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Abstract

A well-known conjecture of Bang-Yen Chen says that the only bi-
harmonic Euclidean submanifolds are minimal ones, which affirmed
by himself for surfaces in 3-dimensional Euclidean space, E3. We con-
sider an extended version of Chen conjecture (namely, Lk-conjecture)
on Lorentzian hypersurfaces of the pseudo-Euclidean space E41 (i.e.
the Einstein space). The biconservative submanifolds in the Euclidean
spaces are submanifolds with conservative stress-energy with respect
to the bienergy functional. In this paper, we consider an extended
condition (namely, Lk-biconservativity) on non-degenerate timelike
hypersurfaces of the Einstein space E41 . A Lorentzian hypersurface
x : M3

1 → E41 is called Lk-biconservative if the tangent part of L
2
kx

vanishes identically. We show that Lk-biconservativity of a timelike
hypersurface of E41 (with constant kth mean curvature and some ad-
ditional conditions) implies that its (k+1) th mean curvature is con-
stant.

Keywords: Timelike hypersurface, Biconservative, Lk-biconservative.

2010 Mathematics Subject Classification: Primary: 53-02, 53C40,
53C42; Secondary 58G25.

10.22199/issn.0717-6279-5002

Scielo

Scielo

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22199/issn.0717-6279-5002


336 Firooz Pashaie

1. Introduction

The main geometric motivation of the subject of biconservative hypersur-
faces is a well-known conjecture of Bang-Yen Chen (in 1987) which states
that each biharmonic surface in Euclidean 3-spaces E3 is harmonic. In 1992,
Dimitrić proved that any biharmonic hypersurface in Em with at most two
distinct principal curvatures is minimal ([9]). Let φ :Mn → En+1 denotes
an isometric immersion of a hypersurface Mn into the (n+ 1)-dimensional
Euclidean space with the Laplace operator ∆, the shape operator S asso-
ciated to a unit normal vector field n and the ordinary mean curvature H
on Mn. The hypersurface Mn is said to be harmonic if φ satisfies condi-
tion ∆φ = 0. It is said to be biharmonic if φ satisfies condition ∆2φ = 0.
Also, Mn is said to be biconservative if the tangential part of ∆2φ vanishes
identically. A famous law due to Beltrami says that ∆φ = −nHn, so the
condition ∆φ = 0 is equivalent to H ≡ 0 and the condition ∆2φ = 0 is
equivalent to ∆(Hn) = 0. In 1995, Hasanis and Vlachos proved an exten-
sion of Chen’s result to the hypersurfaces in Euclidean 4-space ([10]). Also,
in 2013, Akutagawa and Maeta ([1]) have generalized Chen’s conjecture on
submanifolds in Euclidean n-space. As an extended case, a hypersurface
x : M3

p → E4s , whose mean curvature vector field is an eigenvector of the
Laplace operator ∆, has been studied, for instance, in [7, 8] for the Eu-
clidean case (where, p = s = 0), and for the Lorentz case in [3, 4] (when
s = 1 and p = 0, 1). On the other hand, Chen himself had found a good
relation between the finite type hypersurfaces and biharmonic ones. The
theory of finite type hypersurfaces is a well-known subject interested by
Chen (for instance, in [5, 6]) and also L. J. Alias, S.M.B. Kashani and
others. In [11], Kashani has studied the notion of L1-finite type Euclidean
hypersurfaces as an extension of finite type ones. One can see main results
in Chapter 11 of Chen’s book ([5]).

The map L1 is an extension of the Laplace operator L0 = ∆, which
stands for the linearized operator of the first variation of the 2th mean
curvature of the hypersurface (see, for instance, [2, 12, 16, 17, 19]). This
operator is defined by L1(f) = tr(P1 ◦ ∇2f) for any f ∈ C∞(M), where
P1 = nHI − S denotes the first Newton transformation associated to the
second fundamental from of the hypersurface and ∇2f is the hessian of
f . It is interesting to generalize the definition of biharmonic hypersur-
face by replacing ∆ by L1. Recently, in [14], we have studied the L1-
biharmonic spacelike hypersurfaces in 4-dimentional Minkowski space E41 .
In this paper, we study the Lk-biconservative Lorentzian hypersurfaces in
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the Einstein space E41 . We show that, every Lk-biconservative Lorentzian
hypersurface x : M3

1 → E41 , with constant kth mean curvature and some
additional conditions on principal curvatures, has constant (k+1)th mean
curvature.

2. Preliminaries

In this section, we restate some preliminaries from [2, 12, 13] and [15]-
[18]. The 4-dimensional Minkowski space, denoted by E41 , is the real vector
space R4 equipped with the scalar product < x, y >:= −x1y1 + Σ4i=2xiyi,
for every x, y ∈ R4. Any nondegenerate hypersurface M3

p of E
4
1 , can be

endowed with a Riemannian or Lorentzian induced metric of index p = 0
or p = 1, respectively. Our study will be on a Lorentzian hypersurface of
E41 , denoted by an isometric immersion x : M3

1 → E41 . The symbols ∇̃
and ∇̄ stand for the Levi-Civita connection on M3

1 and E41 , respectively.
For every tangent vector fields X and Y on M , the Gauss formula is given
by ∇̄XY = ∇̃XY+ < SX,Y > n, for every X,Y ∈ χ(M), where, n is a
(locally) unit normal vector field on M and S is the shape operator of M
relative to n. Every non null vector X ∈ E41 is called time-like, light-like
or space-like if < X,X > is negative, zero or positive, respectively.

Definition 2.1. For a Lorentzian vector space V 31 , a basis B := {e1, e2, e3}
is said to be orthonormal if it satisfies < ei, ej >= �iδ

j
i for i, j = 1, 2, 3,

where �1 = −1 and �i = 1 for i = 2, 3. As usual, δji stands for the Kronecker
function. B is called pseudo − orthonormal if it satisfies < e1, e1 >=<
e2, e2 >= 0, < e1, e2 >= −1 and < ei, ej >= δji , for i = 1, 2, 3 and j = 3.

As well-known, the shape operator of the Lorentzian hypersurface M3
1 ,

as a self-adjoint linear map on the tangent space of M3
1 , can be put into

one of four possible canonical matrix forms, usually denoted by I, II, III
and IV . Where, in cases I and IV , with respect to an orthonormal basis of
the tangent space of M3

1 , the matrix representation of the induced metric
on M3

1 is

G1 =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠
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and the shape operator S of M3
1 can be put into matrix forms

B1 =

⎛⎜⎜⎜⎜⎜⎝
λ1 0 0

0 λ2 0

0 0 λ3

⎞⎟⎟⎟⎟⎟⎠ and B4 =

⎛⎜⎜⎜⎜⎜⎝
κ λ 0

−λ κ 0

0 0 η

⎞⎟⎟⎟⎟⎟⎠, (λ 6= 0)

respectively. For cases II and III, using a pseudo-orthonormal basis of the
tangent space of M3

1 , the induced metric on M3
1 has matrix form

G2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠
and the shape operator S of M3

1 can be put into matrix forms

B2 =

⎛⎜⎜⎜⎜⎜⎝
κ 0 0

1 κ 0

0 0 λ

⎞⎟⎟⎟⎟⎟⎠ and B3 =

⎛⎜⎜⎜⎜⎜⎝
κ 0 0

0 κ 1

−1 0 κ

⎞⎟⎟⎟⎟⎟⎠,

respectively. In case IV , the matrix B4 has two conjugate complex eigen-
values κ± iλ, but in other cases the eigenvalues of the shape operator are
real numbers.

Remark 2.2. In two cases II and III, one can substitute the pseudo-
orthonormal basis B := {e1, e2, e3} by orthonormal basis B̃ := {ẽ1, ẽ2, e3}
where ẽ1 :=

1
2(e1 + e2) and ẽ2 :=

1
2(e1 − e2). Therefore, we obtain new

matrix representations B̃2 and B̃3 (instead of B2 and B3, respectively) as

B̃2 =

⎛⎜⎜⎜⎜⎜⎝
κ+ 1

2
1
2 0

−12 κ− 1
2 0

0 0 λ

⎞⎟⎟⎟⎟⎟⎠ and B̃3 =

⎛⎜⎜⎜⎜⎜⎜⎝
κ 0

√
2
2

0 κ −
√
2/2

−
√
2
2 −

√
2
2 κ

⎞⎟⎟⎟⎟⎟⎟⎠
After this changes, to unify the notations we denote the orthonormal

basis by B in all cases.
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Notation: According to four possible matrix representations of the shape
operator of M3

1 , we define its principal curvatures, denoted by unified no-
tations κi for i = 1, 2, 3, as follow.

In case I, we put κi := λi, for i = 1, 2, 3, where λi’s are the eigenvalues
of B1.

In cases II, where the matrix representation of S is B̃2, we take κi := κ
for i = 1, 2, and κ3 := λ.

In case III, where the shape operator has matrix representation B̃3, we
take κi := κ for i = 1, 2, 3.

Finally, in the case IV , where the shape operator has matrix represen-
tation B̃4, we put κ1 = κ+ iλ, κ2 = κ− iλ, and κ3 := η.

The characteristic polynomial of S on M3
1 is of the form

Q(t) =
3Y

i=1

(t− κi) =
3X

j=0

(−1)jsjt3−j ,

where, s0 := 1, s1 =
P3

j=1 κj , s2 :=
P
1≤i1<i2≤3 κi1κi2 and s3 := κ1κ2κ3.

For k = 1, 2, 3, the kth mean curvature Hk of M is defined by Hk =
1
(3
k
)
sk. When Hk is identically null, M

n
1 is said to be (k − 1)-minimal.

Definition 2.3. (i) A timelike hypersurface x : M3
1 → E41 , with diago-

nalizable shape operator, is said to be isoparametric if all of it’s principal
curvatures are constant.
(ii) A timelike hypersurface x :M3

1 → E41 , with non-diagonalizable shape
operator, is said to be isoparametric if the minimal polynomial of the shape
operator is constant.

Remark 2.4. Here we remember Theorem 4.10 from [13], which assures
us that there is no isoparametric timelike hypersurface of E41 with complex
principal curvatures.

The Newton transformations on the hypersurface, Pk : χ(M)→ χ(M),
is defined by

P0 = I, Pk = skI − S ◦ Pk−1, (k = 1, 2, 3),(2.1)

where, I is the identity map. The explicit formula Pk =
Pk

i=0(−1)isk−iSi

(where S0 = I) gives that, Pk is self-adjoint and it commutes with S (see
[2, 16]).
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Now, we define a notation as

µj;k =
kX
l=0

(−1)l(nk−l)Hk−lκ
l
j . (1 ≤ j ≤ 3, 1 ≤ k < 3)(2.2)

Corresponding to the four possible forms B̃i (for 1 ≤ i ≤ 4) of S, the
Newton transformation Pj has different representations. In the case I,
where Sp = B̃1, we have Pj(p) = diag[µ1;j(p), µ2;j(p), µ3;j(p)], for j = 1, 2.

When S = B2 (in the case II), we have

P1 =

⎛⎜⎝ κ+ λ− 1
2 −12 0

1
2 κ+ λ+ 1

2 0
0 0 2κ

⎞⎟⎠ , P2 =

⎛⎜⎝ (κ− 1
2)λ −12λ 0

1
2λ (κ+ 1

2)λ 0
0 0 κ2

⎞⎟⎠ .

In the case III, we have Sp = B3, and

P1 =

⎛⎜⎜⎝ 2κ 0 −
√
2
2

0 2κ
√
2
2√

2
2

√
2
2 2κ

⎞⎟⎟⎠ , P2 =

⎛⎜⎜⎝ κ2 − 1
2 −12 −

√
2
2 κ

1
2 κ2 + 1

2

√
2
2 κ√

2
2 κ

√
2
2 κ κ2

⎞⎟⎟⎠ .

In the case IV , S = B4,

P1 =

⎛⎜⎝ κ+ η −λ 0
λ κ+ η 0
0 0 2κ

⎞⎟⎠ , P2 =

⎛⎜⎝ κη −λη 0
λη κη 0
0 0 κ2 + λ2

⎞⎟⎠ .

Fortunately, in all cases we have the following important identities,
similar to those in [2, 16].

tr(P1) = 6H1, tr(P2) = 3H2, tr(P1 ◦ S) = 6H2, tr(P2 ◦ S) = 3H3,(2.3)

trS2 = 9H2
1 − 6H2, tr(P1 ◦ S2) = 9H1H2 − 3H3, tr(P2 ◦ S2) = 3H1H3.(2.4)

The linearized operator arisen from the first variation of the (j + 1)th
mean curvature of M denoted by Lj : C∞(M)→ C∞(M) is defined by the
formula Lj(f) := tr(Pj ◦ ∇2f), where, < ∇2f(X), Y >=< ∇X∇f, Y > for
every X,Y ∈ χ(M). Associated to the orthonormal frame {e1, e2, e3} of
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tangent space on a local coordinate system in the hypersurface x : M3
1 →

E41 , Lj(f) has an explicit expression as

Lj(f) =
3X

i=1

�iµi,j(eieif −∇eieif).(2.5)

For a Lorentzian hypersurface x : M3
1 → E41 , with a chosen (local)

unit normal vector field n, for an arbitrary vector a ∈ E41 we use the
decomposition a = aT + aN where aT ∈ TM is the tangential component
of a, aN ⊥ TM , and we have the following formulae from [2, 16].

∇ < x, a >= aT , ∇ < n, a >= −SaT , L1x = 6H2n, L2x = 3H3n(2.6)

L1n = −3∇H2 − 3[3H1H2 −H3]n,

L2n = −∇H3 − [3H1H3]n,
(2.7)

L21x = 6[2P2∇H2 − 9H2∇H2] + 6[L1H2 − 9H1H
2
2 + 3H2H3]n,

L22x = −9H3∇H3 + 3(L2H3 − 3H1H
2
3 )n.

(2.8)

Assume that a hypersurface x :M3
1 → E41 satisfies the condition L

2
kx =

0 for an integer k ∈ {0, 1, 2}, then it is said to be Lk-biharmonic. In the
case k = 0, we have L0 = ∆ and L0-biharmoniciy is the same ordinary
harmonicity which has been studied in [3, 4]. By equalities (2.8), a hy-
persurface x : M3

1 → E41 is L1-biharmonic if and only if it satisfies two
following conditions:

(i) L1H2 = 3(3H1H
2
2 −H2H3) = H2tr(S

2 ◦ P1),
(ii) P2∇H2 =

9
2H2∇H2.

(2.9)

A timelike hypersurface x :M3
1 → E41 is said to be L1-biconservative, if

its 2nd mean curvature satisfies the condition (2.9)(ii).
Also, x : M3

1 → E41 is L2-biharmonic if and only if it satisfies two
following conditions:

(i) L2H3 = 3H1H
2
3 = H3tr(S

2 ◦ P2), (ii) H3∇H3 = 0.(2.10)

A timelike hypersurface x :M3
1 → E41 is said to be L2-biconservative, if

its 3rd mean curvature satisfies the condition (2.10)(ii).
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The structure equations of E41 are given by

dωi =
4X

j=1

ωij ∧ ωj , ωij + ωji = 0,(2.11)

dωij =
4X
l=1

ωil ∧ ωlj .(2.12)

With restriction to M , we have ω4 = 0 and then,

0 = dω4 =
3X

i=1

ω4,i ∧ ωi.(2.13)

By Cartan’s lemma, there exist functions hij such that

ω4,i =
3X

j=1

hijωj , hij = hji.(2.14)

This gives the second fundamental form of M , as B =
P
i,j
hijωiωje4.

The mean curvature H is given by H = 1
3

3P
i=1

hii. From (2.11) -(2.14) we

obtain the structure equations of M as follow.

dωi =
3X

j=1

ωij ∧ ωj , ωij + ωji = 0,(2.15)

dωij =
3X

k=1

ωik ∧ ωkj −
1

2

3X
k,l=1

Rijklωk ∧ ωl,(2.16)

for i, j = 1, 2, 3, and the Gauss equations

Rijkl = (hikhjl − hilhjk),(2.17)

where Rijkl denotes the components of the Riemannian curvature tensor of
M .

Let hijk denote the covariant derivative of hij .

We have

dhij =
3X

k=1

hijkωk +
3X

k=1

hkjωik +
3X

k=1

hikωjk.(2.18)
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Thus, by exterior differentiation of (2.14), we obtain the Codazzi equa-
tion

hijk = hikj .(2.19)

Now we recall the definition of an Lk-finite type hypersurface from [11],
which is the basic notion of the paper.

Definition 2.5. An isometrically immersed hypersurface x : M3
1 → E41 is

said to be of Lk-finite type if x has a finite decomposition x =
Pm

i=0 xi,
for some positive integer m, satisfying the condition Lkxi = βixi, where,
βi ∈ R and xi : M

3 → E41 is smooth maps, for i = 1, 2, · · · ,m, and x0
is constant point. If all βi’s are mutually different, M

n is said to be of
Lk-m-type. An Lk-m-type hypersurface is said to be null if for at least one
i (1 ≤ i ≤ m) we have βi = 0.

Now, we see two examples of Lk-biconservative timelike hypersurfaces
in E41 , for k = 0, 1, 2.

Example 2.6. Assume that D1(r) be the product S21(r)×R ⊂ E41 where
r > 0. It has another representation as

D1(r) = {(y1, ..., y4) ∈ E41 |− y21 + y22 + y23 = r2},

having the spacelike vector field n(y) = −1r (y1, y2, y3, 0) as the Gauss map.
Clearly, it has two distinct principal curvatures κ1 = κ2 =

1
r , κ3 = 0, and

the constant higher order mean curvatures H1 =
2
3r
−1, H2 =

1
3r
−2 and

H3 = 0.

Example 2.7. Assume that D2(r) be the product S11(r)×E2 ⊂ E41 where
r > 0. It has another representation as

D2(r) = {(y1, ..., y4) ∈ E41 |− y21 + y22 = r2},

having the spacelike vector field n(y) = −1r (y1, y2, 0, 0, 0) as the Gauss map.
Clearly, it has two distinct principal curvatures κ1 =

1
r , κ2 = κ3 = 0, and

the constant higher order mean curvatures H1 =
1
4r , and H2 = H3 = 0.

Example 2.8. Let D3(r) be the product E21 ×S1(r) ⊂ E41 where r > 0. It
can be represented as

D3(r) = {(y1, ..., y4) ∈ E41 |y24 + y25 = r2},

with the Gauss map n(y) = −1r (0, 0, 0, y4, y5). it has two distinct principal
curvatures κ1 = κ2 = 0, κ3 =

1
r , and the constant higher order mean

curvatures H1 =
1
4r , and Hk = 0 for k = 2, 3.
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Example 2.9. Consider the pseudo-sphere

S31(r) = {(y1, ..., y4) ∈ E41 |− y21 + y22 + y23 + y24 = r2},

(for r > 0) with the Gauss map n(y) = −1r (y1, y2, y3, y4). It has three
principal curvatures κ1 = κ2 = κ3 =

1
r and constant higher order mean

curvatures Hk =
1
rk
, for k = 1, 2, 3.

3. Results

In this section, we give four theorems on the Lk-biconservative connected
orientable timelike hypersurface in E41 with constant ordinary mean curva-
ture. Theorem 3.1 is appropriated to the case that the shape operator on
hypersurface is diagonalizable. Theorems 3.2, 3.3 and 3.4 are related to the
cases that the shape operator on hypersurface is of type II, III and IV ,
respectively.

Theorem 3.1. Let x : M3
1 → E41 be a Lk-biconservative timelike hyper-

surface in the Minkowski 4-space, having diagonalizable shape operator (i.e
of type I) with constant kth mean curvature and exactly two distinct prin-
cipal curvatures (for k a nonnegative integer number less than 3). Then, it
has constant (k + 1)th mean curvature.

Proof. By assumption, M3
1 has two distinct principal curvatures λ and

µ of multiplicities 2 and 1, respectively. Defining the open subset U of M3
1

as U := {p ∈ M3
1 : ∇H2

k+1(p) 6= 0}, we prove that U is empty. Assuming
U 6= ∅, we consider {e1, e2, e3} as a local orthonormal frame of principal
directions of S on U such that Sei = λiei for i = 1, 2, 3. By assumption,
we have

λ1 = λ2 = λ, λ3 = µ.

Therefore, we obtain

µ1,2 = µ2,2 = λµ, µ3,2 = λ2, 3H2 = λ2 + 2λµ.(3.1)

In the case k = 1, by condition (2.9)(ii), we have

P2(∇H2) =
9

2
H2∇H2.(3.2)

Then, using the polar decomposition
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∇H2 =
3X

i=1

�i < ∇H2, ei > ei,(3.3)

we see that (3.2) is equivalent to

�i < ∇H2, ei > (µi,2 −
9

2
H2) = 0

on U for i = 1, 2, 3. Hence, for every i such that < ∇H2, ei >6= 0 on U we
get

µi,2 =
9

2
H2.(3.4)

By definition, we have ∇H2 6= 0 on U , which gives one or both of the
following states.

State 1. < ∇H2, ei >6= 0, for i = 1 or i = 2. By equalities (3.1) and (3.4),
we obtain

λµ =
9

2
(
2

3
λµ+

1

3
λ2),

which gives

λ(6H − 5
2
λ) = 0.(3.5)

If λ = 0 then H2 = 0. Otherwise, we get λ = 12
5 H, µ = −

9
5H and

H2 = −7225H2.

State 2. < ∇H2, e3 >6= 0. By equalities (3.1) and (3.4), we obtain

λ2 =
9

2
(
2

3
λµ+

1

3
λ2),

which gives

λ(9H − 11
2
λ) = 0.(3.6)

If λ = 0 then H2 = 0. Otherwise, we have λ = 18
11H, µ = −

3
11H and

H2 =
216
121H

2.
Therefore, H2 is constant.
In the case k = 0, the main claim is proven in [3, 4]. In the case k = 2,

from condition (2.10)(ii) we get ei(H
2
3 ) = 0 for i = 1, 2, 3, which means

that there is nothing to prove. 2
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Theorem 3.2. Let k be a nonnegative integer number less than 3 and
x : M3

1 → E41 be an Lk-biconservative connected orientable timelike hy-
persurface with shape operator of type II which has exactly two distinct
principal curvatures and constant kth mean curvature, then it’s (k + 1)th
mean curvature is constant.

Proof. Suppose that, H2 is non-constant. Considering the open subset
U = {p ∈ M : ∇H2

2 (p) 6= 0}, we try to show U = ∅. By the assumption,
with respect to a suitable (local) orthonormal tangent frame {e1, e2, e3}
on M , the shape operator S has the matrix form B̃2, such that Se1 =
(κ + 1

2)e1 −
1
2e2, Se2 =

1
2e1 + (κ −

1
2)e2, Se3 = λe3 and then, we have

P2e1 = (κ− 1
2)λe1 +

1
2λe2, P2e2 = −

1
2λe1 + (κ+

1
2)λe2 and P2e3 = κ2e3.

When k = 0, the result is derived from [3, 4]. In the case k = 1, by

condition (2.9)(ii), using the polar decomposition ∇H2 =
3P

i=1
�iei(H2)ei,

we get

(i) �1e1(H2)[(κ− 1
2)λ−

9
2H2] = �2e2(H2)

λ
2

(ii) �2e2(H2)[(κ+
1
2)λ−

9
2H2] = −�1e1(H2)

λ
2 ,

(iii) �3e3(H2)(κ
2 − 9

2H2) = 0.

(3.7)

Now, we prove some simple claims.

Claim 1: e1(H2) = e2(H2) = e3(H2) = 0.
If e1(H2) 6= 0, then by dividing both sides of equalities (3.7)(i, ii) by
�1e1(H2) we get

(i) (κ− 1
2)λ−

9
2H2 =

�2e2(H2)
�1e1(H2)

λ
2 ,

(ii) �2e2(H2)
�1e1(H2)

[(κ+ 1
2)λ−

9
2H2] = −λ

2 ,
(3.8)

which, by substituting (i) in (ii), gives λ
2 (1 + u)2 = 0, where u := �2e2(H2)

�1e1(H2)
.

Then λ = 0 or u = −1. If λ = 0, then we get H2 = 0 from (3.8)(i).
Also, by assumption λ 6= 0 we get u = −1 which gives κλ = 9

2H2, then
κ(3κ + 4λ) = 0 and finally κ = −43λ (since κ = 0 gives H2 = 0 again).
Hence, we have H2 =

2
9κλ = − 8

27λ
2 and H1 = −59λ, and since H1 is

assumed to be constant, then λ = −95H1 and H2 = −2425H2
1 have to be

constant and we have e1(H2) = 0, which is a contradiction. Therefore, the
first claim is proved.

The second part of Claim 1 is e2(H2) = 0. It can be proven by a similar
manner. If e2(H2) 6= 0, then by dividing both sides of equalities (3.7)(i, ii)
by �2e2(H2) we get
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(i) �1e1(H2)
�2e2(H2)

[(κ− 1
2)λ−

9
2H2] =

λ
2

(ii) (κ+ 1
2)λ−

9
2H2 = − �1e1(H2)

�2e2(H2)
λ
2 ,

(3.9)

which, by substituting (ii) in (i), gives λ
2 (1 + v)2 = 0, where v := �1e1(H2)

�2e2(H2)
.

Then λ = 0 or v = −1. If λ = 0, then we get H2 = 0 from (3.9)(ii).
Also, by assumption λ 6= 0 we get v = −1 which gives κλ = 9

2H2, then
κ(3κ + 4λ) = 0 and finally κ = −43λ (since κ = 0 gives H2 = 0 again).
Hence, we have H2 =

2
9κλ = − 8

27λ
2 and H1 = −59λ, and since H1 is

assumed to be constant, then λ = −95H1 and H2 = −2425H2
1 have to be

constant and we have e2(H2) = 0, which is a contradiction. Therefore, the
second part of Claim 1 is proved.

Now, if e3(H2) 6= 0, then by (3.7)(iii) we get κ2 = 9
2H2, then κ(κ+6λ) =

0, which gives κ = 0 or κ = −6λ. If κ = 0, then H2 = 0, and if κ = −6λ
then sinceH1 = −113 λ is assumed to be constant, we get thatH2 is constant
and then e3(H2) = 0. Which is a contradiction, so we have e3(H2) = 0.

In the case k = 2, from condition (2.10)(ii) we get ei(H
2
3 ) = 0 for

i = 1, 2, 3, which means that there is nothing to prove. 2

Theorem 3.3. Let k be a nonnegative integer number less than 3 and
x : M3

1 → E41 be an Lk-biconservative connected orientable timelike hy-
persurface with shape operator of type III which has constant kth mean
curvature, then it’s (k + 1)th mean curvature is constant.

Proof. When k = 0, the result is derived from [3, 4]. In the case
k = 1, suppose that, H2 is non-constant. Considering the open subset
U = {p ∈ M : ∇H2

2 (p) 6= 0}, we try to show U = ∅. By the assumption,
with respect to a suitable (local) orthonormal tangent frame {e1, e2, e3}
on M , the shape operator S has the matrix form B̃3, such that Se1 =

κe1 +
√
2
2 e3, Se2 = κe2 −

√
2
2 e3, Se3 = −

√
2
2 e1 −

√
2
2 e2 + κe3 and then, we

have P2e1 = (κ
2 − 1

2)e1 −
1
2e2 −

√
2
2 κe3, P2e2 =

1
2e1 + (κ

2 + 1
2)e2 +

√
2
2 κe3

and P2e3 =
√
2
2 κe1 +

√
2
2 κe2 + κ2e3.

Using the polar decomposition ∇H2 =
3P

i=1
�iei(H2)ei, from condition

(2.9)(ii) we get

(i) �1e1(H2)[(κ
2 − 1

2)−
9
2H2] +

1
2�2e2(H2) +

√
2
2 �3e3(H2)κ = 0,

(ii) −1
2 �1e1(H2) + �2e2(H2)[(κ

2 + 1
2)−

9
2H2] +

√
2
2 �3e3(H2)κ = 0,

(iii) �1e1(H2)
−
√
2

2 κ+ �2e2(H2)
√
2
2 κ+ �3e3(H2)(κ

2 − 9
2H2) = 0,

(3.10)
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Now, we prove some simple claims.

Claim: e1(H2) = e2(H2) = e3(H2) = 0.
If e1(H2) 6= 0, then by dividing both sides of equalities (3.10)(i, ii, iii) by
�1e1(H2), and using the identity H2 = κ2 in type III, we get

(i) − 1
2 −

7
2κ
2 + 1

2u1 +
√
2
2 u2κ = 0,

(ii) −1
2 + u1(

1
2 −

7
2κ
2) +

√
2
2 u2κ = 0,

(iii) −
√
2

2 κ+
√
2
2 u1κ− 7

2κ
2)u2 = 0,

(3.11)

where u1 :=
�2e2(H2)
�1e1(H2)

and u2 :=
�3e3(H2)
�1e1(H2)

, which, by comparing (i) and (ii),

gives κ2(u1 − 1) = 0. If κ = 0, then H2 = 0. Assuming κ 6= 0, we get
u1 = 1, which, using (3.11)(iii), gives u2 = 0. Substituting u1 = 1 and
u2 = 0 in (3.11)(i), we obtain again κ = 0, which is a contradiction. Hence
e1(H2) ≡ 0.

Therefore, using the result e1(H2) ≡ 0, the system of equations (3.10)
gives

(i) 1
2�2e2(H2) +

√
2
2 �3e3(H2)κ = 0,

(ii) �2e2(H2)(
1
2 −

7
2κ
2) +

√
2
2 �3e3(H2)κ = 0,

(iii) �2e2(H2)
√
2
2 κ− �3e3(H2)

7
2κ
2 = 0.

(3.12)

Comparing parts (i), (ii) and (iii) of (3.12), we get κe2(H2) = 0 and
κe3(H2) = 0, hence, using (i), gives e2(H2) = 0. Then, the second claim
(i.e. e2(H2) = 0) is proved.

Now, using the results e1(H2) = e2(H2) = 0, we get κe3(H2) = 0,
which, using H2 = κ2, implies κe3(κ

2) = 0 and then e3(κ
3) = 0, and finally

e3(H2) = 0.
In the case k = 2, from condition (2.10)(ii) we get ei(H

2
3 ) = 0 for

i = 1, 2, 3, which means that there is nothing to prove. 2

Theorem 3.4. Let k be a nonnegative integer number less than 3 and
x : M3

1 → E41 be an Lk-biconservative connected orientable timelike hy-
persurface with shape operator of type IV which has constant kth mean
curvature and a constant real principal curvature. Then, its 2nd and 3rd
mean curvatures are constant.

Proof. When k = 0, the result is derived from [3, 4]. In the case
k = 1, suppose that, H2 is non-constant. Considering the open subset
U = {p ∈ M : ∇H2

2 (p) 6= 0}, we try to show U = ∅. By the assumption
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M3
1 has three distinct principal curvature, then, with respect to a suitable

(local) orthonormal tangent frame {e1, e2, e3} on M , the shape operator
S has the matrix form B4, such that Se1 = κe1 − λe2, Se2 = λe1 + κe2,
Se3 = ηe3 and then, we have P2e1 = κηe1 + ληe2, P2e2 = −ληe1 + κηe2
and P2e3 = (κ

2 + λ2)e3.

Using the polar decomposition ∇H2 =
3P

i=1
�iei(H2)ei, from condition

(2.9)(ii) we get

(i) �1e1(H2)(κη − 9
2H2) = �2e2(H2)λη,

(ii) �2e2(H2)(κη − 9
2H2) = −�1e1(H2)λη,

(iii) �3e3(H2)(κ
2 + λ2 − 9

2H2) = 0.
(3.13)

Now, we prove three simple claims.

Claim 1: e1(H2) = e2(H2) = 0.
If e1(H2) 6= 0, then by dividing both sides of equalities (3.13)(i, ii) by
�1e1(H2) we get

(i) κη − 9
2H2 =

�2e2(H2)
�1e1(H2)

λη,

(ii) �2e2(H2)
�1e1(H2)

(κη − 9
2H2) = −λη,

(3.14)

which, by substituting (i) in (ii), gives λη(1+( �2e2(H2)
�1e1(H2)

)2) = 0, then λη = 0.

Since by assumption λ 6= 0, we get η = 0. So, by (3.14(i)), we have H2 = 0.
Similarly, if e2(H2) 6= 0, then by dividing both sides of (3.13(i, ii)) by

�2e2(H2) we get

(i) �1e1(H2)
�2e2(H2)

(κη − 9
2H2) = λη,

(ii) κη − 9
2H2 = − �1e1(H2)

�2e2(H2)
λη,

(3.15)

which, by substituting (i) in (ii), gives λη(1+( �1e1(H2)
�2e2(H2)

)2) = 0, then λη = 0.

Since by assumption λ 6= 0, we get η = 0. So, by (3.15(ii)), we have H2 = 0.

Claim 2: e3(H2) = 0.
If e3(H2) 6= 0, then from equality (3.13(iii)) we have κ2+λ2 = 9

2H2, which
gives κ2 + λ2 = −6κη, where η = 3H1 − 2κ and η and H1 are assumed
to be constant on U . So, κ is also constant on U , and then, we obtain
H2 =

−4
3 κη =

8
3κ
2 − 4H1κ and H3 = −6κη2 = −6κ(3H1 − 2κ)2. are

constant on U .
In the case k = 2, from condition (2.10)(ii) we get ei(H

2
3 ) = 0 for

i = 1, 2, 3, which means that there is nothing to prove. 2
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