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Abstract

Let G = (V,E) be a simple graph and H be a subgraph of G. Then
G admits an H-covering, if every edge in E(G) belongs to at least one
subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total
labeling of G is a bijection f : V (G) ∪ E(G) → {1, 2, 3, ..., |V (G)| +
|E(G)|} such that for all subgraphs H 0 of G isomorphic to H, the H 0

weights w(H 0) =
P

v∈V (H0)

f(v) +
P

e∈E(H0)

f(e) constitute an arithmetic

progression {a, a + d, a + 2d, ..., a + (n − 1)d}, where a and d are
positive integers and n is the number of subgraphs of G isomorphic to
H. The labeling f is called a super (a, d)-H-antimagic total labeling
if f(V (G)) = {1, 2, 3, ..., |V (G)|}. In [9], authors have posed an open
problem to characterize the super (a, d)-G+ e-antimagic total labeling
of the graph Gu[Sn], where n ≥ 3 and 4 ≤ d ≤ p+q+2. In this paper,
a partial solution to this problem is obtained.
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1. Introduction

Let G = (V (G), E(G)) and H = (V (H), E(H)) be simple and finite graphs.
Let |V (G)| = vG, |E(G)| = eG, |V (H)| = vH and |E(H)| = eH . Chartrand
and Lesniak [3] is referred to graph-theoretic terminology.

An antimagic labeling was first introduced by Hartsfield and Ringel’s[7]
in 1990. According to Hartsfield and Ringel’s[7], a graph G is called an-
timagic if its edges are labeled with integers {1, 2, ..., |E(G)|} such that no
two vertices have the same weight, where a weight of a vertex is the sums
of the labels of the edges incident to a vertex. Hartsfield and Ringel’s [7]
conjectured that every connected graph with at least three vertices admits
an antimagic labeling. They also made a weak conjecture that every tree
with at least three vertices admits an antimagic labeling. These two con-
jectures were partially shown to be accurate by several authors, but they
are still remain unsolved. For a detailed and interesting review of these
conjectures, one can see chapter 6 of [5]. This concept motivated several
authors to make a study on antimagic labelings and introduced many types
of antimagic labelings in [5, 12]. Gutienrez and Lladó [6] developed H cover
labeling. For the first time, Inayah et al.[8] in 2009 introduced the (a, d)-
H-antimagic cover labeling which was developed from (a, d)-edge-antimagic
labeling.

Lih[11] defines a magic labeling of type (1,1,0) of a planar graph and
a consecutive magic labeling of type (1,1,0) of a planar graph. In 2012,
Ahmed et al.[1] studied the consecutive magic labeling of type (1,1,0) in the
name of d-antimagic labeling for a plane graph if for every positive integer
s, the set of s-sided face weights is {as, as + d, as + 2d, . . . , as + (fs − 1)d}
for some positive integers as as and d, where fs is the number of the s

th

side face, where a face F weight is the sum of all the vertices labels, edges
labels and a face label of F . A d-antimagic labeling is called super if the
smallest possible label appears on the vertices. Several authors have studied
such labeling for several families of graphs see [5]. Gutienrez and Lladó [6]
defined (super) H-magic labeling, which is related to a magic labeling of
type (1,1,0).

An edge covering ofG is a family of different subgraphsH1,H2,H3, . . . ,Hk

such that any edge of E(G) belongs to at least one of the subgraphs Hj , 1 ≤
j ≤ k. If theHj

0
s are isomorphic to a given graphH, then G is said to admit

an H-covering. Gutienrez and Lladó [6] defined H-magic labeling, which is
a generalization of Kotzig and Rosa’s edge magic total labeling see in [10].
A bijection f : V (G) ∪ E(G) → {1, 2, 3, ..., vG + eG} is called an H-magic
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labeling of G if there exists a positive integer k such that each subgraph
H 0 of G isomorphic to H satisfies w(H 0) =

P
v∈V (H0)

f(v) +
P

e∈E(H0)
f(e) = k.

In this case, G is called a H-magic. When f(V (G)) = {1, 2, 3, . . . , vG},
then G is known as a H-super magic graph. On the other hand, Inayah et
al. [8] introduced (a, d)-H-antimagic total labeling of G which is defined
as a bijection f : V (G) ∪ E(G) → {1, 2, 3, . . . , vG + eG} such that for all
subgraphs H 0 of G isomorphic to H, the set of H 0-weights form an arith-
metic progression a, a+ d, a+ 2d, ..., a+ (n− 1)d, where a and d are some
positive integers, and n is the number of subgraphs isomorphic to H. If
f(V (G)) = {1, 2, 3, . . . , vG}, then f is a super (a, d)-H-antimagic total la-
beling and G is super (a, d)-H-antimagic. This labeling is the general case
of super (a, d)-edge-antimagic total labelings.

If H ∼= K2 then the super (a, d)-H-antimagic labeling is also called
super (a, d)-edge-antimagic total labeling which was introduced in [13]. A
study on some basic properties of such labelings is done and the proof of
the following theorem is presented in [13].

Theorem 1.1. [8] If G has a super (a, d)-H-antimagic total labeling and
t is the number of subgraphs of G isomorphic to H, then G has a super
(a0, d)-H-antimagic total labeling, where a0 = [(vG + 1)vH + (2vG + eG +
1)eH ]− a− (t− 1)d.

The (super) (a, d)-H-antimagic labeling related to a super d-antimagic
labeling can be found [11, 2, 5].

In 2015, Laurencea and Kathiresan [4] obtained an upper bound of d
for any graph G, and they investigated the existence of super (a, d)-P3-
antimagic total labeling of star graph Sn. First, they observed that Sn
admits a Ph-covering for h = 2, 3 and the star Sn contains t =

¡ n
h−1

¢
subgraphs Ph, h = 2, 3, which are denoted by P j

h , 1 ≤ j ≤ h. In 2005,
Sugeng et al.[14] investigated the case h = 2. In 2015, h = 3 case was
investigated by Laurencea and Kathiresan [4]. They observed that, if the
star Sn, n ≥ 3 admits the super (a, d)-P3-antimagic total labeling, then
d ∈ {0, 1, 2}. Also,they proved the star Sn, n ≥ 3 has super (4n + 7, 0)-
P3-antimagic total labeling and Sn admits a super (a, 2)-P3-antimagic total
labeling only if n = 3.

In [9], they investigated the super (a, d)-H-antimagic total labeling of
star related graphs Gu[Sn] is defined as follows. Let G be a (p, q) graph
and Sn be a star with n edges. Fix a vertex u of G. Then Gu[Sn] is the
graph obtained by identifying the vertex u with the centre of Sn. Let w be
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any vertex of Sn. Then G+ e, e = uw, is a subgraph of Gu[Sn]. The graph
Gu[Sn] contains exactly n subgraphs isomorphic to G+ e.

Let G0 ∼= Gu[Sn]. Let v1, v2, . . . , vp and w1, w2, . . . , wn be the vertices
of G and Sn respectively. Let e1, e2, . . . , eq and eq+1, eq+2, ..., eq+n be the
edges of G and Sn respectively. Then |V (G0)| = p+n and |E(G0)| = q+n.
They proved the following theorem and posed an open problem.

Theorem 1.2. [9] If the graphGu[Sn], n ≥ 2, admits a super (a, d)-(G+e)-
antimagic total labeling, then d ≤ p+ q + 2.

Problem 1.3. [9] For each d, 4 ≤ d ≤ p + q + 2, either find the super
(a, d)-(G+ e)-antimagic total labeling of the graph Gu[Sn], n ≥ 3, or prove
that this labeling does not exist.

In this paper, a partial solution to the above problem is presented.

2. Main Results

Let x and y be two positive integers with x < y. Throughout the paper,
[x, y] denotes the set {i ∈ N : x ≤ i ≤ y}. Also, [n] denotes the set of all
positive integers less than or equal to n.

Theorem 2.1. If the graph Gu[Sn], n ≥ 3, admits the super (a, d)-G+ e-

antimagic total labeling, where d = p + q + 2, then a = (p+1)(p+2)
2 + (p +

n)(q + 1) + (q+1)(q+2)
2 .

Proof. Let G0 ∼= Gu[Sn]. Suppose there exists a bijection f : V (G0) ∪
E(G0)→ {1, 2, 3, ..., p+ q+2n} which is a super (a, d)−G+ e− antimagic
total labeling of G0. Let w(H 0) =

P
v∈V (H0) f(v) +

P
e∈E(H0) f(e) be the

weight of the subgraph H 0 isomorphic to G + e and let W = {w(H 0) :
H 0 ∼= G+ e} = {a, a + d, a + 2d, ..., a + (t − 1)d} be the set of H 0 weights
and t be the number of subgraphs. Here t = n. The minimum possible
weight of H 0 is at least (p+1)(p+2)2 + (q + 1)(p + n) + (q+1)(q+2)

2 (i.e.,) a ≥
(p+1)(p+2)

2 +(q+1)(p+n)+ (q+1)(q+2)
2 . The maximum possible weight of H 0

is not more than (p+ 1)(p+ n)− p(p+1)
2 + (q + 1)(p+ q + 2n)− q(q+1)

2 ,i.e.,

a+ (t− 1)d ≤ (p+ 1)(p+ n)− p(p+1)
2 + (q + 1)(p+ q + 2n)− q(q+1)

2 . Since

d = p + q + 2, it follows that a ≤ (p+1)(p+2)
2 + (q + 1)(p + n) + (q+1)(q+2)

2 .

Hence a = (p+1)(p+2)
2 + (q + 1)(p+ n) + (q+1)(q+2)

2 . 2
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Theorem 2.2. If the graphGu[Sn], n ≥ 3, admits the super (a, p+q+2−i)-
G+e-antimagic total labeling, then L ≤ a ≤ L+(n−1)i, 1 ≤ i ≤ p+q−2,
where L = (p+1)(p+2)

2 + (p+ n)(q + 1) + (q+1)(q+2)
2 .

Proof. The proof of this result is similar to the above Theorem 2.1. 2

Observation 2.3. If the graphGu[Sn] admits the super (a, d)-G+e-antimagic
total labeling, then

nw(G) +
nX
i=1

si = an+
n(n− 1)d

2
,

where w(G) = a− s1, a is the weight of the subgraph H ∼= G+ {e = ux1}
and si = f(xiu) + f(xi), 1 ≤ i ≤ n, xi ∈ V (Sn) and xiu ∈ E(Sn).

Theorem 2.4. There is no super (a, d)-G + e-antimagic total labeling of
the graph Gu[Sn], n ≥ 4 and even, where d = p+ q + 2.

Proof. Suppose the graph Gu[Sn], n ≥ 3 admits the super (a, d)-G+ e-

antimagic total labeling f . By Theorem 2.1, we get a = (p+1)(p+2)
2 + (p +

n)(q + 1) + (q+1)(q+2)
2 and hence the subgraph H1

∼= G + e has weight a
and the vertices and edges labels take values from {1, 2, 3, . . . , p, p+1} and
{p+n+1, p+n+2, . . . , p+n+q+1} respectively. Let e = ux1 be an edge with
x1 ∈ V (Sn). Let f(ux1) = y and f(x1) = x. Then x ∈ {1, 2, 3, . . . , p, p+1}
and y ∈ {p+n+1, p+n+2, . . . , p+n+q+1}. Let s1 = f(ux1)+f(x1) = x+y.
Then w(G) = a − s1, where p + n + 2 ≤ s1 ≤ 2p + q + n + 2, that is
[p+ n+ 2 2p+ q + n+ 2]. Let x0 ∈ {p+ 2, p+3, . . . , p+ n− 1, p+ n} and
y0 ∈ {p+n+ q+2, p+n+ q+3, . . . , p+n+ q+n}. Then 2p+n+ q+4 ≤
x0 + y0 ≤ 2p+ 3n+ q. From Observation 2.3, we get

na− (n− 1)s1 +
nX
i=2

si = an+
n(n− 1)(p+ q + 2)

2
,

where si = f(xiu) + f(xi), xi ∈ V (Sn), xiu ∈ E(Sn), 1 ≤ i ≤ n and hence

x+ y = s1 =
1

n− 1

nX
i=2

si −
n(p+ q + 2)

2
.(2.1)

If S = {s2, s3, . . . , sn} ∈ {2p+q+n+4, 2p+q+n+5, . . . , 2p+q+3n} with
s2 6= s3 6= . . . 6= sn, then substituting the first (n−1) values in the equation
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(2.1) we get the minimum possible s1 is s1 ≥ 2p+ q+ n+ 3− n
2 (p+ q+ 1)

and substituting the last (n − 1) values from S in the equation (2.1), the
maximum possible s1 is found to be, s1 ≤ 2p+ q + 3n+ 1− n

2 (p+ q + 3).
Therefore, 2p+q+n+3− n

2 (p+q+1) ≤ s1 ≤ 2p+q+3n+1− n
2 (p+q+3).

If n = 2k, then p(2−k)+q(1−k)+k+3 ≤ s1 ≤ p(2−k)+q(1−k)+3k+1.
If k ≥ 2 then s1 6∈ [p+2k+2 2p+ q+2k+2], which is a contradiction. 2

Theorem 2.5. There is no super (a, d)-G + e-antimagic total labeling of
the graph Gu[S3], where d = p+ q + 2.

Proof. Suppose G0 ∼= Gu[S3] admits the super (a, d)-G + e-antimagic
total labeling. Then there exists a bijective function f : V (G0) ∪ E(G0)→
{1, 2, 3, . . . , |V (G0) + E(G0)|} with the subgraphs G + e weights form an
arithmetic progression {a, a + d, a + 2d}. Let {x1, x2, x3} and {eq+1 =
ux1, eq+2 = ux2, eq+3 = ux3} be the vertex and edge set of S3. From

Theorem 2.1, we get a = (p+1)(p+2)
2 + (p+ n)(q + 1) + (q+1)(q+2)

2 and

f(ux1) + f(x1) = s1 =
1

2
(s2 + s3)−

3(p+ q + 2)

2
.

If s2, s3 ∈ {2p + q + 7, 2p + q + 8, 2p + q + 9} with s2 6= s3 then the
possible 2-tuples (s2, s3) are (2p+ q+7, 2p+ q+8), (2p+ q+7, 2p+ q+9)
and (2p + q + 8, 2p + q + 9). If (s2, s3) = (2p + q + 7, 2p + q + 8), then
s1 = p+4+ 1

2(p− q+1). The vertices and edges of the subgraphs H2 and
H3 receive the labels as {p+ 2, p+ 3} and {p+ q+ 5, p+ q+ 6} and hence
the possible sum of these labels are {2p + q + 7, 2p + q + 8, 2p + q + 9}.
Suppose w(H3) = a + 2d = a + 2(p + q + 2). From Observation 2.3,
w(H3) = w(G) + t, where t ∈ {2p + q + 7, 2p + q + 8, 2p + q + 9}, which
implies, a− s1 + t = a+ 2p+ 2q + 4. If t = 2p+ q + 7 or 2p+ q + 8 then
substituting the values s1 and t in 2p + 2q + 4 + s1 − t = 0, it follows,
p < 0, which is a contradiction. If t = 2p + q + 9 then substituting the
values s1 and t in 2p+ 2q + 4 + s1 − t = 0, it follows, p = q + 19

3 is not an
integer, which is a contradiction. If (s2, s3) = (2p + q + 7, 2p + q + 9), or
(2p+ q+8, 2p+ q+9) then we get s1 < p+5, which is a contradiction. 2

Theorem 2.6. The graph Gu[S3] admits the super (a, d)-G+ e-antimagic
total labeling, where 4 ≤ d ≤ bp2c+ 3.

Proof. Let V (Gu[S3]) = {vi, w1, w2, w3, 1 ≤ i ≤ p} and E(Gu[S3]) =
{ei, eq+1, eq+2, eq+3, 1 ≤ i ≤ q}. Then |V (Gu[S3])| = p+3 and |E(Gu[S3])| =
q + 3. A bijection f : V ∪E → {1, 2, . . . , p+ q + 6} is defined as follows:
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Label the vertices vi, 1 ≤ i ≤ p with the elements of A and label the
edges ei, 1 ≤ i ≤ q with the elements of B in any order, where A =
[p+2]− {p− (2i− 7), p− (i− 4)}, 4 ≤ i ≤ bp2c+3 and B = {p+3+ i, 1 ≤
i ≤ q − 2} ∪ {p+ q + 3, p+ q + 4}. The weight of G is the same for all the
weights of the subgraphs G + ej , j = 1, 2, 3. So, it is enough to find the
labels of vertices and edges of the star S3. Now, for each i, 4 ≤ i ≤ bp2c+3,
the labeling f1i is given by

f1i (w1) = p− (2i− 7)
f1i (w2) = p− (i− 4)
f1i (w3) = p+ 3
f1i (eq+1) = p+ q + 2
f1i (eq+2) = p+ q + 5
f1i (eq+3) = p+ q + 6.

Thus, the induced sums of the labels of vertices and edges of S3 are
2p+ q− 2i+9,2p+ q− i+9 and 2p+ q+9. Hence, d = i, 4 ≤ i ≤ bp2c+3.
2

Example 2.7. The graph Gu[Sn] ∼= C5[S3] admits the super (93, 5)-C5+e-
antimagic total labeling which is shown in Figure 1.

Figure 1: Super (93, 5)-C5 + e-antimagic total labeling of C5[S3].

Theorem 2.8. Let Gu[Sn] be a graph of order p + n and size q + n with
n ≥ 3, i ≥ 1 and p, q ≥ 2i(n− 1). Then the graph Gu[Sn] admits the super
(a, d)-G+ e-antimagic total labeling, where d = 4i.

Proof. Let V (Gu[Sn]) = {vi, 1 ≤ i ≤ p} ∪ {wj , 1 ≤ j ≤ n} and
E(Gu[Sn]) = {ei, 1 ≤ i ≤ q}∪{eq+j , 1 ≤ j ≤ n}. Then |V (Gu[Sn])| = p+n
and |E(Gu[Sn])| = q + n. A bijection f : V ∪E → {1, 2, . . . , p+ q + 2n} is
defined as follows:

pc
f-1
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Label the vertices vj , 1 ≤ j ≤ p with the elements of A and label the
edges ej , 1 ≤ j ≤ q with the elements of B in any order, where A =
[p + n] − {p + n − 2i(n − r)i, 1 ≤ r ≤ n} and B = [p + q + 2n] − {p +
q + 2n − 2i(n − r), 1 ≤ r ≤ n}. The weight of G is the same for all
the weights of the subgraphs G + ej , j = 1, 2, 3, . . . , n. So, it is enough
to find the labels of vertices and edges of the star Sn. Now, for each i,
the labeling f2i is defined by f2i (wr) = p + n − 2i(n − r), 1 ≤ r ≤ n and
f2i (eq+r) = p+ q + 2n− 2i(n− r), 1 ≤ r ≤ n.

Thus, the induced sums of the labels of vertices and edges of Sn are
2p + q + 3n − 4i(n − r), 1 ≤ r ≤ n form an arithmetic progression with
d = 4i. 2

Example 2.9. The graph Gu[Sn] ∼=W5[S4] admits the super (210, 4)-W5+
e-antimagic total labeling and is given in Figure 2.

Figure 2: Super (210, 4)-W5 + e-antimagic total labeling of W5[S4].

Theorem 2.10. Let Gu[Sn] be a graph of order p+ n and size q+ n with
n ≥ 3, i ≥ 1 and p, q ≥ 2i(n− 1). Then the graph Gu[Sn] admits the super
(a, d)-G+ e-antimagic total labeling, where d = 4i− 2.

Proof. Let V (Gu[Sn]) = {vi, 1 ≤ i ≤ p} ∪ {wj , 1 ≤ j ≤ n} and
E(Gu[Sn]) = {ei, 1 ≤ i ≤ q}∪{eq+j , 1 ≤ j ≤ n}. Then |V (Gu[Sn])| = p+n
and |E(Gu[Sn])| = q + n. A bijection f : V ∪E → {1, 2, . . . , p+ q + 2n} is
defined as follows:

Label the vertices vj , 1 ≤ j ≤ p with the elements of A and label the
edges ej , 1 ≤ j ≤ q with the elements of B in any order, where A =
[p+ n]− {p+ n− (2i− 1)(n− r), 1 ≤ r ≤ n} and B = [p+ q + 2n]− {p+
q + 2n − (2i − 1)(n − r), 1 ≤ r ≤ n}. The weight of G is the same for all

pc
f-2
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the weights of the subgraphs G + ej , j = 1, 2, 3, . . . , n. So, it is enough to
find the labels of vertices and edges of the star Sn. Now, for each i, the
labeling f3i is defined by f3i (wr) = p + n − (2i − 1)(n − r), 1 ≤ r ≤ n and
f3i (eq+r) = p+ q + 2n− (2i− 1)(n− r), 1 ≤ r ≤ n.

Thus, the induced sums of the labels of vertices and edges of Sn are
2p+ q+3n− (4i−2)(n− r), 1 ≤ r ≤ n form an arithmetic progression with
d = 4i− 2. 2

Example 2.11. The graph Gu[Sn] ∼= L8[S5] admits the super (936, 6)-
L8 + e-antimagic total labeling and is given in Figure 3.

Figure 3: Super (936, 6)-L8 + e-antimagic total labeling of L8[S5].

Theorem 2.12. Let Gu[Sn] be a graph of order p+ n and size q+ n with
n ≥ 3, i ≥ 2 and p, q ≥ 2i(n− 1). Then the graph Gu[Sn] admits the super
(a, d)-G+ e-antimagic total labeling, where d = 4i− 3.

Proof. Let V (Gu[Sn]) = {vi, 1 ≤ i ≤ p} ∪ {wj , 1 ≤ j ≤ n} and
E(Gu[Sn]) = {ei, 1 ≤ i ≤ q}∪{eq+j , 1 ≤ j ≤ n}. Then |V (Gu[Sn])| = p+n

pc
f-3
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and |E(Gu[Sn])| = q + n. A bijection f : V ∪E → {1, 2, . . . , p+ q + 2n} is
defined as follows:

Label the vertices vj , 1 ≤ j ≤ p with the elements of A and label
the edges ej , 1 ≤ j ≤ q with the elements of B in any order, where A =
[p+n]−{p+n−(2i−1)(n−r), 1 ≤ r ≤ n, i ≥ 2} and B = [p+q+2n]−{p+q+
2n−(2i−2)(n−r), 1 ≤ r ≤ n, i ≥ 2}. The weight of G is the same for all the
weights of the subgraphsG+ej , j = 1, 2, 3, . . . , n. So, it is enough to find the
labels of vertices and edges of the star Sn. Now, for each i, the labeling f

4
i is

defined by f4i (wr) = p+n− (2i−1)(n−r), 1 ≤ r ≤ n, i ≥ 2 and f4i (eq+r) =
p+ q+2n− (2i−2)(n− r), 1 ≤ r ≤ n, i ≥ 2. Thus, the induced sums of the
labels of vertices and edges of Sn are 2p+q+3n− (4i−3)(n−r), 1 ≤ r ≤ n
form an arithmetic progression with d = 4i− 3. 2

Example 2.13. The graph Gu[Sn] ∼= D4,6[S5] admits the super (448, 5)-
D4,6 + e-antimagic total labeling and is given in Figure 4.

Figure 4: Super (448, 5)-D4,6 + e-antimagic total labeling of D4,6[S5].

Theorem 2.14. Let Gu[Sn] be a graph of order p+ n and size q+ n with
n ≥ 3, i ≥ 2 and p, q ≥ 3i(n− 1). Then the graph Gu[Sn] admits the super
(a, d)-G+ e-antimagic total labeling, where d = 4i− 1.

pc
f-4
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Proof. Let V (Gu[Sn]) = {vi, 1 ≤ i ≤ p} ∪ {wj , 1 ≤ j ≤ n} and
E(Gu[Sn]) = {ei, 1 ≤ i ≤ q}∪{eq+j , 1 ≤ j ≤ n}. Then |V (Gu[Sn])| = p+n
and |E(Gu[Sn])| = q + n. A bijection f : V ∪E → {1, 2, . . . , p+ q + 2n} is
defined as follows:

Label the vertices vj , 1 ≤ j ≤ p with the elements of A and label the
edges ej , 1 ≤ j ≤ q with the elements of B in any order, where A =
[p+ n]− {p+ n− 3i(n− r), 1 ≤ r ≤ n, i ≥ 2} and B = [p+ q + 2n]− {p+
q + n − (i − 1)(n − r), 1 ≤ r ≤ n, i ≥ 2}. The weight of G is the same for
all the weights of the subgraphs G+ ej , j = 1, 2, 3, . . . , n. So, it is enough
to find the labels of vertices and edges of the star Sn. Now, for each i, the
labeling f5i is defined by f5i (wr) = p+ n− 3i(n− r), 1 ≤ r ≤ n, i ≥ 2 and
f5i (eq+r) = p+ q + 2n− (i− 1)(n− r), 1 ≤ r ≤ n, i ≥ 2. Thus, the induced
sums of the labels of vertices and edges of Sn are 2p+ q+3n− (4i− 1)(n−
r), 1 ≤ r ≤ n, i ≥ 2 form an arithmetic progression with d = 4i− 1. 2

Example 2.15. The graph Gu[Sn] ∼= T [S4] admits the super (1648, 11)-
T + e-antimagic total labeling and is given in Figure 5.

Figure 5: Super (1648, 11)-T + e-antimagic total labeling of T [S4].

pc
f-5




260 S. Rajkumar, M. Nalliah and G. Uma Maheswari

3. Conclusion and Scope

In this paper, a partial solution is obtained to an open problem posed by
Kathiresan and David Laurencea [9]. First, the graph Gu[Sn], n is even,
has no super (a, p+ q + 2)-G+ e-antimagic total labeling is proved. Then
the existence of super (a, d)-G + e-antimagic total labeling of the graph
Gu[Sn] for the given d values is established. The rest of the solution to the
problem remains still open.
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