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Abstract

In this paper we are concerned with the spectral analysis for the
classes of finte rank perturbations of diagonal operators in the form
A = D+F where D is a diagonal operator and F = u

0

1⊗v1+...+u
0

m⊗
vm is an operator of finite rank in the non-archimedean Banach space
of countable type. We compute the spectrum of A using the theory
of Fredholm operators in non archimedean setting and the concept of
essential spectrum for linear operators.
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1. Introduction and Preliminaries

In this paper K denotes a non trivial field which is complete with respect
to a non-archimedean valuation denoted |.| and its residue class fields is
formally real.
The spectral analysis for completely continuous linear operators in the non-
archimedean setting was studied by Serre [6]. After the work of Diagana
and Ramarson was centered to the spectral analysis in the case of “small”
perturbation of completely continuous linear operators of the form

T = D +K,

where D is a diagonal operator and K is completely continuous linear op-
erator in the non-archimedean Hilbert space Ew.
This work will generalized the studies of Diagana and Ramaroson from Ew

to non-archimedean Banach space of countable type.
Define the space c0 as the collection of all sequences (λ0, λ1, λ2, ...) ∈ KN
for which lim

i
λi = 0, i.e

c0 = {λ = (λi)i∈N ⊂ K : lim
i
λi = 0}.

It is know that the space c0 equipped with the norm defined by:

for each λ = (λi)i∈N ∈ c0 kλk∞ = sup
i∈N

|λi|

is a non-archimedean Banach space see [2]. The bilinear form h, i : c0×c0 →
K defined by:

for each x = (xi), y = (yi) ∈ c0 hx, yi =
+∞X
i=0

xiyi,

is an inner product in the non-archimedean sense. Since the residue class
field ofK is formally real then kxk2∞ = hx, xi. The non-archimedean Banach
space c0 has a special base denotes by (ei)i∈N = (δij)i,j∈N where δij is the
usual Kronecker symbol.
Moreover we can define the crochet of duality by:

h, id : c
0
0 × c0 →K.

In this work we study the spectral analysis for an operator with the form

T = D + F,
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where D is a bounded diagonal operator and F =
mP
k=1

u
0
k⊗vk is an operator

of finite rank at most m, with u
0
k ∈ c

0
0 and vk ∈ c0 for k = 1, ...,m.

Namely, under some suitable assumptions, we will show that the spectrum
σ(T ) of bounded linear operator T is given by

σ(T ) = σe(D) ∪ σp(T ),

where σe(D) is the essential spectrum of D and σp(T ) is the point spec-
trum of T, that is the set of eigenvalues of T given by σp(T ) = {λ ∈
ρ(D) : detM(λ) = 0} with M(λ) being the m×m square matrix M(λ) =
(bij)i,j=1,..m whose coefficients are given by bij = δij + hCλv

0
i, vjid for i, j =

1, ...,m and Cλ = (D − λI)−1.

Definition 1.1. A mapping A : c0 → c0 is said to be a bounded linear
operator on c0 whether it is linear and bounded, that is, there exists C > 0
such that

for all u ∈ c0 kAuk∞ ≤ Ckuk∞.

B(c0) denote the collection of all bounded linear operators on c0, B(c0) is
a non-archimedean Banach space with the norm k.k∞.
Let A ∈ B(c0), its kernel and range are respectively defined by N(A) =
{u ∈ c0 : Au = 0} and R(A) = {Au : u ∈ c0}.

Proposition 1.2. Let A ∈ B(c0) then it can be written in a unique fashion
as pointwise convergent series

A =
X
i,j∈N

ajie
0
i ⊗ ej , and (∀i ∈ N) lim

j
aji kejk = 0,

moreover

kAk∞ = sup
i,j∈N

|aji|kejk
keik

.

Proof. See [1]. 2

The adjoint A∗ of A ∈ B(c0), if it exists, is defined by < Au, v >=<
u,A∗v > for all u, v ∈ c0. In contract with the classical case, the adjoint
of an operator may or may not exist. Note that if it exists, the adjoint A∗

of an operator A, is unique and has the same norm as A, and hence lies in
B(c0) as well. The properties of the adjoint are easier to express in terms
of the canonical orthogonal base of c0.
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1.1. Finite rank operators in c0

Definition 1.3. If A ∈ B(c0) is such that R(A) is a finite dimensional
subspace of c0, then A is said to be an operator of finite rank. In this
case, the dimension of R(A), that is dimR(A) is called the rank of A. The
collection of all finite rank operators on c0 will be denoted by F(c0).

It can be easily shown that for eachA ∈ F(c0), there exists u
0
1, u

0
2, ..., u

0
m ∈

c
0
0 and v1, v2, ..., vm ∈ c0 such that

A =
mX
k=1

u
0
k ⊗ vk.

1.2. Completely continuous operators

Definition 1.4. A linear operator K : c0 → c0 is said to be completely
continuous if there exists a sequence (Fn) ⊂ F(c0) such that kK−Fnk→ 0
as n→∞. The collection of such linear operators will be denoted C(c0).

Example 1.5. Classical examples of completely continuous operators in-
clude finite rank operators on c0.

Example 1.6. Consider the diagonal operator D defined by, Dej = λjej
where λj ∈ K for each j ∈N and suppose that

lim
j→∞

|λj | = 0,

D is completely continuous. Indeed, consider the sequence of linear opera-
tors (Dn) defined on c0 by Dnej = λjej for j = 0, 1, ..., n and Dnej = 0 for
j ≥ n+ 1, then Dn ∈ F(c0) and lim

n→∞
kD−Dnk = lim

j→∞
sup

j≥n+1
|λj | = 0, and

hence D ∈ C(c0).

1.3. Fredholm operators

Definition 1.7. An operator A ∈ B(c0) is said to be a Fredholm operator
if it satisfies the following conditions:

1. η(A) = dimN(A) is finite,

2. R(A) is closed,

3. δ(A) = dim(c0/R(A)) is finite.



Spectral analysis for finite rank perturbation of diagonal ... 1067

The collection of all Fredholm linear operators on c0 will be denoted by
Φ(c0). If A ∈ Φ(c0), we then define its index by setting χ(A) = η(A)−δ(A).

Example 1.8. Any invertible bounded linear operator A : c0 → c0 (in
particular, the identity operator I : c0 → c0, I(x) = x), is a Fredholm
operator with index χ(A) = 0 as δ(A) = η(A) = 0.

1.4. Space of countable type

Recall that a topological space is called separable if it has a countable
dense subset. Now let E be a normed space over K such that E 6= {0} and
suppose that E is separable, then K must be separable as well. Thus, for
normed space the concept of separability is of no use if K is not separable,
however linearizing the notion of separability we obtain a generalization
useful for every scalar field K.

Definition 1.9. A normed space E is of countable type if it contains a
countable set whose linear hull is dense in E.

Example 1.10. Clearly the span of unit vector e1 = (1, 0, ...), e2 = (0, 1, 0, ...), ...
is dense in c0 then c0 is a Banach space of countable type.

Proposition 1.11. Each normed space is linearly heomeorphic to a sub-
space of c0. Each infinite-dimensional Banach space of countable type is
linearly heomeorphic to c0.

Proof. See [2]. 2

This result shows that, up to linear homeomorphisms, there exists, for
given K, only one infinite-dimensional Banach space of countable type viz
c0.

2. Spectral analysis for the class of operators T = D +K

In this section we study the spectral analysis for perturbation of completely
continuous linear operators by diagonal operators. Namely, we study the
class of operators of the form T = D +K, where D : c0 → c0 is a diagonal
operator defined by Dej = λjej for all j ∈ N, where λ = (λj)j∈N is a
bounded sequence andK : c0 → c0 is completely continuous linear operator.

Definition 2.1. The resolvent of a bounded linear operator A : c0 → c0 is
defined by ρ(A) = {λ ∈K : λI−A is a bijection and (λI−A)−1 ∈ B(c0)}.
The spectrum σ(A) of A is then defined by σ(A) = K \ ρ(A).
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Definition 2.2. A scalar λ ∈ K is called an eigenvalue of A ∈ B(c0),
whenever there exists a nonzero u ∈ c0 (called eigenvector associated to λ)
such that Au = λu.

Clearly, eigenvalues of A consist of all λ ∈ K, for which λI − A is not
one-to-one; that is N(λI −A) 6= {0}. The collection of all eigenvalues of A
is denoted by σp(A) (called point spectrum) and is defined by

σp(A) = {λ ∈ σ(A) : N(λI −A) 6= {0}}.

Example 2.3. Consider the diagonal operator D : c0 → c0 defined by

for all u = (uj)j∈N ∈ c0 Du =
∞X
j=0

λjujej ,

where sup
j∈N

|λj | < +∞. Then σ(D) = {λk : k ∈ N} the closure of {λk : k ∈

N}, i.e
σ(D) = {λ ∈K : lim

j→∞
|λ− λj | = 0}.

Definition 2.4. Define the essential spectrum σe(A) of a bounded linear
operator A : c0 → c0 as follows

σe(A) = {λ ∈ K : λI −A is not Fredholm operator of index 0}.

Clearly if λ ∈ K does not belong to neither σp(A) or σe(A), then
(λI − A) must be injective. N(λI − A) = {0} and R(λI − A) is closed
with 0 = dimN(λI−A) = dim(c0/R(λI−A)), consequently (λI−A) must
be bijective (injective and surjective) which yield λ ∈ ρ(A).

In view of previous fact, we have σ(A) = σp(A)∪σe(A). Define Φ0(c0) =
{A ∈ Φ(c0) : χ(A) = 0}.

Theorem 2.5. If A ∈ Φ(c0) and K ∈ C(c0), then A + K ∈ Φ(c0), with
χ(A+K) = χ(A).

Proof. See [3]. 2

The next theorem is very important in the rest of this paper.

Theorem 2.6. If A ∈ B(c0), then for all K ∈ C(c0), σe(A+K) = σe(A).
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Proof. If λ does not belong to σe(A), then λI −A belong to Φ(c0) with
χ(λI−A) = 0, therefore λI−A−K belong to Φ(c0) with χ(λI−(A+K)) = 0
for all K ∈ Φ(c0). Then λ does not belong to σe(A+K). 2

Corollary 2.7. For every K ∈ Φ(c0), σe(A+K) = σe(A).

Proposition 2.8. If T = D+K, where K ∈ C(c0), then its spectrum σ(T )
is giving by σ(T ) = σe(D) ∪ σp(T ).

Proof. We have σ(T ) = σe(T ) ∪ σp(T ).
In view of precedent corollary σe(T ) = σe(D +K) = σe(D), so it follows
that σ(T ) = σe(D) ∪ σp(T ). 2

Lemma 2.9. If A ∈ Φ0(c0) and K ∈ C(c0), then the linear operator A+K
is invertible if and only if N(A+K) = {0}.

Proof. Since A ∈ Φ(c0), with index χ(A) = 0, its follows by using
Theorem 2.5, that A+K belong to Φ(c0), with index χ(A+K) = χ(A) = 0.
In other word η(A + K) = δ(A + K). Now if A + K is invertible, then
N(A+K) = {0}.
Conversely, if N(A + K) = {0} then η(A + K) = δ(A + K), and hence
A+K must be surjective, that is A+K is invertible. 2

Lemma 2.10. Consider the finite rank operator

F =
mX
k=1

u
0
k ⊗ vk,

where u
0
k ∈ c

0
0, vk ∈ c0 for k = 1, ...,m, then the operator I−F is invertible

if and only if detP 6= 0, where P is the m × m square matrix given by
P = (aij)i,j=1,..,m, aij = δij − hu

0
i, vjid.

Proof. Using precedent lemma it follows that the operator I − F is
invertible if and only if N(I−F ) = {0}. To complete the proof it is suficient
to show that N(I − F ) = {0} if and only if detP 6= 0.
For that, let w ∈ c0 such that (I − F )w = 0; equivalently

w −
mX
k=1

hu0k, widvk = 0.(2.1)
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Now aplly h., .id to the equation (2.1) with respectively u
0
1, ...u

0
m we

obtain the following system of equation

P

⎛⎜⎜⎝
hu01, wid

...

hu0m, wid

⎞⎟⎟⎠ =
⎛⎜⎝ 0
...
0

⎞⎟⎠ .(2.2)

If we suppose that N(I − F ) 6= {0}, then

w =
mX
k=1

hu0k, widvk,

and hence at least one of the following scalars hu01, wid, ..., hu
0
m, wid is non

zero. Consequently the equation (2.2) has at least one non trivial solution
which yields detP = 0.
Conversely, if detP = 0, there exist some scalars ξ1, ..., ξm not all zeros,
such that with ξ = (ξ1, ..., ξm)

t we have

P

⎛⎜⎝ ξ1
...
ξm

⎞⎟⎠ =
⎛⎜⎝ 0
...
0

⎞⎟⎠ .(2.3)

We take w =
mP
k=1

ξkvk and we obtain (I − F )w = 0.

Now w 6= 0, if not hu0k, wi = δkjξj for j = 1, ...,m which yields ξj = 0
for j = 1, ...,m and that contradict the fact that some ξj are unique then
N(I − F ) 6= 0. 2

Proposition 2.11. Consider the finite rank operator

F =
mX
k=1

u
0
k ⊗ vk,

where u
0
k ∈ c

0
0, vk ∈ c0 for each k = 1, 2, ...,m. Then the spectrum of F is

given by

σ(F ) = {λ ∈ K \ {0} : detP (λ) = 0} ∪ {0},

where P (λ) is the m ×m square matrix given by P (λ) = (aij(λ))i,j with
aij(λ)) = λδij − hu

0
i, vji.
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Proof. Consider the operator λI −F, clearly λ = 0 is necessairly in the
spectrum of F, because F is not invertible.
Now suppose λ 6= 0, then λI −F = λ(I −Fλ), where Fλ = λ−1F is a finite
rank operator, it is clear that λI − F is invertible if and only if I − Fλ is
invertible, and (λI − F )−1 = λ−1(I − Fλ)

−1.
Now using Lemma 2.9 it follows that I − Fλ is invertible if and only if

N(I−Fλ) = {0}. By using the same idea of the precedent lemma it follows
that N(I − Fλ) = {0} if and only if detP (λ) = {0}. 2

3. Spectral analysis for the class of operators T = D + F .

In this section we make extensive use of result of previous section to study
the spectral analysis of operators of the form T = D+F whereD : c0 −→ c0
is a diagonal operator and F is an operator of finite rank defined by

F =
mX
k=1

u
0
k ⊗ vk,

where u
0
k ∈ c

0
0, vk ∈ c0 for each k = 1, 2, ...,m.

Theorem 3.1. If T = D + F where D is a bounded diagonal operator

on c0 and F =
mP
k=1

u
0
k ⊗ vk. Then λ ∈ σp(T ) if and only if the following

properties holds

a) λ /∈ σp(D) (= {λj : j ∈ N}) ,

b) detM(λ) = 0, whereM(λ) = (bij)i,j=1,2,...,m with bij(λ) = δij+hCλu
0
i, vjid

for i, j = 1, 2, ...,m with Cλ = (D − λI)−1.

Proof. Suppose that λ ∈ σp(T ), thus there exists a non null w ∈ c0 such
that Tw = λw, equivalently,

(λI −D)w = Fw =
mX
k=1

hu0k, widvk.(3.1)

Show that λ /∈ σp(D).
All the expressions hu0k, wid are non zero for k = 1, 2, ...,m, if not we will
get (λI − D)w = 0 with w 6= 0. Then λ ∈ σp(D) and hence there exists
j0 ∈ N such that λ = λj0 , w = aej0 with a ∈K\{0} and

0 = hu0k, wid = hu
0
k, aej0id = ahu0k, ej0id
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yields hu0k, ej0id = 0 for k = 1, 2, ...,m, absurd.
Consequently Fw = (λI −D)w 6= 0 and hence λ /∈ σp(D). Clearly equation
(3.1) is equivalent to

w + (D − λI)−1
mX
k=1

hu0k, widvk = 0,

or w +
mX
k=1

hu0k, wiCλvk = 0,(3.2)

now apply h., .id to the equation (3.2) with respectively u
0
1, ..., u

0
m we obtain

the following system of equation

M(λ)

⎛⎜⎜⎝
hu01, wid

...

hu0m, wid

⎞⎟⎟⎠ =
⎛⎜⎝ 0
...
0

⎞⎟⎠ .(3.3)

Using the fact that at least one of the following scalars hu01, wid, ..., hu
0
m, wid

is non zero it follows that equation (3.3) has at least one non trivial solution
which yields detM(λ) = 0.

Suppose that λ /∈ σp(D) and detM(λ) = 0, then there exists some
scalars ξ1, ..., ξm not all zero such that with ξ = (ξ1, ..., ξm)

t we have

M(λ)

⎛⎜⎝ ξ1
...
ξm

⎞⎟⎠ =
⎛⎜⎝ 0
...
0

⎞⎟⎠ ,(3.4)

we take w = −
mP
k=1

ξkCλvk and obtain (T − λI)w = 0, now w 6= 0; to show

that it suffice to show that C−1λ w 6= 0, by using Cλ yield w 6= 0. If C−1λ w = 0,
it follows that 0 = hC−1λ w, vji = δkjξj , for j = 1, ...m, consequently ξj = 0,
for j = 1, ..,m, this contradict the fact that some of the ξj are non zero.
Then N(T − λI) 6= 0, that is λ ∈ σp(T ). 2

Corollary 3.2. Let T = D + F and λ ∈ ρ(D). Then
λ ∈ σp(T ) if and only if detM(λ) = 0.
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Proof. Since λ ∈ ρ(D) it follows that λ /∈ σp(D), then the result follows
directly from the previous theorem. 2

Corollary 3.3. If T = D + F, where D is a bounded diagonal operator

and F is an operator of finite rank defined by F =
mP
k=1

u
0
k⊗vk, with u

0
k ∈ c

0
0

and vk ∈ c0 for each k = 1, ...m, then the eigenvalues and the spectrum of
T are given by

σp(T ) = {λ ∈ ρ(D) : detM(λ) = 0}

σ(D) = {λ ∈ ρ(D) : detM(λ) = 0} ∪ σe(D).

Remark 3.4. For the characterization of the essential spectrum see [4].
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