Proyecciones Journal of Mathematics Vol. 41, N o 6, pp. 1439-1456, December 2022. Universidad Católica del Norte Antofagasta - Chile

Codiskcyclic sets of operators on complex topological vector spaces

Mohamed Amouch Chouaib Doukkali University, Morocco and Otmane Benchiheb Chouaib Doukkali University, Morocco Received : July 2021. Accepted : January 2022

Abstract

Let X be a complex topological vector space and L(X) the set of all continuous linear operators on X. In this paper, we extend the notion of the codiskcyclicity of a single operator $T \in L(X)$ to a set of operators $\Gamma \subset L(X)$. We prove some results for codiskcyclic sets of operators and we establish a codiskcyclicity criterion. As an application, we study the codiskcyclicity of C₀-semigroups of operators.

Subjclass[2010]: 47A16.

Keywords: Hypercyclity, supercyclicity, diskcyclicity, codiskcyclicity, C_0 -semigroup.

1. Introduction and Preliminary

Let X be a complex topological vector space and L(X) the set of all continuous linear operators on X. By an operator, we always mean a continuous linear operator.

The most studied notion in linear dynamics is that of hypercyclicity: an operator $T \in L(X)$ is called *hypercyclic* if there exists $x \in X$ such that the orbit of x under T satisfies

$$\overline{Orb(T,x)} = \overline{\{T^n x : n \in \mathbf{N}\}} = X.$$

Such a vector x is called hypercyclic for T. The set of all hypercyclic vectors for T is denoted by HC(T).

Another important notion in linear dynamics is that of supercyclicity which was introduced in [11]. We say that T is supercyclic if there exists $x \in X$ whose projective orbit satisfies

$$\overline{\mathbf{C}.Orb(T,x)} = \overline{\{\alpha T^n x : \alpha \in \mathbf{C}, n \in \mathbf{N}\}} = X.$$

The vector x is called a supercyclic vector for T. We denote by SC(T) the set of all supercyclic vectors. For more information about hypercyclic and supercyclic operators, see [7, 10, 9, 16, 17].

Another notion in linear dynamics which was been studied by many authors is that of codiskcyclicity: an operator T is called *codiskcyclic* if ther exists $x \in X$ whose codisk satisfies orbit

$$\overline{\mathbf{U}.Orb(T,x)} = \overline{\{\alpha T^n x : \alpha \in \mathbf{U}, n \ge 0\}} = X,$$

when $\mathbf{U} := \{ \alpha \in \mathbf{C} : |\alpha| \ge 1 \}$. In this case, the vector x is called a codiskcyclic vector for T. The set of all codiskcyclic vectors for T is denoted by UC(T).

In the case of a separable complex Banach space, an operator T is codiskcyclic if and only if it is codisk transitive, that is for each pair (U, V)of nonempty open sets there exist some $\alpha \in \mathbf{U}$ and some $n \ge 0$ such that $\alpha T^n(U) \cap V \neq \emptyset.$

For a general overview of the codiskcyclicity, see [12, 13, 15, 18].

Recently, some notions of linear dynamical systems were introduced for a set Γ of operators instead of a single operator T, see [1, 2, 3, 4, 5, 6]: A set Γ of operators is called hypercyclic if there exists a vector x in X such that its orbit under Γ satisfies $Orb(\Gamma, x) = \{Tx : T \in \Gamma\}$, is a dense subset of X. If there exits a vector $x \in X$ such that $\mathbf{C}.Orb(\Gamma, x) = \{\alpha T x : T \in \mathcal{T}\}$ $\Gamma, \alpha \in \mathbf{C}$ }, is a dense subset of X, then Γ is supercyclic. If $x \in X$ is a vector such that span $\{Orb(\Gamma, x)\} = \operatorname{span}\{Tx : T \in \Gamma\}$ is dense in X, then Γ is cyclic. If there exists a vector $x \in X$ such that its disk orbit under T, $\mathbf{D}.Orb(\Gamma, x) = \{\alpha Tx : T \in \Gamma, \alpha \in \mathbf{D}\}$, is a dense subset X, then Γ is called a diskcyclic, when \mathbf{D} is the unit closed disk. In each case, the vector x is called a hypercyclic, a supercyclic, a cyclic and a diskcyclic vector for Γ , respectively.

In this paper, we continue the study of the dynamics of a set of operator by introducing the concept of codiskcyclicity for a set of operators.

In Section 2, we introduce and study the codiskcyclicity for a set of operators. In particular, we show that the set of codiscyclic vectors of a set Γ is a G_{δ} type and we prove that codiskcyclicity is preserved under quasi-similarity.

In Section 3, we extend the notion of codisk transitivity of a single operator to a set of operators. We give the relation between this notion and the concept of codiskcyclic and we establish a codiskcyclic criterion.

In Section 4, we study the codiskcyclicity of a C_0 -semigroup of operators. We show that the codiskcyclicity and the codisk transitivity are equivalent and we prove that a codiskcyclic C_0 -semigroup of operators exists on X if and only if dim(X) = 1 or dim $(X) = \infty$.

2. Codiskcyclic Sets of Operators

In the following definition, we introduce the notion of the codiskcyclicity of a set of operators instead of a single operator.

Definition 2.1. We say that a set Γ of operators on X is codiskcyclic if there exists $x \in X$ for which the codisk orbit of x under Γ

$$\mathbf{U}.Orb(\Gamma, x) := \{ \alpha T x : \alpha \in \mathbf{U}, T \in \Gamma \},\$$

is dense in X. The vector x is called a codiskcyclic vector for Γ . The set of all codiskcyclic vectors for Γ is denoted by $UC(\Gamma)$.

Remark 2.2. An operator T is codiskcyclic if and only if the set $\Gamma = \{T^n : n \ge 0\}$ is codiskcyclic.

Example 2.3. Let f be a nonzero linear form on a locally convex space X and D be a subset of X such that the set $\mathbf{U}D := \{\alpha x : \alpha \in \mathbf{U}, x \in D\}$ is a dense subset of X. For all $x \in X$, let T_x defined by $T_x y = f(y)x$, for

all $y \in X$. Put $\Gamma_f = \{T_x : x \in D\}$ and let y be a vector of X such that $f(y) \neq 0$. Then $\mathbf{U}.Orb(\Gamma_f, y) = \{\alpha T_x y : x \in D, \alpha \in \mathbf{U}\} = \{\alpha f(y)x : x \in D, \alpha \in \mathbf{U}\} = \mathbf{U}D$. Hence, Γ_f is codiskcyclic.

A necessary condition for the codiskcyclicity is given by the following proposition.

Proposition 2.4. Let X be a complex normed space and Γ a subset of L(X). If x is a codiskcyclic vector for Γ , then $\sup\{\|\alpha Tx\| : \alpha \in \mathbf{U}, T \in \Gamma\} = +\infty$.

Proof. Let $x \in \mathbf{U}C(\Gamma)$. Assume that $\sup\{\|\alpha Tx\| : \alpha \in \mathbf{U}, T \in \Gamma\} = m < +\infty$, and let $y \in X$ such that $\|y\| > m$. Since $x \in \mathbf{U}C(\Gamma)$, there exist $\{\alpha_k\} \subset \mathbf{U}$ and $\{T_k\} \subset \Gamma$ such that $\alpha_k T_k x \longrightarrow y$. Hence, $\|y\| \le m$, which is a contradiction. \Box

We denote by $\{\Gamma\}'$ the set of all elements of L(X) which commutes with every element of Γ .

Proposition 2.5. Let X be a complex topological vector space and Γ a subset of L(X). Assume that Γ is codiskcyclic and let $T \in L(X)$ be with dense range. If $T \in \{\Gamma\}'$, then $Tx \in UC(\Gamma)$, for all $x \in UC(\Gamma)$.

Proof. Let O be a nonempty open subset of X. Since T is continuous and of dense range, $T^{-1}(O)$ is a nonempty open subset of X. Let $x \in$ $UC(\Gamma)$, then there exist $\alpha \in U$ and $S \in \Gamma$ such that $\alpha Sx \in T^{-1}(O)$, that is $\alpha T(Sx) \in O$. Since $T \in {\Gamma}'$, it follows that $\alpha S(Tx) = \alpha T(Sx) \in O$. Hence, $UOrb(\Gamma, Tx)$ meets every nonempty open subset of X. From this, $UOrb(\Gamma, Tx)$ is dense in X. That is, $Tx \in UC(\Gamma)$.

The following definition is the notions of quasi-similarity and similarity of sets of operators.

Definition 2.6. [3] Let X and Y be two complex topological vector spaces, $\Gamma \subset L(X)$, and $\Gamma_1 \subset L(Y)$. We say that Γ is quasi-similar to Γ_1 if there exists a continuous map $\phi : X \longrightarrow Y$ with dense range such that $\forall T \in \Gamma$, $\exists S \in \Gamma_1$ such that $S \circ \phi = \phi \circ T$. If ϕ can be chosen to be a homeomorphism, then Γ and Γ_1 are called similar.

In the following, we prove that the codiskcyclicity is preserved under quasi-similarity.

Proposition 2.7. If $\Gamma \subset L(X)$ is quasi-similar to $\Gamma_1 \subset L(Y)$, then Γ is codiskcyclic in X implies that Γ_1 is codiskcyclic in Y. Moreover, $\phi(\mathbf{U}C(\Gamma)) \subset \mathbf{U}C(\Gamma_1)$.

Proof. Assume that Γ is codiskcyclic in X and let ϕ be the continuous operator as in Definition 2.6. Let O be a nonempty open subset of Y, then $\phi^{-1}(O)$ is a nonempty open subset of X. If $x \in \mathbf{U}C(\Gamma)$, then there exist $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $\alpha Tx \in \phi^{-1}(O)$, that is $\alpha\phi(Tx) \in O$. Let $S \in \Gamma_1$ such that $S \circ \phi = \phi \circ T$. Hence, $\alpha S(\phi x) = \alpha\phi(Tx) \in O$. Hence, Γ_1 is codiskcyclic and $\phi x \in \mathbf{U}C(\Gamma_1)$.

Proposition 2.8. Let $(c_T)_{T\in\Gamma} \subset \mathbf{R}^*_+$. If $\{c_TT : T \in \Gamma\}$ is codiskcyclic and $(k_T)_{T\in\Gamma}$ is such that $c_T \geq k_T > 0$ for all $T \in \Gamma$, then the set $\{k_TT : T \in \Gamma\}$ is codiskcyclic.

Proof. Let x be a codiskcyclic vector for $\{c_TT : T \in \Gamma\}$. Since $c_T \ge k_T$ for all $T \in \Gamma$, we have $\mathbf{UOrb}(\{c_TT : T \in \Gamma\}, x) \subset \mathbf{UOrb}(\{k_TT : T \in \Gamma\}, x)$. Since $\mathbf{UOrb}(\{c_TT : T \in \Gamma\}, x)$ is dense in X, it follows that $\mathbf{UOrb}(\{k_TT : T \in \Gamma\}, x)$ is dense in X, this means that $\{k_TT : T \in \Gamma\}$ is codiskcyclic in X.

Proposition 2.9. Let $\{X_i\}_{i=1}^n$ be a family of complex topological vector spaces and Γ_i a subset of $L(X_i)$, for $1 \leq i \leq n$. If $\bigoplus_{i=1}^n \Gamma_i$ is a codiskcyclic set in $\bigoplus_{i=1}^n X_i$, then Γ_i is a codiskcyclic set in X_i , for all $1 \leq i \leq n$.

Proof. If $1 \leq j \leq n$, then $\bigoplus_{i=1}^{n} \Gamma_i$ is quasi-similar to Γ_j , and the result follow by Proposition 2.7.

Let X be a complex topological vector space. The following proposition gives a characterization of the set of codiskcyclic vector of set of operators using a countable basis of the topology of X. Note that the set **D** is the unit closed disk defined by $\mathbf{D} = \{\alpha \in \mathbf{C} : |\alpha| \leq 1\}.$

Proposition 2.10. Let X be a second countable complex topological vector space and Γ a subset of L(X). If Γ is codiskcyclic, then

$$\mathbf{U}C(\Gamma) = \bigcap_{n \ge 1} \left(\bigcup_{\beta \in \mathbf{D}} \bigcup_{T \in \Gamma} T^{-1}(\beta U_n) \right),$$

where $(U_n)_{n\geq 1}$ is a countable basis of the topology of X. As a consequence, $UC(\Gamma)$ is a G_{δ} type set.

Proof. Let $x \in X$. Then, $x \in \mathbf{U}C(\Gamma)$ if and only if $\overline{\mathbf{U}Orb(\Gamma, x)} = X$. Equivalently, for all $n \geq 1$, $U_n \cap \mathbf{U}Orb(\Gamma, x) \neq \emptyset$, that is for all $n \geq 1$, there exist $\lambda \in \mathbf{U}$ and $T \in \Gamma$ such that $\lambda Tx \in U_n$. This is equivalent to the fact that for all $n \geq 1$, there exist $\beta \in \mathbf{D}$ and $T \in \Gamma$ such that $x \in T^{-1}(\beta U_n)$. Hence, $x \in \bigcap_{n \geq 1} \bigcup_{\beta \in \mathbf{D}} \prod_{T \in \Gamma} T^{-1}(\beta U_n)$.

3. Density and Codisk Transitivity of Sets of Operators

In the following definition, we introduce the notion of a codisk transitive set of operators which generalize the codisk transitivity of a single operator.

Definition 3.1. We say that a set Γ of operators on X is codisk transitive if for any pair (U, V) of nonempty open subsets of X, there exist $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $T(\alpha U) \cap V \neq \emptyset$.

Remark 3.2. An operator $T \in L(X)$ is codisk transitive if and only if $\Gamma = \{T^n : n \ge 0\}$ is codisk transitive.

Example 3.3. Assume that X is a locally convex space. Let $x, y \in X$ and let f_y be a linear form on X such that $f_y(y) \neq 0$. Let $T_{f_y,x}$ be an operator defined by $T_{f_y,x}z = f_y(z)x$. Define $\Gamma = \{T_{f_y,x} : x, y \in X \text{ such that } f_y(y) \neq 0\}$. Let U and V be two nonempty open subsets of X. There exist $x, y \in X$ such that $x \in U$ and $y \in V$. We have $T_{f_y,x}(y) = f_y(y)x$. Since $0 < f_y(y) < 1$, it follows that $x = \frac{1}{f_y(y)}T_{f_y,x}(y)$. Hence $x \in U$ and $x \in \frac{1}{f_y(y)}T_{f_y,x}(V)$, which implies that $U \cap \frac{1}{f_y(y)}T_{f_y,x}(V) \neq \emptyset$. Thus Γ is a codisk transitive.

In the following proposition, we prove that the codisk transitivity of sets of operators is preserved under quasi-similarity.

Proposition 3.4. Assume that $\Gamma \subset L(X)$ is quasi-similar to $\Gamma_1 \subset L(Y)$. If Γ is codisk transitive in X, then Γ_1 is codisk transitive in Y.

Proof. Assume that Γ is codisk transitive and let ϕ be the continuous operator as in Definition 2.6. Let U and V be nonempty open subsets of X. Since ϕ is continuous and of dense range, $\phi^{-1}(U)$ and $\phi^{-1}(V)$ are nonempty and open sets. Since Γ is codisk transitive in X, there exist $y \in \phi^{-1}(U)$ and $\alpha \in \mathbf{U}, T \in \Gamma$ with $\alpha Ty \in \phi^{-1}(V)$, which implies that $\phi(y) \in U$ and $\alpha \phi(Ty) \in V$. Let $S \in \Gamma$ such that $S \circ \phi = \phi \circ T$. Then, $\phi(y) \in U$ and $\alpha S\phi(y) \in V$. Thus, $\alpha S(U) \cap V \neq \emptyset$. Hence, Γ_1 is codisk transitive in Y. \Box

In the following result, we give necessary and sufficient conditions for a set of operators to be codisk transitive. **Theorem 3.5.** Let X be a complex normed space and Γ a subset of L(X). The following assertions are equivalent:

- (i) Γ is codisk transitive;
- (*ii*) For each $x, y \in X$, there exists sequences $\{x_k\}$ in $X, \{\alpha_k\}$ in \mathbf{U} and $\{T_k\}$ in Γ such that $x_k \longrightarrow x$ and $\alpha_k T_k(x_k) \longrightarrow y$;
- (iii) For each $x, y \in X$ and for W a neighborhood of 0, there exist $z \in X$, $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $x - z \in W$ and $\alpha T(z) - y \in W$.

Proof. $(i) \Rightarrow (ii)$ Let $x, y \in X$. For all $k \ge 1$, let $U_k = B(x, \frac{1}{k})$ and $V_k = B(y, \frac{1}{k})$. Then U_k and V_k are nonempty open subsets of X. Since Γ is codisk transitive, there exist $\alpha_k \in \mathbf{U}$ and $T_k \in \Gamma$ such that $\alpha_k T_k(U_k) \cap V_k \neq \emptyset$. For all $k \ge 1$, let $x_k \in U_k$ such that $\alpha_k T_k(x_k) \in V_k$, then $||x_k - x|| < \frac{1}{k}$ and $||\alpha_k T_k(x_k) - y|| < \frac{1}{k}$, this implies that $x_k \longrightarrow x$ and $\alpha_k T_k(x_k) \longrightarrow y$. $(ii) \Rightarrow (iii)$ Clear.

 $(iii) \Rightarrow (i)$ Let U and V be two nonempty open subsets of X. Then there exists $x, y \in X$ such that $x \in U$ and $y \in V$. Since for all $k \ge 1$, $W_k = B(0, \frac{1}{k})$ is a neighborhood of 0, there exist $z_k \in X$, $\alpha_k \in \mathbf{U}$ and $T_k \in \Gamma$ such that $||x - z_k|| < \frac{1}{k}$ and $\alpha_k T_k(z_k) - y|| < \frac{1}{k}$. This implies that $z_k \longrightarrow x$ and $\alpha_k T_k(z_k) \longrightarrow y$. Since U and V are nonempty open subsets of $X, x \in U$ and $y \in V$, there exists $N \in \mathbf{N}$ such that $z_k \in U$ and $\alpha_k T_k(z_k) \in V$, for all $k \ge N$.

Let Γ be a subset of L(X). In whats follows, we prove that Γ is codisk transitive if and only if it admits a dense subset of codiskcyclic vectors.

Theorem 3.6. Let X be a second countable Baire complex topological vector space and Γ a subset of L(X). The following assertions are equivalent:

- (i) $UC(\Gamma)$ is dense in X;
- (*ii*) Γ is codisk transitive.

As a consequence, a codisk transitive set is codiskcyclic.

Proof. countable basis of the topology of X. (i) \Rightarrow (ii) : Assume that $\mathbf{U}C(\Gamma)$ is dense in X and let U and V be two nonempty open subsets of X. By Proposition 2.10, we have $\mathbf{U}C(\Gamma) = \bigcap_{n\geq 1} \left(\bigcup_{\beta\in\mathbf{D}} \bigcup_{T\in\Gamma} T^{-1}(\beta U_n)\right)$. Hence, for all $n\geq 1$, $A_n := \bigcup_{\beta\in\mathbf{D}} \bigcup_{T\in\Gamma} T^{-1}(\beta U_n)$ is dense in X. Thus, for all $n, m \geq 1$, we have $A_n \cap U_m \neq \emptyset$ which implies that for all $n, m \geq 1$, there exist $\beta \in \mathbf{U}$ and $T \in \Gamma$ such that $T(\beta U_m) \cap U_n \neq \emptyset$. Hence, Γ is a codisk transitive set.

 $(ii) \Rightarrow (i)$: Assume that Γ is codisk transitive. Let $n, m \ge 1$, then there exist $\beta \in \mathbf{U}$ and $T \in \Gamma$ such that $T(\beta U_m) \cap U_n \neq \emptyset$, which implies that $T^{-1}(\frac{1}{\beta}U_n) \cap U_m \neq \emptyset$. Hence, for all $n \ge 1$, we have $\bigcup_{\beta \in \mathbf{D}} \bigcup_{T \in \Gamma} T^{-1}(\beta U_n)$ is

dense in X. Since X is a Baire space, it follows that $\mathbf{U}C(\Gamma) = \bigcap_{n \ge 1} \left(\bigcup_{\beta \in \mathbf{D}} \bigcup_{T \in \Gamma} T^{-1}(\beta U_n) \right) \text{ is a dense subset of } X.$

As a consequence of Theorem 3.6, a codisk transitive set is codiskcyclic. In the following theorem, we prove that the converse holds with an additional assumption.

Theorem 3.7. Let X be a complex topological vector space and Γ a subset of L(X). Assume that for all $T, S \in \Gamma$ with $T \neq S$, there exists $A \in \Gamma$ such that T = AS. The following assertions are equivalent:

- (i) Γ is codiskcyclic;
- (*ii*) Γ is codisk transitive.

Proof. $(ii) \Rightarrow (i)$ This implication is due to Theorem 3.6.

 $(i) \Rightarrow (ii)$ Since Γ is codiskcyclic, there exists $x \in X$ such that $\mathbf{U}Orb(\Gamma, x)$ is a dense subset of X. Let U and V be two nonempty open subsets of X, then there exist $\alpha, \beta \in \mathbf{U}$ with $|\alpha| \geq |\beta|$, and $T, S \in \Gamma$ such that $\alpha Tx \in U$ and $\beta Sx \in V$. There exists $A \in \Gamma$ such that T = AS. Hence, $\alpha A(Sx) \in U$ and $\beta A(Sx) \in A(V)$, which implies that $U \cap A(\frac{\alpha}{\beta}V) \neq \emptyset$. Hence, Γ is codisk transitive. \Box

In the following definition we introduce the notion of strictly codisk transitivity of a set of operators. The case of hypercyclicity (resp, supercyclicity, diskcyclicity) were introduced in [2, 1, 5].

Definition 3.8. We say that a set Γ of operators on X is strictly codisk transitive if for each pair of nonzero elements x, y in X, there exist some $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $\alpha T x = y$.

Remark 3.9. An operator $T \in L(X)$ is strictly codisk transitive if and only if the set $\Gamma = \{T^n : n \ge 0\}$ is strictly codisk transitive.

Proposition 3.10. If Γ is strictly codisk transitive, then it is codisk transitive. As a consequence, if Γ is strictly codisk transitive, then it is codiskcyclic.

Proof. Assume that Γ is strictly codisk transitive. If U and V are two nonempty open subsets of X, then there exist $x, y \in X$ such that $x \in U$ and $y \in V$. Since Γ is strictly codisk transitive, it follows that there exist $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $\alpha Tx = y$. Hence, $\alpha Tx \in \alpha T(U)$ and $\alpha Tx \in V$. Thus, $\alpha T(U) \cap V \neq \emptyset$, which implies that Γ is codisk transitive. By Theorem 3.6, we deduce that Γ is codiskcyclic. \Box

In the following proposition, we prove that the strictly codisk transitivity of sets of operators is preserved under similarity.

Proposition 3.11. If $\Gamma \subset L(X)$ and $\Gamma_1 \subset L(Y)$ are similar, then Γ is strictly codisk transitive in X if and only if Γ_1 is strictly codisk transitive in Y.

Proof. Assume Γ and Γ_1 are similar and let ϕ be the homeomorphism as in Definition 2.6. Assume that Γ is strictly codisk transitive in X. Let $x, y \in Y$. There exist $a, b \in X$ such that $\phi(a) = x$ and $\phi(b) = y$. Since Γ is strictly codisk transitive in X, there exist $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $\alpha Ta = b$, this implies that $\alpha \phi \circ T(a) = \phi(b)$. Let $S \in \Gamma_1$ such that $S \circ \phi = \phi \circ T$. Hence, $\alpha Sx = y$. Hence Γ_1 is strictly codisk transitive in Y. \Box

Recall that the strong operator topology (SOT for short) on L(X) is the topology with respect to which any $T \in L(X)$ has a neighborhood basis consisting of sets of the form

$$\Omega = \{ S \in L(X) : Se_i - Te_i \in U, i = 1, 2, \dots, k \},\$$

where $k \in \mathbf{N}, e_1, e_2, \ldots e_k \in X$ are linearly independent and U is a neighborhood of zero in X, see [8].

Let x be an element of a complex topological vector space X. Note that \mathbf{U}_x is the subset of X defined by $\mathbf{U}.\{x\} := \mathbf{U}_x = \{\alpha x : \alpha \in \mathbf{U}\}.$

In the following theorem, the proof is also true for norm-density if X is assumed to be a normed linear space.

Theorem 3.12. For each pair of nonzero vectors $x, y \in X$ with $y \notin \mathbf{U}_x$, there exists a SOT-dense set $\Gamma_{xy} \subset L(X)$ which is not strictly codisk transitive. Furthermore, $\Gamma \subset L(X)$ is a dense nonstrictly codisk transitive set if and only if Γ is a dense subset of Γ_{xy} for some $x, y \in X$.

Proof. Fix nonzero vectors $x, y \in X$ such that $y \notin \mathbf{U}_x$ and let Γ_{xy} the set defined by

$$\Gamma_{xy} = \{ T \in L(X) : y \notin \mathbf{U}_{Tx} \}.$$

Then Γ_{xy} is not strictly codisk transitive. Let Ω be a nonempty open set in L(X) and $S \in \Omega$. If Sx and y are such that $y \notin \mathbf{U}_{Sx}$, then $S \in \Omega \cap \Gamma_{xy}$. Otherwise, putting $S_n = S + \frac{1}{n}I$, we see that $S_k \in \Omega$ for some k, but S_kx and y are such that $y \notin \mathbf{U}_{S_kx}$. Hence, $\Omega \cap \Gamma_{xy} \neq \emptyset$ and the proof is completed.

We prove the second assertion of the theorem. Suppose that Γ is a dense subset of L(X) that is not strictly codisk transitive. Then there are nonzero vectors $x, y \in X$ such that $y \notin \mathbf{U}_{Tx}$ for all $T \in \Gamma$ and hence $\Gamma \subset \Gamma_{xy}$. To show that Γ is dense in Γ_{xy} , assume that Ω_0 is an open subset of Γ_{xy} . Thus, $\Omega_0 = \Gamma_{xy} \cap \Omega$ for some open set Ω in L(X). Then $\Gamma \cap \Omega_0 = \Gamma \cap \Omega \neq \emptyset$.

For the converse, let Γ be a dense subset of Γ_{xy} for some $x, y \in X$. Then Γ is not strictly codisk transitive. Also, since Γ_{xy} is a dense open subset of L(X), we conclude that Γ is also dense in L(X). Indeed, if Ω is any open set in L(X) then $\Omega \cap \Gamma_{xy} \neq \emptyset$ since Γ_{xy} is dense in L(X). On the other hand, $\Omega \cap \Gamma_{xy}$ is open in Γ_{xy} and so it must intersect Γ since Γ is dense in Γ_{xy} . Thus, $\Omega \cap \Gamma \neq \emptyset$ and so Γ is dense in L(X). \Box

Corollary 3.13. Let Γ be a dense subset of L(X). There is a subset Γ_1 of Γ such that $\overline{\Gamma_1} = L(X)$ and Γ_1 is not strictly codisk transitive.

Proof. Let $x, y \in X$ such that $y \notin \mathbf{U}_x$. By Theorem 3.12, there exists a SOT-dense set $\Gamma_{xy} \subset L(X)$ which is not strictly codisk transitive. Put $\Gamma_1 = \Gamma \cap \Gamma_{xy}$. Then Γ_1 is a nonempty and not strictly codisk transitive since Γ_{xy} is not. Moreover, Γ_1 is dense in L(X) since Γ and Γ_{xy} are dense in L(X). \Box

In the following definition, we introduce that notion of codiskcyclic transitivity of set of operators. The case of hypercyclicity (resp, supercyclicity, diskcyclicity) were introduced in [2, 1, 5].

Definition 3.14. We say that a set Γ of operators on X is codiskcyclic transitive if $UC(\Gamma) = X \setminus \{0\}$.

Remark 3.15. An operator $T \in L(X)$ is codiskcyclic transitive if and only if the set $\Gamma = \{T^n : n \ge 0\}$ is codiskcyclic transitive.

It is clear that a codiskcyclic transitive set is codiskcyclic. Moreover, the next proposition shows that codiskcyclic transitivity of sets of operators implies codisk transitivity. **Proposition 3.16.** If Γ is codiskcyclic transitive, then Γ is codisk transitive.

Proof. Let U and V be two nonempty open subsets of X. There exists $x \in X \setminus \{0\}$ such that $x \in U$. Since Γ is codiskcyclic transitive, there exists $\alpha \in \mathbf{U}$ and $T \in \Gamma$ such that $\alpha T x \in V$. This implies that $\alpha T(U) \cap V \neq \emptyset$. Hence, Γ is codisk transitive. \Box

In the following proposition, we prove that the codiskcyclic transitivity is preserved under similarity.

Proposition 3.17. Assume that Γ and Γ_1 are similar, then Γ is codiskcyclic transitive on X if and only if Γ_1 is codiskcyclic transitive on Y.

Proof. Assume Γ and Γ_1 are similar and let ϕ be the homeomorphism as in Definition 2.6. If Γ is a codiskcyclic transitive on X, then by Proposition 2.7, $\phi(\mathbf{U}C(\Gamma)) \subset \mathbf{U}C(\Gamma_1)$. Since ϕ is homeomorphism, the result holds. \Box

Assume that X is a topological vector space and Γ a subset of L(X). The following result shows that the SOT-closure of Γ is not large enough to have more codiskcyclic vectors than Γ .

Proposition 3.18. If $\overline{\Gamma}$ stands for the SOT-closure of Γ then $UC(\Gamma) = UC(\overline{\Gamma})$.

Proof. We only need to prove that $UC(\overline{\Gamma}) \subset UC(\Gamma)$. Fix $x \in UC(\overline{\Gamma})$ and let U be an arbitrary open subset of X. Then there is some $\alpha \in U$ and $T \in \overline{\Gamma}$ such that $\alpha Tx \in U$. The set $\Omega = \{S \in L(X) : \alpha Sx \in U\}$ is a SOT-neighborhood of T and so it must intersect Γ . Therefore, there is some $S \in \Gamma$ such that $\alpha Sx \in U$ and this shows that $x \in UC(\Gamma)$. \Box

Corollary 3.19. Let X be a topological vector space and Γ a subset of L(X). Then Γ is codiskcyclic transitive if and only if $\overline{\Gamma}$ is codiskcyclic transitive.

Proof. Assume that Γ is codiskcyclic transitive, then $\mathbf{U}C(\overline{\Gamma}) = X \setminus \{0\}$. Since by Proposition 3.18, we have $\mathbf{U}C(\overline{\Gamma}) = \mathbf{U}C(\Gamma)$, it follows that $\mathbf{U}C(\Gamma) = X \setminus \{0\}$. Hence, Γ is codiskcyclic transitive.

In the next definition, we introduce the notion of codiskcyclic criterion of a set of operators which generalizes the definition of codiskcyclic criterion of a single operator. **Definition 3.20.** We say that a set Γ of operators on X satisfies the criterion of codiskcyclicity if there exist two dense subsets X_0 and Y_0 in X and sequences $\{\alpha_k\}$ of \mathbf{U} , $\{T_k\}$ of Γ and a sequence of maps $S_k : Y_0 \longrightarrow X$ such that:

- (i) $\alpha_k T_k x \longrightarrow 0$ for all $x \in X_0$;
- (*ii*) $\alpha_k^{-1} S_k x \longrightarrow 0$ for all $y \in Y_0$;
- (*iii*) $T_k S_k y \longrightarrow y$ for all $y \in Y_0$.

Remark 3.21. An operator $T \in L(X)$ satisfies the criterion of codiskcyclicity for operators if and only if the set $\Gamma = \{T^n : n \ge 0\}$ satisfies the criterion of codiskcyclicity for sets of operators, see [18].

Theorem 3.22. Let X be a second countable Baire complex topological vector space and Γ a subset of L(X). If Γ satisfies the criterion of codiskcyclicity, then $UC(\Gamma)$ is a dense subset of X. As consequence, Γ is codiskcyclic.

Proof. Let U and V be two nonempty open subsets of X. Since X_0 and Y_0 are dense in X, there exist x_0 and y_0 in X such that $x_0 \in X_0 \cap U$ and $y_0 \in Y_0 \cap V$. For all $k \ge 1$, let $z_k = x_0 + \alpha_k^{-1}S_k y$. We have $\alpha_k^{-1}S_k y \longrightarrow 0$, which implies that $z_k \longrightarrow x_0$. Since $x_0 \in U$ and U is open, there exists $N_1 \in \mathbf{N}$ such that $z_k \in U$, for all $k \ge N_1$. On the other hand, we have $\alpha_k T_k z_k = \alpha_k T_k x_0 + T_k(S_k y_0) \longrightarrow y_0$. Since $y_0 \in V$ and V is open, there exists $N_2 \in \mathbf{N}$ such that $\alpha_k T_k z_k \in V$, for all $k \ge N_2$. Let $N = \max\{N_1, N_2\}$, then $z_k \in U$ and $\alpha_k T_k z_k \in V$, for all $k \ge N$, that is $\alpha_k T_k(U) \cap V \neq \emptyset$, for all $k \ge N$. Hence, Γ is codisk transitive. By Theorem 3.6 we deduce that $\mathbf{U}C(\Gamma)$ is a dense subset of X. We use again Theorem 3.6 to conclude that Γ is codiskcyclic and this complete the proof.

4. Codiskcyclic C₀-Semigroups of Operators

In this section we will study the particular case when Γ is a C_0 -semigroup of operators.

Recall that a family $(T_t)_{t \in \mathbf{R}_+}$ of operators is called a C_0 -semigroup of operators if the following three conditions are satisfied:

(i) $T_0 = I$ the identity operator on X;

(*ii*) $T_{t+s} = T_t T_s$ for all $t, s \in \mathbf{R}_+$;

(*iii*) $\lim_{t\to s} T_t x = T_s x$ for all $x \in X$ and $t \in \mathbf{R}_+$.

For more informations about the theory of C_0 -semigroups the reader may refer to [14].

Example 4.1. Let $X = \mathbf{C}$. For all $t \in \mathbf{R}_+$, let $T_t x = \exp(t)x$, for all $x \in \mathbf{C}$. Then $(T_t)_{t \in \mathbf{R}_+}$ is a C_0 -semigroup and we have $\mathbf{U}Orb((T_t)_{t \in \mathbf{R}_+}, 1) = \{\alpha T_t(1) : t \in \mathbf{R}_+, \alpha \in \mathbf{U}\} = \{\alpha y : y \in \mathbf{R}^+, \alpha \in \mathbf{U}\}$. Let $x \in \mathbf{C} \setminus \{0\}$. Then $x = |x| \frac{x}{|x|} \in \mathbf{U}Orb((T_t)_{t \in \mathbf{R}_+}, 1)$. Hence, $\overline{\mathbf{U}Orb((T_t)_{t \in \mathbf{R}_+}, 1)} = \mathbf{C}$. Thus, $(T_t)_{t \in \mathbf{R}_+}$ is a codiskcyclic C_0 -semigroup of operators and 1 is a codiskcyclic vector for $(T_t)_{t \in \mathbf{R}_+}$.

Recall from [16, Lemma 5.1], that if X is a complex topological vector space such that $2 \leq \dim(X) < \infty$, then X supports no supercyclic C_0 -semigroups of operators.

In the following theorem we will prove that the same result holds in the case of codiskcyclicity on a complex topological vector space.

Theorem 4.2. Assume that $2 \leq \dim(X) < \infty$. Then X supports no codiskcyclic C_0 -semigroups.

Proof. By using [16, Lemma 5.1] and the fact that $UOrb(\Gamma, x) \subset COrb(\Gamma, x)$.

A necessary and sufficient condition for a C_0 -semigroup of operators to be codiskcyclic is given in the next lemma and theorem.

Lemma 4.3. Let $(T_t)_{t \in \mathbf{R}_+}$ be a codiskcyclic C_0 -semigroup of operators on a Banach infinite dimensional space X. If $x \in X$ is a codiskcyclic vector of $(T_t)_{t \in \mathbf{R}_+}$, then the following assertions hold:

- (1) $T_t x \neq 0$, for all $t \in \mathbf{R}_+$;
- (2) The set $\{\alpha T_t x : t \geq s, \alpha \in \mathbf{U}\}$ is dense in X, for all $s \in \mathbf{R}_+$.

С.

Proof. (1) Suppose that $t_0 \in \mathbf{R}^*_+$ is minimal with the property that $T_{t_0}x = 0$. We show first that each $y \in X$ is of the form $y = \alpha T_t x$ for some $t \in [0, t_0]$ and $\alpha \in \mathbf{U}$. Since $x \in \mathbf{U}C(\Gamma)$, there exist a sequence $(t_n)_{n \in \mathbf{N}} \subset [0, t_0]$ and a sequence $(\alpha_n)_{n \in \mathbf{N}} \subset \mathbf{U}$ such that $\alpha_n T_{t_n} x \longrightarrow y$. Without loss of generality we may assume that $(t_n)_{n \in \mathbf{N}}$ converges to some t. By compactness we may assume that $(\alpha_n)_{n \in \mathbf{N}}$ converges to some α and we infer that $y = \alpha T_t x$.

Now take three vectors $y_i = \alpha_i T_{t_i} x \in X$, spanning a two-dimensional subspace, such that each pair $y_i, y_j, i \neq j$, is linearly independent. Assume that $t_1 > t_2 > t_3$. We have then $y_3 = c_1y_1 + c_2y_2$. Now we arrive at the contradiction

 $0 \neq \alpha_3 T_{(t_0+t_3-t_2)} x = T_{(t_0-t_2)} y_3 = c_1 T_{(t_0-t_2)} y_1 + c_2 T_{(t_0-t_2)} y_2$ $= c_1 \alpha_1 T_{(t_0+t_1-t_2)} x + c_2 \alpha_2 T_{t_0} x = 0.$

(2) Suppose that there exists $s_0 \in \mathbf{R}^*_+$ such that $\{\alpha T_t x : t \geq s_0, \alpha \in \mathbf{U}\}$ is not dense in X. Hence there exists a bounded open set U such that $U \cap \overline{A} = \emptyset$. Therefore we have $U \subset \overline{\{\alpha T_t x : 0 \leq t \leq s_0, \alpha \in \mathbf{U}\}}$ by using the relation

$$X = \{ \alpha T_t x : t \in \mathbf{R}_+, \, \alpha \in \mathbf{U} \}$$
$$= \overline{\{ \alpha T_t x : t \ge s_0, \, \alpha \in \mathbf{U} \}} \cup \overline{\{ \alpha T_t x : 0 \le t \le s_0, \, \alpha \in \mathbf{U} \}}.$$

Thus, \overline{U} is compact. Hence X is finite dimensional, which contradicts that X is infinite dimensional.

Theorem 4.4. Let $(T_t)_{t \in \mathbf{R}_+}$ be a C_0 -semigroup of operators on a separable Banach infinite dimensional space X. Then the following assertions are equivalent:

- (1) $(T_t)_{t \in \mathbf{R}_{\perp}}$ is codiskcyclic;
- (2) for all $y, z \in X$ and all $\varepsilon > 0$, there exist $v \in X, t \in \mathbf{R}^*_+$ and $\alpha \in \mathbf{U}$ such that $||y - v|| < \varepsilon$ and $||z - \alpha T_t v|| < \varepsilon$;
- (3) for all $y, z \in X$, all $\varepsilon > 0$ and for all $l \ge 0$, there exist $v \in X, t > l$ and $\alpha \in \mathbf{U}$ such that $||y - v|| < \varepsilon$ and $||z - \alpha T_t v|| < \varepsilon$.

Proof. (1) \Rightarrow (3): Let $x \in X$ such that $\{\alpha T_t x : t \in \mathbf{R}_+, \alpha \in \mathbf{U}\}$ is dense in X and let $\varepsilon > 0$. For any $y \in X$, there exist $s_1 > 0$ and $\alpha_1 \in \mathbf{U}$ such that $||y - \alpha_1 T_{s_1} x|| < \varepsilon$. If $l \ge 0$, then by Lemma 4.3, the set $\alpha_1 \{\alpha T_t x : t \ge s + l, \alpha \in \mathbf{U}\} := \{\alpha_1 \alpha T_t x : t \ge s + l, \alpha \in \mathbf{U}\}$ is dense in X. For any $z \in X$, there exist $s_2 > l + s_1$ and $\alpha_2 \in \mathbf{U}$ such that $||z - \alpha_1 \alpha_2 T_{s_2} x|| < \varepsilon$. Put $v = \alpha_1 T_{s_1} x, t = s_2 - s_1 > l$ and $\alpha = \alpha_2$. Then we have $||y - v|| < \varepsilon$ and $||z - \alpha T_t v|| < \varepsilon$. (3) \Rightarrow (2): It is obvious. (2) \Rightarrow (1): Let $\{z_1, z_2, z_3, ...\}$ be a dense sequence in X. We construct sequences $\{y_1, y_2, y_3, ...\} \subset X$, $\{t_1, t_2, t_3, ...\} \subset [0, +\infty)$ and $\{\alpha_1, \alpha_2, \alpha_3, ...\} \subset \mathbf{U}$ inductively:

- Put $y_1 = z_1, t_1 = 0.$
- For n > 1, find y_n , t_n and α_n such that

(4.1)
$$||y_n - y_{n-1}|| \le \frac{2^{-n}}{\sup\{||T_{t_j}|| : j < n\}},$$

and

$$(4.2) ||z_n - \alpha_n T_{t_n} y_n|| \le 2^{-n}$$

In particular, (4.1) implies that $||y_n - y_{n-1}|| \le 2^{-n}$, so that the sequence $(y_n)_{n\ge 1}$ has a limit x. Applying (4.2) and once again (4.1) we infer that

$$\begin{aligned} \|z_n - \alpha_n T_{t_n} x\| &= \|z_n - \alpha_n T_{t_n} y_n + \alpha_n T_{t_n} y_n - \alpha_n T_{t_n} x\| \\ &\leq \|z_n - \alpha_n T_{t_n} y_n\| + \|\alpha_n T_{t_n} (y_n - x)\| \\ &\leq \|z_n - \alpha_n T_{t_n} y_n\| + \|\alpha_n T_{t_n}\| \sum_{i=n+1}^{+\infty} \|y_i - y_{i-1}\| \\ &\leq 2^{-n} + \sum_{i=n+1}^{+\infty} 2^{-i} = 2^{-n+1}. \end{aligned}$$

Given $z \in X$ and $\varepsilon > 0$ there are arbitrarily large n such that $||z_n - z|| < \frac{\varepsilon}{2}$. Choosing n large enough such that $2^{-n+1} < \frac{\varepsilon}{2}$, we obtain $||\alpha_n T_{t_n} x - z|| \le ||z - z_n|| + ||z_n - \alpha_n T_{t_n} x|| < \varepsilon$. Therefore, $\{\alpha T_t x : t \in \mathbf{R}_+, \alpha \in \mathbf{U}\}$ is dense in X.

As a corollary we obtain a sufficient condition of codisk cyclicity of a C_0 -semigroup of operators.

Let X be a separable Banach infinite dimensional space. Denote X_0 the set of all $x \in X$ such that $\lim_{t \to \infty} T_t x = 0$, and X_∞ the set of all $x \in X$ such that for each $\varepsilon > 0$ there exist some $w \in X$, $\alpha \in \mathbf{U}$ and some t > 0 with $||w|| < \varepsilon$ and $||\alpha T_t w - x|| < \varepsilon$.

Theorem 4.5. Let $(T_t)_{t \in \mathbf{R}_+}$ be a C_0 -semigroup of operators on a separable Banach infinite dimensional space X. If both X_{∞} and X_0 are dense subsets, then $(T_t)_{t \in \mathbf{R}_+}$ is codiskcyclic. **Proof.** Let $z \in X_{\infty}$ and $y \in X_0$. Then for each $\varepsilon > 0$ there are arbitrarily large t > 0, $\alpha \in \mathbf{U}$ and $w \in X$ such that $||w|| < \varepsilon$ and $||\alpha T_t w - x|| < \frac{\varepsilon}{2}$. Since $y \in X_0$, for sufficiently large t we have $||\alpha T_t y|| < \frac{\varepsilon}{2}$. We put v = y + wand infer $||z - T_t v|| \le ||z - T_t w|| + ||\alpha T_t y|| < \varepsilon$, and

 $||y - v|| = ||w|| < \varepsilon$. By Theorem 4.4, the result holds.

We use Theorem 3.7 to prove that the codiskcyclicity and codisk transitivity of a C_0 -semigroup of operators on a complex topological vector space are equivalent.

Theorem 4.6. Let $(T_t)_{t \in \mathbf{R}_+}$ be a C_0 -semigroup of operators on a complex topological vector space X. Then, the following assertions are equivalent:

- (i) $(T_t)_{t \in \mathbf{R}_{\perp}}$ is codiskcyclic;
- (*ii*) $(T_t)_{t \in \mathbf{R}_+}$ is codisk transitive.

Proof. Note that if $t_1 > t_2 \ge 0$, then there exists $t = t_1 - t_2$ such that $T_{t_1} = T_t T_{t_2}$. Then use Theorem 3.7. \Box **Acknowledgment.** The authors would like to thank the referee warmly for his suggestions and valuable comments on this paper.

References

- [1] M. Amouch and O. Benchiheb, "Some versions of supercyclicity of a s set of operators", *Filomat*, vol. 35, no. 5, pp. 1619-1627, 2021. doi: 10.2298/fil2105619a
- [2] M. Amouch and O. Benchiheb, "Diskcyclicity of sets of operators and applications", *Acta Mathematica Sinica, English Series*, vol. 36, no. 11, pp. 1619-1627, 2021. pp. 1203-1220, 2020. doi: 10.1007/s10114-020-9307-3
- M. Amouch and O. Benchiheb, "On cyclic sets of operators", *Rendiconti del Circolo Matematico di Palermo Series 2*, vol. 68, no. 3, pp. 521-529, 2019. doi: 10.1007/s12215-018-0368-4
- [4] M. Amouch and O. Benchiheb, "On linear dynamics of sets of operators", *Turkish Journal of Mathematics*, vol. 43, no. 1, pp. 402-411, 2019. doi: 10.3906/mat-1808-129

- [5] M. Ansari, K. Hedayatian and B. Khani-robati, "On the density and transitivity of sets of operators", *Turkish Journal of Mathematics*, vol. 42, no. 1, pp. 181-189, 2018. doi: 10.3906/mat-1508-87
- [6] M. Ansari, K. Hedayatian, B. Khani-robati and A. Moradi, "A note on topological and strict transitivity", *Iranian Journal of Science and Technology, Transactions A: Science*, vol. 42, no. 1, pp. 59-64, 2018. doi: 10.1007/s40995-017-0325-7
- [7] F. Bayart and E. Matheron, *Dynamics of linear operators*. New York: Cambridge University Press, 2009.
- [8] J. B. Conway, *A course in Functional Analysis*. New York: Springer, 1985.
- [9] K.-G. Grosse-Erdmann and A. Peris Manguillot, *Linear chaos*. London: Springer, 2011.
- [10] K. G. Grosse-Erdmann, "Universal families and hypercyclic operators", *Bulletin of the American Mathematical Society*, vol. 36, no. 3, pp. 345-381, 1999. doi: 10.1090/s0273-0979-99-00788-0
- [11] H. M. Hilden and L. J. Wallen, "Some cyclic and non-cyclic vectors of certain operators", *Indiana University Mathematics Journal*, vol. 23, no. 7, pp. 557-565, 1974
- [12] Y. X. Liang and Z. H. Zhou, "Disk-cyclic and Codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces", *Bulletin of the Belgian Mathematical Society-Simon Stevin*, vol. 23, no. 2, pp. 203-215, 2016. doi: 10.36045/bbms/1464710114
- [13] Y. X. Liang and Z. H. Zhou, "Disk-cyclic and Codisk-cyclic of certain shift operators", *Operators and Matrices*, vol. 9, no. 4, pp. 831-846, 2015. doi: 10.7153/oam-09-48
- [14] A. Pazy, *Semigroups of Linear Operators and Applications to Partial Differential Equations*. New York: Springer, 1983.
- [15] Y. Wang, H. G. Zeng, "Disk-cyclic and codisk-cyclic weighted pseudo-shifts", *Bulletin of the Belgian Mathematical Society-Simon Stevin*, vol. 25, no. 2, pp. 209-224, 2018. doi: 10.36045/bbms/1530065010
- [16] J. Wengenroth, "Hypercyclic operators on non-locally convex spaces", *Proceedings of the American Mathematical Society*, vol. 131, pp. 1759-1761, 2003. doi: 10.1090/s0002-9939-03-07003-5

1456

- [17] J. Wo niak, D. Ahmed, M. Hama, K. Jwamer, "On Subspace Convex-Cyclic Operators", *Journal of Mathematical Physics, Analysis, Geometry*, vol. 16, No 4, pp. 473-489, 2020. doi: 10.15407/mag16.04
- [18] Z. J. Zeana, "Cyclic phenomena of operators on Hilbert space", Ph.D. Thesis, University of Baghdad, Iraq, 2002.

Mohamed Amouch

Chouaib Doukkali University Department of Mathematics, Faculty of Science El Jadida, Morocco e-mail: amouch.m@ucd.ac.ma

and

Otmane Benchiheb

Chouaib Doukkali University Department of Mathematics, Faculty of Science El Jadida, Morocco e-mail: otmane.benchiheb@gmail.com Corresponding author