Spectral analysis for finite rank perturbation of diagonal operator in non-archimedean Banach space of countable type

Abdelkhalek El Amrani
Sidi Mohamed Ben Abdellah University, Morocco
Aziz Blali
Sidi Mohamed Ben Abdellah University, Morocco
and
Mohamed Amine Taybi
Sidi Mohamed Ben Abdellah University, Morocco
Received: September 2021. Accepted : February 2022

Abstract

In this paper we are concerned with the spectral analysis for the classes of finte rank perturbations of diagonal operators in the form $A=D+F$ where D is a diagonal operator and $F=u_{1}^{\prime} \otimes v_{1}+\ldots+u_{m}^{\prime} \otimes$ v_{m} is an operator of finite rank in the non-archimedean Banach space of countable type. We compute the spectrum of A using the theory of Fredholm operators in non archimedean setting and the concept of essential spectrum for linear operators.

Subjclass [2010]: Primary 4^{77} S10; Secondary 47A10, $47 D 03$.

Keywords: Non-archimedean Banach spaces, diagonal and Fredholm operators, spectrum of operators.

1. Introduction and Preliminaries

In this paper \mathbf{K} denotes a non trivial field which is complete with respect to a non-archimedean valuation denoted $|$.$| and its residue class fields is$ formally real.
The spectral analysis for completely continuous linear operators in the nonarchimedean setting was studied by Serre [6]. After the work of Diagana and Ramarson was centered to the spectral analysis in the case of "small" perturbation of completely continuous linear operators of the form

$$
T=D+K
$$

where D is a diagonal operator and K is completely continuous linear operator in the non-archimedean Hilbert space \mathbf{E}_{w}.
This work will generalized the studies of Diagana and Ramaroson from \mathbf{E}_{w} to non-archimedean Banach space of countable type.
Define the space c_{0} as the collection of all sequences $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right) \in \mathbf{K}^{\mathbf{N}}$ for which $\lim _{i} \lambda_{i}=0$, i.e

$$
c_{0}=\left\{\lambda=\left(\lambda_{i}\right)_{i \in \mathbf{N}} \subset \mathbf{K}: \lim _{i} \lambda_{i}=0\right\} .
$$

It is know that the space c_{0} equipped with the norm defined by:

$$
\text { for each } \lambda=\left(\lambda_{i}\right)_{i \in \mathbf{N}} \in c_{0}\|\lambda\|_{\infty}=\sup _{i \in \mathbf{N}}\left|\lambda_{i}\right|
$$

is a non-archimedean Banach space see [2]. The bilinear form $\langle\rangle:, c_{0} \times c_{0} \rightarrow$ \mathbf{K} defined by:

$$
\text { for each } x=\left(x_{i}\right), y=\left(y_{i}\right) \in c_{0}\langle x, y\rangle=\sum_{i=0}^{+\infty} x_{i} y_{i},
$$

is an inner product in the non-archimedean sense. Since the residue class field of \mathbf{K} is formally real then $\|x\|_{\infty}^{2}=\langle x, x\rangle$. The non-archimedean Banach space c_{0} has a special base denotes by $\left(e_{i}\right)_{i \in \mathbf{N}}=\left(\delta_{i j}\right)_{i, j \in \mathbf{N}}$ where $\delta_{i j}$ is the usual Kronecker symbol.
Moreover we can define the crochet of duality by:

$$
\langle,\rangle_{d}: c_{0}^{\prime} \times c_{0} \rightarrow \mathbf{K} .
$$

In this work we study the spectral analysis for an operator with the form

$$
T=D+F,
$$

where D is a bounded diagonal operator and $F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}$ is an operator of finite rank at most m, with $u_{k}^{\prime} \in c_{0}^{\prime}$ and $v_{k} \in c_{0}$ for $k=1, \ldots, m$.
Namely, under some suitable assumptions, we will show that the spectrum $\sigma(T)$ of bounded linear operator T is given by

$$
\sigma(T)=\sigma_{e}(D) \cup \sigma_{p}(T)
$$

where $\sigma_{e}(D)$ is the essential spectrum of D and $\sigma_{p}(T)$ is the point spectrum of T , that is the set of eigenvalues of T given by $\sigma_{p}(T)=\{\lambda \in$ $\rho(D): \operatorname{det} M(\lambda)=0\}$ with $M(\lambda)$ being the $m \times m$ square matrix $M(\lambda)=$ $\left(b_{i j}\right)_{i, j=1, . . m}$ whose coefficients are given by $b_{i j}=\delta_{i j}+\left\langle C_{\lambda} v_{i}^{\prime}, v_{j}\right\rangle_{d}$ for $i, j=$ $1, \ldots, m$ and $C_{\lambda}=(D-\lambda I)^{-1}$.

Definition 1.1. A mapping $A: c_{0} \rightarrow c_{0}$ is said to be a bounded linear operator on c_{0} whether it is linear and bounded, that is, there exists $C>0$ such that

$$
\text { for all } u \in c_{0}\|A u\|_{\infty} \leq C\|u\|_{\infty} \text {. }
$$

$\mathcal{B}\left(c_{0}\right)$ denote the collection of all bounded linear operators on $c_{0}, \mathcal{B}\left(c_{0}\right)$ is a non-archimedean Banach space with the norm $\|\cdot\|_{\infty}$.
Let $A \in \mathcal{B}\left(c_{0}\right)$, its kernel and range are respectively defined by $N(A)=$ $\left\{u \in c_{0}: A u=0\right\}$ and $R(A)=\left\{A u: u \in c_{0}\right\}$.

Proposition 1.2. Let $A \in \mathcal{B}\left(c_{0}\right)$ then it can be written in a unique fashion as pointwise convergent series

$$
A=\sum_{i, j \in \mathbf{N}} a_{j i} e_{i}^{\prime} \otimes e_{j}, \text { and }(\forall i \in \mathbf{N}) \lim _{j} a_{j i}\left\|e_{j}\right\|=0,
$$

moreover

$$
\|A\|_{\infty}=\sup _{i, j \in \mathbf{N}} \frac{\left|a_{j i}\right|\left\|e_{j}\right\|}{\left\|e_{i}\right\|}
$$

Proof. See [1].
The adjoint A^{*} of $A \in B\left(c_{0}\right)$, if it exists, is defined by $\langle A u, v\rangle=<$ $u, A^{*} v>$ for all $u, v \in c_{0}$. In contract with the classical case, the adjoint of an operator may or may not exist. Note that if it exists, the adjoint A^{*} of an operator A , is unique and has the same norm as A , and hence lies in $B\left(c_{0}\right)$ as well. The properties of the adjoint are easier to express in terms of the canonical orthogonal base of c_{0}.

1.1. Finite rank operators in c_{0}

Definition 1.3. If $A \in \mathcal{B}\left(c_{0}\right)$ is such that $R(A)$ is a finite dimensional subspace of c_{0}, then A is said to be an operator of finite rank. In this case, the dimension of $R(A)$, that is $\operatorname{dim} R(A)$ is called the rank of A. The collection of all finite rank operators on c_{0} will be denoted by $\mathcal{F}\left(c_{0}\right)$.

It can be easily shown that for each $A \in \mathcal{F}\left(c_{0}\right)$, there exists $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{m}^{\prime} \in$ c_{0}^{\prime} and $v_{1}, v_{2}, \ldots, v_{m} \in c_{0}$ such that

$$
A=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k} .
$$

1.2. Completely continuous operators

Definition 1.4. A linear operator $K: c_{0} \rightarrow c_{0}$ is said to be completely continuous if there exists a sequence $\left(F_{n}\right) \subset \mathcal{F}\left(c_{0}\right)$ such that $\left\|K-F_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The collection of such linear operators will be denoted $\mathcal{C}\left(c_{0}\right)$.

Example 1.5. Classical examples of completely continuous operators include finite rank operators on c_{0}.

Example 1.6. Consider the diagonal operator D defined by, $D e_{j}=\lambda_{j} e_{j}$ where $\lambda_{j} \in \mathbf{K}$ for each $j \in \mathbf{N}$ and suppose that

$$
\lim _{j \rightarrow \infty}\left|\lambda_{j}\right|=0,
$$

D is completely continuous. Indeed, consider the sequence of linear operators $\left(D_{n}\right)$ defined on c_{0} by $D_{n} e_{j}=\lambda_{j} e_{j}$ for $j=0,1, \ldots, n$ and $D_{n} e_{j}=0$ for $j \geq n+1$, then $D_{n} \in \mathcal{F}\left(c_{0}\right)$ and $\lim _{n \rightarrow \infty}\left\|D-D_{n}\right\|=\lim _{j \rightarrow \infty} \sup _{j \geq n+1}\left|\lambda_{j}\right|=0$, and hence $D \in \mathcal{C}\left(c_{0}\right)$.

1.3. Fredholm operators

Definition 1.7. An operator $A \in \mathcal{B}\left(c_{0}\right)$ is said to be a Fredholm operator if it satisfies the following conditions:

1. $\eta(A)=\operatorname{dim} N(A)$ is finite,
2. $R(A)$ is closed,
3. $\delta(A)=\operatorname{dim}\left(c_{0} / R(A)\right)$ is finite.

The collection of all Fredholm linear operators on c_{0} will be denoted by $\Phi\left(c_{0}\right)$. If $A \in \Phi\left(c_{0}\right)$, we then define its index by setting $\chi(A)=\eta(A)-\delta(A)$.

Example 1.8. Any invertible bounded linear operator $A: c_{0} \rightarrow c_{0}$ (in particular, the identity operator $I: c_{0} \rightarrow c_{0}, I(x)=x$), is a Fredholm operator with index $\chi(A)=0$ as $\delta(A)=\eta(A)=0$.

1.4. Space of countable type

Recall that a topological space is called separable if it has a countable dense subset. Now let E be a normed space over \mathbf{K} such that $E \neq\{0\}$ and suppose that E is separable, then \mathbf{K} must be separable as well. Thus, for normed space the concept of separability is of no use if \mathbf{K} is not separable, however linearizing the notion of separability we obtain a generalization useful for every scalar field \mathbf{K}.

Definition 1.9. A normed space E is of countable type if it contains a countable set whose linear hull is dense in E.

Example 1.10. Clearly the span of unit vector $e_{1}=(1,0, \ldots), e_{2}=(0,1,0, \ldots), \ldots$ is dense in c_{0} then c_{0} is a Banach space of countable type.

Proposition 1.11. Each normed space is linearly heomeorphic to a subspace of c_{0}. Each infinite-dimensional Banach space of countable type is linearly heomeorphic to c_{0}.

Proof. See [2].
This result shows that, up to linear homeomorphisms, there exists, for given \mathbf{K}, only one infinite-dimensional Banach space of countable type viz c_{0}.

2. Spectral analysis for the class of operators $T=D+K$

In this section we study the spectral analysis for perturbation of completely continuous linear operators by diagonal operators. Namely, we study the class of operators of the form $T=D+K$, where $D: c_{0} \rightarrow c_{0}$ is a diagonal operator defined by $D e_{j}=\lambda_{j} e_{j}$ for all $j \in \mathbf{N}$, where $\lambda=\left(\lambda_{j}\right)_{j \in \mathbf{N}}$ is a bounded sequence and $K: c_{0} \rightarrow c_{0}$ is completely continuous linear operator.

Definition 2.1. The resolvent of a bounded linear operator $A: c_{0} \rightarrow c_{0}$ is defined by $\rho(A)=\left\{\lambda \in \mathbf{K}: \lambda I-A\right.$ is a bijection and $\left.(\lambda I-A)^{-1} \in \mathcal{B}\left(c_{0}\right)\right\}$. The spectrum $\sigma(A)$ of A is then defined by $\sigma(A)=\mathbf{K} \backslash \rho(A)$.

Definition 2.2. A scalar $\lambda \in \mathbf{K}$ is called an eigenvalue of $A \in \mathcal{B}\left(c_{0}\right)$, whenever there exists a nonzero $u \in c_{0}$ (called eigenvector associated to λ) such that $A u=\lambda u$.

Clearly, eigenvalues of A consist of all $\lambda \in \mathbf{K}$, for which $\lambda I-A$ is not one-to-one; that is $N(\lambda I-A) \neq\{0\}$. The collection of all eigenvalues of A is denoted by $\sigma_{p}(A)$ (called point spectrum) and is defined by

$$
\sigma_{p}(A)=\{\lambda \in \sigma(A): N(\lambda I-A) \neq\{0\}\} .
$$

Example 2.3. Consider the diagonal operator $D: c_{0} \rightarrow c_{0}$ defined by

$$
\text { for all } u=\left(u_{j}\right)_{j \in \mathbf{N}} \in c_{0} D u=\sum_{j=0}^{\infty} \lambda_{j} u_{j} e_{j},
$$

where $\sup _{j \in \mathbf{N}}\left|\lambda_{j}\right|<+\infty$. Then $\sigma(D)=\overline{\left\{\lambda_{k}: k \in \mathbf{N}\right\}}$ the closure of $\left\{\lambda_{k}: k \in\right.$ $\mathbf{N}\}$, i.e

$$
\sigma(D)=\left\{\lambda \in \mathbf{K}: \lim _{j \rightarrow \infty}\left|\lambda-\lambda_{j}\right|=0\right\} .
$$

Definition 2.4. Define the essential spectrum $\sigma_{e}(A)$ of a bounded linear operator $A: c_{0} \rightarrow c_{0}$ as follows

$$
\sigma_{e}(A)=\{\lambda \in \mathbf{K}: \lambda I-A \text { is not Fredholm operator of index } 0\} .
$$

Clearly if $\lambda \in \mathbf{K}$ does not belong to neither $\sigma_{p}(A)$ or $\sigma_{e}(A)$, then $(\lambda I-A)$ must be injective. $N(\lambda I-A)=\{0\}$ and $R(\lambda I-A)$ is closed with $0=\operatorname{dim} N(\lambda I-A)=\operatorname{dim}\left(c_{0} / R(\lambda I-A)\right)$, consequently $(\lambda I-A)$ must be bijective (injective and surjective) which yield $\lambda \in \rho(A)$.

In view of previous fact, we have $\sigma(A)=\sigma_{p}(A) \cup \sigma_{e}(A)$. Define $\Phi_{0}\left(c_{0}\right)=$ $\left\{A \in \Phi\left(c_{0}\right): \chi(A)=0\right\}$.

Theorem 2.5. If $A \in \Phi\left(c_{0}\right)$ and $K \in \mathcal{C}\left(c_{0}\right)$, then $A+K \in \Phi\left(c_{0}\right)$, with $\chi(A+K)=\chi(A)$.

Proof. See [3].
The next theorem is very important in the rest of this paper.
Theorem 2.6. If $A \in \mathcal{B}\left(c_{0}\right)$, then for all $K \in \mathcal{C}\left(c_{0}\right), \sigma_{e}(A+K)=\sigma_{e}(A)$.

Proof. If λ does not belong to $\sigma_{e}(A)$, then $\lambda I-A$ belong to $\Phi\left(c_{0}\right)$ with $\chi(\lambda I-A)=0$, therefore $\lambda I-A-K$ belong to $\Phi\left(c_{0}\right)$ with $\chi(\lambda I-(A+K))=0$ for all $K \in \Phi\left(c_{0}\right)$. Then λ does not belong to $\sigma_{e}(A+K)$.

Corollary 2.7. For every $K \in \Phi\left(c_{0}\right), \sigma_{e}(A+K)=\sigma_{e}(A)$.

Proposition 2.8. If $T=D+K$, where $K \in \mathcal{C}\left(c_{0}\right)$, then its spectrum $\sigma(T)$ is giving by $\sigma(T)=\sigma_{e}(D) \cup \sigma_{p}(T)$.

Proof. We have $\sigma(T)=\sigma_{e}(T) \cup \sigma_{p}(T)$.
In view of precedent corollary $\sigma_{e}(T)=\sigma_{e}(D+K)=\sigma_{e}(D)$, so it follows that $\sigma(T)=\sigma_{e}(D) \cup \sigma_{p}(T)$.

Lemma 2.9. If $A \in \Phi_{0}\left(c_{0}\right)$ and $K \in \mathcal{C}\left(c_{0}\right)$, then the linear operator $A+K$ is invertible if and only if $N(A+K)=\{0\}$.

Proof. Since $A \in \Phi\left(c_{0}\right)$, with index $\chi(A)=0$, its follows by using Theorem 2.5, that $A+K$ belong to $\Phi\left(c_{0}\right)$, with index $\chi(A+K)=\chi(A)=0$. In other word $\eta(A+K)=\delta(A+K)$. Now if $A+K$ is invertible, then $N(A+K)=\{0\}$.
Conversely, if $N(A+K)=\{0\}$ then $\eta(A+K)=\delta(A+K)$, and hence $A+K$ must be surjective, that is $A+K$ is invertible.

Lemma 2.10. Consider the finite rank operator

$$
F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}
$$

where $u_{k}^{\prime} \in c_{0}^{\prime}, v_{k} \in c_{0}$ for $k=1, \ldots, m$, then the operator $I-F$ is invertible if and only if $\operatorname{det} P \neq 0$, where P is the $m \times m$ square matrix given by $P=\left(a_{i j}\right)_{i, j=1, . ., m}, a_{i j}=\delta_{i j}-\left\langle u_{i}^{\prime}, v_{j}\right\rangle_{d}$.

Proof. Using precedent lemma it follows that the operator $I-F$ is invertible if and only if $N(I-F)=\{0\}$. To complete the proof it is suficient to show that $N(I-F)=\{0\}$ if and only if $\operatorname{det} P \neq 0$.
For that, let $w \in c_{0}$ such that $(I-F) w=0$; equivalently

$$
\begin{equation*}
w-\sum_{k=1}^{m}\left\langle u_{k}^{\prime}, w\right\rangle_{d} v_{k}=0 \tag{2.1}
\end{equation*}
$$

Now aplly $\langle., .\rangle_{d}$ to the equation (2.1) with respectively $u_{1}^{\prime}, \ldots u_{m}^{\prime}$ we obtain the following system of equation

$$
P\left(\begin{array}{c}
\left\langle u_{1}^{\prime}, w\right\rangle_{d} \tag{2.2}\\
\vdots \\
\left\langle u_{m}^{\prime}, w\right\rangle_{d}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

If we suppose that $N(I-F) \neq\{0\}$, then

$$
w=\sum_{k=1}^{m}\left\langle u_{k}^{\prime}, w\right\rangle_{d} v_{k}
$$

and hence at least one of the following scalars $\left\langle u_{1}^{\prime}, w\right\rangle_{d}, \ldots,\left\langle u_{m}^{\prime}, w\right\rangle_{d}$ is non zero. Consequently the equation (2.2) has at least one non trivial solution which yields $\operatorname{det} P=0$.
Conversely, if $\operatorname{det} P=0$, there exist some scalars ξ_{1}, \ldots, ξ_{m} not all zeros, such that with $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right)^{t}$ we have

$$
P\left(\begin{array}{c}
\xi_{1} \tag{2.3}\\
\vdots \\
\xi_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

We take $w=\sum_{k=1}^{m} \xi_{k} v_{k}$ and we obtain $(I-F) w=0$.
Now $w \neq 0$, if not $\left\langle u_{k}^{\prime}, w\right\rangle=\delta_{k j} \xi_{j}$ for $j=1, \ldots, m$ which yields $\xi_{j}=0$ for $j=1, \ldots, m$ and that contradict the fact that some ξ_{j} are unique then $N(I-F) \neq 0$.

Proposition 2.11. Consider the finite rank operator

$$
F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}
$$

where $u_{k}^{\prime} \in c_{0}^{\prime}, v_{k} \in c_{0}$ for each $k=1,2, \ldots, m$. Then the spectrum of F is given by

$$
\sigma(F)=\{\lambda \in \mathbf{K} \backslash\{0\}: \operatorname{det} P(\lambda)=0\} \cup\{0\}
$$

where $P(\lambda)$ is the $m \times m$ square matrix given by $P(\lambda)=\left(a_{i j}(\lambda)\right)_{i, j}$ with $\left.a_{i j}(\lambda)\right)=\lambda \delta_{i j}-\left\langle u_{i}^{\prime}, v_{j}\right\rangle$.

Proof. Consider the operator $\lambda I-F$, clearly $\lambda=0$ is necessairly in the spectrum of F, because F is not invertible.
Now suppose $\lambda \neq 0$, then $\lambda I-F=\lambda\left(I-F_{\lambda}\right)$, where $F_{\lambda}=\lambda^{-1} F$ is a finite rank operator, it is clear that $\lambda I-F$ is invertible if and only if $I-F_{\lambda}$ is invertible, and $(\lambda I-F)^{-1}=\lambda^{-1}\left(I-F_{\lambda}\right)^{-1}$.

Now using Lemma 2.9 it follows that $I-F_{\lambda}$ is invertible if and only if $N\left(I-F_{\lambda}\right)=\{0\}$. By using the same idea of the precedent lemma it follows that $N\left(I-F_{\lambda}\right)=\{0\}$ if and only if $\operatorname{det} P(\lambda)=\{0\}$.

3. Spectral analysis for the class of operators $T=D+F$.

In this section we make extensive use of result of previous section to study the spectral analysis of operators of the form $T=D+F$ where $D: c_{0} \longrightarrow c_{0}$ is a diagonal operator and F is an operator of finite rank defined by

$$
F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}
$$

where $u_{k}^{\prime} \in c_{0}^{\prime}, v_{k} \in c_{0}$ for each $k=1,2, \ldots, m$.
Theorem 3.1. If $T=D+F$ where D is a bounded diagonal operator on c_{0} and $F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}$. Then $\lambda \in \sigma_{p}(T)$ if and only if the following properties holds
a) $\lambda \notin \sigma_{p}(D)\left(=\left\{\lambda_{j}: j \in \mathbf{N}\right\}\right)$,
b) $\operatorname{det} M(\lambda)=0$, where $M(\lambda)=\left(b_{i j}\right)_{i, j=1,2, \ldots, m}$ with $b_{i j}(\lambda)=\delta_{i j}+\left\langle C_{\lambda} u_{i}^{\prime}, v_{j}\right\rangle_{d}$ for $i, j=1,2, \ldots, m$ with $C_{\lambda}=(D-\lambda I)^{-1}$.

Proof. \quad Suppose that $\lambda \in \sigma_{p}(T)$, thus there exists a non null $w \in c_{0}$ such that $T w=\lambda w$, equivalently,

$$
\begin{equation*}
(\lambda I-D) w=F w=\sum_{k=1}^{m}\left\langle u_{k}^{\prime}, w\right\rangle_{d} v_{k} \tag{3.1}
\end{equation*}
$$

Show that $\lambda \notin \sigma_{p}(D)$.
All the expressions $\left\langle u_{k}^{\prime}, w\right\rangle_{d}$ are non zero for $k=1,2, \ldots, m$, if not we will get $(\lambda I-D) w=0$ with $w \neq 0$. Then $\lambda \in \sigma_{p}(D)$ and hence there exists $j_{0} \in \mathbf{N}$ such that $\lambda=\lambda_{j_{0}}, w=a e_{j_{0}}$ with $a \in \mathbf{K} \backslash\{0\}$ and

$$
0=\left\langle u_{k}^{\prime}, w\right\rangle_{d}=\left\langle u_{k}^{\prime}, a e_{j_{0}}\right\rangle_{d}=a\left\langle u_{k}^{\prime}, e_{j_{0}}\right\rangle_{d}
$$

yields $\left\langle u_{k}^{\prime}, e_{j_{0}}\right\rangle_{d}=0$ for $k=1,2, \ldots, m$, absurd.
Consequently $F w=(\lambda I-D) w \neq 0$ and hence $\lambda \notin \sigma_{p}(D)$. Clearly equation (3.1) is equivalent to

$$
\begin{gathered}
w+(D-\lambda I)^{-1} \sum_{k=1}^{m}\left\langle u_{k}^{\prime}, w\right\rangle_{d} v_{k}=0 \\
\text { or } w+\sum_{k=1}^{m}\left\langle u_{k}^{\prime}, w\right\rangle C_{\lambda} v_{k}=0
\end{gathered}
$$

now apply $\langle., .,\rangle_{d}$ to the equation (3.2) with respectively $u_{1}^{\prime}, \ldots, u_{m}^{\prime}$ we obtain the following system of equation

$$
M(\lambda)\left(\begin{array}{c}
\left\langle u_{1}^{\prime}, w\right\rangle_{d} \tag{3.3}\\
\vdots \\
\left\langle u_{m}^{\prime}, w\right\rangle_{d}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

Using the fact that at least one of the following scalars $\left\langle u_{1}^{\prime}, w\right\rangle_{d}, \ldots,\left\langle u_{m}^{\prime}, w\right\rangle_{d}$ is non zero it follows that equation (3.3) has at least one non trivial solution which yields $\operatorname{det} M(\lambda)=0$.

Suppose that $\lambda \notin \sigma_{p}(D)$ and $\operatorname{det} M(\lambda)=0$, then there exists some scalars ξ_{1}, \ldots, ξ_{m} not all zero such that with $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right)^{t}$ we have

$$
M(\lambda)\left(\begin{array}{c}
\xi_{1} \tag{3.4}\\
\vdots \\
\xi_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

we take $w=-\sum_{k=1}^{m} \xi_{k} C_{\lambda} v_{k}$ and obtain $(T-\lambda I) w=0$, now $w \neq 0$; to show that it suffice to show that $C_{\lambda}^{-1} w \neq 0$, by using C_{λ} yield $w \neq 0$. If $C_{\lambda}^{-1} w=0$, it follows that $0=\left\langle C_{\lambda}^{-1} w, v_{j}\right\rangle=\delta_{k j} \xi_{j}$, for $j=1, \ldots m$, consequently $\xi_{j}=0$, for $j=1, . ., m$, this contradict the fact that some of the ξ_{j} are non zero. Then $N(T-\lambda I) \neq 0$, that is $\lambda \in \sigma_{p}(T)$.

Corollary 3.2. Let $T=D+F$ and $\lambda \in \rho(D)$. Then $\lambda \in \sigma_{p}(T)$ if and only if $\operatorname{det} M(\lambda)=0$.

Proof. Since $\lambda \in \rho(D)$ it follows that $\lambda \notin \sigma_{p}(D)$, then the result follows directly from the previous theorem.

Corollary 3.3. If $T=D+F$, where D is a bounded diagonal operator and F is an operator of finite rank defined by $F=\sum_{k=1}^{m} u_{k}^{\prime} \otimes v_{k}$, with $u_{k}^{\prime} \in c_{0}^{\prime}$ and $v_{k} \in c_{0}$ for each $k=1, \ldots m$, then the eigenvalues and the spectrum of T are given by

$$
\begin{gathered}
\sigma_{p}(T)=\{\lambda \in \rho(D) \quad: \operatorname{det} M(\lambda)=0\} \\
\sigma(D)=\{\lambda \in \rho(D) \quad: \operatorname{det} M(\lambda)=0\} \cup \sigma_{e}(D)
\end{gathered}
$$

Remark 3.4. For the characterization of the essential spectrum see [4].

References

[1] B. Diarra, "An operator on some ultrametric Hilbert space", The Journal of A nalysis, vol. 6, pp. 55-74, 1998.
[2] C. Perz-Garcia and W .H. Schikhof, Locally Convex spaces over N on-A rchimedean valued Fields. C ambridge: C ambrige U niversity Press, 2010.
[3] S. Sliwa, "On Fredholm operators between non-archimedean Frechet spaces", Compositio Mathematica, vol. 139, no. 1, pp. 113-118, 2003. doi: 10.1023/b:comp.0000005075.84696.f8
[4] T. Diagana, R. Kerby, T. H. M iabey and F. Ramarson, "Spectral analysis for finite rank perturbations of diagonal operators in non-archimedean Hilbert space", p-A dic N umbers, U Itrametric A nalysis, and A pplications, vol. 6, no. 3, pp. 171-187, 2014. doi: 10.1134/s2070046614030017
[5] T. Diagana and F. Ramaroson, Non-Archimedean Operator Theory, Briefs in mathematics. New York: Springer, 2016.
[6] J. P. Serre, "Endomorphismes complètement continus des espaces de Banachp-adiques", Publications mathématiques de I'Institut des Hautes Études Scientifiques, no. 12, pp. 69-85, 1962. doi: 10.1007/BF 02684276

Abdelkhalek El Amrani
Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Fez, Morocco
e-mail: abdelkhalek.elamrani@usmba.ac.ma
Corresponding author

Aziz Blali

Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University,
ENS B. P. 5206 Bensouda, Fez, Morocco
e-mail: aziz.blali@usmba.ac.ma
and
Mohamed Amine Taybi
Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University,
Faculty of Sciences Dhar El Mahraz, Fez, Morocco
e-mail: mohamedamine.taybi@usmba.ac.ma

