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Abstract

The Grundy number of a graph G is the maximum number k of
colors used to color the vertices of G such that the coloring is proper
and every vertex u colored with color i, 1 ≤ i ≤ k, is adjacent to i− 1
vertices colored with each color j, 1 ≤ j ≤ i − 1. In this paper we
obtain the Grundy number of corona product of some graphs, denoted
by G ◦H. First, we consider the graph G be 2-regular graph and H
be a cycle, complete bipartite, ladder graph and fan graph. Also we
consider the graph G and H be a complete bipartite graphs, fan graphs.
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1. Introduction

We consider graphs without loops or multiple edges. Let G be a graph on
vertices u1, u2, . . . , um with vertex set V (G) and edge set E(G). Let d(u)
be the degree of the vertex u of G and let ∆(G) be the maximum degree
of G.

A k−coloring of a graphG is a surjective mapping g : V (G)→ {1, 2, . . . , k}
(we say that vertex u is colored with g(u)). A k−coloring g is proper if any
two adjacent vertices receive different colors in g. The chromatic number
χ(G) of G is the smallest k such that G has a proper k−coloring. Determin-
ing the chromatic number of a graph is one of the most fundamental prob-
lems in graph theory. Given a graph G and an ordering g = u1, u2, . . . um
of V (G), the first−fit coloring algorithm colors vertex ui with the small-
est color of u1, u2, . . . ui−1 that is not present among the set of neighbors
of ui. The Grundy number Γ(G) [5, 7, 16, 10, 12] is the largest k such
that G admits a vertex ordering on which the first−fit algorithm yields a
proper k−coloring. First−fit is presumably the simplest heuristic to com-
pute a proper coloring of a graph. In this sense, the Grundy number gives
an algorithmic upper bound on the performance of any heuristic for the
chromatic number.

Greedy Coloring Algorithm: [2, 13] Assume that a graph G’s vertices
are given in the following order u1, u2, . . . , um.

• The vertex u1 is assigned the color 1.

• Once the vertices u1, u2, . . . uj have been assigned colors, where 1 ≤
j ≤ n, the vertex uj+1 is assigned the smallest color that is not
assigned to any neighbor of uj+1 belonging to the set {u1, u2, . . . , uj}.

While the Greedy coloring algorithm is efficient in the sense that the
vertex coloring that it produces, regardless of the order in which its vertices
are listed, is done in polynomial time (a polynomial in the order n of the
graph), the number of colors in the coloring obtained need not equal or
even be close to the chromatic number of the graph. Indeed, there is reason
not to be optimistic about finding any efficient algorithm that produces a
coloring of each graph where the number of colors is close to the chromatic
number of the graph since Michael R. Garey and David S. Johnson,[8]
have shown that if there should be an efficient algorithm that produces
a coloring of every graph G using at most 2χ(G) colors, then there is an
efficient algorithm that determines χ(G) exactly for every graph G.
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This notion was first studied by Grundy in 1939 in the context of di-
graphs and games [1, 11], and formally introduced by Christen and Selkow
[3] in 1979. In [16], Hedetniemi et al. gave a linear algorithm for the Grundy
number of a tree and established a relation between the chromatic number,
the Grundy number and the achromatic number: χ(G) ≤ Γ(G) ≤ ψ(G),
where the achromatic number ψ(G) is the maximum number of colors used
for a proper coloring of G such that each pair of colors appears on at least
one edge of G. In 1997, Telle and Proskurowski [19] gave an algorithm for
the Grundy number of partial k−trees in O(n3k2) and bounded this param-
eter for these graphs by the value 1 + k log2 n, where n is the graph order.
In 2000, Dunbar et al. used the Grundy number to bound new parameters
that they introduced in [4], the chromatic and the achromatic numbers of a
fall coloring. Recently, Germain and Kheddouci studied in [9] the Grundy
coloring of power graphs. They gave bounds for the Grundy number of the
power graphs of a path, a cycle, a caterpillar and a complete binary tree.
Such colorings are also explored for other graphs like chessboard graphs
[17].

2. Preliminaries

All graphs we consider are simple and fnite. A closed trail whose origin
and internal vertices are distinct is called a cycle. A regular graph [13] of
degree 0 has no lines at all. IfG is regular of degree 1, then every component
contains exactly one line; if it is regular of degree 2, every component is a
cycle, and conversely of course. A bigraph [13] (or bipartite graph) G is
a graph whose point set V can be partitioned into two subsets V1 and V2
such that every line of G joins V1 with V2. If G contains every line joining
V1 and V2, then G is a complete bigraph. If V1 and V2 have m and n
points, we write G = Km,n. A fan graph [21] Fm,n, is defined as the graph
join Km + Pn, where Km is the empty graph on m vertices and Pn is the
path graph on n vertices, where V (F1,n−1) = {un}∪{u1, u2, . . . un−1}. The
Ladder graph[18, 22] Ln is defined by Ln = PnK2, where Pn is a path with
n vertices, denotes the Cartesian product and K2 is a complete graph with
two vertices.

The corona [6, 14, 15, 20] of two graphs G and H is the graph G ◦H
formed from one copy of G and |V (G)| copies of H, where the ith vertex
of G is adjacent to every vertex in the ith copy of H. Such type of graph
products was introduced Frucht and Harary in 1970 [6]. For example the
corona Pn ◦K1 is a comb graph.
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In the following section, we obtain the Grundy number of corona prod-
uct of some graphs, denoted by G ◦H. First, we consider the graph G be
2− regular graph and H be a cycle, complete bipartite, ladder graph and
fan graph. Also we consider the graph G and H be a complete bipartite
graphs, fan graphs.

3. Main Results

Now we consider G and H be a 2-regular graphs of order m > 4 and n > 4.
Let V (G) = {ui : 1 ≤ j ≤ m} and let V (H) = {vj : 1 ≤ j ≤ n}. Let
V (G ◦H) = V (G) ∪

mS
i=1
{vi,j : 1 ≤ j ≤ n}.

Theorem 1. Let G andH be a 2-regular graphs of orderm > 4 and n > 4.
then Γ (G ◦H) = 6.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:

Case (i): For m ≡ 0, 23.
For 1 ≤ i ≤ m,

g (ui) =

⎧⎪⎨⎪⎩
4, if i ≡ 13
5, if i ≡ 23
6, if i ≡ 03

(3.1)

Figure 1: Grundy number of C6 ◦ C6 is 6.
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For n ≡ 0, 23.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

g (vi,j) =

⎧⎪⎨⎪⎩
1, if j ≡ 13
2, if j ≡ 23
3, if j ≡ 03

(3.2)

For n ≡ 13.
Using the color pattern as followed from equation (3.2) of order n−2.
Also g (vi,n−1) = 1; g (vi,n) = 2.

Case (ii): For m ≡ 13
Using the color pattern as followed from Case(i) of order m− 2. Also
g (um−1) = 4; g (um) = 5.

Assume Γ (G ◦H) ≤ 7. Consider a Greedy algorithm that assigns a
colors 1, 2 and 3 to the vertices {vi,j∀ i = 1 to m and j = 1 to n} in order
to satisfy the Grundy number. Next we assigns a color to the vertices ui,
(1 ≤ i ≤ m) in such a way that they receive the color 4 or 5 or 6 which is not
assigned to the vertices in N(ui) = {vi,j , ui+1, ui−1∀ i = 1 to m and j =
1 to n}. Then any vertex of ui, (1 ≤ i ≤ m) is given the color 7, the in-
order to satisfy the Grundy number, the vertex which is given the color 7
must be adjacent to all neighbourhood vertices which is given the colors 1,
2, 3, 4, 5 and 6. Which is contradiction. Hence Γ (G ◦H) ≤ 6. 2

Now we consider G and H be a complete bipartite graphs. Let V (G) =
{ui : 1 ≤ i ≤ l} ∪ {vj : 1 ≤ j ≤ p} and let V (H) = {xr : 1 ≤ r ≤ m} ∪ {ys :

1 ≤ s ≤ n}. Let V (G ◦H) = V (G) ∪
lS

i=1
{xi,r, yi,s : 1 ≤ r ≤ m, 1 ≤ s ≤

n} ∪
pS

j=1
{xj,r, yj,s : 1 ≤ r ≤ m, 1 ≤ s ≤ n}.

Theorem 2. Let G and H be a complete bipartite graphs of order l, p,
m,and n, then Γ (G ◦H) = 4.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:
g (ui) = 4; g (vj) = 3; g (xi,r) = g (xj,r) = 1; g (yi,s) = g (yj,s) = 2.

Assume Γ (G ◦H) > 4. Let 1, 2, 3, 4, 5 be the distinct colors. Sup-
pose we assign the color 5 to anyone vertex of ui(1 ≤ i ≤ m). Since
the neighbourhood vertices are assigned the colors 4, 3, 2, 1 to the vertices
vj , xi,r, yi,s, xj,r, yi,s(1 ≤ i ≤ l, 1 ≤ j ≤ p, 1 ≤ r ≤ m, 1 ≤ s ≤ n). Here
either every two colors a and b with ab or every vertex colored b has not a
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neighbor colored a. it contradicts by the Grundy chromatic number. Since
Γ(G ∨H) ≥ 4. Therefore Γ(G ∨H) = 4. 2

Now we consider G be a 2-regular graph and H be a complete bipartite
graphs. Let V (G) = {ui : 1 ≤ i ≤ l} and let V (H) = {xr : 1 ≤ r ≤

m} ∪ {ys : 1 ≤ s ≤ n}. Let V (G ◦H) = V (G) ∪
lS

i=1
{xi,r : 1 ≤ r ≤

m} ∪
lS

i=1
{yi,s : 1 ≤ s ≤ n}.

Theorem 3. Let G be a 2-regular graph of order l > 4 and H be a com-
plete bipartite graph of order m and n, then Γ (G ◦H) = 5.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:

Case (i): For l ≡ 0, 23.
For 1 ≤ i ≤ l,

g (ui) =

⎧⎪⎨⎪⎩
3, if i ≡ 13
4, if i ≡ 23
5, if i ≡ 03

Figure 2: Grundy number of C6 ◦K2,3 is 5.

g (xi,r) = 1, 1 ≤ r ≤ m; g (yi,s) = 2, 1 ≤ s ≤ n.

Case (ii): For l ≡ 13
Using the color pattern as followed from Case(i) of order l − 2. Also
g (ul−1) = 3; g (ul) = 4.
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Assume Γ (G ◦H) ≤ 8. Consider a Greedy algorithm that assign the
colors 1 and 2 to the vertices {xi,r, yi,s,∀ i = 1 to l, r = 1 to m and s =
1 to n} in order to satisfy the Grundy number. Next we assigns a color to
the vertices ui, (1 ≤ i ≤ m) in such a way that they receive the color 3 or 4
or 5 which is not assigned to the vertices inN(ui) = {ui+1, ui−1, xi,r, yi,s,∀ i =
1 to l, r = 1 to m and s = 1 to n}. Then any vertex of ui, (1 ≤ i ≤ m)
is given the color 6, the in-order to satisfy the Grundy number, the vertex
which is given the color 6 must be adjacent to all neighbourhood vertices
which is given the colors 1, 2, 3, 4 and 5. Which is contradiction. Hence
Γ (G ◦H) ≤ 5. 2

Now we consider G be a 2-regular graph and H be a ladder graph. Let
V (G) = {ui : 1 ≤ i ≤ m} and let V (H) = {vj , v0j : 1 ≤ j ≤ n}. Let
V (G ◦H) = V (G) ∪

mS
i=1
{vi,j , v0i,j : 1 ≤ j ≤ n}.

Theorem 4. Let G be a 2-regular graph of orderm > 4 and H be a ladder
graph of order n > 4, then Γ (G ◦H) = 7.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:

Case (i): For m ≡ 0, 23.
For 1 ≤ i ≤ m,

g (ui) =

⎧⎪⎨⎪⎩
5, if i ≡ 13
6, if i ≡ 23
7, if i ≡ 03

(3.3)

Subcase (i): For n ≡ 1, 34.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

g (vi,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if j ≡ 14
2, if j ≡ 24
3, if j ≡ 34
4, if j ≡ 04

(3.4)

For 1 ≤ i ≤ m and 3 ≤ j ≤ n,

g
³
v0i,j
´
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if j ≡ 34
2, if j ≡ 04
3, if j ≡ 14
4, if j ≡ 24

(3.5)

g
³
v0i,1

´
= 2; g

³
v0i,2

´
= 3;
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Subcase (ii): For n ≡ 24.
Using the color pattern as followed from the subcase (i) except the
vertices v0i,n, (1 ≤ i ≤ m).

So g
³
v0i,n

´
= 1.

Subcase (iii): For n ≡ 04.
Using the color pattern as followed from the subcase (i) except the
vertices vi,n, (1 ≤ i ≤ m).
So g (vi,n) = 1.

Case (ii): For m ≡ 13
Using the color pattern as followed from Case(i) of order m− 2. Also
g (um−1) = 5; g (um) = 6.

Assume Γ (G ◦H) ≤ 8. Consider a Greedy algorithm that assign the
colors 1, 2, 3 and 4 to the vertices {vi,j , v0i,j∀ i = 1 to m and j = 1 to n}
in order to satisfy the Grundy number. Next we assigns a color to the
vertices ui, (1 ≤ i ≤ m) in such a way that they receive the color 5 or 6 or
7 which is not assigned to the vertices in N(ui) = {vi,j , v0i,j , ui+1, ui−1∀ i =
1 to m and j = 1 to n}. Then any vertex of ui, (1 ≤ i ≤ m) is given the
color 8, the in-order to satisfy the Grundy number, the vertex which is
given the color 8 must be adjacent to all neighbourhood vertices which is
given the colors 1, 2, 3, 4, 5, 6 and 7. Which is contradiction. Hence
Γ (G ◦H) ≤ 7. 2

Now we consider G and H be a fan graph. Let V (G) = {ui : 1 ≤
i ≤ m− 1} ∪ {um}, wher um be a centre vertex of ui, (1 ≤ i ≤ m− 1) and
let V (H) = {vj : 1 ≤ j ≤ n − 1} ∪ {vn}, wher vn be a centre vertex of
vj , (1 ≤ j ≤ n− 1). Let V (G ◦H) = V (G) ∪

mS
i=1
{vi,j : 1 ≤ j ≤ n}.

Theorem 5. Let G and H be a fan graph of order m > 4 and n > 4, then
Γ (G ◦H) = 8.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:

Case (i): For m− 1 ≡ 1, 23.
For 1 ≤ i ≤ m− 1,

g (ui) =

⎧⎪⎨⎪⎩
6, if i ≡ 13
7, if i ≡ 23
8, if i ≡ 03

(3.6)

g (um) = 5.
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Subcase (i): For n− 1 ≡ 1, 23.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1,

g (vi,j) =

⎧⎪⎨⎪⎩
1, if j ≡ 13
2, if j ≡ 23
3, if j ≡ 03

(3.7)

g (vi,n) = 4.

Subcase (ii): For n− 1 ≡ 03.
Using the color pattern as followed from the subcase (i) except the
vertices vi,n−1, (1 ≤ i ≤ m).
So g (vi,n−1) = 1.

Case (ii): For m− 1 ≡ 03
Using the color pattern as followed from Case(i) except the vertex
um−1. So g (um−1) = 6.

Assume Γ (G ◦H) ≤ 9. Consider a Greedy algorithm that assign the
colors 1, 2, 3 and 4 to the vertices {vi,j∀ i = 1 to m and j = 1 to n} in
order to satisfy the Grundy number. Next we assigns a color to the vertices
ui, (1 ≤ i ≤ m) in such a way that they receive the color 5 or 6 or 7 or 8
which is not assigned to the vertices in N(ui)∀ i = 1 to m and j = 1 to n}.
Then any vertex of ui, (1 ≤ i ≤ m) is given the color 9, the in-order to
satisfy the Grundy number, the vertex which is given the color 9 must be
adjacent to all neighbourhood vertices which is given the colors 1, 2, 3, 4,
5, 6, 7 and 8. Which is contradiction. Hence Γ (G ◦H) ≤ 8. 2

Now we consider G be a 2-regular graph and H be a fan graph. Let
V (G) = {ui : 1 ≤ i ≤ m} and let V (H) = {vj : 1 ≤ j ≤ n − 1} ∪ {vn},
wher vn be a centre vertex of vj , (1 ≤ j ≤ n− 1). Let V (G ◦H) = V (G)∪
mS
i=1
{vi,j : 1 ≤ j ≤ n}.

Theorem 6. Let G be a 2-regular graph of order m > 4 and H be a fan
graph of order n > 4, then Γ (G ◦H) = 7.

Proof: Define a mapping, g : V (G ◦H)→ N as follows:

Case (i): For m ≡ 0, 23.
For 1 ≤ i ≤ m,

g (ui) =

⎧⎪⎨⎪⎩
5, if i ≡ 13
6, if i ≡ 23
7, if i ≡ 03

(3.8)
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Subcase (i): For n− 1 ≡ 1, 23.
For 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1,

g (vi,j) =

⎧⎪⎨⎪⎩
1, if j ≡ 13
2, if j ≡ 23
3, if j ≡ 03

(3.9)

g (vi,n) = 4.

Subcase (ii): For n− 1 ≡ 03.
Using the color pattern as followed from the subcase (i) except the
vertices vi,n−1, (1 ≤ i ≤ m).
So g (vi,n−1) = 1.

Case (ii): For m ≡ 13
Using the color pattern as followed from Case(i) of order m− 2. Also
g (um−1) = 5; g (um) = 6.

Assume Γ (G ◦H) ≤ 8. Consider a Greedy algorithm that assign the
colors 1, 2, 3 and 4 to the vertices {vi,j∀ i = 1 to m and j = 1 to n}
in order to satisfy the Grundy number. Next we assigns a color to the
vertices ui, (1 ≤ i ≤ m) in such a way that they receive the color 5 or 6
or 7 which is not assigned to the vertices in N(ui) = {vi,j , ui+1, ui−1∀ i =
1 to m and j = 1 to n}. Then any vertex of ui, (1 ≤ i ≤ m) is given the
color 8, the in-order to satisfy the Grundy number, the vertex which is
given the color 8 must be adjacent to all neighbourhood vertices which is
given the colors 1, 2, 3, 4, 5, 6 and 7. Which is contradiction. Hence
Γ (G ◦H) ≤ 7. 2

Conclusion

In this paper, we have demonstrated the new results on Grundy number
of corona product of 2-regular graph with cycle, complete bipartite, ladder
graph and fan graph. Also we found the results on Grundy number of
corona product of complete bipartite with complete bipartite and fan graph
with fan graph. Furthermore, we extend our work to generalized Grundy
number of some other product of graphs.
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