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Abstract

Let X be a complex topological vector space and L(X) the set of
all continuous linear operators on X. In this paper, we extend the no-
tion of the codiskcyclicity of a single operator T ∈ L(X) to a set of
operators Γ ⊂ L(X). We prove some results for codiskcyclic sets of
operators and we establish a codiskcyclicity criterion. As an applica-
tion, we study the codiskcyclicity of C0-semigroups of operators.
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1. Introduction and Preliminary

Let X be a complex topological vector space and L(X) the set of all contin-
uous linear operators on X. By an operator, we always mean a continuous
linear operator.

The most studied notion in linear dynamics is that of hypercyclicity:
an operator T ∈ L(X) is called hypercyclic if there exists x ∈ X such that
the orbit of x under T satisfies

Orb(T, x) = {Tnx : n ∈ N} = X.

Such a vector x is called hypercyclic for T . The set of all hypercyclic
vectors for T is denoted by HC(T ).

Another important notion in linear dynamics is that of supercyclicity
which was introduced in [11]. We say that T is supercyclic if there exists
x ∈ X whose projective orbit satisfies

C.Orb(T, x) = {αTnx : α ∈ C, n ∈ N} = X.

The vector x is called a supercyclic vector for T . We denote by SC(T ) the
set of all supercyclic vectors. For more information about hypercyclic and
supercyclic operators, see [7, 10, 9, 16, 17].

Another notion in linear dynamics which was been studied by many
authors is that of codiskcyclicity: an operator T is called codiskcyclic if
ther exists x ∈ X whose codisk satisfies orbit

U.Orb(T, x) = {αTnx : α ∈ U, n ≥ 0} = X,

when U := {α ∈ C : |α| ≥ 1}. In this case, the vector x is called a
codiskcyclic vector for T . The set of all codiskcyclic vectors for T is denoted
by UC(T ).

In the case of a separable complex Banach space, an operator T is
codiskcyclic if and only if it is codisk transitive, that is for each pair (U,V )
of nonempty open sets there exist some α ∈ U and some n ≥ 0 such that
αTn(U) ∩ V 6= ∅.

For a general overview of the codiskcyclicity, see [12, 13, 15, 18].
Recently, some notions of linear dynamical systems were introduced for

a set Γ of operators instead of a single operator T, see [1, 2, 3, 4, 5, 6]: A
set Γ of operators is called hypercyclic if there exists a vector x in X such
that its orbit under Γ satisfies Orb(Γ, x) = {Tx : T ∈ Γ}, is a dense subset
of X. If there exits a vector x ∈ X such that C.Orb(Γ, x) = {αTx : T ∈
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Γ, α ∈ C}, is a dense subset of X, then Γ is supercyclic. If x ∈ X is a
vector such that span{Orb(Γ, x)} = span{Tx : T ∈ Γ} is dense in X, then
Γ is cyclic. If there exists a vector x ∈ X such that its disk orbit under
T, D.Orb(Γ, x) = {αTx : T ∈ Γ, α ∈ D}, is a dense subset X, then Γ is
called a diskcyclic, when D is the unit closed disk. In each case, the vector
x is called a hypercyclic, a supercyclic, a cyclic and a diskcyclic vector for
Γ, respectively.

In this paper, we continue the study of the dynamics of a set of operator
by introducing the concept of codiskcyclicity for a set of operators.

In Section 2, we introduce and study the codiskcyclicity for a set of
operators. In particular, we show that the set of codiscyclic vectors of a
set Γ is a Gδ type and we prove that codiskcyclicity is preserved under
quasi-similarity.

In Section 3, we extend the notion of codisk transitivity of a single
operator to a set of operators. We give the relation between this notion
and the concept of codiskcyclic and we establish a codiskcyclic criterion.

In Section 4, we study the codiskcyclicity of a C0-semigroup of oper-
ators. We show that the codiskcyclicity and the codisk transitivity are
equivalent and we prove that a codiskcyclic C0-semigroup of operators ex-
ists on X if and only if dim(X) = 1 or dim(X) =∞.

2. Codiskcyclic Sets of Operators

In the following definition, we introduce the notion of the codiskcyclicity of
a set of operators instead of a single operator.

Definition 2.1. We say that a set Γ of operators on X is codiskcyclic if
there exists x ∈ X for which the codisk orbit of x under Γ

U.Orb(Γ, x) := {αTx : α ∈ U, T ∈ Γ},

is dense in X. The vector x is called a codiskcyclic vector for Γ. The set
of all codiskcyclic vectors for Γ is denoted by UC(Γ).

Remark 2.2. An operator T is codiskcyclic if and only if the set Γ =
{Tn : n ≥ 0} is codiskcyclic.

Example 2.3. Let f be a nonzero linear form on a locally convex space
X and D be a subset of X such that the set UD := {αx : α ∈ U, x ∈ D}
is a dense subset of X. For all x ∈ X, let Tx defined by Txy = f(y)x, for
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all y ∈ X. Put Γf = {Tx : x ∈ D} and let y be a vector of X such that
f(y) 6= 0. Then U.Orb(Γf , y) = {αTxy : x ∈ D, α ∈ U} = {αf(y)x : x ∈
D, α ∈ U} = UD. Hence, Γf is codiskcyclic.

A necessary condition for the codiskcyclicity is given by the following
proposition.

Proposition 2.4. Let X be a complex normed space and Γ a subset of
L(X). If x is a codiskcyclic vector for Γ, then sup{kαTxk : α ∈ U, T ∈
Γ} = +∞.

Proof. Let x ∈ UC(Γ). Assume that sup{kαTxk : α ∈ U, T ∈ Γ} =
m < +∞, and let y ∈ X such that kyk > m. Since x ∈ UC(Γ), there exist
{αk} ⊂ U and {Tk} ⊂ Γ such that αkTkx −→ y. Hence, kyk ≤ m, which is
a contradiction. 2

We denote by {Γ}0 the set of all elements of L(X) which commutes with
every element of Γ.

Proposition 2.5. Let X be a complex topological vector space and Γ a
subset of L(X). Assume that Γ is codiskcyclic and let T ∈ L(X) be with
dense range. If T ∈ {Γ}0 , then Tx ∈ UC(Γ), for all x ∈ UC(Γ).

Proof. Let O be a nonempty open subset of X. Since T is continuous
and of dense range, T−1(O) is a nonempty open subset of X. Let x ∈
UC(Γ), then there exist α ∈ U and S ∈ Γ such that αSx ∈ T−1(O), that
is αT (Sx) ∈ O. Since T ∈ {Γ}0 , it follows that αS(Tx) = αT (Sx) ∈ O.
Hence, UOrb(Γ, Tx) meets every nonempty open subset of X. From this,
UOrb(Γ, Tx) is dense in X. That is, Tx ∈ UC(Γ). 2

The following definition is the notions of quasi-similarity and similarity
of sets of operators.

Definition 2.6. [3] LetX and Y be two complex topological vector spaces,
Γ ⊂ L(X), and Γ1 ⊂ L(Y ). We say that Γ is quasi-similar to Γ1 if there
exists a continuous map φ : X −→ Y with dense range such that ∀T ∈ Γ,
∃S ∈ Γ1 such that S◦φ = φ◦T . If φ can be chosen to be a homeomorphism,
then Γ and Γ1 are called similar.

In the following, we prove that the codiskcyclicity is preserved under
quasi-similarity.

Proposition 2.7. If Γ ⊂ L(X) is quasi-similar to Γ1 ⊂ L(Y ), then Γ is
codiskcyclic inX implies that Γ1 is codiskcyclic in Y . Moreover, φ(UC(Γ)) ⊂
UC(Γ1).
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Proof. Assume that Γ is codiskcyclic in X and let φ be the continuous
operator as in Definition 2.6. Let O be a nonempty open subset of Y , then
φ−1(O) is a nonempty open subset of X. If x ∈ UC(Γ), then there exist
α ∈ U and T ∈ Γ such that αTx ∈ φ−1(O), that is αφ(Tx) ∈ O. Let
S ∈ Γ1 such that S ◦ φ = φ ◦ T . Hence, αS(φx) = αφ(Tx) ∈ O. Hence, Γ1
is codiskcyclic and φx ∈ UC(Γ1). 2

Proposition 2.8. Let (cT )T∈Γ ⊂ R∗+. If {cTT : T ∈ Γ} is codiskcyclic
and (kT )T∈Γ is such that cT ≥ kT > 0 for all T ∈ Γ, then the set {kTT : T ∈
Γ} is codiskcyclic.

Proof. Let x be a codiskcyclic vector for {cTT : T ∈ Γ}. Since cT ≥ kT
for all T ∈ Γ, we have UOrb({cTT : T ∈ Γ}, x) ⊂ UOrb({kTT : T ∈
Γ}, x). Since UOrb({cTT : T ∈ Γ}, x) is dense in X, it follows that
UOrb({kTT : T ∈ Γ}, x) is dense in X, this means that {kTT : T ∈ Γ} is
codiskcyclic in X. 2

Proposition 2.9. Let {Xi}ni=1 be a family of complex topological vector
spaces and Γi a subset of L(Xi), for 1 ≤ i ≤ n. If

Ln
i=1 Γi is a codiskcyclic

set in
Ln

i=1Xi, then Γi is a codiskcyclic set in Xi, for all 1 ≤ i ≤ n.

Proof. If 1 ≤ j ≤ n, then
Ln

i=1 Γi is quasi-similar to Γj , and the result
follow by Proposition 2.7. 2

Let X be a complex topological vector space. The following proposition
gives a characterization of the set of codiskcyclic vector of set of operators
using a countable basis of the topology of X. Note that the set D is the
unit closed disk defined by D = {α ∈ C : |α| ≤ 1}.

Proposition 2.10. Let X be a second countable complex topological vec-
tor space and Γ a subset of L(X). If Γ is codiskcyclic, then

UC(Γ) =
\
n≥1

⎛⎝ [
β∈D

[
T∈Γ

T−1(βUn)

⎞⎠ ,

where (Un)n≥1 is a countable basis of the topology of X. As a consequence,
UC(Γ) is a Gδ type set.
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Proof. Let x ∈ X. Then, x ∈ UC(Γ) if and only if UOrb(Γ, x) = X.
Equivalently, for all n ≥ 1, Un∩UOrb(Γ, x) 6= ∅, that is for all n ≥ 1, there
exist λ ∈ U and T ∈ Γ such that λTx ∈ Un. This is equivalent to the fact
that for all n ≥ 1, there exist β ∈ D and T ∈ Γ such that x ∈ T−1(βUn).
Hence, x ∈

\
n≥1

[
β∈D

[
T∈Γ

T−1(βUn). 2

3. Density and Codisk Transitivity of Sets of Operators

In the following definition, we introduce the notion of a codisk transitive set
of operators which generalize the codisk transitivity of a single operator.

Definition 3.1. We say that a set Γ of operators on X is codisk transitive
if for any pair (U, V ) of nonempty open subsets of X, there exist α ∈ U
and T ∈ Γ such that T (αU) ∩ V 6= ∅.

Remark 3.2. An operator T ∈ L(X) is codisk transitive if and only if
Γ = {Tn : n ≥ 0} is codisk transitive.

Example 3.3. Assume that X is a locally convex space. Let x, y ∈ X and
let fy be a linear form on X such that fy(y) 6= 0. Let Tfy,x be an operator
defined by Tfy,xz = fy(z)x. Define Γ = {Tfy,x : x, y ∈ X such that fy(y) 6=
0}. Let U and V be two nonempty open subsets of X. There exist x, y ∈ X
such that x ∈ U and y ∈ V . We have Tfy,x(y) = fy(y)x. Since 0 < fy(y) <
1, it follows that x = 1

fy(y)
Tfy,x(y). Hence x ∈ U and x ∈ 1

fy(y)
Tfy,x(V ),

which implies that U ∩ 1
fy(y)

Tfy,x(V ) 6= ∅. Thus Γ is a codisk transitive.

In the following proposition, we prove that the codisk transitivity of
sets of operators is preserved under quasi-similarity.

Proposition 3.4. Assume that Γ ⊂ L(X) is quasi-similar to Γ1 ⊂ L(Y ).
If Γ is codisk transitive in X, then Γ1 is codisk transitive in Y .

Proof. Assume that Γ is codisk transitive and let φ be the continuous
operator as in Definition 2.6. Let U and V be nonempty open subsets of X.
Since φ is continuous and of dense range, φ−1(U) and φ−1(V ) are nonempty
and open sets. Since Γ is codisk transitive in X, there exist y ∈ φ−1(U)
and α ∈ U, T ∈ Γ with αTy ∈ φ−1(V ), which implies that φ(y) ∈ U and
αφ(Ty) ∈ V . Let S ∈ Γ such that S ◦ φ = φ ◦ T . Then, φ(y) ∈ U and
αSφ(y) ∈ V . Thus, αS(U)∩ V 6= ∅. Hence, Γ1 is codisk transitive in Y. 2

In the following result, we give necessary and sufficient conditions for a
set of operators to be codisk transitive.
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Theorem 3.5. Let X be a complex normed space and Γ a subset of L(X).
The following assertions are equivalent:

(i) Γ is codisk transitive;

(ii) For each x, y ∈ X, there exists sequences {xk} in X, {αk} in U and
{Tk} in Γ such that xk −→ x and αkTk(xk) −→ y;

(iii) For each x, y ∈ X and for W a neighborhood of 0, there exist z ∈ X,
α ∈ U and T ∈ Γ such that x− z ∈W and αT (z)− y ∈W.

Proof. (i) ⇒ (ii) Let x, y ∈ X. For all k ≥ 1, let Uk = B(x, 1k ) and
Vk = B(y, 1k ). Then Uk and Vk are nonempty open subsets of X. Since Γ is
codisk transitive, there exist αk ∈ U and Tk ∈ Γ such that αkTk(Uk)∩Vk 6=
∅. For all k ≥ 1, let xk ∈ Uk such that αkTk(xk) ∈ Vk, then kxk − xk < 1

k
and kαkTk(xk)−yk < 1

k , this implies that xk −→ x and αkTk(xk) −→ y.
(ii)⇒ (iii) Clear.
(iii) ⇒ (i) Let U and V be two nonempty open subsets of X. Then
there exists x, y ∈ X such that x ∈ U and y ∈ V . Since for all k ≥ 1,
Wk = B(0, 1k ) is a neighborhood of 0, there exist zk ∈ X, αk ∈ U and
Tk ∈ Γ such that kx − zkk < 1

k and αkTk(zk) − yk < 1
k . This implies

that zk −→ x and αkTk(zk) −→ y. Since U and V are nonempty open
subsets of X, x ∈ U and y ∈ V , there exists N ∈ N such that zk ∈ U and
αkTk(zk) ∈ V , for all k ≥ N. 2

Let Γ be a subset of L(X). In whats follows, we prove that Γ is codisk
transitive if and only if it admits a dense subset of codiskcyclic vectors.

Theorem 3.6. Let X be a second countable Baire complex topological
vector space and Γ a subset of L(X). The following assertions are equivalent:

(i) UC(Γ) is dense in X;

(ii) Γ is codisk transitive.

As a consequence, a codisk transitive set is codiskcyclic.

Proof. countable basis of the topology of X.
(i) ⇒ (ii) : Assume that UC(Γ) is dense in X and let U and V be two
nonempty open subsets of X. By Proposition 2.10, we have UC(Γ) =T
n≥1

³S
β∈D

S
T∈Γ T

−1(βUn)
´
.Hence, for all n ≥ 1, An :=

[
β∈D

[
T∈Γ

T−1(βUn)
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is dense in X. Thus, for all n, m ≥ 1, we have An ∩ Um 6= ∅ which im-
plies that for all n, m ≥ 1, there exist β ∈ U and T ∈ Γ such that
T (βUm) ∩ Un 6= ∅. Hence, Γ is a codisk transitive set.
(ii) ⇒ (i) : Assume that Γ is codisk transitive. Let n, m ≥ 1, then there
exist β ∈ U and T ∈ Γ such that T (βUm) ∩ Un 6= ∅, which implies that
T−1( 1βUn) ∩ Um 6= ∅. Hence, for all n ≥ 1, we have

[
β∈D

[
T∈Γ

T−1(βUn) is

dense in X. Since X is a Baire space, it follows that

UC(Γ) =
T
n≥1

³S
β∈D

S
T∈Γ T

−1(βUn)
´
is a dense subset of X. 2

As a consequence of Theorem 3.6, a codisk transitive set is codiskcyclic.
In the following theorem, we prove that the converse holds with an addi-
tional assumption.

Theorem 3.7. LetX be a complex topological vector space and Γ a subset
of L(X). Assume that for all T , S ∈ Γ with T 6= S, there exists A ∈ Γ such
that T = AS. The following assertions are equivalent:

(i) Γ is codiskcyclic;

(ii) Γ is codisk transitive.

Proof. (ii)⇒ (i) This implication is due to Theorem 3.6.
(i)⇒ (ii) Since Γ is codiskcyclic, there exists x ∈ X such that UOrb(Γ, x)
is a dense subset of X. Let U and V be two nonempty open subsets of X,
then there exist α, β ∈ U with |α| ≥ |β|, and T , S ∈ Γ such that αTx ∈ U
and βSx ∈ V. There exists A ∈ Γ such that T = AS. Hence, αA(Sx) ∈ U
and βA(Sx) ∈ A(V ), which implies that U∩A(αβV ) 6= ∅. Hence, Γ is codisk
transitive. 2

In the following definition we introduce the notion of strictly codisk
transitivity of a set of operators. The case of hypercyclicity (resp, super-
cyclicity, diskcyclicity) were introduced in [2, 1, 5].

Definition 3.8. We say that a set Γ of operators on X is strictly codisk
transitive if for each pair of nonzero elements x, y in X, there exist some
α ∈ U and T ∈ Γ such that αTx = y.

Remark 3.9. An operator T ∈ L(X) is strictly codisk transitive if and
only if the set Γ = {Tn : n ≥ 0} is strictly codisk transitive.

Proposition 3.10. If Γ is strictly codisk transitive, then it is codisk transi-
tive. As a consequence, if Γ is strictly codisk transitive, then it is codiskcyclic.
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Proof. Assume that Γ is strictly codisk transitive. If U and V are two
nonempty open subsets of X, then there exist x, y ∈ X such that x ∈ U and
y ∈ V . Since Γ is strictly codisk transitive, it follows that there exist α ∈ U
and T ∈ Γ such that αTx = y. Hence, αTx ∈ αT (U) and αTx ∈ V. Thus,
αT (U)∩V 6= ∅, which implies that Γ is codisk transitive. By Theorem 3.6,
we deduce that Γ is codiskcyclic. 2

In the following proposition, we prove that the strictly codisk transitiv-
ity of sets of operators is preserved under similarity.

Proposition 3.11. If Γ ⊂ L(X) and Γ1 ⊂ L(Y ) are similar, then Γ is
strictly codisk transitive in X if and only if Γ1 is strictly codisk transitive
in Y.

Proof. Assume Γ and Γ1 are similar and let φ be the homeomorphism
as in Definition 2.6. Assume that Γ is strictly codisk transitive in X. Let
x, y ∈ Y . There exist a, b ∈ X such that φ(a) = x and φ(b) = y. Since
Γ is strictly codisk transitive in X, there exist α ∈ U and T ∈ Γ such
that αTa = b, this implies that αφ ◦ T (a) = φ(b). Let S ∈ Γ1 such that
S ◦φ = φ ◦ T . Hence, αSx = y. Hence Γ1 is strictly codisk transitive in Y .
2

Recall that the strong operator topology (SOT for short) on L(X) is
the topology with respect to which any T ∈ L(X) has a neighborhood basis
consisting of sets of the form

Ω = {S ∈ L(X) : Sei − Tei ∈ U , i = 1, 2, . . . , k},

where k ∈ N, e1, e2, . . . ek ∈ X are linearly independent and U is a neigh-
borhood of zero in X, see [8].

Let x be an element of a complex topological vector space X. Note that
Ux is the subset of X defined by U.{x} := Ux = {αx : α ∈ U}.

In the following theorem, the proof is also true for norm-density if X is
assumed to be a normed linear space.

Theorem 3.12. For each pair of nonzero vectors x, y ∈ X with y /∈ Ux,
there exists a SOT-dense set Γxy ⊂ L(X) which is not strictly codisk tran-
sitive. Furthermore, Γ ⊂ L(X) is a dense nonstrictly codisk transitive set
if and only if Γ is a dense subset of Γxy for some x, y ∈ X.
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Proof. Fix nonzero vectors x, y ∈ X such that y /∈ Ux and let Γxy the
set defined by

Γxy = {T ∈ L(X) : y /∈ UTx}.
Then Γxy is not strictly codisk transitive. Let Ω be a nonempty open set
in L(X) and S ∈ Ω. If Sx and y are such that y /∈ USx, then S ∈ Ω∩ Γxy.
Otherwise, putting Sn = S + 1

nI, we see that Sk ∈ Ω for some k, but
Skx and y are such that y /∈ USkx. Hence, Ω ∩ Γxy 6= ∅ and the proof is
completed.

We prove the second assertion of the theorem. Suppose that Γ is a dense
subset of L(X) that is not strictly codisk transitive. Then there are nonzero
vectors x, y ∈ X such that y /∈ UTx for all T ∈ Γ and hence Γ ⊂ Γxy. To
show that Γ is dense in Γxy, assume that Ω0 is an open subset of Γxy. Thus,
Ω0 = Γxy ∩ Ω for some open set Ω in L(X). Then Γ ∩Ω0 = Γ ∩ Ω 6= ∅.

For the converse, let Γ be a dense subset of Γxy for some x, y ∈ X.
Then Γ is not strictly codisk transitive. Also, since Γxy is a dense open
subset of L(X), we conclude that Γ is also dense in L(X). Indeed, if Ω is
any open set in L(X) then Ω ∩ Γxy 6= ∅ since Γxy is dense in L(X). On
the other hand, Ω∩Γxy is open in Γxy and so it must intersect Γ since Γ is
dense in Γxy. Thus, Ω ∩ Γ 6= ∅ and so Γ is dense in L(X). 2

Corollary 3.13. Let Γ be a dense subset of L(X). There is a subset Γ1
of Γ such that Γ1 = L(X) and Γ1 is not strictly codisk transitive.

Proof. Let x, y ∈ X such that y /∈ Ux. By Theorem 3.12, there exists
a SOT-dense set Γxy ⊂ L(X) which is not strictly codisk transitive. Put
Γ1 = Γ ∩ Γxy. Then Γ1 is a nonempty and not strictly codisk transitive
since Γxy is not. Moreover, Γ1 is dense in L(X) since Γ and Γxy are dense
in L(X). 2

In the following definition, we introduce that notion of codiskcyclic tran-
sitivity of set of operators. The case of hypercyclicity (resp, supercyclicity,
diskcyclicity) were introduced in [2, 1, 5].

Definition 3.14. We say that a set Γ of operators on X is codiskcyclic
transitive if UC(Γ) = X \ {0}.

Remark 3.15. An operator T ∈ L(X) is codiskcyclic transitive if and only
if the set Γ = {Tn : n ≥ 0} is codiskcyclic transitive.

It is clear that a codiskcyclic transitive set is codiskcyclic. Moreover,
the next proposition shows that codiskcyclic transitivity of sets of operators
implies codisk transitivity.
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Proposition 3.16. If Γ is codiskcyclic transitive, then Γ is codisk transi-
tive.

Proof. Let U and V be two nonempty open subsets of X. There exists
x ∈ X \ {0} such that x ∈ U . Since Γ is codiskcyclic transitive, there exists
α ∈ U and T ∈ Γ such that αTx ∈ V . This implies that αT (U) ∩ V 6= ∅.
Hence, Γ is codisk transitive. 2

In the following proposition, we prove that the codiskcyclic transitivity
is preserved under similarity.

Proposition 3.17. Assume that Γ and Γ1 are similar, then Γ is codiskcyclic
transitive on X if and only if Γ1 is codiskcyclic transitive on Y .

Proof. Assume Γ and Γ1 are similar and let φ be the homeomorphism as
in Definition 2.6. If Γ is a codiskcyclic transitive on X, then by Proposition
2.7, φ(UC(Γ)) ⊂ UC(Γ1). Since φ is homeomorphism, the result holds. 2

Assume that X is a topological vector space and Γ a subset of L(X).
The following result shows that the SOT-closure of Γ is not large enough
to have more codiskcyclic vectors than Γ.

Proposition 3.18. If Γ stands for the SOT-closure of Γ then UC(Γ) =
UC(Γ).

Proof. We only need to prove that UC(Γ) ⊂ UC(Γ). Fix x ∈ UC(Γ)
and let U be an arbitrary open subset of X. Then there is some α ∈ U
and T ∈ Γ such that αTx ∈ U . The set Ω = {S ∈ L(X) : αSx ∈ U} is
a SOT-neighborhood of T and so it must intersect Γ. Therefore, there is
some S ∈ Γ such that αSx ∈ U and this shows that x ∈ UC(Γ). 2

Corollary 3.19. Let X be a topological vector space and Γ a subset of
L(X). Then Γ is codiskcyclic transitive if and only if Γ is codiskcyclic
transitive.

Proof. Assume that Γ is codiskcyclic transitive, then UC(Γ) = X \
{0}. Since by Proposition 3.18, we have UC(Γ) = UC(Γ), it follows that
UC(Γ) = X \ {0}. Hence, Γ is codiskcyclic transitive. 2

In the next definition, we introduce the notion of codiskcyclic criterion
of a set of operators which generalizes the definition of codiskcyclic criterion
of a single operator.
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Definition 3.20. We say that a set Γ of operators on X satisfies the cri-
terion of codiskcyclicity if there exist two dense subsets X0 and Y0 in X
and sequences {αk} of U, {Tk} of Γ and a sequence of maps Sk : Y0 −→ X
such that:

(i) αkTkx −→ 0 for all x ∈ X0;

(ii) α−1k Skx −→ 0 for all y ∈ Y0;

(iii) TkSky −→ y for all y ∈ Y0.

Remark 3.21. An operator T ∈ L(X) satisfies the criterion of codiskcyclic-
ity for operators if and only if the set Γ = {Tn : n ≥ 0} satisfies the criterion
of codiskcyclicity for sets of operators, see [18].

Theorem 3.22. Let X be a second countable Baire complex topologi-
cal vector space and Γ a subset of L(X). If Γ satisfies the criterion of
codiskcyclicity, then UC(Γ) is a dense subset of X. As consequence, Γ is
codiskcyclic.

Proof. Let U and V be two nonempty open subsets of X. Since X0 and
Y0 are dense in X, there exist x0 and y0 in X such that x0 ∈ X0 ∩ U and
y0 ∈ Y0 ∩ V. For all k ≥ 1, let zk = x0 + α−1k Sky. We have α

−1
k Sky −→ 0,

which implies that zk −→ x0. Since x0 ∈ U and U is open, there exists
N1 ∈ N such that zk ∈ U , for all k ≥ N1. On the other hand, we have
αkTkzk = αkTkx0 + Tk(Sky0) −→ y0. Since y0 ∈ V and V is open, there
existsN2 ∈N such that αkTkzk ∈ V , for all k ≥ N2. LetN =max{N1, N2},
then zk ∈ U and αkTkzk ∈ V , for all k ≥ N , that is αkTk(U) ∩ V 6= ∅, for
all k ≥ N . Hence, Γ is codisk transitive. By Theorem 3.6 we deduce that
UC(Γ) is a dense subset of X. We use again Theorem 3.6 to conclude that
Γ is codiskcyclic and this complete the proof. 2

4. Codiskcyclic C0-Semigroups of Operators

In this section we will study the particular case when Γ is a C0-semigroup
of operators.

Recall that a family (Tt)t∈R+
of operators is called a C0-semigroup of

operators if the following three conditions are satisfied:

(i) T0 = I the identity operator on X;
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(ii) Tt+s = TtTs for all t, s ∈ R+;

(iii) limt→s Ttx = Tsx for all x ∈ X and t ∈ R+.

For more informations about the theory of C0-semigroups the reader
may refer to [14].

C.

Example 4.1. Let X = C. For all t ∈ R+, let Ttx = exp(t)x, for all
x ∈ C. Then (Tt)t∈R+

is a C0-semigroup and we haveUOrb((Tt)t∈R+
, 1) =

{αTt(1) : t ∈ R+, α ∈ U} = {αy : y ∈ R+, α ∈ U}. Let x ∈ C\{0}. Then
x = |x| x|x| ∈ UOrb((Tt)t∈R+

, 1). Hence, UOrb((Tt)t∈R+
, 1) = C. Thus,

(Tt)t∈R+
is a codiskcyclic C0-semigroup of operators and 1 is a codiskcyclic

vector for (Tt)t∈R+
.

Recall from [16, Lemma 5.1], that if X is a complex topological vector
space such that 2 ≤ dim(X) < ∞, then X supports no supercyclic C0-
semigroups of operators.

In the following theorem we will prove that the same result holds in the
case of codiskcyclicity on a complex topological vector space.

Theorem 4.2. Assume that 2 ≤ dim(X) < ∞. Then X supports no
codiskcyclic C0-semigroups.

Proof. By using [16, Lemma 5.1] and the fact that UOrb(Γ, x) ⊂
COrb(Γ, x). 2

A necessary and sufficient condition for a C0-semigroup of operators to
be codiskcyclic is given in the next lemma and theorem.

Lemma 4.3. Let (Tt)t∈R+
be a codiskcyclic C0-semigroup of operators on

a Banach infinite dimensional space X. If x ∈ X is a codiskcyclic vector of
(Tt)t∈R+

, then the following assertions hold:

(1) Ttx 6= 0, for all t ∈ R+;

(2) The set {αTtx : t ≥ s, α ∈ U} is dense in X, for all s ∈ R+.
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Proof. (1) Suppose that t0 ∈ R∗+ is minimal with the property that
Tt0x = 0. We show first that each y ∈ X is of the form y = αTtx for
some t ∈ [0, t0] and α ∈ U. Since x ∈ UC(Γ), there exist a sequence
(tn)n∈N ⊂ [0, t0] and a sequence (αn)n∈N ⊂ U such that αnTtnx −→ y.
Without loss of generality we may assume that (tn)n∈N converges to some
t. By compactness we may assume that (αn)n∈N converges to some α and
we infer that y = αTtx.

Now take three vectors yi = αiTtix ∈ X, spanning a two-dimensional
subspace, such that each pair yi, yj , i 6= j, is linearly independent. Assume
that t1 > t2 > t3. We have then y3 = c1y1 + c2y2. Now we arrive at the
contradiction

0 6= α3T(t0+t3−t2)x = T(t0−t2)y3 = c1T(t0−t2)y1 + c2T(t0−t2)y2
= c1α1T(t0+t1−t2)x+ c2α2Tt0x = 0.

(2) Suppose that there exists s0 ∈ R∗+ such that {αTtx : t ≥ s0, α ∈ U}
is not dense in X. Hence there exists a bounded open set U such that
U ∩ A = ∅. Therefore we have U ⊂ {αTtx : 0 ≤ t ≤ s0, α ∈ U} by using
the relation

X = {αTtx : t ∈ R+, α ∈ U}
= {αTtx : t ≥ s0, α ∈ U} ∪ {αTtx : 0 ≤ t ≤ s0, α ∈ U}.

Thus, U is compact. Hence X is finite dimensional, which contradicts that
X is infinite dimensional. 2

Theorem 4.4. Let (Tt)t∈R+
be a C0-semigroup of operators on a separa-

ble Banach infinite dimensional space X. Then the following assertions are
equivalent:

(1) (Tt)t∈R+
is codiskcyclic;

(2) for all y, z ∈ X and all ε > 0, there exist v ∈ X, t ∈ R∗+ and α ∈ U
such that ky − vk < ε and kz − αTtvk < ε;

(3) for all y, z ∈ X, all ε > 0 and for all l ≥ 0, there exist v ∈ X, t > l
and α ∈ U such that ky − vk < ε and kz − αTtvk < ε.

Proof. (1) ⇒ (3): Let x ∈ X such that {αTtx : t ∈ R+, α ∈ U}
is dense in X and let ε > 0. For any y ∈ X, there exist s1 > 0 and
α1 ∈ U such that ky − α1Ts1xk < ε. If l ≥ 0, then by Lemma 4.3, the
set α1{αTtx : t ≥ s + l, α ∈ U} := {α1αTtx : t ≥ s + l, α ∈ U} is dense
in X. For any z ∈ X, there exist s2 > l + s1 and α2 ∈ U such that
kz − α1α2Ts2xk < ε. Put v = α1Ts1x, t = s2 − s1 > l and α = α2. Then
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we have ky − vk < ε and kz − αTtvk < ε.
(3)⇒ (2): It is obvious.
(2) ⇒ (1): Let {z1, z2, z3, ...} be a dense sequence in X. We construct se-
quences {y1, y2, y3, ...} ⊂ X, {t1, t2, t3, ...} ⊂ [0,+∞) and {α1, α2, α3, ...} ⊂
U inductively:

• Put y1 = z1, t1 = 0.

• For n > 1, find yn, tn and αn such that

kyn − yn−1k ≤
2−n

sup{kTtjk : j < n} ,(4.1)

and

kzn − αnTtnynk ≤ 2−n.(4.2)

In particular, (4.1) implies that kyn−yn−1k ≤ 2−n, so that the sequence
(yn)n≥1 has a limit x. Applying (4.2) and once again (4.1) we infer that

kzn − αnTtnxk = kzn − αnTtnyn + αnTtnyn − αnTtnxk
≤ kzn − αnTtnynk+ kαnTtn(yn − x)k
≤ kzn − αnTtnynk+ kαnTtnk

P+∞
i=n+1 kyi − yi−1k

≤ 2−n +P+∞
i=n+1 2

−i = 2−n+1.
Given z ∈ X and ε > 0 there are arbitrarily large n such that kzn−zk <

ε
2 . Choosing n large enough such that 2

−n+1 < ε
2 , we obtain kαnTtnx−zk ≤

kz− znk+ kzn−αnTtnxk < ε. Therefore, {αTtx : t ∈ R+, α ∈ U} is dense
in X. 2

As a corollary we obtain a sufficient condition of codiskcyclicity of a
C0-semigroup of operators.

Let X be a separable Banach infinite dimensional space. Denote X0 the
set of all x ∈ X such that limt−→∞ Ttx = 0, and X∞ the set of all x ∈ X
such that for each ε > 0 there exist some w ∈ X, α ∈ U and some t > 0
with kwk < ε and kαTtw − xk < ε.

Theorem 4.5. Let (Tt)t∈R+
be a C0-semigroup of operators on a separable

Banach infinite dimensional spaceX. If bothX∞ andX0 are dense subsets,
then (Tt)t∈R+

is codiskcyclic.
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Proof. Let z ∈ X∞ and y ∈ X0. Then for each ε > 0 there are arbitrarily
large t > 0, α ∈ U and w ∈ X such that kwk < ε and kαTtw − xk < ε

2 .
Since y ∈ X0, for sufficiently large t we have kαTtyk < ε

2 . We put v = y+w
and infer kz − Ttvk ≤ kz − Ttwk+ kαTtyk < ε,

and

ky − vk = kwk < ε. By Theorem 4.4, the result holds. 2

We use Theorem 3.7 to prove that the codiskcyclicity and codisk transi-
tivity of a C0-semigroup of operators on a complex topological vector space
are equivalent.

Theorem 4.6. Let (Tt)t∈R+
be a C0-semigroup of operators on a complex

topological vector space X. Then, the following assertions are equivalent:

(i) (Tt)t∈R+
is codiskcyclic;

(ii) (Tt)t∈R+
is codisk transitive.

Proof. Note that if t1 > t2 ≥ 0, then there exists t = t1 − t2 such that
Tt1 = TtTt2 . Then use Theorem 3.7. 2
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