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Abstract
A ring R is said to be semi-commutative if whenever a, b ∈ R such

that ab = 0, then aRb = 0. In this article, we introduce the concepts
of g−semi-commutative rings and g−N−semi-commutative rings and
we introduce several results concerning these two concepts. Let R be
a G-graded ring and g ∈ supp(R,G). Then R is said to be a g−semi-
commutative if whenever a, b ∈ R with ab = 0, then aRgb = 0. Also,
R is said to be a g − N−semi-commutative if for any a ∈ R and
b ∈ N(R)

T
Ann(a), bRg ⊆ Ann(a). We introduce an example of

a G-graded ring R which is g − N-semi-commutative for some g ∈
supp(R,G) but R itself is not semi-commutative. Clearly, if R is a g−
semi-commutative ring, then R is a g − N−semi-commutative ring,
however, we introduce an example showing that the converse is not
true in general. Several results and examples are investigated. Also,
we introduce the concept of g −NE−semi-commutative rings and we
introduce several results concerning g−NE−semi-commutative rings.
Let R be a G-graded ring and g ∈ supp(R,G). Then R is said to be a
g−NE− semi-commutative ring if whenever a ∈ N(R) and b ∈ E(R)
such that ab = 0, then aRgb = 0. Clearly, g−semi-commutative rings
are g−NE−semi-commutative, however, we introduce an example ...
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1. Introduction and Preliminaries

Throughout this article, all rings are associative rings. Let G be a group
with identity e and R be a ring with unity 1. Then R is a G-graded if
R =

M
g∈G

Rg where RgRh ⊆ Rgh for all g, h ∈ G and this is denoted by

(R,G). We denote supp(R,G) = {g ∈ G : Rg 6= 0}. The elements of Rg

are called homogeneous of degree g where Rg are additive subgroups of R
indexed by the elements g ∈ G. If x ∈ R, then x can be written uniquely
as

X
g∈G

xg, where xg is the component of x in Rg. Moreover, we denote

h(R) =
[
g∈G

Rg. For more details, one can look in [1], [2], [9], [14] and [15].

Proposition 1.1. ([14]) If R is a G-graded ring, then Re is a subring of R
and 1 ∈ Re.

The symbols J(R), P (R), N(R) and E(R) stand respectively for the
Jacobson radical, the prime radical, the set of all nilpotent elements and
the set of all idempotent elements of R. Also, for a ∈ R, the set of left
annihilators of a is Ann(a) = {r ∈ R : ra = 0}.

In [8], a ring R is said to be semicommutative if whenever a, b ∈ R such
that ab = 0, then aRb = 0. In this article, we introduce the concepts of
g−semicommutative rings and g−N−semicommutative rings and we intro-
duce several results concerning these two concepts. Let R be a G-graded
ring and g ∈ supp(R,G). Then R is said to be a g−semicommutative
if whenever a, b ∈ R with ab = 0, then aRgb = 0. Also, R is said to
be a g − N−semicommutative if for any a ∈ R and b ∈ N(R)

T
Ann(a),

bRg ⊆ Ann(a).
We introduced an example of a G-graded ring R which is g − N -

semicommutative for some g ∈ supp(R,G) but R itself is not semicom-
mutative. Clearly, if R is a g− semicommutative ring, then R is a g −
N−semicommutative ring, however, we introduced an example showing
that the converse is not true in general. It was proved that if a ∈ Rg with
ab = 1 for some b ∈ h(R) and R is a g−1−N− semicommutative ring, then
ba = 1. Several results and examples are investigated.

In this article, we introduce the concept of g −NE−semicommutative
rings and we introduce several results concerning g−NE−semicommutative
rings. Let R be a G-graded ring and g ∈ supp(R,G). Then R is said to
be a g −NE− semicommutative ring if whenever a ∈ N(R) and b ∈ E(R)
such that ab = 0, then aRgb = 0.
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Clearly, g−semicommutative rings are g−NE−semicommutative, how-
ever, we introduced an example showing that the converse need not be true.
It was proved that if R is a g −NE−semicommuative ring and b ∈ E(R)
with RgbRg = Re, then b = 1 and g

2 = e. Also, it has been shown that if R
is an e −NE−semicommuative ring and x ∈ Rg for some g ∈ supp(R,G)
such that xy = 1 for some y ∈ h(R), then yx = 1. Considerable results and
examples have been examined.

In [13], a ring R is said to be nil-semicommutative if whenever a, b ∈
N(R) such that ab = 0, then aRb = 0. In this article, we introduce the
concept of g−NN−semicommutative rings; a G-graded ring R is said to be
g −NN−semicommutative where g ∈ supp(R,G) if whenever a, b ∈ N(R)
such that ab = 0, then aRgb = 0.

Clearly, ifR is g−semicommutative, thenR is g−NN−semicommutative,
however, we introduced an example showing that the converse is not true
in general. Certain results are introduced.

CN rings have been introduced and studied by Drazin in [10]; a ring
R is said to be CN ring if N(R) ⊆ Z(R). In this article, we introduce the
concept of semi CN rings. A G-graded ring R is said to be semi CN ring
if N(R) ⊆ Z(Rg) for some g ∈ supp(R,G).

Clearly, every CN ring is semi CN ring, however, we introduced an
example showing that the converse is not true in general. It was proved
that R is semi CN if and only if there exists g ∈ supp(R,G) such that for
all b ∈ N(R), there exists n ≥ 2 such that b − bn ∈ Z(Rg). Also, if R is
semi CN , then there exists g ∈ supp(R,G) such that (ab)n = anbn for all
n ≥ 2, for all a ∈ N(R) and for all b ∈ Rg.

Let R be a G-graded ring. A left R-module M is said to be G-graded
if there exist additive subgroups Mg of M such that M =

M
g∈G

Mg where

RgMh ⊆ Mgh for all g, h ∈ G. For m ∈ M , m =
X
g∈G

mg where mg is the

component of m in Mg. Also, supp(M,G) = {g ∈ G :Mg 6= 0}. Moreover,
Mg is Re-submodule of M for all g ∈ G. For more details, see [14].

Reduced modules have been introduced by Lee and Zhou in [12] and
they have been studied in citeBaser Agayev, [4] and [17]. A left R-module
M is said to be reduced if whenever a ∈ R and m ∈M such that a2m = 0,
then aRm = 0. In this article, we introduce the concept of g−reduced mod-
ules. A G-graded R-module M is said to be g−reduced (g ∈ supp(M,G))
if whenever a ∈ Re and m ∈ Mg such that am = 0, then aRem = 0.
Respective results have been constructed.
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Semicommutative modules have been introduced by Buhphang and
Rege in [5]. A left R-module M is said to be semicommutative if whenever
a ∈ R and m ∈ M such that am = 0, then aRm = 0. In this article,
we introduce the concept of g−semicommutative modules. A G-graded R-
module M is said to be g−semicommutative (g ∈ supp(M,G)) if whenever
a ∈ Re and m ∈Mg such that am = 0, then aRem = 0.

Clearly, every semicommutative module is g−semicommutative for all
g ∈ supp(M,G), however, we introduced an example showing that the
converse is not true in general. Numerous results have been examined.

2. g −N−semicommutative Rings

In this section, we introduce the concept of g−N−semicommutative rings.

Definition 2.1. Let R be a G-graded ring and g ∈ supp(R,G). Then
R is said to be a g − N−semicommutative ring if for any a ∈ R and
b ∈ N(R)

T
Ann(a), bRg ⊆ Ann(a).

The following example introduces a G-graded ring R which is g − N -
semicommutative for some g ∈ supp(R,G) but R itself is not semicommu-
tative. So, it is important to study g −N -semicommutative rings.

Example 2.2. Let K be a field. Consider R =

Ã
K K
0 K

!
and G = Z4.

Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and R1 = R3 =

0.
Clearly, 0 ∈ supp(R,G), we prove that R is an 0 − N−semicommutative

ring. Let A =

Ã
a b
0 c

!
∈ R and X =

Ã
x y
0 z

!
∈ Ann(A). Then

0 = XA =

Ã
xa xb+ yc
0 zc

!
that is xa = zc = xb + yc = 0. If a 6= 0 and

c 6= 0, then x = y = z = 0, so Ann(A) = 0. If a 6= 0 and c = 0, then

x = 0, so Ann(A) =

Ã
0 K
0 K

!
. On the other hand, N(R) =

Ã
0 K
0 0

!
,

so N(R)
T
Ann(A) =

Ã
0 K
0 0

!
that is if B ∈ N(R)

T
Ann(A), then

B =

Ã
0 k
0 0

!
and then BR0 =

Ã
0 k
0 0

!Ã
k1 0
0 k2

!
=

Ã
0 kk2
0 0

!
⊆
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Ann(A). If a = 0 and c 6= 0, then z = 0, so Ann(A) =

Ã
K K
0 0

!
and

then N(R)
T
Ann(A) =

Ã
0 K
0 0

!
that is similar to the previous case. If

a = c = 0, then xb = 0, so we study two cases: b 6= 0 and b = 0. If b 6= 0,
then x = 0 which is done case. If b = 0, then Ann(A) = R (nothing to
prove). Finally, R is an 0−N−semicommutative ring. On the other hand,

R is not semicommutative ring, to see this, choose B =

Ã
1 1
0 0

!
and

A =

Ã
0 1
0 −1

!
, then BA = 0 but BRA 6= 0 since X =

Ã
1 1
0 1

!
∈ R

such that BXA 6= 0.

Definition 2.3. Let R be a G-graded ring and g ∈ supp(R,G). Then R
is said to be a g−semicommutative ring if whenever a, b ∈ R with ab = 0,
then aRgb = 0.

The next Proposition is clear.

Proposition 2.4. Let R be a G-graded ring and g ∈ supp(R,G). If R is
a g− semicommutative ring, then R is a g −N−semicommutative ring.

The next example shows that the converse of Proposition 2.4 is not true
in general and this gives more importance for studying g−N -semicommutative
rings.

Example 2.5. Let K be a field. Consider R =

Ã
K K
0 K

!
and G = Z4.

Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and R1 = R3 =

0. In Example 2.2, we proved that R is an 0−N− semicommutative ring.

Choose K = <. If B =

Ã
1 1
0 0

!
and A =

Ã
0 −1
0 1

!
, then BA = 0. On

the other hand, X =

Ã
1 0
0 2

!
∈ R0 with BXA 6= 0, i.e., BR0A 6= 0. So,

R is not an 0−semicommutaive ring.

Lemma 2.6. Let R be a G-graded ring and g ∈ supp(R,G). If a ∈ Rg

with ab = 1 for some b ∈ h(R), then b ∈ Rg−1 .
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Proof. Suppose b ∈ Rh. Then ab ∈ RgRh ⊆ Rgh. But, ab = 1 ∈ Re, so
0 6= ab ∈ Rgh

T
Re that is gh = e and then h = g−1. Hence, b ∈ Rg−1 . 2

Proposition 2.7. Let R be a G-graded ring, g ∈ supp(R,G) and a ∈ Rg

with ab = 1 for some b ∈ h(R). If R is a g−1 −N− semicommutative ring,
then ba = 1.

Proof. By Lemma 2.6, b ∈ Rg−1 . Assume x = ba. Then x2 = x and
ax = a. Suppose y = a − xa. Then yx = y and xy = 0 and then y2 = 0.
Hence, y ∈ N(R). Also, y(1 − x) = 0. So, y ∈ N(R)

T
Ann(1− x). Since

R is a g−1 − N−semicommutative ring, yRg−1(1 − x) = 0. In particular,
yb(1 − x) = 0. Also, yb = 1 − x. So, (1 − x)2 = 0. But, (1 − x)2 =
(1− x)(1− x) = 1− x− x+ x2 = 1− x and hence 1− x = 0 that is x = 1,
i.e., ba = 1. 2

a ∈ R is called a regular element if there exists b ∈ R such that a = aba
(see [11]). Also, a ∈ R is called a strongly regular element if there exists
b ∈ R such that a = a2b (see [17]). We introduce the following:

Definition 2.8. Let R be a G-graded ring and g ∈ supp(R,G). Then
r ∈ R is said to be a g−regular element if there exists s ∈ Rg such that
r = rsr.

Proposition 2.9. If R is a g − N−semicommutative ring, then every
g−regular element of R is a strongly regular.

Proof. Let r ∈ R be a g−regular element. Then there exists s ∈ Rg

such that r = rsr. Set x = sr. Then r = rx and x2 = x. Set h = r − xr.
Then hx = h, xh = 0 and h2 = 0 and then h ∈ N(R)

T
Ann(h). Since

R is a g − N−semicommutative ring, hRgh = 0. In particular, hsh =
0, (rs−xrs)(r−xr) = 0, r = rsr = (rs+1−xrs)xr = (rs+1−xrs)sr2 ∈ Rr2.
Set y = rs. Then r = yr and y2 = y. Set t = r − ry. Then t2 = 0 and
ty = 0 and then t ∈ N(R)

T
Ann(y). Since R is a g−N−semicommutative

ring, tRgy = 0. In particular, tsy = 0, (rs − rys)y = 0, rsy = rsrs =
rysrs, y = y2 = rsrs = rysrs = r2s2rs ∈ r2R. Hence, r = yr ∈ r2R. 2

Proposition 2.10. Let R be a G-graded ring and g ∈ supp(R,G). If R
is a g −N−semicommutative ring and every element of R is a g−regular,
then N(R) = 0.
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Proof. Let a ∈ N(R). Then an = 0. Then a ∈ N(R)
T
Ann(an−1)

and since R is a g − N−semicommutative ring, aRga
n−1 = 0. But, a is

a g−regular element, i.e., there exists b ∈ Rg such that a = aba and then
an−1 = a.an−2 = aba.an−2 = aban−1 ∈ aRga

n−1 = 0, i.e., an−1 = 0. Again,
a ∈ N(R)

T
Ann(an−2) and since R is a g − N−semicommutative ring,

aRga
n−2 = 0 and then an−2 = a.an−3 = aba.an−3 = aban−2 ∈ aRga

n−2 =
0, i.e., an−2 = 0. Continue on this process to obtain a = 0. 2

Example 2.11. Let K be a field. Consider R =

Ã
K K
0 K

!
and G = Z4.

Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and R1 =

R3 = 0. In Example 2.2, we proved that R is an 0−N−semicommutative

ring. However, N(R) =

Ã
0 K
0 0

!
6= 0. So by Proposition 2.10, R has an

element which is not 0−regular. To see this, consider A =
Ã
1 1
0 1

!
∈ R.

If A is a 0−regular, then there exists B ∈ R0 such that A = BAB. Now,

B =

Ã
x 0
0 y

!
for some x, y ∈ K and since A = BAB,

Ã
1 1
0 1

!
=Ã

1 1
0 1

!Ã
x 0
0 y

!Ã
1 1
0 1

!
=

Ã
x x+ y
0 y

!
and then x = y = 1 and

x+ y = 1 which is a contradiction. Hence, A is not 0−regular.

3. g −NE−Semicommutative Rings

In this section, we introduce the concept of g − NE−semicommutative
rings.

Definition 3.1. Let R be a G-graded ring and g ∈ supp(R,G). Then R
is said to be a g −NE−semicommutative ring if whenever a ∈ N(R) and
b ∈ E(R) such that ab = 0, then aRgb = 0.

Clearly, g−semicommutative rings are g−NE−semicommutative. How-
ever, the following example shows that the converse need not be true.

Example 3.2. Let K be a field. Consider R =

Ã
K K
0 K

!
and G = Z4.

Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and R1 = R3 =



1384 M. Bataineh, M. Refai, R. Abu-Dawwas and K. Al-Zoubi

0. Let B ∈ E(R). Then B =

Ã
a b
0 c

!
for some a, b, c ∈ K and B2 = B

and then a2 = a, ab+ bc = b and c2 = c. If a = c = 0, then b = 0 and then
B = 0. If a = c = 1, then b = 0 and then B = I. If a = 0 and c = 1, then

b is free and then B =

Ã
0 b
0 1

!
. Finally, if a = 1 and c = 0, then b is free

and then B =

Ã
1 b
0 0

!
. So,

E(R) = {
Ã
0 0
0 0

!
,

Ã
1 0
0 1

!
,

Ã
1 b
0 0

!
,

Ã
0 b
0 1

!
: b ∈ K}. On the

other hand, N(R) =

Ã
0 K
0 0

!
. Now, let A ∈ N(R) and B ∈ E(R) such

that AB = 0. Then A =

Ã
0 k
0 0

!
for some k ∈ K. If B = 0, then

AR0B = 0. If B =

Ã
0 b
0 1

!
, then 0 = AB =

Ã
0 k
0 0

!Ã
0 b
0 1

!
=Ã

0 k
0 0

!
and then k = 0, so A = 0 it follows that AR0B = 0. If B =Ã

1 b
0 0

!
, then AR0B =

Ã
0 k
0 0

!Ã
K 0
0 K

!Ã
1 b
0 0

!

=

Ã
0 kK
0 0

!Ã
1 b
0 0

!
=

Ã
0 0
0 0

!
. Finally, if B = I, then 0 = AB = A

and then AR0B = 0. So, R is 0−NE−semicommutative. However, if we

chooseK = <, C =
Ã
2 2
0 0

!
∈ R andD =

Ã
0 1
0 −1

!
∈ R, then CD = 0

but CR0D 6= 0 since X =

Ã
1 0
0 0

!
∈ R0 such that AXB 6= 0. Hence, R is

not 0−semicommutative. Also, since AR1 = 0 for all A ∈ N(R), AR1B = 0
for all A ∈ N(R) and B ∈ E(R). So, R is 1 − NE−semicommutative.

However, CR1D 6= 0 since Y =

Ã
0 1
0 0

!
∈ R1 such that CYD 6= 0.

Hence, R is not 1−semicommutative.

The following example shows that choosing K to be a field in the above
example is necessary.
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Example 3.3. Consider R =

Ã
Z4 Z4
0 Z4

!
and G = Z4. Then R is G-

graded by R0 =

Ã
Z4 0
0 Z4

!
, R2 =

Ã
0 Z4
0 0

!
and R1 = R3 = 0.

Choose A =

Ã
2 2
0 0

!
and B =

Ã
0 3
0 1

!
. Then A2 = 0, B2 = B

and AB = 0, i.e., A ∈ N(R) and B ∈ E(R) such that AB = 0 but

AR0B 6= 0 since X =

Ã
1 0
0 0

!
∈ R0 such that AXB 6= 0. Also,

AR1B 6= 0 since Y =

Ã
0 1
0 0

!
∈ R1 such that AY B 6= 0. Hence, R

is neither 0−NE−semicommutative nor 1−NE−semicommutative.

However, we introduce the following example.

Example 3.4. Let K be a field. Consider the ring R =

⎛⎜⎝ K K K
0 K K
0 0 K

⎞⎟⎠
and the group G = Z2. Then R is G−graded by R0 =

⎛⎜⎝ K 0 K
0 K 0
0 0 K

⎞⎟⎠ and
R1 =

⎛⎜⎝ 0 K 0
0 0 K
0 0 0

⎞⎟⎠. Choose A =
⎛⎜⎝ 0 1 1
0 0 0
0 0 0

⎞⎟⎠ and B =

⎛⎜⎝ 1 0 0
0 0 −1
0 0 1

⎞⎟⎠.
Then A2 = 0, B2 = B and AB = 0, i.e., A ∈ N(R) and B ∈ E(R) such that

AB = 0 but AR0B 6= 0 since X =

⎛⎜⎝ 0 0 0
0 1 0
0 0 0

⎞⎟⎠ ∈ R0 such that AXB 6= 0.

Also, AR1B 6= 0 since Y =

⎛⎜⎝ 0 1 0
0 0 1
0 0 0

⎞⎟⎠ ∈ R1 such that AYB 6= 0. Hence,

R is neither 0−NE−semicommutative nor 1−NE−semicommutative.

We begin with the following fundamental Lemma.

Lemma 3.5. Let R be a g −NE−semicommutative ring and b ∈ E(R).
Then (1− b)RgbRg(1− b) = 0.
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Proof. For any x ∈ Rg, write a = (1 − b)x − (1 − b)x(1 − b). Then
a ∈ N(R) and 1 − b ∈ E(R) such that a(1 − b) = 0. Since R is a g −
NE−semicommuative ring, 0 = aRg(1− b) = (1− b)xbRg(1− b). Thus,
(1− b)RgbRg(1− b) =

P
x∈Rg

(1− b)xbRg(1− b) = 0. 2

Proposition 3.6. Let R be a g−NE−semicommuative ring and b ∈ E(R).
If RgbRg = Re, then b = 1 and g2 = e.

Proof. By Lemma 3.5, (1−b)RgbRg(1−b) = 0 and so ((1−b)RgbRg)
2 =

0. and then
1− b = (1− b)2 = ((1− b).1)2 ∈ ((1− b)Re)

2 = ((1− b)RgbRg)
2 = 0, i.e.,

b = 1. So, Re = RgRg ⊆ Rg2 and then 0 6= Re = Re
T
Rg2 . This implies

that g2 = e. 2

In fact, Re contains all homogeneous idempotent elements.

Proposition 3.7. Let R be a G− graded ring and b be a homogeneous
idempotent element in R. Then b ∈ Re

Proof. If b = 0, then b ∈ Re. Suppose b 6= 0. Since b is a homogeneous
idempotent element, b ∈ Rg for some g ∈ G and b2 = b and then b = b2 ∈
RgRg ⊆ Rg2 . So, 0 6= b ∈ Rg

T
Rg2 and hence g = g2, i.e., g = e. Thus,

b ∈ Re. 2

Lemma 3.8. Let R be an e − NE−semicommuative ring and b ∈ E(R).
Then (1− b)Reb ⊆ J(Re).

Proof. By Lemma 3.5, (1−b)RebRe(1−b) = 0 and so ((1−b)RebRe)
2 =

0. This implies that (1− b)Reb ⊆ J(Re). 2

Lemma 3.9. [[16]]If M is a graded maximal left ideal of a graded ring R,
then Me is a maximal ideal of Re.

Proposition 3.10. Let R be an e −NE−semicommuative ring and b be
a homogeneous idempotent element of R. If M is a graded maximal left
ideal of R such that b /∈Me, then (1− b)Re ⊆Me.

Proof. By Lemma 3.9,Me is a maximal ideal of Re and then Reb+Me =
Re. By Lemma 3.8, (1 − b)Reb ⊆ J(Re) ⊆ Me. On the other hand,
by Proposition 3.7, b ∈ Re and then (1 − b)Me ⊆ ReMe ⊆ Me. Hence,
(1− b)Re = (1− b)Reb+ (1− b)Me ⊆Me. 2
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Corollary 3.11. Let R be an e − NE−semicommuative ring, b be a ho-
mogeneous idempotent element of R, M be a graded maximal left ideal of
R and a ∈ Re. If 1− ab ∈Me, then 1− ba ∈Me.

Proof. If b ∈ Me, then ab ∈ Me and then 1 = (1 − ab) + ab ∈ Me a
contradiction (see Lemma 3.9), so b /∈Me. By Proposition 3.10,
(1 − b)Re ⊆ Me. Since 1 − ab = (1 − a) + (a − ab), 1 − a ∈ Me and
1− ba = (1− a) + ((1− b)a) implies 1− ba ∈Me. 2

A ring R is said to be directly finite if xy = 1 implies yx = 1 for all
x, y ∈ R. We introduce the following:

Proposition 3.12. Let R be an e−NE−semicommuative ring. If x ∈ Rg

for some g ∈ supp(R,G) such that xy = 1 for some y ∈ h(R), then yx = 1.

Proof. By Lemma 2.6, y ∈ Rg−1 . Set b = yx, then b ∈ Re is a
homogeneous idempotent element, xb = x and by = y. Since R is an
e−NE−semicommuative ring, (1− b)Reb ⊆ J(Re) by Lemma 3.8. So, we
have (1− b)x = (1− b)xb ∈ J(Re). Therefore, 1− b = (1− b)xy. This gives
1 = b = yx. 2

An element b ∈ R is said to be potent if there exists an integer n ≥ 2

such that bn = b, see [7]. Clearly, idempotent is potent while

Ã
1 0
0 −1

!
∈

M2(Z) is a potent element which is not idempotent. The set of all potent
elements of R is denoted by PE(R).

Proposition 3.13. Let R be a g − NE−semicommutative ring. If a ∈
N(R) and b ∈ PE(R) such that ab = 0, then aRgb = 0.

Proof. Since b ∈ PE(R), there exists n ≥ 2 such that bn = b and then
bn−1 ∈ E(R) such that abn−1 = 0 and since R is g−NE−semicommutative,
aRgb

n−1 = 0. Thus, aRgb = aRgb
n = aRgb

n−1b = 0. 2

Remark 3.14. Proposition 3.13 gives us a possibility to introduce another
concept, g−NPE−semicommutative rings, that is, if R is a G-graded ring
and g ∈ supp(R,G), then R is said to be a g −NPE−semicommutative if
whenever a ∈ N(R) and b ∈ PE(R) such that ab = 0, then aRgb = 0. I
think it is interesting to study this class, we leave it for the readers or for
another work. However, in the next section, we introduce another class of
semicommutativity of graded rings, it is called g −NN−semicommutative
rings.
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4. g −NN−Semicommutative and Semi CN rings

In this section, we introduce and study the concepts of g−NN−semicommu-

tative rings and semi CN rings.

Definition 4.1. Let R be a G-graded ring and g ∈ supp(R,G). Then R
is said to be g −NN−semicommutative if for every a, b ∈ N(R) such that
ab = 0, aRgb = 0.

Clearly, ifR is g−semicommutative, thenR is g−NN−semicommutative.
However, the next example shows that the converse is not true in general.

Example 4.2. Let K be a field. Consider R =

Ã
K K
0 K

!
and G = Z4.

Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and R1 = R3 =

0. Clearly, N(R) =

Ã
0 K
0 0

!
= R2 and AB = 0 for all A,B ∈ N(R).

Let A =

Ã
0 a
0 0

!
and B =

Ã
0 b
0 0

!
for some a, b ∈ K. Then AR0B =Ã

0 a
0 0

!Ã
K 0
0 K

!Ã
0 b
0 0

!
=

Ã
0 aK
0 0

!Ã
0 b
0 0

!
=

Ã
0 0
0 0

!
. So,

R is 0−NN−semicommutative. Also,

AR2B =

Ã
0 a
0 0

!Ã
0 K
0 0

!Ã
0 b
0 0

!
=

Ã
0 0
0 0

!Ã
0 b
0 0

!
=

Ã
0 0
0 0

!
.

So, R is 2−NN−semicommutative. Choose K = R, then A =

Ã
0 −1
0 1

!

and B =

Ã
1 1
0 0

!
∈ R such that AB = 0. On the other hand,

C =

Ã
1 0
0 2

!
∈ R0 such that ACB 6= 0 which implies that R is not

0−semicommutative.

Proposition 4.3. For a ringR, consider the ring Γ =

(Ã
a b
0 a

!
: a, b ∈ R

)
.

If R is nil-semicommutative and G = Z4, then Γ is g−NN− semicommu-
tative for some g ∈ supp(R,G).
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Proof. Consider the following graduation of Γ by G: Γ0 =

Ã
a 0
0 a

!
,

Γ2 =

Ã
0 R
0 0

!
and R1 = R3 = 0. Clearly,

N(Γ) =

(Ã
a b
0 a

!
: a ∈ N(R), b ∈ R

)
. Let A,B ∈ N(Γ) such that AB =

0. Then A =

Ã
x c
0 x

!
and B =

Ã
y b
0 y

!
for some x, y ∈ N(R) and for

some c, b ∈ R. Now, 0 = AB =

Ã
xy xb+ cy
0 xy

!
which implies that

xy = 0. Since R is nil-semicommutative, xRy = 0 and then AΓ2B =Ã
0 xRy
0 0

!
=

Ã
0 0
0 0

!
. Hence, Γ is 2−NN−semicommutative. 2

Proposition 4.4. For a ringR, consider the ring Γ =

(Ã
a b
0 a

!
: a, b ∈ R

)
.

If RN(R) = N(R)R G = Z4, Γ is g − NN−semicommutative for all
g ∈ supp(R,G).

Proof. Consider the graduation of Γ bt G: Γ0 =

Ã
a 0
0 a

!
, Γ2 =Ã

0 R
0 0

!
andR1 = R3 = 0. Clearly,N(Γ) =

(Ã
a b
0 a

!
: a ∈ N(R), b ∈ R

)
.

Let A,B ∈ N(Γ) such that AB = 0. Then A =

Ã
x c
0 x

!
and B =Ã

y b
0 y

!
for some x, y ∈ N(R) and for some c, b ∈ R. Now, 0 = AB =Ã

xy xb+ cy
0 xy

!
which implies that xy = 0 and xb + cy = 0. Since

N(R)R = RN(R), xRy = (xR)y = (Rx)y = R(xy) = R.0 = 0 and then

AΓ2B =

Ã
0 xRy
0 0

!
=

Ã
0 0
0 0

!
. Hence, Γ is 2−NN−semicommutative.

Let X ∈ Γ0. Then X =

Ã
α 0
0 α

!
for some α ∈ R and then AXB =Ã

xαy xαb+ cαy
0 xαy

!
. Since N(R)R = RN(R), xαy = (xα)y = (αx)y =
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α(xy) = α.0 = 0 and xαb + cαy = (xα)b + (cα)y = (αx)b + (αc)y =
α(xb+ cy) = α.0 = 0. So, AXB = 0 which implies that AΓ0B = 0. Hence,
Γ is 0−NN−semicommutative. Therefore, Γ is g−NN−semicommutative
for all g ∈ supp(R,G). 2

For the rest of this section, we introduce and study the concept of semi
CN rings.

Definition 4.5. Let R be a G-graded ring. Then R is called semi CN ring
if N(R) ⊆ Z(Rg) for some g ∈ supp(R,G).

Clearly, every CN ring is semi CN ring. However, the next example
shows that the converse is not true in general.

Example 4.6. Let K be a field. Consider R =

Ã
K K
0 K

!
and G =

Z4. Then R is G-graded by R0 =

Ã
K 0
0 K

!
, R2 =

Ã
0 K
0 0

!
and

R1 = R3 = 0. Then N(R) =

Ã
0 K
0 0

!
= R2 and then N(R)R2 =

(N(R))2 = R2N(R) and hence R is semi CN ring. On the other hand,

choose, A =

Ã
0 1
0 0

!
∈ N(R) and choose B =

Ã
2 0
0 1

!
∈ R, then

AB 6= BA and hence A /∈ Z(R), so N(R)Z(R). Thus, R is not CN ring.

Proposition 4.7. Let R be a G-graded ring. Then R is semi CN if and
only if there exists g ∈ supp(R,G) such that for all b ∈ N(R), there exists
n ≥ 2 such that b− bn ∈ Z(Rg).

Proof. Suppose that R is semi CN ring. Let b ∈ N(R). Then there
exists n ≥ 2 such that bn = 0. Since R is semi CN , bRg = Rgb for some
g ∈ supp(R,G) and then (b − bn)Rg = bRg = Rgb = Rg(b − bn). Hence,
b − bn ∈ Z(Rg). Conversely, let b ∈ N(R). Then there exists m ≥ 2 such
that am = 0. By assumption, there exists g ∈ supp(R,G) and n1 ≥ 2
such that b− bn1 ∈ Z(Rg). Since b

n1 ∈ N(R), by assumption, there exists
n2 ≥ 2 such that bn1 − bn1n2 ∈ Z(Rg). Continue on this process, there
exists ns ≥ 2 such that (bn1....ns−1 − bn1....ns) ∈ Z(Rg) with n1....ns ≥ m.
Hence, bn1....ns = 0 and then b = b − bn1....ns = (b − bn1) + (bn1 − bn1n2) +
....+ (bn1....ns−1 − bn1....ns) ∈ Z(Rg). Hence, R is semi CN ring. 2
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Proposition 4.8. Let R be a G-graded ring. If R is semi CN , then there
exists g ∈ supp(R,G) such that (ab)n = anbn for all n ≥ 2, for all a ∈ N(R)
and for all b ∈ Rg.

Proof. Let a ∈ N(R). Since R is semi CN ring, there exists g ∈
supp(R,G) such ab = ba for all b ∈ Rg. Suppose that n ≥ 2. Then

(ab)n = ab.ab....ab = a(ba)(ba)....(ba)b = a(ab)(ab)....(ab)b =
a2(ba)....(ba)b2 = a2(ab)....(ab)b2 = a3(ba)....(ba)b3 = .... = anbn.

2

5. g−semicommutative and g−reduced Modules

In this section, we introduce and study the concepts of g−semicommutative
and g−reduced modules.

Definition 5.1. Let M be a G-graded R-module and g ∈ supp(M,G).
Then M is said to be g−semicommutative if whenever a ∈ Re and m ∈Mg

such that am = 0, then aRem = 0.

Clearly, every semicommutative module is g−semicommutative for all
g ∈ supp(M,G). However, the next example shows that the converse is not
true in general.

Example 5.2. Let T be a semicommutative ring. Consider the ring R =Ã
T T
0 T

!
and the R-module M = R. Consider G = Z4. Then R is G-

graded byR0 =

Ã
T 0
0 T

!
, R2 =

Ã
0 T
0 0

!
andR1 = R3 = 0. So,M isG-

graded byMg = Rg for all g ∈ G. Let A ∈ R0 and X ∈M2 such that AX =

0. Then A =

Ã
a 0
0 b

!
and X =

Ã
0 x
0 0

!
for some a, b, x ∈ T . Now, 0 =

AX =

Ã
0 ax
0 0

!
, i.e., ax = 0. Since T is semicommutative, aTx = 0 and

then AR0X =

Ã
0 aTx
0 0

!
= 0. Hence, M is 2−semicommutative. Let

Y ∈M0 such that AY = 0. Then Y =

Ã
x 0
0 y

!
for some x, y ∈ T . Now,
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0 = AY =

Ã
ax 0
0 by

!
, i.e., ax = by = 0. Since T is semicommutative,

aTx = bTy = 0 and then AR0Y =

Ã
aTx 0
0 bTy

!
= 0. Hence, M is

0−semicommutative. So,M is g−semicommutative for all g ∈ supp(M,G).

On the other hand, A =

Ã
1 1
0 0

!
∈ R and N =

Ã
0 −1
0 1

!
∈ M such

that AN = 0 while ARN 6= 0 since B =

Ã
1 0
0 2

!
∈ R such that ABN 6=

0. Thus, M is not semicommutative.

Definition 5.3. Let M be a G-graded R-module and g ∈ supp(M,G).
Then M is said to be g-reduced if whenever a ∈ Re and m ∈Mg such that
a2m = 0, then aRem = 0.

In [6], an R-moduleM is said to be rigid if whenever a ∈ R and m ∈M
such that a2m = 0, then am = 0.

Proposition 5.4. LetM be a G-graded R-module and g ∈ supp(R,G). If
M is rigid, then M is g−reduced if and only if M is g−semicommutative.

Proof. Suppose that M is g−reduced. Let a ∈ Re and m ∈ Mg such
that am = 0. Then a2m = a(am) = 0 and then since M is g−reduced,
aRem = 0. Hence, M is g−semicommutative. Conversely, let a ∈ Re and
m ∈Mg such that a

2m = 0. Since M is rigid, am = 0 and then since M is
g−semicommutative, aRem = 0. Hence, M is g−reduced. 2

Proposition 5.5. Let M be a G-graded R-module and g ∈ supp(R,G).
If M is rigid, then M is g−reduced if and only if whenever a ∈ Re and
m ∈Mg such that am = 0, we have aMg

T
Rem = 0.

Proof. Suppose that M is g−reduced. Let a ∈ Re and m ∈ Mg such
that am = 0. Then a2m = a(am) = 0 and since M is g−reduced, then
aRem = 0. Let x ∈ aMg

T
Rem. Then x = an = rm for some n ∈Mg and

r ∈ Re and then ax = arm ∈ aRem = 0, i.e., ax = 0 which implies that
a2n = 0. Again, since M is g−reduced, aRen = 0 and then an = a.1.n ∈
aRen = 0, i.e., an = 0 and hence x = 0. Therefore, aMg

T
Rem = 0.

Conversely, let a ∈ Re and m ∈ Mg such that a
2m = 0. Since M is rigid,

and am = 0 then by assumption, aMg
T
Rem = 0. Now, aRem ⊆ Rem and

aRem ⊆ aReMg ⊆ aMg. So, aRem ⊆ aMg
T
Rem = 0, i.e., aRem = 0 and

hence M is g−reduced. 2
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Conclusion

In this article, we introduced the concepts of g−semi-commutative rings and
g−N−semi-commutative rings and we examined several results concerning
these two concepts. We introduced an example of a G-graded ring R which
is g−N -semi-commutative for some g ∈ supp(R,G) but R itself is not semi-
commutative. If R is a g− semi-commutative ring, then R is a g−N−semi-
commutative ring, however, we introduced an example showing that the
converse is not true in general. Several results and examples are investi-
gated. Also, we introduced the concept of g−NE−semi-commutative rings
and we examined several results concerning g − NE−semi-commutative
rings. g−semi-commutative rings are g − NE−semi-commutative, how-
ever, we introduced an example showing that the converse need not be
true. Moreover, we introduced the concept of g −NN−semi-commutative
rings. If R is g−semi-commutative, then R is g−NN−semi-commutative,
however, we introduced an example showing that the converse is not true
in general. Certain results have been presented. As a proposal for a future
work, we will try to study several concepts in non-commutative rings to see
how do they behave in the graded sense throughout the components of a
graded non-commutative ring.
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