An extension of biconservative timelike hypersurfaces in Einstein space

Firooz Pashaie
University of Maragheh, Iran
Received: June 2021. Accepted : September 2021

Abstract

A well-known conjecture of Bang-Yen Chen says that the only biharmonic Euclidean submanifolds are minimal ones, which affirmed by himself for surfaces in 3 -dimensional Euclidean space, E^{3}. We consider an extended version of Chen conjecture (namely, L_{k}-conjecture) on Lorentzian hypersurfaces of the pseudo-Euclidean space E_{1}^{4} (i.e. the Einstein space). The biconservative submanifolds in the Euclidean spaces are submanifolds with conservative stress-energy with respect to the bienergy functional. In this paper, we consider an extended condition (namely, L_{k}-biconservativity) on non-degenerate timelike hypersurfaces of the Einstein space E_{1}^{4}. A Lorentzian hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is called L_{k}-biconservative if the tangent part of $L_{k}^{2} x$ vanishes identically. We show that L_{k}-biconservativity of a timelike hypersurface of E_{1}^{4} (with constant k th mean curvature and some additional conditions) implies that its $(k+1)$ th mean curvature is constant.

Keywords: Timelike hypersurface, Biconservative, L_{k}-biconservative.
2010 Mathematics Subject Classification: Primary: 53-02, 53C40, 53C42; Secondary 58G25.

1. Introduction

The main geometric motivation of the subject of biconservative hypersurfaces is a well-known conjecture of Bang-Yen Chen (in 1987) which states that each biharmonic surface in Euclidean 3-spaces E^{3} is harmonic. In 1992, Dimitrić proved that any biharmonic hypersurface in E^{m} with at most two distinct principal curvatures is minimal ([9]). Let $\phi: M^{n} \rightarrow E^{n+1}$ denotes an isometric immersion of a hypersurface M^{n} into the ($n+1$)-dimensional Euclidean space with the Laplace operator Δ, the shape operator S associated to a unit normal vector field \mathbf{n} and the ordinary mean curvature H on M^{n}. The hypersurface M^{n} is said to be harmonic if ϕ satisfies condition $\Delta \phi=0$. It is said to be biharmonic if ϕ satisfies condition $\Delta^{2} \phi=0$. Also, M^{n} is said to be biconservative if the tangential part of $\Delta^{2} \phi$ vanishes identically. A famous law due to Beltrami says that $\Delta \phi=-n H \mathbf{n}$, so the condition $\Delta \phi=0$ is equivalent to $H \equiv 0$ and the condition $\Delta^{2} \phi=0$ is equivalent to $\Delta(H \mathbf{n})=0$. In 1995, Hasanis and Vlachos proved an extension of Chen's result to the hypersurfaces in Euclidean 4 -space ([10]). Also, in 2013, Akutagawa and Maeta ([1]) have generalized Chen's conjecture on submanifolds in Euclidean n-space. As an extended case, a hypersurface $x: M_{p}^{3} \rightarrow E_{s}^{4}$, whose mean curvature vector field is an eigenvector of the Laplace operator Δ, has been studied, for instance, in [7, 8] for the Euclidean case (where, $p=s=0$), and for the Lorentz case in [3, 4] (when $s=1$ and $p=0,1)$. On the other hand, Chen himself had found a good relation between the finite type hypersurfaces and biharmonic ones. The theory of finite type hypersurfaces is a well-known subject interested by Chen (for instance, in [5, 6]) and also L. J. Alias, S.M.B. Kashani and others. In [11], Kashani has studied the notion of L_{1}-finite type Euclidean hypersurfaces as an extension of finite type ones. One can see main results in Chapter 11 of Chen's book ([5]).

The map L_{1} is an extension of the Laplace operator $L_{0}=\Delta$, which stands for the linearized operator of the first variation of the 2th mean curvature of the hypersurface (see, for instance, $[2,12,16,17,19]$). This operator is defined by $L_{1}(f)=\operatorname{tr}\left(P_{1} \circ \nabla^{2} f\right)$ for any $f \in C^{\infty}(M)$, where $P_{1}=n H I-S$ denotes the first Newton transformation associated to the second fundamental from of the hypersurface and $\nabla^{2} f$ is the hessian of f. It is interesting to generalize the definition of biharmonic hypersurface by replacing Δ by L_{1}. Recently, in [14], we have studied the $L_{1}-$ biharmonic spacelike hypersurfaces in 4-dimentional Minkowski space E_{1}^{4}. In this paper, we study the L_{k}-biconservative Lorentzian hypersurfaces in
the Einstein space E_{1}^{4}. We show that, every L_{k}-biconservative Lorentzian hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$, with constant k th mean curvature and some additional conditions on principal curvatures, has constant $(k+1)$ th mean curvature.

2. Preliminaries

In this section, we restate some preliminaries from $[2,12,13]$ and [15][18]. The 4-dimensional Minkowski space, denoted by E_{1}^{4}, is the real vector space R^{4} equipped with the scalar product $\langle x, y\rangle:=-x_{1} y_{1}+\sum_{i=2}^{4} x_{i} y_{i}$, for every $x, y \in R^{4}$. Any nondegenerate hypersurface M_{p}^{3} of E_{1}^{4}, can be endowed with a Riemannian or Lorentzian induced metric of index $p=0$ or $p=1$, respectively. Our study will be on a Lorentzian hypersurface of E_{1}^{4}, denoted by an isometric immersion $x: M_{1}^{3} \rightarrow E_{1}^{4}$. The symbols $\tilde{\nabla}$ and $\bar{\nabla}$ stand for the Levi-Civita connection on M_{1}^{3} and E_{1}^{4}, respectively. For every tangent vector fields X and Y on M, the Gauss formula is given by $\bar{\nabla}_{X} Y=\tilde{\nabla}_{X} Y+<S X, Y>\mathbf{n}$, for every $X, Y \in \chi(M)$, where, \mathbf{n} is a (locally) unit normal vector field on M and S is the shape operator of M relative to \mathbf{n}. Every non null vector $X \in E_{1}^{4}$ is called time-like, light-like or space-like if $<X, X>$ is negative, zero or positive, respectively.

Definition 2.1. For a Lorentzian vector space V_{1}^{3}, a basis $\mathcal{B}:=\left\{e_{1}, e_{2}, e_{3}\right\}$ is said to be orthonormal if it satisfies $<e_{i}, e_{j}>=\epsilon_{i} \delta_{i}^{j}$ for $i, j=1,2,3$, where $\epsilon_{1}=-1$ and $\epsilon_{i}=1$ for $i=2,3$. As usual, δ_{i}^{j} stands for the Kronecker function. \mathcal{B} is called pseudo - orthonormal if it satisfies $\left.<e_{1}, e_{1}\right\rangle=<$ $e_{2}, e_{2}>=0,<e_{1}, e_{2}>=-1$ and $<e_{i}, e_{j}>=\delta_{i}^{j}$, for $i=1,2,3$ and $j=3$.

As well-known, the shape operator of the Lorentzian hypersurface M_{1}^{3}, as a self-adjoint linear map on the tangent space of M_{1}^{3}, can be put into one of four possible canonical matrix forms, usually denoted by $I, I I, I I I$ and $I V$. Where, in cases I and $I V$, with respect to an orthonormal basis of the tangent space of M_{1}^{3}, the matrix representation of the induced metric on M_{1}^{3} is

$$
G_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the shape operator S of M_{1}^{3} can be put into matrix forms

$$
B_{1}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \quad \text { and } \quad B_{4}=\left(\begin{array}{ccc}
\kappa & \lambda & 0 \\
-\lambda & \kappa & 0 \\
0 & 0 & \eta
\end{array}\right), \quad(\lambda \neq 0)
$$

respectively. For cases $I I$ and $I I I$, using a pseudo-orthonormal basis of the tangent space of M_{1}^{3}, the induced metric on M_{1}^{3} has matrix form

$$
G_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the shape operator S of M_{1}^{3} can be put into matrix forms

$$
B_{2}=\left(\begin{array}{ccc}
\kappa & 0 & 0 \\
1 & \kappa & 0 \\
0 & 0 & \lambda
\end{array}\right) \quad \text { and } \quad B_{3}=\left(\begin{array}{ccc}
\kappa & 0 & 0 \\
0 & \kappa & 1 \\
-1 & 0 & \kappa
\end{array}\right)
$$

respectively. In case $I V$, the matrix B_{4} has two conjugate complex eigenvalues $\kappa \pm i \lambda$, but in other cases the eigenvalues of the shape operator are real numbers.

Remark 2.2. In two cases $I I$ and $I I I$, one can substitute the pseudoorthonormal basis $\mathcal{B}:=\left\{e_{1}, e_{2}, e_{3}\right\}$ by orthonormal basis $\tilde{\mathcal{B}}:=\left\{\tilde{e_{1}}, \tilde{e_{2}}, e_{3}\right\}$ where $\tilde{e_{1}}:=\frac{1}{2}\left(e_{1}+e_{2}\right)$ and $\tilde{e_{2}}:=\frac{1}{2}\left(e_{1}-e_{2}\right)$. Therefore, we obtain new matrix representations \tilde{B}_{2} and \tilde{B}_{3} (instead of B_{2} and B_{3}, respectively) as $\tilde{B}_{2}=\left(\begin{array}{ccc}\kappa+\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \kappa-\frac{1}{2} & 0 \\ 0 & 0 & \lambda\end{array}\right) \quad$ and $\quad \tilde{B}_{3}=\left(\begin{array}{ccc}\kappa & 0 & \frac{\sqrt{2}}{2} \\ 0 & \kappa & -\sqrt{2} / 2 \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \kappa\end{array}\right)$

After this changes, to unify the notations we denote the orthonormal basis by \mathcal{B} in all cases.

Notation: According to four possible matrix representations of the shape operator of M_{1}^{3}, we define its principal curvatures, denoted by unified notations κ_{i} for $i=1,2,3$, as follow.

In case I, we put $\kappa_{i}:=\lambda_{i}$, for $i=1,2,3$, where λ_{i} 's are the eigenvalues of B_{1}.

In cases $I I$, where the matrix representation of S is \tilde{B}_{2}, we take $\kappa_{i}:=\kappa$ for $i=1,2$, and $\kappa_{3}:=\lambda$.

In case $I I I$, where the shape operator has matrix representation \tilde{B}_{3}, we take $\kappa_{i}:=\kappa$ for $i=1,2,3$.

Finally, in the case $I V$, where the shape operator has matrix representation \tilde{B}_{4}, we put $\kappa_{1}=\kappa+i \lambda, \kappa_{2}=\kappa-i \lambda$, and $\kappa_{3}:=\eta$.

The characteristic polynomial of S on M_{1}^{3} is of the form

$$
Q(t)=\prod_{i=1}^{3}\left(t-\kappa_{i}\right)=\sum_{j=0}^{3}(-1)^{j} s_{j} t^{3-j}
$$

where, $s_{0}:=1, s_{1}=\sum_{j=1}^{3} \kappa_{j}, s_{2}:=\sum_{1 \leq i_{1}<i_{2} \leq 3} \kappa_{i_{1}} \kappa_{i_{2}}$ and $s_{3}:=\kappa_{1} \kappa_{2} \kappa_{3}$.
For $k=1,2,3$, the k th mean curvature H_{k} of M is defined by $H_{k}=$ $\frac{1}{\binom{3}{k}} s_{k}$. When H_{k} is identically null, M_{1}^{n} is said to be $(k-1)$-minimal.

Definition 2.3. (i) A timelike hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$, with diagonalizable shape operator, is said to be isoparametric if all of it's principal curvatures are constant.
(ii) A timelike hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$, with non-diagonalizable shape operator, is said to be isoparametric if the minimal polynomial of the shape operator is constant.

Remark 2.4. Here we remember Theorem 4.10 from [13], which assures us that there is no isoparametric timelike hypersurface of E_{1}^{4} with complex principal curvatures.

The Newton transformations on the hypersurface, $P_{k}: \chi(M) \rightarrow \chi(M)$, is defined by

$$
\begin{equation*}
P_{0}=I, \quad P_{k}=s_{k} I-S \circ P_{k-1}, \quad(k=1,2,3), \tag{2.1}
\end{equation*}
$$

where, I is the identity map. The explicit formula $P_{k}=\sum_{i=0}^{k}(-1)^{i} s_{k-i} S^{i}$ (where $S^{0}=I$) gives that, P_{k} is self-adjoint and it commutes with S (see $[2,16])$.

Now, we define a notation as
(2.2) $\mu_{j ; k}=\sum_{l=0}^{k}(-1)^{l}\binom{n}{k-l} H_{k-l} \kappa_{j}^{l} . \quad(1 \leq j \leq 3,1 \leq k<3)$

Corresponding to the four possible forms \tilde{B}_{i} (for $1 \leq i \leq 4$) of S, the Newton transformation P_{j} has different representations. In the case I, where $S_{p}=\tilde{B}_{1}$, we have $P_{j}(p)=\operatorname{diag}\left[\mu_{1 ; j}(p), \mu_{2 ; j}(p), \mu_{3 ; j}(p)\right]$, for $j=1,2$.

When $S=B_{2}$ (in the case $I I$), we have
$P_{1}=\left(\begin{array}{ccc}\kappa+\lambda-\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \kappa+\lambda+\frac{1}{2} & 0 \\ 0 & 0 & 2 \kappa\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}\left(\kappa-\frac{1}{2}\right) \lambda & -\frac{1}{2} \lambda & 0 \\ \frac{1}{2} \lambda & \left(\kappa+\frac{1}{2}\right) \lambda & 0 \\ 0 & 0 & \kappa^{2}\end{array}\right)$.
In the case $I I I$, we have $S_{p}=B_{3}$, and

$$
P_{1}=\left(\begin{array}{ccc}
2 \kappa & 0 & -\frac{\sqrt{2}}{2} \\
0 & 2 \kappa & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 2 \kappa
\end{array}\right), \quad \quad P_{2}=\left(\begin{array}{ccc}
\kappa^{2}-\frac{1}{2} & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \kappa \\
\frac{1}{2} & \kappa^{2}+\frac{1}{2} & \frac{\sqrt{2}}{2} \kappa \\
\frac{\sqrt{2}}{2} \kappa & \frac{\sqrt{2}}{2} \kappa & \kappa^{2}
\end{array}\right) .
$$

In the case $I V, S=B_{4}$,

$$
P_{1}=\left(\begin{array}{ccc}
\kappa+\eta & -\lambda & 0 \\
\lambda & \kappa+\eta & 0 \\
0 & 0 & 2 \kappa
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
\kappa \eta & -\lambda \eta & 0 \\
\lambda \eta & \kappa \eta & 0 \\
0 & 0 & \kappa^{2}+\lambda^{2}
\end{array}\right) .
$$

Fortunately, in all cases we have the following important identities, similar to those in $[2,16]$.

$$
\begin{equation*}
\operatorname{tr}\left(P_{1}\right)=6 H_{1}, \operatorname{tr}\left(P_{2}\right)=3 H_{2}, \operatorname{tr}\left(P_{1} \circ S\right)=6 H_{2}, \operatorname{tr}\left(P_{2} \circ S\right)=3 H_{3} \tag{2.3}
\end{equation*}
$$

(2.4) $\operatorname{tr} S^{2}=9 H_{1}^{2}-6 H_{2}, \operatorname{tr}\left(P_{1} \circ S^{2}\right)=9 H_{1} H_{2}-3 H_{3}, \operatorname{tr}\left(P_{2} \circ S^{2}\right)=3 H_{1} H_{3}$.

The linearized operator arisen from the first variation of the $(j+1)$ th mean curvature of M denoted by $L_{j}: \mathcal{C}^{\infty}(M) \rightarrow \mathcal{C}^{\infty}(M)$ is defined by the formula $L_{j}(f):=\operatorname{tr}\left(P_{j} \circ \nabla^{2} f\right)$, where, $\left\langle\nabla^{2} f(X), Y\right\rangle=<\nabla_{X} \nabla f, Y>$ for every $X, Y \in \chi(M)$. Associated to the orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ of
tangent space on a local coordinate system in the hypersurface $x: M_{1}^{3} \rightarrow$ $E_{1}^{4}, L_{j}(f)$ has an explicit expression as

$$
\begin{equation*}
L_{j}(f)=\sum_{i=1}^{3} \epsilon_{i} \mu_{i, j}\left(e_{i} e_{i} f-\nabla_{e_{i}} e_{i} f\right) \tag{2.5}
\end{equation*}
$$

For a Lorentzian hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$, with a chosen (local) unit normal vector field \mathbf{n}, for an arbitrary vector $a \in E_{1}^{4}$ we use the decomposition $a=a^{T}+a^{N}$ where $a^{T} \in T M$ is the tangential component of $a, a^{N} \perp T M$, and we have the following formulae from $[2,16]$.

$$
\begin{gather*}
\nabla<x, a>=a^{T}, \nabla<\mathbf{n}, a>=-S a^{T}, L_{1} x=6 H_{2} \mathbf{n}, L_{2} x=3 H_{3} \mathbf{n} \tag{2.6}\\
L_{1} \mathbf{n}=-3 \nabla H_{2}-3\left[3 H_{1} H_{2}-H_{3}\right] \mathbf{n}, \\
L_{2} \mathbf{n}=-\nabla H_{3}-\left[3 H_{1} H_{3}\right] \mathbf{n} \tag{2.7}\\
L_{1}^{2} x=6\left[2 P_{2} \nabla H_{2}-9 H_{2} \nabla H_{2}\right]+6\left[L_{1} H_{2}-9 H_{1} H_{2}^{2}+3 H_{2} H_{3}\right] \mathbf{n} \\
L_{2}^{2} x=-9 H_{3} \nabla H_{3}+3\left(L_{2} H_{3}-3 H_{1} H_{3}^{2}\right) \mathbf{n} .
\end{gather*}
$$

Assume that a hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ satisfies the condition $L_{k}^{2} x=$ 0 for an integer $k \in\{0,1,2\}$, then it is said to be L_{k}-biharmonic. In the case $k=0$, we have $L_{0}=\Delta$ and L_{0}-biharmoniciy is the same ordinary harmonicity which has been studied in $[3,4]$. By equalities (2.8), a hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is L_{1}-biharmonic if and only if it satisfies two following conditions:
(i) $L_{1} H_{2}=3\left(3 H_{1} H_{2}^{2}-H_{2} H_{3}\right)=H_{2} \operatorname{tr}\left(S^{2} \circ P_{1}\right)$,
(ii) $P_{2} \nabla H_{2}=\frac{9}{2} H_{2} \nabla H_{2}$.

A timelike hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is said to be L_{1}-biconservative, if its 2 nd mean curvature satisfies the condition (2.9)(ii).

Also, $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is L_{2}-biharmonic if and only if it satisfies two following conditions:

$$
\begin{equation*}
\text { (i) } L_{2} H_{3}=3 H_{1} H_{3}^{2}=H_{3} \operatorname{tr}\left(S^{2} \circ P_{2}\right), \text { (ii) } H_{3} \nabla H_{3}=0 \tag{2.10}
\end{equation*}
$$

A timelike hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is said to be L_{2}-biconservative, if its 3 rd mean curvature satisfies the condition (2.10)(ii).

The structure equations of E_{1}^{4} are given by

$$
\begin{gather*}
d \omega_{i}=\sum_{j=1}^{4} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \tag{2.11}\\
d \omega_{i j}=\sum_{l=1}^{4} \omega_{i l} \wedge \omega_{l j} \tag{2.12}
\end{gather*}
$$

With restriction to M, we have $\omega_{4}=0$ and then,

$$
\begin{equation*}
0=d \omega_{4}=\sum_{i=1}^{3} \omega_{4, i} \wedge \omega_{i} \tag{2.13}
\end{equation*}
$$

By Cartan's lemma, there exist functions $h_{i j}$ such that

$$
\begin{equation*}
\omega_{4, i}=\sum_{j=1}^{3} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} \tag{2.14}
\end{equation*}
$$

This gives the second fundamental form of M, as $B=\sum_{i, j} h_{i j} \omega_{i} \omega_{j} e_{4}$. The mean curvature H is given by $H=\frac{1}{3} \sum_{i=1}^{3} h_{i i}$. From (2.11) -(2.14) we obtain the structure equations of M as follow.

$$
\begin{gather*}
d \omega_{i}=\sum_{j=1}^{3} \omega_{i j} \wedge \omega_{j}, \omega_{i j}+\omega_{j i}=0 \tag{2.15}\\
d \omega_{i j}=\sum_{k=1}^{3} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l=1}^{3} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.16}
\end{gather*}
$$

for $i, j=1,2,3$, and the Gauss equations

$$
\begin{equation*}
R_{i j k l}=\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{2.17}
\end{equation*}
$$

where $R_{i j k l}$ denotes the components of the Riemannian curvature tensor of M.

Let $h_{i j k}$ denote the covariant derivative of $h_{i j}$.
We have

$$
\begin{equation*}
d h_{i j}=\sum_{k=1}^{3} h_{i j k} \omega_{k}+\sum_{k=1}^{3} h_{k j} \omega_{i k}+\sum_{k=1}^{3} h_{i k} \omega_{j k} \tag{2.18}
\end{equation*}
$$

Thus, by exterior differentiation of (2.14), we obtain the Codazzi equation

$$
\begin{equation*}
h_{i j k}=h_{i k j} . \tag{2.19}
\end{equation*}
$$

Now we recall the definition of an L_{k}-finite type hypersurface from [11], which is the basic notion of the paper.

Definition 2.5. An isometrically immersed hypersurface $x: M_{1}^{3} \rightarrow E_{1}^{4}$ is said to be of L_{k}-finite type if x has a finite decomposition $x=\sum_{i=0}^{m} x_{i}$, for some positive integer m, satisfying the condition $L_{k} x_{i}=\beta_{i} x_{i}$, where, $\beta_{i} \in R$ and $x_{i}: M^{3} \rightarrow E_{1}^{4}$ is smooth maps, for $i=1,2, \cdots, m$, and x_{0} is constant point. If all β_{i} 's are mutually different, M^{n} is said to be of L_{k}-m-type. An L_{k}-m-type hypersurface is said to be null if for at least one $i(1 \leq i \leq m)$ we have $\beta_{i}=0$.

Now, we see two examples of L_{k}-biconservative timelike hypersurfaces in E_{1}^{4}, for $k=0,1,2$.

Example 2.6. Assume that $\mathcal{D}_{1}(r)$ be the product $S_{1}^{2}(r) \times R \subset E_{1}^{4}$ where $r>0$. It has another representation as

$$
\mathcal{D}_{1}(r)=\left\{\left(y_{1}, \ldots, y_{4}\right) \in E_{1}^{4} \mid-y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=r^{2}\right\}
$$

having the spacelike vector field $\mathbf{n}(y)=-\frac{1}{r}\left(y_{1}, y_{2}, y_{3}, 0\right)$ as the Gauss map. Clearly, it has two distinct principal curvatures $\kappa_{1}=\kappa_{2}=\frac{1}{r}, \kappa_{3}=0$, and the constant higher order mean curvatures $H_{1}=\frac{2}{3} r^{-1}, H_{2}=\frac{1}{3} r^{-2}$ and $H_{3}=0$.

Example 2.7. Assume that $\mathcal{D}_{2}(r)$ be the product $S_{1}^{1}(r) \times E^{2} \subset E_{1}^{4}$ where $r>0$. It has another representation as

$$
\mathcal{D}_{2}(r)=\left\{\left(y_{1}, \ldots, y_{4}\right) \in E_{1}^{4} \mid-y_{1}^{2}+y_{2}^{2}=r^{2}\right\}
$$

having the spacelike vector field $\mathbf{n}(y)=-\frac{1}{r}\left(y_{1}, y_{2}, 0,0,0\right)$ as the Gauss map. Clearly, it has two distinct principal curvatures $\kappa_{1}=\frac{1}{r}, \kappa_{2}=\kappa_{3}=0$, and the constant higher order mean curvatures $H_{1}=\frac{1}{4 r}$, and $H_{2}=H_{3}=0$.

Example 2.8. Let $\mathcal{D}_{3}(r)$ be the product $E_{1}^{2} \times S^{1}(r) \subset E_{1}^{4}$ where $r>0$. It can be represented as

$$
\mathcal{D}_{3}(r)=\left\{\left(y_{1}, \ldots, y_{4}\right) \in E_{1}^{4} \mid y_{4}^{2}+y_{5}^{2}=r^{2}\right\}
$$

with the Gauss map $\mathbf{n}(y)=-\frac{1}{r}\left(0,0,0, y_{4}, y_{5}\right)$. it has two distinct principal curvatures $\kappa_{1}=\kappa_{2}=0, \kappa_{3}=\frac{1}{r}$, and the constant higher order mean curvatures $H_{1}=\frac{1}{4 r}$, and $H_{k}=0$ for $k=2,3$.

Example 2.9. Consider the pseudo-sphere

$$
S_{1}^{3}(r)=\left\{\left(y_{1}, \ldots, y_{4}\right) \in E_{1}^{4} \mid-y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=r^{2}\right\},
$$

(for $r>0$) with the Gauss map $\mathbf{n}(y)=-\frac{1}{r}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. It has three principal curvatures $\kappa_{1}=\kappa_{2}=\kappa_{3}=\frac{1}{r}$ and constant higher order mean curvatures $H_{k}=\frac{1}{r^{k}}$, for $k=1,2,3$.

3. Results

In this section, we give four theorems on the L_{k}-biconservative connected orientable timelike hypersurface in E_{1}^{4} with constant ordinary mean curvature. Theorem 3.1 is appropriated to the case that the shape operator on hypersurface is diagonalizable. Theorems $3.2,3.3$ and 3.4 are related to the cases that the shape operator on hypersurface is of type $I I, I I I$ and $I V$, respectively.

Theorem 3.1. Let $x: M_{1}^{3} \rightarrow E_{1}^{4}$ be a L_{k}-biconservative timelike hypersurface in the Minkowski 4-space, having diagonalizable shape operator (i.e of type I) with constant k th mean curvature and exactly two distinct principal curvatures (for k a nonnegative integer number less than 3). Then, it has constant $(k+1)$ th mean curvature.

Proof. By assumption, M_{1}^{3} has two distinct principal curvatures λ and μ of multiplicities 2 and 1 , respectively. Defining the open subset U of M_{1}^{3} as $U:=\left\{p \in M_{1}^{3}: \nabla H_{k+1}^{2}(p) \neq 0\right\}$, we prove that U is empty. Assuming $U \neq \emptyset$, we consider $\left\{e_{1}, e_{2}, e_{3}\right\}$ as a local orthonormal frame of principal directions of S on \mathcal{U} such that $S e_{i}=\lambda_{i} e_{i}$ for $i=1,2,3$. By assumption, we have

$$
\lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\mu .
$$

Therefore, we obtain

$$
\begin{equation*}
\mu_{1,2}=\mu_{2,2}=\lambda \mu, \quad \mu_{3,2}=\lambda^{2}, \quad 3 H_{2}=\lambda^{2}+2 \lambda \mu . \tag{3.1}
\end{equation*}
$$

In the case $k=1$, by condition (2.9)(ii), we have

$$
\begin{equation*}
P_{2}\left(\nabla H_{2}\right)=\frac{9}{2} H_{2} \nabla H_{2} . \tag{3.2}
\end{equation*}
$$

Then, using the polar decomposition

$$
\begin{equation*}
\nabla H_{2}=\sum_{i=1}^{3} \epsilon_{i}<\nabla H_{2}, e_{i}>e_{i}, \tag{3.3}
\end{equation*}
$$

we see that (3.2) is equivalent to

$$
\left.\epsilon_{i}<\nabla H_{2}, e_{i}\right\rangle\left(\mu_{i, 2}-\frac{9}{2} H_{2}\right)=0
$$

on \mathcal{U} for $i=1,2,3$. Hence, for every i such that $\left\langle\nabla H_{2}, e_{i}>\neq 0\right.$ on \mathcal{U} we get

$$
\begin{equation*}
\mu_{i, 2}=\frac{9}{2} H_{2} . \tag{3.4}
\end{equation*}
$$

By definition, we have $\nabla H_{2} \neq 0$ on U, which gives one or both of the following states.

State 1. $<\nabla H_{2}, e_{i}>\neq 0$, for $i=1$ or $i=2$. By equalities (3.1) and (3.4), we obtain

$$
\lambda \mu=\frac{9}{2}\left(\frac{2}{3} \lambda \mu+\frac{1}{3} \lambda^{2}\right),
$$

which gives

$$
\begin{equation*}
\lambda\left(6 H-\frac{5}{2} \lambda\right)=0 . \tag{3.5}
\end{equation*}
$$

If $\lambda=0$ then $H_{2}=0$. Otherwise, we get $\lambda=\frac{12}{5} H, \mu=-\frac{9}{5} H$ and $H_{2}=-\frac{72}{25} H^{2}$.

State 2. $\left\langle\nabla H_{2}, e_{3}\right\rangle \neq 0$. By equalities (3.1) and (3.4), we obtain

$$
\lambda^{2}=\frac{9}{2}\left(\frac{2}{3} \lambda \mu+\frac{1}{3} \lambda^{2}\right),
$$

which gives

$$
\begin{equation*}
\lambda\left(9 H-\frac{11}{2} \lambda\right)=0 . \tag{3.6}
\end{equation*}
$$

If $\lambda=0$ then $H_{2}=0$. Otherwise, we have $\lambda=\frac{18}{11} H, \mu=-\frac{3}{11} H$ and $H_{2}=\frac{216}{121} H^{2}$.

Therefore, H_{2} is constant.
In the case $k=0$, the main claim is proven in [3, 4]. In the case $k=2$, from condition (2.10)(ii) we get $e_{i}\left(H_{3}^{2}\right)=0$ for $i=1,2,3$, which means that there is nothing to prove.

Theorem 3.2. Let k be a nonnegative integer number less than 3 and $x: M_{1}^{3} \rightarrow E_{1}^{4}$ be an L_{k}-biconservative connected orientable timelike hypersurface with shape operator of type II which has exactly two distinct principal curvatures and constant k th mean curvature, then it's $(k+1)$ th mean curvature is constant.

Proof. Suppose that, H_{2} is non-constant. Considering the open subset $\mathcal{U}=\left\{p \in M: \nabla H_{2}^{2}(p) \neq 0\right\}$, we try to show $\mathcal{U}=\emptyset$. By the assumption, with respect to a suitable (local) orthonormal tangent frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ on M, the shape operator S has the matrix form \tilde{B}_{2}, such that $S e_{1}=$ $\left(\kappa+\frac{1}{2}\right) e_{1}-\frac{1}{2} e_{2}, S e_{2}=\frac{1}{2} e_{1}+\left(\kappa-\frac{1}{2}\right) e_{2}, S e_{3}=\lambda e_{3}$ and then, we have $P_{2} e_{1}=\left(\kappa-\frac{1}{2}\right) \lambda e_{1}+\frac{1}{2} \lambda e_{2}, P_{2} e_{2}=-\frac{1}{2} \lambda e_{1}+\left(\kappa+\frac{1}{2}\right) \lambda e_{2}$ and $P_{2} e_{3}=\kappa^{2} e_{3}$.

When $k=0$, the result is derived from [3, 4]. In the case $k=1$, by condition $(2.9)(i i)$, using the polar decomposition $\nabla H_{2}=\sum_{i=1}^{3} \epsilon_{i} e_{i}\left(H_{2}\right) e_{i}$, we get

$$
\begin{align*}
& \text { (i) } \epsilon_{1} e_{1}\left(H_{2}\right)\left[\left(\kappa-\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}\right]=\epsilon_{2} e_{2}\left(H_{2}\right) \frac{\lambda}{2} \\
& \text { (ii) } \epsilon_{2} e_{2}\left(H_{2}\right)\left[\left(\kappa+\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}\right]=-\epsilon_{1} e_{1}\left(H_{2}\right) \frac{\lambda}{2}, \tag{3.7}\\
& \text { (iii) } \epsilon_{3} e_{3}\left(H_{2}\right)\left(\kappa^{2}-\frac{9}{2} H_{2}\right)=0 .
\end{align*}
$$

Now, we prove some simple claims.
Claim 1: $e_{1}\left(H_{2}\right)=e_{2}\left(H_{2}\right)=e_{3}\left(H_{2}\right)=0$.
If $e_{1}\left(H_{2}\right) \neq 0$, then by dividing both sides of equalities $(3.7)(i, i i)$ by $\epsilon_{1} e_{1}\left(H_{2}\right)$ we get
(i) $\left(\kappa-\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}=\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)} \frac{\lambda}{2}$,
(ii) $\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right.}\left[\left(\kappa+\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}\right]=-\frac{\lambda}{2}$,
which, by substituting (i) in $(i i)$, gives $\frac{\lambda}{2}(1+u)^{2}=0$, where $u:=\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)}$. Then $\lambda=0$ or $u=-1$. If $\lambda=0$, then we get $H_{2}=0$ from (3.8)(i). Also, by assumption $\lambda \neq 0$ we get $u=-1$ which gives $\kappa \lambda=\frac{9}{2} H_{2}$, then $\kappa(3 \kappa+4 \lambda)=0$ and finally $\kappa=-\frac{4}{3} \lambda$ (since $\kappa=0$ gives $H_{2}=0$ again). Hence, we have $H_{2}=\frac{2}{9} \kappa \lambda=-\frac{8}{27} \lambda^{2}$ and $H_{1}=-\frac{5}{9} \lambda$, and since H_{1} is assumed to be constant, then $\lambda=-\frac{9}{5} H_{1}$ and $H_{2}=-\frac{24}{25} H_{1}^{2}$ have to be constant and we have $e_{1}\left(H_{2}\right)=0$, which is a contradiction. Therefore, the first claim is proved.

The second part of Claim 1 is $e_{2}\left(H_{2}\right)=0$. It can be proven by a similar manner. If $e_{2}\left(H_{2}\right) \neq 0$, then by dividing both sides of equalities $(3.7)(i, i i)$ by $\epsilon_{2} e_{2}\left(H_{2}\right)$ we get

$$
\begin{align*}
& \text { (i) } \frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)}\left[\left(\kappa-\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}\right]=\frac{\lambda}{2} \\
& \text { (ii) }\left(\kappa+\frac{1}{2}\right) \lambda-\frac{9}{2} H_{2}=-\frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)} \frac{\lambda}{2} \tag{3.9}
\end{align*}
$$

which, by substituting $(i i)$ in (i), gives $\frac{\lambda}{2}(1+v)^{2}=0$, where $v:=\frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)}$. Then $\lambda=0$ or $v=-1$. If $\lambda=0$, then we get $H_{2}=0$ from (3.9)(ii). Also, by assumption $\lambda \neq 0$ we get $v=-1$ which gives $\kappa \lambda=\frac{9}{2} H_{2}$, then $\kappa(3 \kappa+4 \lambda)=0$ and finally $\kappa=-\frac{4}{3} \lambda$ (since $\kappa=0$ gives $H_{2}=0$ again). Hence, we have $H_{2}=\frac{2}{9} \kappa \lambda=-\frac{8}{27} \lambda^{2}$ and $H_{1}=-\frac{5}{9} \lambda$, and since H_{1} is assumed to be constant, then $\lambda=-\frac{9}{5} H_{1}$ and $H_{2}=-\frac{24}{25} H_{1}^{2}$ have to be constant and we have $e_{2}\left(H_{2}\right)=0$, which is a contradiction. Therefore, the second part of Claim 1 is proved.

Now, if $e_{3}\left(H_{2}\right) \neq 0$, then by $(3.7)($ iii $)$ we get $\kappa^{2}=\frac{9}{2} H_{2}$, then $\kappa(\kappa+6 \lambda)=$ 0 , which gives $\kappa=0$ or $\kappa=-6 \lambda$. If $\kappa=0$, then $H_{2}=0$, and if $\kappa=-6 \lambda$ then since $H_{1}=-\frac{11}{3} \lambda$ is assumed to be constant, we get that H_{2} is constant and then $e_{3}\left(H_{2}\right)=0$. Which is a contradiction, so we have $e_{3}\left(H_{2}\right)=0$.

In the case $k=2$, from condition (2.10)(ii) we get $e_{i}\left(H_{3}^{2}\right)=0$ for $i=1,2,3$, which means that there is nothing to prove.

Theorem 3.3. Let k be a nonnegative integer number less than 3 and $x: M_{1}^{3} \rightarrow E_{1}^{4}$ be an L_{k}-biconservative connected orientable timelike hypersurface with shape operator of type III which has constant k th mean curvature, then it's $(k+1)$ th mean curvature is constant.

Proof. When $k=0$, the result is derived from [3, 4]. In the case $k=1$, suppose that, H_{2} is non-constant. Considering the open subset $\mathcal{U}=\left\{p \in M: \nabla H_{2}^{2}(p) \neq 0\right\}$, we try to show $\mathcal{U}=\emptyset$. By the assumption, with respect to a suitable (local) orthonormal tangent frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ on M, the shape operator S has the matrix form \tilde{B}_{3}, such that $S e_{1}=$ $\kappa e_{1}+\frac{\sqrt{2}}{2} e_{3}, S e_{2}=\kappa e_{2}-\frac{\sqrt{2}}{2} e_{3}, S e_{3}=-\frac{\sqrt{2}}{2} e_{1}-\frac{\sqrt{2}}{2} e_{2}+\kappa e_{3}$ and then, we have $P_{2} e_{1}=\left(\kappa^{2}-\frac{1}{2}\right) e_{1}-\frac{1}{2} e_{2}-\frac{\sqrt{2}}{2} \kappa e_{3}, P_{2} e_{2}=\frac{1}{2} e_{1}+\left(\kappa^{2}+\frac{1}{2}\right) e_{2}+\frac{\sqrt{2}}{2} \kappa e_{3}$ and $P_{2} e_{3}=\frac{\sqrt{2}}{2} \kappa e_{1}+\frac{\sqrt{2}}{2} \kappa e_{2}+\kappa^{2} e_{3}$.

Using the polar decomposition $\nabla H_{2}=\sum_{i=1}^{3} \epsilon_{i} e_{i}\left(H_{2}\right) e_{i}$, from condition (2.9)(ii) we get
(i) $\epsilon_{1} e_{1}\left(H_{2}\right)\left[\left(\kappa^{2}-\frac{1}{2}\right)-\frac{9}{2} H_{2}\right]+\frac{1}{2} \epsilon_{2} e_{2}\left(H_{2}\right)+\frac{\sqrt{2}}{2} \epsilon_{3} e_{3}\left(H_{2}\right) \kappa=0$,
$(3.10)(i i) \frac{-1}{2} \epsilon_{1} e_{1}\left(H_{2}\right)+\epsilon_{2} e_{2}\left(H_{2}\right)\left[\left(\kappa^{2}+\frac{1}{2}\right)-\frac{9}{2} H_{2}\right]+\frac{\sqrt{2}}{2} \epsilon_{3} e_{3}\left(H_{2}\right) \kappa=0$,
(iii) $\epsilon_{1} e_{1}\left(H_{2}\right) \frac{-\sqrt{2}}{2} \kappa+\epsilon_{2} e_{2}\left(H_{2}\right) \frac{\sqrt{2}}{2} \kappa+\epsilon_{3} e_{3}\left(H_{2}\right)\left(\kappa^{2}-\frac{9}{2} H_{2}\right)=0$,

Now, we prove some simple claims.
Claim: $e_{1}\left(H_{2}\right)=e_{2}\left(H_{2}\right)=e_{3}\left(H_{2}\right)=0$.
If $e_{1}\left(H_{2}\right) \neq 0$, then by dividing both sides of equalities $(3.10)(i, i i, i i i)$ by $\epsilon_{1} e_{1}\left(H_{2}\right)$, and using the identity $H_{2}=\kappa^{2}$ in type III, we get

$$
\begin{align*}
& \text { (i) }-\frac{1}{2}-\frac{7}{2} \kappa^{2}+\frac{1}{2} u_{1}+\frac{\sqrt{2}}{2} u_{2} \kappa=0 \\
& \text { (ii) } \frac{-1}{2}+u_{1}\left(\frac{1}{2}-\frac{7}{2} \kappa^{2}\right)+\frac{\sqrt{2}}{2} u_{2} \kappa=0, \tag{3.11}\\
& \text { (iii) } \left.\frac{-\sqrt{2}}{2} \kappa+\frac{\sqrt{2}}{2} u_{1} \kappa-\frac{7}{2} \kappa^{2}\right) u_{2}=0,
\end{align*}
$$

where $u_{1}:=\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)}$ and $u_{2}:=\frac{\epsilon_{3} e_{3}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)}$, which, by comparing (i) and (ii), gives $\kappa^{2}\left(u_{1}-1\right)=0$. If $\kappa=0$, then $H_{2}=0$. Assuming $\kappa \neq 0$, we get $u_{1}=1$, which, using (3.11)(iii), gives $u_{2}=0$. Substituting $u_{1}=1$ and $u_{2}=0$ in $(3.11)(i)$, we obtain again $\kappa=0$, which is a contradiction. Hence $e_{1}\left(H_{2}\right) \equiv 0$.

Therefore, using the result $e_{1}\left(H_{2}\right) \equiv 0$, the system of equations (3.10) gives

$$
\begin{align*}
& \text { (i) } \frac{1}{2} \epsilon_{2} e_{2}\left(H_{2}\right)+\frac{\sqrt{2}}{2} \epsilon_{3} e_{3}\left(H_{2}\right) \kappa=0, \\
& \text { (ii) } \epsilon_{2} e_{2}\left(H_{2}\right)\left(\frac{1}{2}-\frac{7}{2} \kappa^{2}\right)+\frac{\sqrt{2}}{2} \epsilon_{3} e_{3}\left(H_{2}\right) \kappa=0, \tag{3.12}\\
& \text { (iii) } \epsilon_{2} e_{2}\left(H_{2}\right) \frac{\sqrt{2}}{2} \kappa-\epsilon_{3} e_{3}\left(H_{2}\right) \frac{7}{2} \kappa^{2}=0 .
\end{align*}
$$

Comparing parts $(i),(i i)$ and (iii) of (3.12), we get $\kappa e_{2}\left(H_{2}\right)=0$ and $\kappa e_{3}\left(H_{2}\right)=0$, hence, using (i), gives $e_{2}\left(H_{2}\right)=0$. Then, the second claim (i.e. $e_{2}\left(H_{2}\right)=0$) is proved.

Now, using the results $e_{1}\left(H_{2}\right)=e_{2}\left(H_{2}\right)=0$, we get $\kappa e_{3}\left(H_{2}\right)=0$, which, using $H_{2}=\kappa^{2}$, implies $\kappa e_{3}\left(\kappa^{2}\right)=0$ and then $e_{3}\left(\kappa^{3}\right)=0$, and finally $e_{3}\left(H_{2}\right)=0$.

In the case $k=2$, from condition (2.10)(ii) we get $e_{i}\left(H_{3}^{2}\right)=0$ for $i=1,2,3$, which means that there is nothing to prove.

Theorem 3.4. Let k be a nonnegative integer number less than 3 and $x: M_{1}^{3} \rightarrow E_{1}^{4}$ be an L_{k}-biconservative connected orientable timelike hypersurface with shape operator of type $I V$ which has constant k th mean curvature and a constant real principal curvature. Then, its 2nd and 3rd mean curvatures are constant.

Proof. When $k=0$, the result is derived from [3, 4]. In the case $k=1$, suppose that, H_{2} is non-constant. Considering the open subset $\mathcal{U}=\left\{p \in M: \nabla H_{2}^{2}(p) \neq 0\right\}$, we try to show $\mathcal{U}=\emptyset$. By the assumption
M_{1}^{3} has three distinct principal curvature, then, with respect to a suitable (local) orthonormal tangent frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ on M, the shape operator S has the matrix form B_{4}, such that $S e_{1}=\kappa e_{1}-\lambda e_{2}, S e_{2}=\lambda e_{1}+\kappa e_{2}$, $S e_{3}=\eta e_{3}$ and then, we have $P_{2} e_{1}=\kappa \eta e_{1}+\lambda \eta e_{2}, P_{2} e_{2}=-\lambda \eta e_{1}+\kappa \eta e_{2}$ and $P_{2} e_{3}=\left(\kappa^{2}+\lambda^{2}\right) e_{3}$.

Using the polar decomposition $\nabla H_{2}=\sum_{i=1}^{3} \epsilon_{i} e_{i}\left(H_{2}\right) e_{i}$, from condition (2.9)(ii) we get

> (i) $\epsilon_{1} e_{1}\left(H_{2}\right)\left(\kappa \eta-\frac{9}{2} H_{2}\right)=\epsilon_{2} e_{2}\left(H_{2}\right) \lambda \eta$
> (ii) $\epsilon_{2} e_{2}\left(H_{2}\right)\left(\kappa \eta-\frac{9}{2} H_{2}\right)=-\epsilon_{1} e_{1}\left(H_{2}\right) \lambda \eta$
> (iii) $\epsilon_{3} e_{3}\left(H_{2}\right)\left(\kappa^{2}+\lambda^{2}-\frac{9}{2} H_{2}\right)=0$

Now, we prove three simple claims.
Claim 1: $e_{1}\left(H_{2}\right)=e_{2}\left(H_{2}\right)=0$.
If $e_{1}\left(H_{2}\right) \neq 0$, then by dividing both sides of equalities $(3.13)(i, i i)$ by $\epsilon_{1} e_{1}\left(H_{2}\right)$ we get

$$
\begin{equation*}
\text { (i) } \kappa \eta-\frac{9}{2} H_{2}=\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)} \lambda \eta \tag{3.14}
\end{equation*}
$$

(ii) $\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)}\left(\kappa \eta-\frac{9}{2} H_{2}\right)=-\lambda \eta$,
which, by substituting (i) in $(i i)$, gives $\lambda \eta\left(1+\left(\frac{\epsilon_{2} e_{2}\left(H_{2}\right)}{\epsilon_{1} e_{1}\left(H_{2}\right)}\right)^{2}\right)=0$, then $\lambda \eta=0$. Since by assumption $\lambda \neq 0$, we get $\eta=0$. So, by $(3.14(i))$, we have $H_{2}=0$.

Similarly, if $e_{2}\left(H_{2}\right) \neq 0$, then by dividing both sides of $(3.13(i, i i))$ by $\epsilon_{2} e_{2}\left(H_{2}\right)$ we get

$$
\begin{equation*}
\text { (i) } \frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)}\left(\kappa \eta-\frac{9}{2} H_{2}\right)=\lambda \eta \tag{3.15}
\end{equation*}
$$

(ii) $\kappa \eta-\frac{9}{2} H_{2}=-\frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)} \lambda \eta$,
which, by substituting (i) in $(i i)$, gives $\lambda \eta\left(1+\left(\frac{\epsilon_{1} e_{1}\left(H_{2}\right)}{\epsilon_{2} e_{2}\left(H_{2}\right)}\right)^{2}\right)=0$, then $\lambda \eta=0$. Since by assumption $\lambda \neq 0$, we get $\eta=0$. So, by (3.15(ii)), we have $H_{2}=0$.

Claim 2: $e_{3}\left(H_{2}\right)=0$.
If $e_{3}\left(H_{2}\right) \neq 0$, then from equality $(3.13(i i i))$ we have $\kappa^{2}+\lambda^{2}=\frac{9}{2} H_{2}$, which gives $\kappa^{2}+\lambda^{2}=-6 \kappa \eta$, where $\eta=3 H_{1}-2 \kappa$ and η and H_{1} are assumed to be constant on U. So, κ is also constant on U, and then, we obtain $H_{2}=\frac{-4}{3} \kappa \eta=\frac{8}{3} \kappa^{2}-4 H_{1} \kappa$ and $H_{3}=-6 \kappa \eta^{2}=-6 \kappa\left(3 H_{1}-2 \kappa\right)^{2}$. are constant on U.

In the case $k=2$, from condition (2.10)(ii) we get $e_{i}\left(H_{3}^{2}\right)=0$ for $i=1,2,3$, which means that there is nothing to prove.

References

[1] K. Akutagawa, and S. Maeta, "Biharmonic properly immersed submanifolds in Euclidean spaces", Geometriae Dedicata, vol. 164, pp. 351-355, 2013.
[2] L. J. Alias, and N Gürbüz, "An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures", Geometriae Dedicata, vol. 121, pp. 113-127, 2006.
[3] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, and B. J. Papantoniou, "Biharmonic Lorentz hypersurfaces in $\mathrm{E}_{1}{ }_{1}$ ", Pacific Journal of Mathematics, vol. 229, no. 2, pp. 293-306, 2007.
[4] A. Arvanitoyeorgos, F. Defever, and G. Kaimakamis, "Hypersurfaces in $\mathrm{E}^{4} \mathrm{~s}$ with proper mean curvature vector", Journal of the Mathematical Society of Japan, vol. 59, no. 3, pp. 797-809, 2007.
[5] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Singapure: World Scientific Publishing, 2014.
[6] B. Y. Chen, "Some open problems and conjetures on submanifolds of finite type", Soochow Journal of Mathematics, vol. 17, pp. 169-188, 1991.
[7] F. Defever, "Hypersurfaces of E^{4} satisfying $\Delta \vec{H}=\lambda \vec{H}^{\prime}$, Michigan Mathematical Journal, vol. 44, pp. 355-363, 1997.
[8] F. Defever, "Hypersurfaces of E^{4} with harmonic mean curvature vector", Mathematische Nachrichten, vol. 196, pp. 61-69, 1998.
[9] I. Dimitrić, "Submanifolds of En with harmonic mean curvature vector", Bulletin of Institute of Mathematics, Academia sinica. New series, vol. 20, pp. 53-65, 1992.
[10] T. Hasanis, and T. Vlachos, "Hypersurfaces in E^{4} with harmonic mean curvature vector field", Mathematische Nachrichten, vol. 172, pp. 145-169, 1995.
[11] S. M. B. Kashani, "On some L1-finite type (hyper)surfaces in $\mathrm{R}^{\mathrm{n}+1 \text { ", Bulle- }}$ tin of the Korean Mathematical Society, vol. 46, no. 1, pp. 35-43, 2009.
[12] P. Lucas, and H. F. Ramirez-Ospina, "Hypersurfaces in the LorentzMinkowski space satisfying $\mathrm{Lk} \psi=\mathrm{A} \psi+\mathrm{b}$ ", Geometriae Dedicata, vol. 153, pp. 151-175, 2011.
[13] M. A. Magid, "Lorentzian isoparametric hypersurfaces", Pacific Journal of Mathematics, vol. 118, no. 1, pp.165-197, 1985.
[14] F. Pashaie, and A. Mohammadpouri, "Lk-biharmonic spacelike hypersurfaces in Minkowski 4 -space $\mathrm{E}^{4} 1^{1 "}$, Sahand Communications in Mathematical Analysis, vol. 5, no. 1, pp. 21-30, 2017.
[15] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity. New York: Academic Press, 1983.
[16] F. Pashaie, and S. M. B. Kashani, "Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying $\mathrm{Lkx}=\mathrm{Ax}+\mathrm{b}$ ", Bulletin of the Iranian Mathematical Society, vol. 39, no. 1, pp. 195-213, 2013.
[17] F. Pashaie, and S. M. B. Kashani, "Timelike hypersurfaces in the Lorentzian standard space forms satisfying $L k x=A x+b "$, Mediterranean Journal of Mathematics, vol. 11, no. 2, pp. 755-773, 2014.
[18] A. Z. Petrov, Einstein Spaces. New York: Pergamon Press, 1969.
[19] R. C. Reilly, "Variational properties of functions of the mean curvatures for hypersurfaces in space forms", Journal of Differential Geometry, vol. 8, no. 3, pp. 465-477, 1973.

Firooz Pashaie

Dept. of Math,
Faculty of Basic Sciences, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
e-mail: f-pashaie@maragheh.ac.ir

