as follows. Let H,H 0 ∈ S0 be arbitrary such that {h1, h2, ..., hm} and
{h01, h02, ..., h0m} are the sets of all subgraphs of H and H 0, respectively. Let
f(H) = f(H 0), which implies that the set of all the subgraphs of H =the
set of all the subgraphs of H 0, that is, {h1, h2, ..., hm} = {h01, h02, ..., h0m}.
Therefore, h1 ∪ h2 ∪ ... ∪ hm = h01 ∪ h02 ∪ ... ∪ h0m or H = H 0. Hence f is
one-one.

Proposition 4.5. Let G be a graph and S be the set of all subgraphs of G.
Let S0 be the power set of S; define a map g : S0 −→ S by g(S0i) = ∪G0∈S0iG

0,
for all S0i ∈ S0. Then g is a homomorphism.

Proof. Since {(∅, ∅)} ∈ S0, we get g({(∅, ∅)}) = (∅, ∅) ∈ S and g(S) =the
union of all the graphs of S=G. Let S0p = {G1, G2, ..., Gp} and S0q =
{H1,H2, ...,Hq}. Now,
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g(S0p t S0q) = g[{G1, G2, ..., Gp} t {H1,H2, ...,Hq}]
= g[(G1 ∪H1), (G1 ∪H2), ..., (G1 ∪Hq), ..., (Gp ∪Hp)]
= (G1 ∪H1) ∪ (G1 ∪H2) ∪ ... ∪ (G1 ∪Hq) ∪ ... ∪ (Gp ∪H1)
∪(Gp ∪H2) ∪ ... ∪ (Gp ∪Hq)

= (G1 ∪G2 ∪ ... ∪Gp) ∪ (H1 ∪H2 ∪ ... ∪Hq)
= g(S0p) ∪ g(S0q).

Also,

g(S0i u S0j) = g[{G1, G2, ..., Gp} u {H1,H2, ...,Hq}]
= g{G1 ∩H1,G1 ∩H2, ...,G1 ∩Hq, ..., Gp ∩H1, Gp ∩H2),
..., Gp ∩Hp}

= (G1 ∩H1) ∪ (G1 ∩H2) ∪ ... ∪ (G1 ∩Hq) ∪ ... ∪ (Gp ∩H1)
∪(Gp ∩H2) ∪ ... ∪ (Gp ∩Hq)

= (G1 ∪G2 ∪ ... ∪Gp) ∩ (H1 ∪H2 ∪ ... ∪Hp) (since ∩
distributes over ∪)

= g(S0i) ∩ g(S0j).
2

4.3. Homomorphism of Semigroup of Graphs

A complete graph Kn with n vertices can be expressed as a join graph
of its two complete subgraphs, namely, Ki and Kj with i and j vertices,
respectively. In other words, if Kn is a complete graph with n vertices,
then there exist Ki ⊆ Kn and Kj ⊆ Kn such that Kn = Ki∇Kj .

Proposition 4.6. Let (S,∇) and (Sk,∇) be two semigroups of graphs,
where each graph of Sk is complete and S is the set of all simple undirected
graphs. Define f : S → Sk by f(Gi) = Kχ(Gi), where χ(Gi) is the chromatic
number of Gi. Then f is a semigroup homomorphism.

Proof. Let Gp, Gq ∈ S be any two non-empty graphs with p and q
vertices. Note that for empty graphs, the case is trivial. Now,

f(Gp∇Gq) = f(Gr), where 1 ≤ p, q ≤ r ≤ p+ q
= Kχ(Gr) = Kχ(Gs)∇Kχ(Gt), where 1 ≤ s, t ≤ r
= f(Gs)∇f(Gt).

Without

loss of generality, let p = s and q = t (since 1 ≤ p, q ≤ r and 1 ≤ s, t ≤
r). Then from Equation 4.3, we get f(Gp∇Gq) = f(Gp)∇f(Gq) for all
Gp, Gq ∈ S. 2

Corollary 4.7. The homomorphism f may not be an injective morphism.
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Proof. Let f(Gi) = f(Gj), then Kχ(Gi) = Kχ(Gj), which implies that
χ(Gi) = χ(Gj), i.e., the graphs Gi and Gj have the same chromatic num-
bers, but the chromatic numbers of Gi and Gj in no ways guarantee that
the graph Gi is the same as the graph Gj . In other words, it is possible
that Gi 6= Gj for some non-negative integers i and j. Hence f may not be
an injective morphism. 2

5. Graph Union and Intersection in Matrix Form

For a given symmetric binary relation E on Z0, let SE be the set of simple
undirected graphs with each vertex set [ni] for all ni ∈ Z0. Let ME be the
set of all adjacency matrices of the graphs of SE , and let a matrix [aij ]n×n
in ME corresponds to the graph G = ([n], En) = ({0, 1, ..., n− 1}, E) with
n vertices. Then the addition ⊕ and multiplication ⊗ on ME is defined as
follows.

For all [aij ]m×m, [bij ]n×n ∈ M, [aij ]m×m ⊕ [bij ]n×n = [cij ]p×p; p =
max{m,n}

cij =

⎧⎪⎨⎪⎩
max{aij , bij}, if i, j ≤ min{m,n};
aij , if n < i, j ≤ m;
bij , if m < i, j ≤ n.

Also, [aij ]m×m⊗[bij ]n×n = [dij ]q×q; q = min{m,n} and dij = min{aij , bij}.
Let us consider two graphs G1 = ([4], E1) and G2 = ([3], E2), where
E1 = {(a, b) : a, b are coprimes in [4]} andE2 = {(p, q) : p, q are coprime in [3]}.
That is, the vertex sets are [4] = {0, 1, 2, 3} and [3] = {0, 1, 2}. The follow-
ing are illustrations.

Figure 2: Co-prime Graphs, and their Union and Intersection

pc
fig-2
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Then the adjacency matrices of the graphs G1 ∪G2 and G1 ∩G2 are

A(G1 ∪G2) =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎟⎠ and A(G1 ∩G2) =

⎛⎜⎝ 0 1 0
1 0 1
0 1 0

⎞⎟⎠ .

Also, we have A(G1) =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎟⎠ = [aij ]4×4, and A(G2) =

⎛⎜⎝ 0 1 0
1 0 1
0 1 0

⎞⎟⎠ = [bij ]3×3. By using the definition of the operations ⊕ and ⊗

onM , we get [aij ]4×4⊕ [bij ]3×3 =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎟⎠ and [aij ]4×4⊗ [bij ]3×3 =
⎛⎜⎝ 0 1 0
1 0 1
0 1 0

⎞⎟⎠ .

6. Some Artificial Exemplar Problems

By definition of homomorphism g, each graph Gi ∈ S is considered to be
generated by the union of all the graphs of S0i. That is, the pre-image
S0i ∈ S0 has a homomorphic image Gi ∈ S or, the union of all the graphs
of S0i is the same as the graph Gi ∈ S. Hence the chromatic number of
the union of all the graphs of S0i is the same as the chromatic number of
Gi ∈ S. As a consequence of this definition, the following examples follow.

Example 6.1. Let G be a locality, where each individual has some food
habits, which may be influenced by the other people he/she is associated
with. A particular food habit in that locality will be considered the best
if it is common to most people. By considering each people in G as a
node and any pair of nodes are connected if and only if the correspond-
ing pair of individuals have different food habits, the locality G can be
appropriately considered as a graph. Suppose that a Registered Dietitian
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(RD) plans to promote common minimum best food habits in the local-
ity through community outreach programs. The challenge before the RD
is; how the whole people of that locality be chosen for the most effective
implementation of their mission? There are various options for the RD.
Select all those with a common food habit or some of them with a common
food habit or, non of them with a common food habit; choose some people
where all of them have a common food habit or some of them have a com-
mon food habit or none of them have a common food habit and so forth.
Otherwise, the RD can also quit its mission by not considering the people
of that locality, and in this case, the graph G becomes an empty graph.
The task of the selection process is the same as finding all the subgraphs
of G. Let the selected groups be in a set S. The RD further plans to
schedule different batches for imparting nutritional awareness batch-wise
to different groups of people. Now, the RD has new challenges in accom-
modating different groups of people in different batches as to how many
groups of people are to be taken at a time in a single batch? The options
are: choose all the groups of people of S at a time (let this choice be de-
noted by S, the whole set) or choose some groups at a time and so on;
otherwise, the RD has also the option of doing away with the scheduling
of batches, and in this case, the choice will be denoted by an empty set ∅.
The act of this choice is the same as finding the power set of S, and let it
be S0. The problem is to find the group with highest percentage of com-
mon food habits in a single batch with k minimum different food habits.
This problem can be solved by defining a homomorphism g : S0 −→ S by
g(S0i) = ∪G0∈S0iG

0, for all S0i ∈ S0. For instance, if χ(g(S01)) = χ(g(S02)) =
... = χ(g(S0p)) = k, where S01, S

0
2, ..., S

0
p ∈ S0 and g(S01), g(S

0
2), ..., g(Sp) ∈ S.

Then the required number of people in a single batch with k number of
food habits=max{|V (g(S01))|, |V (g(S02))|, ..., |V (g(S0p))|}, where |V (g(S0i))|
is the number of vertices in the graph (g(S0i)).

The following example is an attempt to visualize the problem for more
clarity.

Example 6.2. Let us consider six different groups of people, namely,
G1, G2, ..., G6 based on certain criterion. Each node represents an indi-
vidual and each edge indicates that the pair of individuals have different
food habits (or no common food habits). Supposing that considering all six
groups at a time for a training (or meeting) is not feasible for the RD. Also,
it may be supposed that conducting the meetings for each group separately
at different times is more time consuming and have more other constraints.
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Figure 3: Six Different Group of People to be Trained

Without loss of generality, let us assume that the best option for the RD
is to schedule three batches, namely, S01 = {G1, G2,G3}, S02 = {G1, G4, G5}
and S03 = {G2, G4,G5, G6}. Then, we have the following outcomes.

Figure 4: g(S01) = G1 ∪G2 ∪G3
Here, the chromatic number of the graph is, χ(g(S01)) = 2, which is

the minimum required food habits (or aspects) on which the people are to
be trained. The number of people to be trained is 5. The percentage of
the pair of people with common food habits (or required same training)
can be calculated as follows. Recall that a pair of people will have same
food habits (or required same training) if they are non-adjacent. In other
words, any two vertices can be assigned the same color if they are disjoint
(in terms of definition of chromatic number). Here, the maximum number
of edges the graph g(S01) can have is 10 and the actual number of the edges
of g(S01) is 4. Therefore, the percentage of non-adjacent pair of people is
{10−410 }× 100% = 60%, which is the degree of agreement or commonness of
the people in regard to their food habits.
Similarly, we have
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Figure 5: g(S02) = G1 ∪G4 ∪G5

Here, the chromatic number of the graph is, χ(g(S02)) = 3, which is
the minimum required food habits (or aspects) on which the people are to
be trained. The number of people to be trained is 6. The percentage of
non-adjacent pair of people={15−615 } × 100% = 60%.

Figure 6: g(S03) = G2 ∪G4 ∪G5 ∪G6

Here, the chromatic number of the graph is, χ(g(S03)) = 3, which is
the minimum required food habits (or aspects) on which the people are to
be trained. The number of people to be trained is 8. The percentage of
non-adjacent pair of people={28−1028 } × 100% = 64.28%.
Thus, we can conclude that if the RD has to select the group with the
highest degree of agreement or commonness in regards to their food habits,
then the group S03 must be selected, and in that case the training required
to be imparted on atleast three different aspects (which is the minimum
colors required to color the graph representing the network of people).

Example 6.3. Local security threats to the state and local government
can come in various ways and from different motives, individuals or, or-
ganizations. Let us consider a town or a locality for a security review.
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Suppose that if a suspicious individual (suspected of illegal activities) is
spotted in a locality, then that individual is connected to each neighbors
living within a certain radius (as deemed fit) by an edge. Means, if A is a
suspected individual in a locality, and P , Q, S, etc. are neighbors living
within a certain radius from A, there must be an edge between A to all of
these neighbors. The following are some illustrations of such networks.

Figure 7: A simple illustrative network.

This graph will be a 2-chromatic graph, irrespective of the number of
neighbors, unless there is an edge between any two neighbors. Any two
neighbors will be connected by an edge if there are any chances of clashes
or anything that may resort to law and order problems in the locality
due to the two neighbors under consideration. Similarly, if there are two
suspected individuals, namely, A and B, in a colony, and P , Q, R, S, etc.
are neighbors, then there must be an edge between A and B, and both of
this suspected individuals must be connected to every other neighbor by
an edge as shown in figure (8). Further, if we consider that A, B, and C
are suspected individuals and neighbors are P , Q, R, etc. and if there is
no security threat from the external or from among the neighbors, then the
figure (9) is the required graph of chromatic number 4.

Figure 8: 3-chromatic
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Figure 9: 4-chromatic

In each of these three instances, the number of edges in the respective
graphs will increase with the increase in security threats or potential law
and order problems. With an increase in the edges, the chromatic numbers
of those graphs will also increase. Hence each graph’s chromatic number
can be appropriately approximated as the minimum number of security
personals to be deployed in that locality to monitor the situation. These
motivations will consequently lead to the application of proposition 4.6.
An intelligence report on security review of a region S suggests that the
number of suspected individuals and other potentially illegal activities iden-
tified at various locations/localities are from zero to n, and the number of
localities reviewed in the region is also n. That is to say, if G0 is a security
network of a locality where no suspected individuals or, potential security
threat in any form is found; G1 is the security network of another locality
where one suspected individual is found; G2 is a security network of a local-
ity where two suspected individual is found, and likewise; Gn is a network
of locality where n (the highest number of suspected) individual of illegal
activities, or other potential security threats are found. Note that among
n localities in the region, there are some localities where no particular sus-
pected individuals of illegal activities are recorded, but still not completely
free from security threats due to some potential clashes or misunderstand-
ings among the neighbors. On the other hand, there are also some localities
where particular suspected individuals and threats from the neighbors are
simultaneously observed. Considering a set S, where each of its element is
a security network represented by a graph. That is, S = {G0, G1, ..., Gn},
where each vertex set viz., V (G0), (G1), ..., (Gn) are distinct, and no two
vertex sets have a common vertex. Let Sk = {K0,K1, ...,Km}; m ≥ n,
where each Kj ∈ Sk represents a group of personals taken at a time such
that an edge for all j connects all the security personal in Kj , and hence
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Kj is a complete graph. No single security personal can be in more than
one group at a time; that is, no two graphs in Sk will have a common
vertex. Thus, the minimum number of security personals to be deployed
in a locality, denoted by graph Gi ∈ S is the chromatic number of Gi.
Hence any act of deployment of the security personals in the region S can
be taken as a function f : S → Sk defined by f(Gi) = Kχ(Gi). In other
words, the minimum number of security personals required in the locality
that requires security network Gi ∈ S is χ(Gi). Also, since the function
f in this particular example is one-one, the set of networks of the security
personals to be hired at a time for a minimum-security coverage of the re-
gion is f(S) ⊆ Sk. Note that in all localities, no direct external threats are
considered in the security reviews.

7. Conclusion and Future Direction

This paper introduces a new direction of studying network problems in a
generalized algebraic context (semiring). Though some instances of possible
applications of the rules of semiring are highlighted, the emphasis is more
on theoretical prospects of algebraic structures on graphs. In the line of
this work, we will also explore lattices and Boolean algebra of graphs in
the future. And their possible applications in logic circuit designing and
cryptography by transforming Boolean functions into simple graphs called
truth graphs or reduced truth graphs (this work is in progress). Apart from
this, semiring homomorphisms discussed here will be used in dealing with
social network problems like Facebook, etc.(this work is also in progress).
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