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Abstract
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ness are given, including characterizations in terms of nets and pre-
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the framework of fuzzifying topology are introduced and the mapping
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1. Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy
set theory, has been developed into a quite mature discipline [8-10, 13-14,
29]. In contrast to classical topology, fuzzy topology is endowed with richer
structure, to a certain extent, which is manifested with different ways to
generalize certain classical concepts. So far, according to Ref. [9], the kind
of topologies defined by Chang [4] and Goguen [6] is called the topologies
of fuzzy subsets, and further is naturally called L-topological spaces if a
lattice L of membership values has been chosen. Loosely speaking, a topol-
ogy of fuzzy subsets (resp. an L-topological space) is a family 7 of fuzzy
subsets (resp. L-fuzzy subsets) of nonempty set X, and 7 satisfies the ba-
sic conditions of classical topologies [12]. On the other hand, Hohle in [7]
proposed the terminology L-fuzzy topology to be an L-valued mapping on
the traditional powerset 2% of X. The authors in [11, 13-14, 20] defined an
L-fuzzy topology to be an L-valued mapping on the L-powerset L~ of X.

In 1952, Rosser and Turquette [21] proposed emphatically the following
problem: If there are many-valued theories beyond the level of predicates
calculus, then what are the detail of such theories? As an attempt to give
a partial answer to this problem in the case of point set topology, Ying in
1991-1993 [30-32] used a semantical method of continuous-valued logic to
develop systematically fuzzifying topology. Briefly speaking, a fuzzifying
topology on a set X assigns each crisp subset of X to a certain degree of
being open, other than being definitely open or not. Roughly speaking,
the semantical analysis approach transforms formal statements of interest,
which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and
then these inequalities are demonstrated in an algebraic way and the se-
mantic validity of conclusions is thus established.There are already more
than 100 papers in fuzzifying topology published in the last two decades, 1
guess. But only a few papers can properly use the semantic method intro-
duced in the original papers of Ying, which I strongly believe, can provide
more delicate characterization of fuzzifying topological structure. So far,
there has been significant research on fuzzifying topologies [1-3, 17-18, 23-
24]. For example, Ying [33] introduced the concepts of compactness and
established a generalization of Tychonoff’s theorem in the framework of
fuzzifying topology. In [24] the concept of local compactness in fuzzifying
topology is introduced and some of its properties are established. General-
ized open sets play a very important role in General Topology and they are
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now the research topics of many topologists worldwide. Indeed a signifi-
cant theme in General Topology and Real Analysis is the study of variously
modified forms of continuity, separation axioms etc. by utilizing general-
ized open sets. One of the most well known notions and also an inspiration
source is the notion of pre-open [15] sets introduced by Mashhour, Abd
El-Monsef and El-Deeb in 1982. In 1984, the authors in [16] considered
a strong versions of compact spaces and locally compact spaces defined in
terms of pre-open subsets of a topological space. Alternative characteriza-
tions of such spaces were obtained. The concept of mixed fuzzy topological
spaces is studied and investigated in some papers (see for example, [6, 21,
29, 32-35] In [2] the concepts of fuzzifying pre-open sets and fuzzifying
pre-continuity were introduced and studied. Also, the authors in [3] in-
troduced some concepts of fuzzifying pre-separation axioms and clarified
the relations of these axioms with each other as well as the relations with
other fuzzifying separation axioms. Furthermore, in [1], Abd El-Baki and
Sayed characterized the concepts of fuzzifying pre-irresolute functions and
used the finite intersection property to give a characterization of fuzzifying
strong compact spaces. In this paper, the concepts of pre-base and pre-
subbase of fuzzifying P-topology are introduced. Other characterizations
of fuzzifying strong compactness are given, including characterizations in
terms of nets and pre-subbase. Several characterizations of locally strong
compactness in the framework of fuzzifying topology are introduced and
the mapping theorems are obtained. Thus we fill a gap in the existing lit-
erature on fuzzifying topology. We use the terminologies and notations in
[1-3, 30-33] without any explanation. We note that the set of truth values is
the unit interval and we do often not distinguish the connectives and their
truth value functions and state strictly our results on formalization as Ying
does. We will use the symbol ® instead of the second ”AND” operation A
as dot is hardly visible. This mean that

[Pl<[p—=dl e [Plalp] <[4].

All of the contributions in General Topology in this paper which are not
referenced may be original.

We procure some useful definitions and results which are useful in the rest
of the present paper.

A unary fuzzy predicate 7p : 2X — [0,1], called fuzzifying pre-open [2], is
given as follows:

Aectp:=Ve(x € A— x e Int(Cl(A))) ,ie., Tp(A) = /\ Int(CI(A))(x)).

z€EA
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Similarly, A unary fuzzy predicate Fp : 2¥ — [0, 1], called fuzzifying
pre-closed [2], is given as follows: A € Fp := X — A € 7p. The fuzzify-
ing pre-neighborhood system of a point z € X [2] is denoted by N * (or
NEPY 2% — [0,1] and defined as NP (A) =V ATP(B). The fuzzifying

reBC
pre-closure of a set A C X [2], denoted by Clp € [0,1]%, is defined as
Clp(A)(x) = 1 — NP(X — A). If (X,7) is a fuzzifying topological space
and N(X) is the class of all nets in X, then the binary fuzzy predicates
> ocP: N(X) x X — [0, 1] [23] are defined as

SoF z:=VA(A e NP* = 5C4), SxPz:=VAAec N = SEA),

where ? S 27 | 7S o’ 27 stand for 7S pre-converges to z” , "z is a pre-
accumulation point of S”, respectively; and ”C”, ”C” are the binary crisp
predicates ”almost in ”,”often in”, respectively. The degree to which x is a
pre-adherence point of S is adhpS(x) = [S ocf’ z]. If (X, 7) and (Y, o) are
two fuzzifying topological spaces and f € YX, the unary fuzzy predicates
Cp,Ip : YX — [0,1], called fuzzifying pre-continuity [2], fuzzifying pre-
irresoluteness [1], are given as

Cp(f) :=VB(B<co — fYB)erp), Ip(f):=VB(B€op— f1(B)€p),

respectively. Let € be the class of all fuzzifying topological spaces. A unary
fuzzy predicate T4 :  — [0, 1], called fuzzifying pre-Hausdorffness [3], is
given as follows:

Ty (X, 7) = Vavy((x € XAy € XAz #y) — IBIC(B € NYAC € NS ABNC = ¢)).

A unary fuzzy predicate I' : Q — [0, 1], called fuzzifying compactness [33],
is given as follows:

I(X,7) = (VR) (Ko (R, X) — (Fp)((p < R) A K (9, A) © FF(p)))

and if A C X, then I'(A) :=T'(A,7/A). For K, K, (resp. < and F'F) see
[31, Definition 4.4] (resp. [31, Theorem 4.3] and [33, Definition 1.1 and
Lemma 1.1]). A unary fuzzy predicate fI : [0,1]2" — [0,1], called fuzzy

finite intersection property [33], is given as
FIR) :=Vp((p <R)A\FF(p) — JaVB(B € p — x € B)).

A fuzzifying topological space (X, 7) is said to be fuzzifying P-topological
space [1] if 7p(A N B) > 7p(A) A 7p(B). A binary fuzzy predicate
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Kp :[0,1)2°%2% — [0, 1], called fuzzifying pre-open covering [1], is given as
Kp(R,A):=K(R,A)®(R C 7p). A unary fuzzy predicate I'p : 2 — [0, 1],
called fuzzifying strongly compactness [1], is given as follows:

(X,7) € Ip:= (VR)(Kp( R, X) — (Fp)((p <) A K( o, X) @ FF(p)))
and if A C X, then I'p(A) :=Tp(A4,7/A). It is obvious that
I'p(X,7):=0(X,7p), I'p(A,7/A) :=T(A,1p/A)

and
E K, (R A) — Kp(R,A).

A fuzzifying strongly compact space is a generalization of strongly com-
pact space [16]. A space X is said to be strongly compact if every pre-open
cover X has a finite subcover.

A unary fuzzy predicate LC : Q — [0, 1], called fuzzifying locally com-
pactness [24], is given as follows:

(X,7) € LC := (Vz)(3B)((x € Int(B) @ I'(B, 7/B)).

A space X is said to be locally strongly compact [16] if each point of X
has a neighbourhood which is a strongly compact subspace.

2. Fuzzifying pre-base and pre-subbase

Definition 2.1. Let (X, 7) be a fuzzifying topological space and Sp C Tp.
Then Bp is called a pre-base of Tp if Sp fulfils the condition:

= Ae NP - 3B((B e Bp) Az e BCA)).

Example 2.1. Let X = {a,b,c}, and I = [0,1]. Define a mapping 7 :
P(X) — I on X as follows: 7(0) = 7(X) = 1, 7({a,c}) = 0, 7({a,b}) = £,
T({b,c}) = 1, 7({a}) = 0, 7({b}) = 3, 7({c}) = 3. Then we can easily
verify that T is a fuzzifying topology. By calculating,

p(0) = 7p(X) = 1, 7p({a,c}) = 1, 7p({a,0}) = 1, 7p({b,c}) = L,
p({a}) = 1, 7p({b}) = 3, 7p({c}) = 1. If we set Bp = Tp, then
NFPA) = \V 71p(B) = \ Bp(B). Obviously, Bp is a pre-base of

r€EBCA r€BCA
7p by Definition 2.1.

Theorem 2.1. (p is a pre-base of 7p if and only if Tp = I(DU) , where
B (A =\ A Be(B).

J Ba=AAeA
XEA
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Proof. Suppose that Sp is a pre-base of 7p. If

U By =4,
AEA

then from Theorem 3.1 (1) (b) in [2],

p(A) = 1p (U BA) > /\ 7p(By) > /\ Bp(By).

A€A A€A A€A

Consequently,

mp (A) > \ )\ Bp (By)

U B\=A4 AEA
AEA

To prove that
Tp (A) > \V /\ Bp (By)

U B\=A AEA
AEA

we first prove

)= N\ e(B).

r€EAxeBCA
(Indeed, assume 6, = {B:x € B C A}. Then, for any

felld U fl) =4,

T€EA T€EA

and further we have

AV AV
>
<\]
=R
> =
8
:.15
=
&

fe[] . v€A
€A

= /\ \/ Tp(B).

reAxeBCA

Also,
Tp(A) < /\ \/ 7p(B).

reAxeBCA
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Therefore,
Tp(A):/\ \/ Tp(B)).
reAxeBCA
Now, since
NP4 <\ Be(B),
zeBCA
) = AV mw(B)= A\ NT(4)
r€AxeBCA T€A
< AV 8B)= \V A Be(f2)).
r€AxzeBCA fe H 5y TEA
Then,
p(A) <\ A Bp(B.
U Ba=AXeA
Therefore,

A=\ A Br(B).
|J Ba=AXreA

In the other side, we assume that

(A)= \/ A\ Bp(By)
J Ba=AAeA

and we will show that Sp is a pre-base of 7p, i.e., for any A C X, fo (A4) <

V  Bp(B). Indeed, if z € B C A and |J By = B, then there exists
zeBCA AEA
Ao € A such that z € By, and

A Bp(By) <Bp(Bx,) < \/ Bp(B).

AEA r€EBCA

Therefore,

Ny =/ (B
r€BCA

=\ VA Be(By)
2€BCA | By=AeA
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< \V Be(B).
r€BCA
O

Theorem 2.2. Let fp : 2X — [0,1]. Then Bp is a pre-base for some
fuzzifying P-topology Tp if and only if it has the following properties:

(1) B(X) =15

2) E(AeBp)N(Bepp)N(zx€e ANB) - 3C((C € pp)N(x e C C
AN B)).

Proof. If Bp is a pre-base for some fuzzifying P-topology 7p, then
p(X) = B](DU) (X). Clearly, B;U) (X) = 1. In addition, if = € AN B, then

Bp(A) A Bp(B) < 7p(A) A 7p(B) p(ANB) < NP (AN B)

<
< \V  B8p(C).

zeCCANB

Conversely, if Sp satisfies (1) and (2), then we have 7p is a fuzzifying
P-topology. In fact, 7p(X) = 1. For any {A) : A € A} C P(X), we set

O\ = {{B@A:q))\EA)\}: U B@A:A)\}.

PreA
Then, for any
fEH(S)\,U U B@A:UA)\.
AeA  AEA By, €f(N) AEA

Therefore,

P (U A,\) = \V )\ Bp (Bs)
AEA U Bo=J Ay ®EA

> V A A B8p(Bs,)
fe ] ox A€A Ba, €f(N)
> /\ \/ /\ Bp(Ba,)

AEA {B@Azé)\EA/\}ECS)\ DrEAN

= /\TP(AX).

AEA
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Finally, we need to prove that
Tp(ANB) > 7p(A) A Tp(B).
If 7p(A) > t,7p(B) > t, then there exists
{By, : A1 € A1}, {By, 1 A2 € Ao}

such that U By, =4, U By, =B
A1EAL A2€A2
and for any \; € Ay, Sp(By,) > t,

for any Ao € Aa, Bp(B),) > t. Now, for any = € AN B, there exists
Az € A1, Aoz € Ag such that o € By, N B),,. From the assumption, we
know that

t < Bp(Bay,) A Bp(By,,) < \V Bp(C),
l’GCgBAlxﬂB)\Zm

and furthermore, there exists C, such that
reC,C B)\lw ﬂB)\Zx C AN B, Bp(cm) > t.
Since
U C.=4nB3B,
z€ANB
we have

t< N\ BerCo)< A Bp(By) = 7p(ANB).
z€EANB U By=ANBA€A

Now, let 7p(A) A 7p(B) = k. For any natural number n, we have
1 1
A)>k—— B)>Fk——
() > k=T 7p(B) >k~

and so Tp(AN B) > k — 1. Therefore 7p(ANB) > k = 7p(A) ATp(B). O

Definition 2.2. ¢p : 2¥ — [0,1] is called a pre-subbase of Tp if (pj(pm) is a

pre-base of Tp, where

AN By= N er(By),

AEA ﬂ By—A AEA
AEA

{Bx: A€ A} C P(X) with” C” standing for ”a finite subset of”.

Theorem 2.3. pp : 2X — [0,1] is a pre-subbase of some fuzzifying P-
topology if and only if goSDU) (X)=1.
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Proof.  We only demonstrate that gogg) satisfies the second condition of

Theorem 2.2, and others are obvious. In fact

P A A o8 (B)

= \/ A SDP(BM) A \/ A SDP(BAZ)
ﬂ B>\ —A )\16/\1 m B)\ -B )\26/\2
A €A ! Ao €Ay ?

— . i
N \él—A N \42_3 <A1/€\A1 el ’\1)> A (/\2/6\A2 ep( ,\2)>

< V < A ‘PP(BA)>
N Ba=AnB \\€A

=0 (ANB).
Therefore, if € AN B, then

P ADB) <eDUnB <\ oB(0).
xeCCANB

3. Fuzzifying strong compact spaces

Theorem 3.1. Let (X, 7) be a fuzzifying topological space, pp be a pre-
subbase of Tp, and

(1) == (VR)(Kpp (R, X) — Jp((p < RN) A K(p, X) ® FF(p))), where
K@PGR?X) = KGR’ X) ® (éR C QOP)Q

(B2) = (VS)((S is a universal net in X) — 3z((x € X) A (S > 2)));
(Bs) == (VS)((S € N(X) — (AT)(F)((T < 8) A (z € X) A(T B 2))),

where 7T < S8 stands for ”T is a subnet of S”;
(Ba) = (VS)((S € N(X) — —(adhpS = ¢));
(Bs) == (YVR)(R € [0,1]2° AR C Fp® fI(R) — JaVA(A € R — z € A)).
Then = (X,7) € Tp < Bii=1,2,...,5.
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Proof. (1) Since pp C 7p, [R C pp] < [R C 7p| for any R : 2% — [0, 1],
then we have [K,, (R, X)] < [Kp(R, X)|. Therefore I'p(X,7) < [B1].
(2) [B2] = /\{ \/ [S B>F 2] : (S is a universal net in X)}.

(2.1) Assume X is finite. We set X = {1, ...,z }. For any universal net
S in X, there exists i, € {1,...,m} with SC{z;, }. In fact, if not, then for

any i € {1,....,m}, S¢{z;,}, SCX — {z;,} and SC ﬂ (X —{zi}) = ¢, a
=1

contradiction. Therefore x;, ¢ A and Nfi (A) = 0 (see[2 ]Theorem 4.2

(1)) provided SZA, and furthermore [S >F z;,] = A (1 zzo ) =1.

Therefore [52] =1 > [31].

SZA
(2.2) In general, to prove that [31] < [52] we prove that for any A € [0, 1],
if [B2] < A, then [51] < A. Assume for any A € [0,1], [B2] < A. Then,

there exists a universal net S in X such that \/ [S > z] < A and for
zeX

any z € X, [S P ax] = A (1 — Nf(A)) < A, i.e., there exists A C X
SZA
with SZA and NF(A) > 1 — \. Since pp is a pre-subbase of Tp,gpgg)

is a pre-base of 7p and from Definition 2.1, we have \/ cpgg)(B) >
z€BCA

NFP(A) > 1 — ), ie., there exists B C A such that z € B C A and
V<iminpp(By): | BA=B,By\C X, €A} = gog)(B) > 1 — A, where
AEA AEA

A is finite. Therefore, there exists a finite set A and By € X()\ € A) such

that (| By = B and for any A € A, op(B)) > 1 — A. Since SZA and A is
AEA

finite, there exists A(xz) € A such that SgZBA(m). We set

§RO(B)\(JC)) = \/ (pP(B)\(x))
reX

If p < RN, then for any § > 0, p5s € {By(z) : © € X}. Consequently, for any
B € ps, S ng and SCB¢ because S is a universal net. If

[FF(p)] =1 —inf{6 € [0,1] : F(ps)} =1,
then for any n € w (the non-negative integer),
1
inf {6 € [0,1] : F(ps)} < 1_t+ﬁ’

and there exists d, < 1 —t+% such that F(pso). If 6o = 0,then P(X) = pso
is finite and it is proved in (2.1). If 6, > 0, then for any B € ps,, SCB°.
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Since F'(ps0), we have

SC( B : B € pso} # ¢.

e, Upso # X and there exist z, € X such that for any B € ps0, . ¢ B.
Therefore, if x, € B, then B ¢ ps,, i.e., p(B) < Jo,

1
KpX)= A\ V oB) <\ oB)<do<l—t+-—.
z€X zEB 20€B n

Let n — co. We obtain K(p,X) <1 —t and [K(p,X)® FF(p)] = 0. In
addition, [K,, (R, X)] > 1 — A. In fact, (R, C pp] =1 and

K(%oyX)] = /\ \/ §RO(B) > /\ geO(B>\(ac)) > /\ SOP(BA(QU)) >1-A

zeX zeB zeX zeX

because = € By ;). Now, we have

[B1]

[(VR) (Kyp (R, X) — 3p((p <RN) A K(p, X) @ FF(p)))]
< [Kpp(Ro, X) — Fp((p < Ro) A K(p, X) @ FF(p))]

= min(1,1— K@P(%WX) + \/ [K(p, X) ®@ FF(p))] <A
p<Ro

Since A is arbitrary, we have [51] < [52].
(3) It is immediate that [fa] < [53].
(4) To prove that [53] < [B4], first we prove that

3T (T < S) AT B 2))] < [S o 2],

where
BT (T <S)AT P =\ A (1-N(4)
T<S TaA
and
(S o' z] = /\ (1—Nf(A)).
S A

Indeed, for any 7" < S one can deduce {A : S ZA} C{A:TZA} as follows.
Suppose T'= So K . If S{Z A, then there exists m € D such that S(n) ¢ A
when n > m, where > directs the domain D of S. Now, we will show

that T'Z A. If not, then there exists p € E such that T(q) € A when ¢ > p,
where > directs the domain F of T'. Moreover, there exists n; € E such that
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K(n1) > m because T' < S, and there exists ng € F such that na > ni,p
because (F,>) is directed. So, K(ng) > K(n1) > m, So K(n2) ¢ A and
S o K(n2) =T(ng) € A. They are contrary. Hence,

{A:SZAYC{A:T¢ZA}.

Therefore,
AT (T <S)A (T P2 =\ A (1-N(4)

T<ST&A

=V A (M)
T<S1ATg A}

< A (1-nW)
{A:SZ A}

= A (1= NF(A) =[S o< a].
S A

Therefore, for any € X and S € N(X) we have

Bs) = A VBT (T <A ")
SEN(X) z€X
< A Vissras A (A (-swra)
SEN(X) z€X SEN(X) \zeX

= A [~(adhpS = ¢)] = [B4].

SEN(X)

(5) We want to show that [84] < [B5]. For any R : 2% — [0, 1], assume
[fI(R)] = A. Then for any 6 > 1—\, if Ay, ..., A, € Rs, A1NAaN...NA, # ¢.
In fact, we set p(A;) = Vj=; R(A;). Then p < Rand F'F(p) = 1. By putting
e=A+06—1>0, we obtain

A—e< A< [FF(p) — (F2)(VB)(Bep —x € B)| = \/ /\ (1 - p(B)).
zeX z¢B
There exists o, € X such that A —e < A (1 — p(B)), o ¢ B implies
B

p(B) <1—X+¢e =246 and z, € Nps :jlﬁAQH...ﬂAn. Now, we set
¥9s ={A1NAN..NA,:n€N,A;, ..., A, € Rs} and S : V5 — X, B —
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xp € B, B € Y5 and know that (Js5,C) is a directed set and S is a net in
X. Therefore,

[84] < [~(adhpS =) = \/ N (1-NE(A)).

reX SiA

Assume that [R C Fp| = u. Then, for any B € P(X),R(B) < 1+Fp(B)—p,
and
[RCFp® fI(A) — (Fz)(VA) (A€ R) -z € A)
=min(1,2—p—A+ \/ A (1-R(A))).
zeX z¢ A

Therefore, it suffices to show that for any x€ X,

N Q=NS(A) <2—p—r+ A\ (1-R4)),
SZA ag A

i.e.,
\/ R(A) <2—-p—x+\/ N'(A)
oA SZA

for some 6 > 1 — A\.For any ¢t € [0,1], if \/ R(A) > ¢, then there exists Ao
¢ A
such that z, ¢ A, and R(A,) > t.

Case 1. t <1— )\, thent<2—pu— A+ \/ NI(A).

SZA

Case 2. t > 1— ). Here we set § = %(t—i—l—)\) and have A, € Ry, A, € Us.
In addition,

t< R(Ao) < 14 Fp(Ao) — i, t+pu— 1 < Fp(Ao) = mp(A°).

Sigce A, € U5, we know that Sp € A,, i.e., Sp ¢ AS when B C A, and
SiZAS. Therefore,

2—u—X+\/ NF(A) > 2—pu—A+N7S(AS) > 2—p—A+7p(AS) > t+(1-)) > .
S A

By noticing that t is arbitrary, we have completed the proof.
(6) To prove that [55] = [(X,7) € I'p] [1, Theorem 6. O
The above theorem is a generalization of the following corollary.
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Corollary 3.1. The following are equivalent for a topological space (X, T).
(a) X is a strong compact space.

(b) Every cover of X by members of a pre-subbase of Tp has a finite sub-
cover.

(c) Every universal net in X pre-converges to a point in X.

(d) Each net in X has a subnet that pre-converges to some point in X.

(e) Each net in X has a pre-adherent point.

(f) Each family of pre-closed sets in X that has the finite intersection prop-
erty has a non-void intersection.

The equivalence (a) , (b) and (c) were given in [16].

Definition 3.1. Let {(Xs,7s) : s € S} be a family of fuzzifying topological
spaces, [| Xs be the cartesian product of { X5 : s € S} and ¢ = {p;1(Us) :
seS
s € S,Us € P(Xs)}, where py : [[ Xs — Xi(t € S) is a projection. For
ses
® C ¢, S(P) stands for the set of indices of elements in ®. The pre-base
Bp: Il Xs —[0,1] of [I (7p)s is defined as
sesS seS

Vepp:=3)PT oA ((|®=V)) —Vs(s € S(®) = Vi € (1p)s),

ie.,

pp(V)= N (7p)s(Vs).

<I>E<p,ﬂ d=V s€S(P)

Example 3.1. Let (X,7) and 7p be just as in Example 2.1. Define a

mapping s : P(Y) — I on Y as follows: <(0) = <(Y) = 1, where

Y = {d}, then < is a fuzzifying topology and sp(0)) = ¢p(Y) = 1. Hence,

Y xX = {(d’ a)’ (d7 b)? (d7 C)}7 S50 ¢ = {QvX XY, {(d7 a)}v {(d’ b)}7 {(d7 C)}7

{(d,a),(d,b)},{(d,b),(d,c)},{(d,a),(d,c)}}. By calculating,

Bp(0) = 1,8p(XxY) = 1, Bp({(d,a)}) = }, Bp({(d,0)}) = §, Br({(d,c)}) =
%,,Bp({(d, a)v(d> C)}) = iﬁp({(dv a):(dv b)}) = %: ﬁP({(da b)v(d> C)}) = L

According to Theorem 2.1, we can easily obtain BJ(DU) = fBp, SO Tp Xsp = Bp.

Definition 3.2. Let (X, 1), (Y,0) be two fuzzifying topological space. A
unary fuzzy predicate Op : Y~ — [0, 1], is called fuzzifying pre-openness,
is given as: Op(f) :=VYU(U € 7p — f(U) € op). Intuitively, the degree to
which f is pre-open is

[Op(f)] = A\ min(l,1—7p(U) +op (f(U))).

BCX
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Example 3.2. Let (X,7) and 7p be defined just as in Example 2.1. We
set Y = X,0 =7 and f =idx, then [Op(f)] = A min(1,1 —7p(U) +
Ucx

op (f(U))) = 1.

Lemma 3.1. Let (X, 1) and (Y, 0) be two fuzzifying topological space. For
any f € YX,

Op(f) :=VB(B € 83 — f(B) € op),

where 61)3( is a pre-base of Tp.

Proof. Clearly, [Op(f)] < [VU(U € 3% — f(U) € op)]. Conversely, for
any U C X, we are going to prove

min(1,1 — 7p(U) 4+ op (f(U))) > WV (V € 5 — f(V) € op)].

If 7p(U) < op(f(U)), it is hold clearly. Now, assume 7p(U) > op(f(U)).
If  C P(X) with UR =U, then Uyex f(V) = f(UR) = f(U). Therefore,

(U) — op(f(U))

= V A BE(V)— V N\ op(W)
RCP(X),JR=U VER pCP(Y).Jp=F(U) Wep

< V A B3 (V) — V A op(f(V))
RCP(X),|JR=U VER RCP(X),JR=U VER

< VoA (BEV) = oe(f(V),
RCP(X),JR=U VR

min(1,1 —7p(U) + op (f(U)))

V A min(1, 1= BE (V) +op (f(V)))

RCP(X),|JR=U VER O
VV(V € BE — f(V) € op)].

Lemma 3.2. For any family {(Xs,7s) : s € S} of fuzzifying topological
spaces.

(1) E (Vs)(s € S — ps € Op);

(2) = (Vs)(s € S — ps € Cp).

\Y]

Vv

Proof. (1) For any ¢t € S, we have

Op(p)= A\ min(1,1~ (H(TP%) (U) + (p)e (pe(U)))-
UeP(]] Xs) s€S
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Then, it suffices to show that for any U € P( ] Xs), we have
ses

(7p)t (pe(U)) = (H(TP%) ).

seS

Assume

(va)s)w)— vV AV A (e (Ve) > n

seS UBA\=U XeA @ Cop,NPr\=B) s€5(®),)
AEA

where
Oy = {p;'(Vs) : 5 € S(PA)}(A € A).

Hence, there exists {By : A € A} C P(]] Xs) such that |J By = U
ses AEA
and furthermore, for any A € A, there exists ®) C ¢ such that N®) = By
and () p; (Vi) = By, where for any s € S(®)) we have (7p)s(Vs) > p.
SES(CI))\)
Thus,

U):pt(U m ps (Ve

AEA s€S(Dy)

(1) If for any A € A, N p;Y(Vi) = ¢, then U = ¢, p:(U) = ¢ and

SES(Py)
(7p)i (p:(U)) = 1. Therefore, (7p); (p:(U)) = (gs(TP)S> V).
(2) If there exists Ao € A, such that ¢ # ()  p5 (Vi) = By,
SES(P)y)
(i) Ift ¢ S(®y,), i.e,, t € S —S(Py,), pt(By,) = X¢. Therefore,
(7P)e(pt(Bx.)) = (TP)e(X¢) = 1.
(i) If t € S(®y,), then p(By,) = Vi C X;. Thus,

i U By,)U U By,))

teS(@,\o) 1¢S(®,)
U 2B)u( U mB) =ViUX, =X,
teS(Pr,) 1¢S(®,)

Hence,

(P)e(pe(U)) = (1p)e(Xt) = 1 or (7p)e(pe(U)) = (7P)e(Ve) > A.
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Therefore, (tp): (pt(U)) > sl;[S(TP)s (U). Thus Op(p) = 1.

(2) From Lemma 3.1 in [32], we have = (Vs)(s € S — ps € C). Furthermore,
for any two fuzzifying topological spaces (X,7) and (Y, o) and f € Y X, we
have C(f) < Cp(f) (Theorem 6.3 in [2]). Therefore,

= (Vs)(s € S — ps € Cp). O

Theorem 3.2. Let {(X;,7s) : s € S} be the family of fuzzifying topologi-
cal spaces, then

E=3UU C [[ Xs ATp(U,7/U) AJx(x € Intp(U))
seS

— ElT(T C S /\Vt(t € S —TA Fp(Xt,Tt))).

Proof. It suffices to show that

\V Tp(U,r/U)N \/ NEU)

UeP([] Xs) e [] Xs
seS sES

<V A Ip(Xy,m).

TCSteS-T

Indeed, if

\/ TpU,7/U)A \/ NJU)|>n>0,
UeP([] Xs) e [] Xs
seS s€S

then there exists U € P( ] X;) such that I'p(U,7/U) > p and
ses

\/ NE(U) > p, where
xe H X

seS

NE(U)= \/ (Hw)s) (V).

zeVCU \sefs
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Furthermore, there exists V such that z € V' C U and ( I1 (TP)3> (V) >
ses

u. Since Sp is a pre-base of [ (7p)s,
seS

(H (TP)s> (V) = \/ /\ Bp (By)
seS U B)\ _ V AEA
AEA

- A A () (V) >
U B}\ = V AEA PACp,NPA=Bx SGS(@)\)
AEA

where @) = {p;1(V;) : s € S(@))}(A € A).

Hence there exists {B) : A € A} C P([] Xs) such that UyepaBy = V.
seS
Furthermore, for any A € A, there exists ®) C ¢ such that N®, = By and

for any s € S(®)), we have (7p)s(Vs) > p. Since x € V, there exists By, such
that © € By, €V C U. Hence there exists ®), T ¢ such that N®,,K = B,,

and N p;t(Vi) = By, C [[ X5 and for any s € S(®,), we have
sES(Py) seS

(tp)s(Vs) > 1—p.By (N p;'(Vs) = By,, we have P5(By,) = Vs C X if
SGS((I))\)

§ € S(®,,); Ps(By,) = Xs5,if 0 € S — S(®,,). Since By, C U, for any

deS—S5(®y,), we have Ps(U) D Ps(B),) = Xs and Ps(U) = X;s5. On the

other hand, since for any s € S and U, € P(Xj), (H (TP)t> (ps1(Uy)) >
tesS
(tp)s(Us), we have , for any s € S,

Ip(ps) = /\ min (17 1—(7p)s(Us) + H(TP)t (psl<Us))> =1
Xs)

UseP( tes
Furthermore, since by Theorem 9 in [1], we have
=Tp(X,7)®Ip(f) = Lp(f(X)),
then
Lp(U,r/U) =Tp(U,7/U) @ Ip(ps) < Tp(Ps(U),75) = I'p(Xs, 75).

Therefore,
V A TeXm)> N\ Tp(Xs7) >Tp(U,7/U) > p
TCS teS-T 5ES—S(®y)

The above theorem is a generalization of the following corollary.
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Corollary 3.2. If there exists a coordinate pre-neighborhood strong com-
pact subset U of some point x € X of the product space, then all except a
finite number of coordinate spaces are strong compact.

Lemma 3.3. For any fuzzifying topological space (X, 7),A C X,
F TS (X, 1) = T3 (A, 7)4).

Proof.
17X, 7)) = A \V (NF(U), NS (V)
zyeX,x#y UVeP(X),UNV=¢
< A Vo U nA), N (v )
r,yeX,x#y (UNA)N(VNA)=¢
< A \/ (NP, NP (v))
x,y€AxFy U'NV/=¢,U' V'€P(A)
= T2P(A,7'/A),
where

NPYU)y= ) p/AC) and p/A(B) = \/  TR(V).
xeCCU B=VNA

Lemma 3.4. For any fuzzifying P—topological space (X, T),
ETY(X,71)@Tp(X,7) — TF(X,T).
For the definition of Tf (X, ) see [3, Definition 3.1].

Proof. If[T¥(X,7)®[p(X,7)] = 0, then the result holds. Now, suppose
that [T4 (X, 7)@Lp(X,7)] > A > 0. Then T4 (X, 7)+Tp(X,7)—1 > X > 0.
Therefore, from Theorem 10 in [1]

T (X, 7)@(Cp(A)AT p(B))MANB = ¢) =*° Ty (X, 7) — (3U)(AV)((U €
)NV € mp)AN(ACU)AN(B CV)A(AN B = ¢)). Then for any
A BCX,ANB = ¢,

TP (X, 7)® (Ip(A) ATp(B)) < \/ min(rp(U), 7p(V))
UNV=¢,ACU,BCV

or equivalently

TF(X,7) <Tp(A) ATp(B) — \/ min(rp(U), 7p(V))
UNV=¢,ACU,BCV
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Hence, for any A, BC X, ANDB = ¢,

1-[Tp(A)AT p(B)]+ \V min(rp(U), 7p(V))+Tp(X,7)—1 > A.
UNV=¢,ACU,BCV

From Theorem 7 in [1] we have
): FP(X,T) RAeFp— FP(A).
Then

Pp(X,7)+ [tp(A) ATp(B°)] -1 = (Ip(X,7)+7p(A°) = 1) A (Tp(X,7) +7p(B°) — 1)

< (Tp(X,1)@71p(A)) AN (Tp(X,7) @ 7P(B°))
< [[p(A) ATp(B)].
Thus,
I'p(X,7) = [Lp(A) ATp(B)] — 1 < —[rp(A°) A 7p(B°)].
So,
1 — [tp(A°) A Tp(B°)] + \/ min(7p(U), 7p(V)) > A,
UNV=¢,ACU,BCV

TP(X,7)= N\ min(1,1— [rp(A°) A7p(B%)]
ANB=¢

+ \V min(7p(U), 7p(V)) > A.
UNV=¢,ACU,BCV

The above lemma is a generalization of the following corollary.

Corollary 3.3. Every strong compact pre-Hausdorff topological space is
pre-normal.

Lemma 3.5. For any fuzzifying P—topological space (X, T),
ETE(X,7)®@Tp(X,7) — T¥ (X, 7). For the definition of
TY (X, 7) see [3, Definition 3.1].
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Proof. Immediate, set A = {z} in the above lemma. O
The above lemma is a generalization of the following corollary.

Corollary 3.4. Every strong compact pre-Hausdorff topological space is
pre-regular.

Theorem 3.3. For any fuzzifying topological space (X, 7) and A C X,
':TQP(X,T)(@FP(A) — A € Fp.

Proof. For any{z} C A°, we have {z} N A = ¢ and I'p({z}) = 1. By
Theorem 10 in [1]

[Ty (X,7) ® (Tp(A) ATp({z}))] < V min(7p(G), 7p(Hy))).-
GNH,=¢,ACG,x€H,

Assume
Be={Hy : ANH, =¢,x € H.}, ] f(z)2A°
zeX\A

and

U f@)ynd= {J (flx)n4) =¢.
TEAC TEAC
So, U f(x)= A
TEAC
Therefore,

[Ty (X,7) @ Tp(4)] < V 7p(Hyz)
GNHy=¢,ACG,z€ Hy

< /\ \/ Tp(Hz)
r€AC ANHy=¢,x€EH

=/ A (=)
fe 1:[16696 zeAC

< 'V (U f@)

fe H Bz TEAC
rEAC
= \/ Tp(A°) = Fp(A).
fe Il Be

zeX\A
O
The above theorem is a generalization of the following corollary.

Corollary 3.5. Strong compact subspace of a pre-Hausdorff topological
space is pre-closed.
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4. Fuzzifying locally strong compactness

Definition 4.1. Let 2 be a class of fuzzifying topological spaces. A unary
fuzzy predicate LpC' : Q — [0, 1], called fuzzifying locally strong compact-
ness, is given as follows:

(X,7) € LpC := (Vz)(3IB)((x € Intp(B) @ I'p(B,7/B)).
Since [z € Intp(X)] = NP(X) = 1, then LpC(X,7) > I'p(X, 7). There-
fore, = (X,7) € I'p — (X, 7) € LpC.
Also, since = (X,7) € I' — (X,7) € LC [21] and = (X,7) € T'p —
(X,n)el'[1, F(X,7)eT'p = (X,7) € LC.
Theorem 4.1. For any fuzzifying topological space (X,7) and A C X,
E(X,7)eLpC®Ac Fp— (A,7/A) € LpC.

Proof. We have
LpC(X,1) = /\ \/ max (0 P (B)+T'p(B,7/B)—1)
z€X BCX
and
LpC(A,T/A) = /\ \/ max (0 G) +I'p(G,(1/A)/G) — 1).
rzecAGCA

Now, suppose that [(X,7) € LpC ® A € Fp] > XA > 0. Then for any x € A,
there exists B C X such that

(4.1) NP¥(B)+Tp(B,7/B) +1p(X — A) =2 > A

T

Set E=ANB € P(A). Then,
NP E)=\) NIT(C)=NP(B)
E=CNB
and for any U € P(E), we have
(rp/A)p/EU) = \/ 7p/AC)

U=CNE

=V V

U=CNE C=DnNA

= \/ Tp(D) = \/ 7p(D).

U=DNANE U=DNE
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Similarly,

(rp/B)p/EU) = \/ 7p(D).

U=DNE

Thus, (Tp/B)p/E = (Tp/A)p/E and FP(E, (T/A)/E) = FP(E, (T/B)/E)
Furthermore,

[EEFP/B] = TP/B(B—E):TP/B(BQEC)
= \/ (D)
BNE¢=BND

> 7p(X —A) = Fp(A).

Since = (X,7) e Tp® A € Fp — (A,7/A) € T'p (see [1], Theorem 7], from
(4.1) we have for any x € A that

\/ max(0, NI (G) +Tp(G, (r/4)/G) — 1)

GCA
NP (E) +Tp(E, (r/A)/E) - 1
= N(E)+Tp(B,(r/B)/E) - 1
> NPX(B) +[p(B,7/B)® E € Fp/B] — 1
> NPP(B)+Tp(B,7/B)+|E € Fp/B] -2
> NPX(B) +Tp(B,7/B)+]A€ Fp| —2> A
Therefore,
LpC(A,7/A) = N\ \/ max(0 G) +TI'p(G,(T/A)/G) — 1) > A
reAGCA
Hence, [(X,7) € LpC ® A € Fp| < LpC(A,T/A). O

As a crisp result of the above theorem we have the following corollary.

Corollary 4.1. Let A be a pre-closed subset of locally strong compact
space (X, 7). Then A with the relative topology 7/A is locally strong com-
pact.

The following theorem is a generalization of the statement ”If X is a pre-
Hausdorff topological space and A is a pre-dense locally strong compact
subspace, then A is pre-open”, where A is a pre-dense in a topological
space X if and only if the pre-closure of A is X.

Theorem 4.2. For any fuzzifying P-topological space (X,7) and A C X
=Ty (X,7)® LpC(A,7/A) @ (Clp(A) = X) — A € p.
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Proof. Assume
TS (X,7) ® LpC(A,7/A) @ (Clp(A) = X)] > A > 0.
Then,

LpC(A,7/A) >\ — T3 (X,7) @ (Clp(A) = X))+ 1= X > )

AV max(0, NI*(B) + Tp(B, (r/A)/B) — 1) > X.
r€A BCA

Thus, for any x € A, there exists B, C A such that
NPY(B,) + Tp(By, (1/A)/By) —1 > X.

i.e.,

\/  \V 7e(K)+Tp(B (r/A)/B;) —1> X,
HNA=B, e KCH

Hence, there exists K, such that
K,NA=B,, 7p(K;)+Tp(Bg, (7/A)/B;) — 1> \X.

Therefore, 7p(K,) > .
(1) If for any = € A there exists K, such that

re K, CB, CA, thenUKx:A
T€A

and

mp(A) =71p(|J Kz) > N\ 7p(Ks) > XN > A
€A €A

(2) If there exists z, € A such that
Ky, N (Bg,) # ¢, 7p(Kz,) + Lp(Ba,, (T/A)/By,) = 1> X,
From the hypothesis
[TF (X, 7) ® LpC(A,7/A) ® (Clp(A) = X)] > A > 0,
we have [T4 (X, 7) ® (Clp(A) = X)] # 0. So

7P(Ks,) + Tp(Bay, (T/A)/Ba,) = 1+ [13 (X, 7) @ (Clp(A) = X)] = 1> 0.
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Therefore,
7p(Ks,)+Tp(By,, (1/A)/By,) = 14+T5 (X, 7)+[(Clp(4) = X)]-1-1> \.
Since

(tp/A)p/Be,(U) = \/ 7p/A(C)
U=CNBa,

=V V w0

U=CNBy, C=DNA

= \/ TP(D) = TP/B:CO(U)7

U=DNBy,
Lp(Bg,, (1/A)/By,) = T'p(Ba,, 7/By,).
From Theorem 3.3 we have
p(B;,) = Ty (X,7) ®Lp(Bz,, 7/Bx,)
Ty (X,7) + Tp(Ba,, 7/Ba,) — 1.

AV

Hence,
Tp(Ky,) + 7P(By, ) + [Clp(A) = X] =2 > A
Now, for any y € A° we have
[Clp(A) = X] = N\ (1 - NP (A%) <1- NP (49).
rzeX

Since (X, 7) is a fuzzifying P-topological space,
Tp(Ke,) +7P(B,) —1 < 7p(Ke,) ® TP(Bg,)

o

< 7p(Ka,) A7p(By,)
< 7p(Ky, N Bg)
< Ny (Ke, N Bg) < NP(A9),
where
ye K,,NB; CH, N(H,, NA)® = H, N(H; UA°
= H, NA°C A"
Therefore,

0 < A<7p(Ky,)+7p(Bg,) +[Clp(A) = X] -2
= Tp(Kxo)—f—Tp(Bgo)—1+[CZP(A)EX]—l
< NPY (A +1-NPF (49 -1=0,

a contradiction. So, case (2) does not hold. We complete the proof. O
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Theorem 4.3. For any fuzzifying P-topological space (X, T),
= T3 (X,7) © (LpC(X, 7))

S VaYU(U € NP* = 3V(V e NEY ACIp(V) CU ATp(V))),
where (LpC(X,7))? := LpC(X,7) ® LpC(X,T).

Proof. We need to show that for any x and U, z € U,
Ty (X,7) @ (LpC(X,7))* @ NI (U)

< VW) A\ NSV ATR(V/V)).
Vex yeue

Assume that 7§ (X, 7) ® (LpC(X,7))? ® NfX(U) > A\ > 0. Then, for any
z € X there exists C such that

(4.2) TV (X, )+ NIY(O) + (LpC(X,7)? + NI (U) =3 > A,
Since (X, 7) is fuzzifying P-topological space,

NPY )+ NP (U) -1 < NPY(C) o N (U)

< NPY (@) ANPT(U)
< Nenuy= ) (W)
zeWCCNU

Therefore, there exists W such that + € W C C N U, and T§ (X, 7) +
(LpC(X,7))2+7p(W)—2 > \. By Lemmas 3.3 and 3.5 we have T4 (X, 1) <
TF(C,7/C) and

TF(C,7/C)+Tp(C,7/C) -1 < TF(C,7/C)Tp(C,7/C) <Tf(C,7/C).

Thus, 7§ (X, 7) +T'p(C,7/C) + 7p(W) — 2 > \. Since for any x € W C U,
we have

T (C,7/C) < 1—1p/C(W) + \/ ((Ngf’c(G)A A Nf(C—G»),
GCcC yeC—-Ww
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so there exists G,x € G C W such that

yeC-Ww
> T (C,7)C) +7p/C(W) —1>TE(C,7/C) +1p(W) — 1

((NfC(G)A A Nfc<c—G>>)

and
((NfC(G) N (o G))) +Tp(C,7/C) —1> A\
yeC-Ww
Thus,

NY@) = ) NPY(D)=NPT(GQUC) > N = A+1-Tp(C,7/C) > A.
DNC=G

Furthermore, for any y € C' — W,

NYCc-ay= /] NIHGouCch) =N > N
DNC=CNGe
and
NPY (@) = NP (Guco) ne) > NPY (G ANET (C) > X,
Since N;X (G°) =V 7p(B° > N, for any y € C — W, there exists

reEBCCGe
By such that y € By C G° and 7p(By) > X. Set B = |J Bj. Then

yeC—-W
C—-W C B¢ C G° and

(B> N\ Te(B) =X,
yeC—-WwW

Again, set V.= BNC,then V C (C-W)*NC = (C°UW)NC =CNW =
W CUNC and V¢ = BCUC*. Since (X, 7) is fuzzifying P-topological space,

NP (B)ANEPF (0)
NPH(G) ANPY(C) > A

NP (V)= NI (BnO)

(AVARRAY]

(4.3)
By (4.2) and Theorem 3.3,

p(C°) > TP (X, 1)@ Tp(C,7/C) > T (X,7) +Tp(C,7/C) —1 > X.
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So
(V) = 7p(B°UC*) > 7p(B°) ATp(C°) > N,
ie, 7p(V¢) +T'p(C,7/C)—1> X and

Lp(V,7/V) =Tp(V,(7/C)/V)

> 1p/C(C-V)+Tp(C,7/C) -1
(4.4) > TP(VC)-I-FP(C,T/C)—lZ)\
Finally,
(4.5) A NPEvey > N\ NEE(VE) = 7p(VE) 2 A

yelUe yeve
Thus, by (4.3), (4.4) and (4.5), for any x € U, there exists V' C U such that
NIPE(WV)> A A NPY(VE) = Xand Tp(V,7/V) > X So \V (NPF (V) A
yeue VCX
A NPE(VOATp(V,7/V)) = A O
yelUe

Theorem 4.4. For any fuzzifying P-topological space (X, T),
= T3 (X, 7) @ (LpC(X,7))? = T (X, 7).

Proof. By Theorem 4.3, for any x € U, we have

\/ (WNPEvya N\ NPE(ve
xeVCU yelUe

> TP (X,7)® (Tp(C,7/C))2 & NP™ ().

Thus,
1-NPY o)+ ) (NERvya N\ NPT ve)
zeVCU yelUe
> [T (X,7) @ (Cp(C,7/C))?,

(75 (X, 7)) > [13 (X, 7) @ (Tp(C,7/C))?].

Theorem 4.5. For any fuzzifying P-topological space (X, T),
= TP(X,7)® LpC(X,7) — YAYU(U € NY* @ Tp(4,7/A)
— JV(VCUAU € N Arp(VE) ATR(V,7/V))),

where . .
Uec Ny = (z)(zxc ANU € NI7).
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Proof. We only need to show that for any A, U € P(X),

TP (X,7)® LpC(X,7) @ T'p(A, 7/A) @ NE™ (U)]

IN

\/ (NTE (V) ATp(VE) ATp(V,7/V)).
VCU

Indeed, if
[T (X,7) ® LpC(X,7) @ Tp(A,7/A) @ NY* (U)] > A > 0,
then for any = € A, there exists C' € P(X) such that

TP (X,7) @ NP (C) @ Tp(C,7/C) @ Tp(A, 7/A) @ N (U)] > A.

Since (X, 7) is fuzzifying P-topological space,

\/  mW)=N(CnU) > NPY(C)ANET(U)
zeWCCnU
pPX pPX
> NIPY(0) ANET(U)
> NI (0) @ NEY(U).

Then, there exists W such that x € W C C' N U, and
15 (X, 7) @ Tp(W) @ Tp(C,7/C) @ T p(A, 7/A)] > A.
Therefore,
(4.6)T5 (X, )]+ 7p(W) —1>A+2-Tp(C,7/C) —Tp(A,7/A)] =X > A,
Since for any x € W,

If (X, )] <1—mp(W)+ \/ (NEX(B)A N\ NI (B9),
BCW yewe

we have N N
\V (NS (BYA N\ NTT(BY) >N,
BCW yewe
Thus, there exists B, such that x € B, CW C CNU and for any y € W¢,
we have

NPY(BS) > N, NPY(B,) > X.
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Since
NPBY =\ (GO > N,
r€GCCBS

then for any y € W¢, there exists G, such that

z € Gy, C By and 7p(Gy,) > X.

Set
Gs = |J GSy
yeWwe
then W¢ C G, C Bg and 7p(G5) > A\ 7p(GS,) > N. Since G, 2 By,
yeWe
NPY(G,) > NPY(By) > X, ie., \V 7p(H) > N. Thus, there exists
reHCG,

H, such that x € H, C G, and 7p(H,;) > XN. Hence, for any z € A,
there exists H, and G, such that x € H, C G, C U, 7p(H,) > X and

W2 UG,2 U Hy 2 A We define R € (P(A)) as follows:
€A €A

V  7p(H,), there exists H, such that H, N A= D,
R(D) = ,
0, otherwise.

Let T'p(A,7/A) =pu>pu—€e(e>0). Then 1-Kp(R,A)+ V [KR,A)
p<R
FF(p)] > u— €, where

(K® A=A\ VRB)= )\ RD)

r€AxeB r€AxeD

=AV Vet =X

x€AzxeD H NA=D
and [R C 7p\A] = A min(1,1 — R(B) + 7p\A(B)) = A min(1,1 —
BCX BCX

H, m\fszTP(Hx) + Hﬂ\/{;BTP(H)) = 1. So, Kp(R,A) = [K(R,A)] > N. By
(1) [K(RA)© FF (o) > ji—e— 1+ Kp(RA) > j—c— 14N > A«

Thus, A V R(E)+1—-A{6: F(ps)} —1> X —¢, and
r€AzeE

AV RE)>A—e+ A{0: F(ps)}-

r€Ax€EE
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Hence, there exists § > 0 such that F'(pg) and A V R(D) > A—e+p.
r€AzeD

Therefore for any = € A, there exists D, C A such that p(Dy) > \A—e+f
and |J D, 2 A. Suitably choose € such that A — e > 0, then p(D,) >
€A
B > 0. Since R(D;) > p(D;) >0, Dy = Hy NA, ie, HyNA € pg. By
F(p ) there exists finite Hyr, Hyy, ..., Hyy, such that Ui, Hy 2 A and
Uz— ) C Uz— G L
Set V = Uy, G o and V¢ = N, Gg,;, ACV CU, and 7p(V€) >

A 7(GS) > XN > A Since for any x € A, G, CW C CNU C C, we
1<i<n i
have V=, G, CW C C. Because Tp\C(C—-V) = V Tp(D) >
! DnC=Cnve
7p(V¢) > XN. Thus by (4.6), 7p\C(C=V)4+IT'p(C,7/C)—1 > X\. By Theorem

5.1in [24], Tp(V,7/V) =Tp(V,7/C/V) > [I'p(C,7/C) @ Tp\C(C = V)] >
A

)I?inally, we gave for any z € AX
NPT (V)= N (Uit Gog) = N7 Uiy Hyy) > (Ui Hy) > A mp(Hyy) >

1<i<n

XN > A\ So, NE¥(V) = A NP¥(V) > A Therefore, NY™ (V) A 7p(VE) A
T€EA
Lp(V,7/V) > A

Thus, \/ (NY“(V)A7p(VE) ATR(V,7/V)) > A 0
VCU

Theorem 4.6. Let (X, 7) and (Y,0) be two fuzzifying topological space
and f € YX be surjective. Then = LpC(X,7)®Cp(f)®0(f) — LC(Y,0).
For the definition of O(f), see [32].

Proof. If [LpC(X,7)®Cp(f)®O(f)] > A > 0, then for any x € X there
exists U C X, such that [N (U)@Tp(U,7/U)@Cp(f)®O(f)] > A. Since
NPY(WU) = V 7p(V), so there exists V' C X such that z € V/ C U
vcu
(

and [T ')(EGQT (U, 7/U) @ Cp(f) ® O(f)] > A. By Theorem 8 in [1],
[Lp(U,m/U) @ Cp(f)] < [U(f(U),0/f(U))] and
[T (V’)®O(f)] =max(0,7(V")+O0(f)—1) = max(O,T(V’)—i-V/C\Xmin(l,l—

(V) +o(f(V))=1) < max(0,7(V)+1=7(V))+a(f(V)~1) = o(£(V)) <
N}y (F(V1)) < N (FO)).

(z)
Since f is surjective,
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LC(Y,0) = LO(f(X),0) = A VN, (USRI, 0 /U")]
yef(x)Cf(X) U'=f(U)Cf(X)

A Ny (F@) © [D(fU),0/f(0))]
yEf(x)Cf(X)

> A F(V)eO0(f)@TeU,r/U) @ Cp(f)] 2 A O
yef(@)Cf(X)

\Y

Theorem 4.7. Let (X,7) and (Y, 0) be two fuzzifying topological spaces
and f € YX be surjective. Then | LpC(X,7) ® Ip(f) ® Op(f) —
LPC(K U).

Proof. By Theorem 9 in [1], the proof is similar to the proof of Theorem
4.6. O
Theorems 4.6 and 4.7 are a generalization of the following corollary.

Corollary 4.2. Let (X,7) and (Y,0) be two topological spaces and f :
(X,7) — (Y,0) be surjective mapping. If f is a pre-continuous (resp. pre-
irresolute), open (resp. pre-open) and X is locally strong compact, then Y
is locally compact (resp. locally strong compact) space.

Theorem 4.8. Let {(Xs,7s) : s € S} be a family of fuzzifying topological
spaces, then

= LPC( 1T Xs, T1 (TP)S) — VS(S € S/\LPC(XS, (TP)S)/\ HT(T C S/\Vt(t €
ses ses
S—T/\FP<Xt,Tt))).

Proof. It suffices to show that

LpC(]] Xs [I (7p)s)

s€S s€S
< ANLpC(Xs,(rp)s) A\ N Tp(Xe, 7))
ses TCSteS—T

From Theorem 4.7 and Lemma 3.1 we have for any ¢ € 5,

LpC(] Xs. [ (7p)s)

ses seS
= [LeC(]] Xs, [T (7P)s) © Cr(pr) ® Op(py)] < LpC(Xt, 7).
sesS sesS
So,

/\ LpC(Xy, 1) > LPC(H X, H(TP)S)
teS—T seS  seS
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By Theorem 3.2 we have

\/ /\ Lp (X, 7t)

TCS teS—T
>V W[\ e\ NT)]
UCT] Xs s€S XCJ Xs
>\ e IR \U) @ NPT (U))]
UCT] Xs XS] Xs s€S
> AV O ] e)\U) @ N ()]
XC[] x-UC]] Xs seS
= LpC([[ Xs, [T (7p)s)-
seSs seSs
Therefore,
LPC(H Xs, H(TP)S)
SES seS
S [ /\ LpC(Xt,Tt)/\ \/ /\ FP(Xt,Tt)].
teS—T TCSteS—T

We can obtain the following corollary in crisp setting.

Corollary 4.3. Let {X) : A € A} be a family of nonempty topological

spaces. If [ X, is locally strong compact, then each X is locally strong
AEA
compact and all but finitely many X are strong compact

Conclusion: The present paper investigates topological notions when
these are planted into the framework of Ying’s fuzzifying topological spaces
(in semantic method of continuous valued-logic). It continue various inves-
tigations into fuzzy topology in a legitimate way and extend some funda-
mental results in general topology to fuzzifying topology. An important
virtue of our approach (in which we follow Ying) is that we define topologi-
cal notions as fuzzy predicates (by formulae of Lukasiewicz fuzzy logic) and
prove the validity of fuzzy implications (or equivalences). Unlike the (more



Fuzzification of strongly and locally strongly compact spaces 79

wide-spread) style of defining notions in fuzzy mathematics as crisp pred-
icates of fuzzy sets, fuzzy predicates of fuzzy sets provide a more genuine
fuzzification; furthermore the theorems in the form of valid fuzzy implica-
tions are more general than the corresponding theorems on crisp predicates
of fuzzy sets. The main contributions of the present paper are to give char-
acterizations of fuzzifying strong compactness. Also, we define the concept
of locally strong compactness of fuzzifying topological spaces and obtain
some basic properties of such spaces. There are some problems for further
study:

(1) One obvious problem is: our results are derived in the Lukasiewicz
continuous logic. It is possible to generalize them to more general
logic setting, like residuated lattice-valued logic considered in [34-35].

(2) What is the justification for fuzzifying locally strong compactness in
the setting of (2, L) topologies.

(3) What is the justification for fuzzifying locally strong compactness in
(M, L)-topologies etc.
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