An overview of cubic intuitionistic β-subalgebras

P. Muralikrishna
Muthurangam Government Arts College (Autonomous), India
A. Borumand Saeid
Shahid Bahonar University of Kerman, Iran
R. Vinodkumar
Muthurangam Government Arts College (Autonomous), India
and
G. Palani
Dr. Ambedkar Government Arts College, India
Received: May 2021. Accepted: July 2021

Abstract

The conditions of β-algebra is enforced into the structure of cubic intuitionistic fuzzy settings. Furthermore, the concept of cubic intuitionistic $\beta-$ subalgebra is expressed and its pertinent properties were explored. Also, discussed about the level set of cubic intuitionistic β-subalgebras and furnished some fascinating results on the cartesian product of cubic intuitionistic β-subalgebra. Moreover, the notion of (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebras have been introduced and relevant results are studied.

Keywords: Cubic set, Cubic β-algebra, Cubic β-subalgebra, Cubic intuitionistic set, Cubic intuitionistic β-subalgebra.

AMS Classification: 06F35, 03G25, 08A72, 03E72.

1. Introduction

In 1986, Atanassov[3] presented the notion of intuitionistic fuzzy sets whose elements have degrees of membership and non-membership as an extension of Zadeh's[19] fuzzy sets. The study of fuzzy subgroups with interval valued membership functions has been introduced by Biswas et al.[4] in which the necessary and sufficient condition for an interval valued fuzzy subset to be an interval valued fuzzy subgroup was provided. The thought of β-algebra was explored by Neggers et al.[15], where two operations were coupled. Aub Ayub Ansari et al.[1] established the concept of fuzzy β-subalgebras of β-algebra and discussed some of its analogous outcomes. The notion of interval valued fuzzy β-subalgebras were developed by Hemavathi et al. [7],[8] and also they have extended the idea of interval valued intuitionistic fuzzy β-subalgebras with fascinating results. Dutta et al.[6] studied the class of p-summable sequence of interval numbers. The concept of lacunary I-convergent sequences of fuzzy real numbers was introduced by Tirpathy et al. [17, 18]. Further more, some of the algebraic properties such as linearity, symmetric and convergence free have been established. Also the class of fuzzy number sequences $b v_{p}^{F}$ has been studied.

The thought of cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B algebras has been introduced by Tapan Senapati et al[16]. Jun et al.[9] depicted cubic sets, and then this notion is enforced to various algebraic structures. The idea of Cubic subalgebras and ideals have applied into the framework of $B C K / B C I$ algebras by Jun et al.[10],[11]. Besides, they have presented a novel extension of cubic sets and its applications in BCK/BCI algebras and provided various results based on their perception. The notion of Cubic $K U$-subalgebras was provided by Akram et al.[2]. Naveed Yaqoob et al.[14] proposed the thought of Interval valued Intuitionstic (\bar{S}, \bar{T})-Fuzzy ideals of Ternary Semigroups.

Young Bae Jun et al.[12] applied Cubic interval valued intuitionistic fuzzy sets into $B C K / B C I-$ algebras. The author discussed the relation between cubic interval valued intuitionistic fuzzy β-subalgebra and cubic intuitionistic fuzzy β-ideal and discussed the characterizations between cubic interval valued intuitionistic fuzzy β-subalgebra and cubic intuitionistic fuzzy β-ideal. Muralikrishna et al.[13] described Some aspects on cubic fuzzy β-subalgebra of β-algebra. Recently, the concept of binormed intuitionistic fuzzy β-ideals of β-algebras initiated by Borumand Saeid et
al.[5] With all these inspiration, this paper provides the study of cubic intuitionistic β-subalgebras of β-subalgebras and presents some compelling results. The present work is organized into seven sections: Section 1 shows the introduction, section 2 gives some basic definitions and properties of β-algebra, cubic set, cubic intuitionistic set and so on. Section 3 describes the concept and operations of cubic intuitionistic β-subalgebra and their properties. Section 4, illustrates the cartesion product on cubic intuitionistic β-subalgebra. Section 5 introduces the notion of level set of cubic intuitionistic β-subalgebra and Section 6 provides the characteristics of (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra. Section 7 presents the conclusion of the work.

2. Preliminaries

This section provides the necessary definitions required for the work.
Definition 2.1. [4] An interval valued fuzzy set A defined on X is given by $A=\left\{\left(x,\left[\zeta_{A}^{L}(x), \zeta_{A}^{U}(x)\right]\right)\right\} \quad \forall x \in X$ (briefly denoted by $A=\left[\zeta_{A}^{L}, \zeta_{A}^{U}\right]$), where ζ_{A}^{L} and ζ_{A}^{U} are two fuzzy sets in X such that $\zeta_{A}^{L}(x) \leq \sigma_{A}^{U}(x) \forall x \in X$. Let $\bar{\zeta}_{A}(x)=\left[\zeta_{A}^{L}(x), \zeta_{A}^{U}(x)\right] \quad \forall x \in X$ and let $D[0,1]$ denotes the family of all closed sub intervals of $[0,1]$. If $\zeta_{A}^{L}(x)=\zeta_{A}^{U}(x)=c$, say, where $0 \leq c \leq 1$, then $\bar{\zeta}_{A}(x)=\bar{c}=[c, c]$ also for the sake of convenience, to belong to $D[0,1]$. Thus $\bar{\zeta}_{A}(x) \in D[0,1] \quad \forall x \in X$, and therefore the i_v- fuzzy set A is given by $A=\left\{\left(x, \bar{\zeta}_{A}(x)\right)\right\} \quad \forall x \in X$, where $\bar{\zeta}_{A}: X \rightarrow D[0,1]$.
Now let us define what is known as refined mimimum(rmin) of two elements in $D[0,1]$. Let us define the symbols $" \geq ", " \leq "$, and $"="$ in case of two elements in $D[0,1]$. Consider two elements $D_{1}:=\left[a_{1}, b_{1}\right]$ and $D_{2}:=\left[a_{2}, b_{2}\right] \in D[0,1]$. Then $\operatorname{rmin}\left(D_{1}, D_{2}\right)=\left[\min \left\{a_{1}, a_{2}\right\}, \min \left\{b_{1}, b_{2}\right\}\right] ;$ $D_{1} \geq D_{2} \quad$ if and only if $\quad a_{1} \geq a_{2}, b_{1} \geq b_{2}$;
Similarly, $D_{1} \leq D_{2}$ and $D_{1}=D_{2}$.
Definition 2.2. [3] An Intuitionistic fuzzy set (IFS) in a nonempty set X is defined by $A=\left\{\left\langle x, \zeta_{A}(x), \eta_{A}(x)\right\rangle / x \in X\right\}$ where $\zeta_{A}: X \rightarrow[0,1]$ is a membership function of A and $\eta_{A}: X \rightarrow[0,1]$ is a non-membership function of A satisfying $0 \leq \zeta_{A}(x)+\eta_{A}(x) \leq 1 \quad \forall x \in X$.

Definition 2.3. [8] An Interval valued intuitionisic fuzzy set A over X is an object having the form $A=\left\{\left\langle x, \bar{\zeta}_{A}(x), \bar{\eta}_{A}(x)\right\rangle / x \in X\right\}$ where $\bar{\zeta}_{A}: X \rightarrow$ $D[0,1]$ and $\bar{\eta}_{A}: X \rightarrow D[0,1]$, where $D[0,1]$ is the set of all sub-intervals of $[0,1]$. The intervals $\bar{\zeta}_{A}(x)$ and $\bar{\eta}_{A}(x)$ denote the intervals of the grade of
membership and grade of non-membership of the element x to the set A, where $\bar{\zeta}_{A}(x)=\left[\zeta_{A}^{L}(x), \zeta_{A}^{U}(x)\right]$ and $\bar{\eta}_{A}(x)=\left[\eta_{A}^{L}(x), \eta_{A}^{U}(x)\right] \forall x \in X$, with the condition $0 \leq \zeta_{A}^{L}(x)+\eta_{A}^{L}(x) \leq 1$ and $0 \leq \zeta_{A}^{U}(x)+\eta_{A}^{U}(x) \leq 1$. Also note that $\overline{\bar{\zeta}}_{A}(x)=\left[1-\zeta_{A}^{U}(x), 1-\zeta_{A}^{L}(x)\right]$ and $\overline{\bar{\eta}}_{A}(x)=\left[1-\eta_{A}^{U}(x), 1-\eta_{A}^{L}(x)\right]$, where $\bar{A}=\left\{\left\langle x, \overline{\bar{\zeta}}_{A}(x), \overline{\bar{\eta}}_{A}(x)\right\rangle / x \in X\right\}$ represents the complement of A.

Definition 2.4. [8] Let $A=\left\{\left\langle x, \bar{\zeta}_{A}(x), \bar{\eta}_{A}(x)\right\rangle: x \in X\right\}$ be an interval valued intuitionisic fuzzy set in X and f be a mapping from a set X into a set Y, then the image of A under $f, f(A)$ is defined as

$$
\begin{aligned}
& f(A)=\left\{\left\langle x, f_{\text {rsup }}\left(\bar{\zeta}_{A}\right), f_{\text {rinf }}\left(\bar{\eta}_{A}\right)\right\rangle: x \in Y\right\}, \text { where } \\
& f_{\text {rsup }}\left(\bar{\zeta}_{A}\right)(y)= \begin{cases}r \operatorname{rup}_{x \in f^{-1}(y)} \bar{\zeta}_{A}(x), & \text { if } f^{-1}(y) \neq \emptyset \\
\overline{0}, & \text { otherwise }\end{cases} \\
& f_{\text {rinf }}\left(\bar{\eta}_{A}\right)(y)= \begin{cases}\operatorname{rinf}_{x \in f^{-1}(y)} \bar{\eta}_{A}(x), & \text { if } f^{-1}(y) \neq \emptyset \\
\overline{1}, & \text { otherwise }\end{cases}
\end{aligned}
$$

Definition 2.5. [5] A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a T-norm(Triangular norm) if it satisfies the following conditions,

1. $T(x, 1)=x$ (boundary condition)
2. $T(x, y)=T(y, x)($ commutativity $)$
3. $T(T(x, y), z)=T(x, T(y, z))($ associativity $)$
4. $T(x, y) \leq T(x, z)$ if $y \leq z \forall x, y, z \in[0,1]$ (monotonicity)

The minimum $T_{M}(x ; y)=\min (x ; y)$, the product $T_{P}(x ; y)=x . y$ and the Lukasiewicz $T-$ norm $T_{L}(x ; y)=\max (x+y-1 ; 0) \forall x, y \in[0,1]$ are some of the T-norms.

Definition 2.6. [14] An interval valued triangular norm denoted by \bar{T}-norm is a function $\bar{T}: D[0,1] \times D[0,1] \rightarrow D[0,1]$ if it satisfies the following conditions,

1. $\bar{T}(\bar{x}, \overline{1})=\bar{x}$ (boundary condition)
2. $\bar{T}(\bar{x}, \bar{y})=\bar{T}(\bar{y}, \bar{x})$ (commutativity)
3. $\bar{T}(\bar{T}(\bar{x}, \bar{y}), \bar{z})=\bar{T}(\bar{x}, \bar{T}(\bar{y}, \bar{z}))($ associativity $)$
4. $\bar{T}(\bar{x}, \bar{y}) \leq \bar{T}(\bar{x}, \bar{z})$ if $\bar{y} \leq \bar{z}$ (monotonicity) $\forall \bar{x}, \bar{y}, \bar{z} \in D[0,1]$

The following are some \bar{T}-norms used in general,

1. Standard $\bar{T}-\operatorname{norm}\left(\bar{T}_{M}\right): \bar{T}(\bar{x}, \bar{y})=\operatorname{rmin}(\bar{x}, \bar{y})$
2. Bounded difference $\bar{T}-\operatorname{norm}\left(\bar{T}_{L}\right): \bar{T}(\bar{x}, \bar{y})=\operatorname{rmax}(\overline{0}, \bar{x}+\bar{y}-\overline{1})$
3. Algebraic product \bar{T}-norm $\left(\bar{T}_{P}\right): \bar{T}(\bar{x}, \bar{y})=\bar{x} \bar{y}$
4. Drastic intersection:

$$
\bar{T}_{D}: \bar{T}(\bar{x}, \bar{y})=\left\{\begin{array}{l}
\bar{x} \\
\bar{y} \\
\bar{y} \\
\overline{0} \quad \text { when } \bar{y}=\overline{1} \\
\bar{x}=\overline{1} \\
\text { otherwise }
\end{array}\right.
$$

The minimum $\bar{T}_{M}(\bar{x} ; \bar{y})=\operatorname{rmin}(\bar{x} ; \bar{y})$, the product $\bar{T}_{P}(\bar{x} ; \bar{y})=\bar{x} \cdot \bar{y}$ and the Lukasiewicz $\bar{T}-\operatorname{norm} \bar{T}_{L}(\bar{x} ; \bar{y})=\operatorname{rmax}(\bar{x}+\bar{y}-\overline{1} ; \overline{0}) \forall \bar{x}, \bar{y} \in D[0,1]$ are some of the \bar{T}-norms.

Definition 2.7. [5] The function $S:[0,1] \times[0,1] \rightarrow[0,1]$ is called a T-conorm(Triangular Conorm), if it satisfies the following conditions,
(i) $S(x, 0)=x$
(ii) $S(x, y)=S(y, x)$
(iii) $S(S(x, y), z)=S(x, S(y, z))$
(iv) $S(x, y) \leq S(x, z) \quad$ if $y \leq z \quad \forall x, y, z \in[0,1]$

The maximum $S_{M}(x ; y)=\max (x ; y)$, the probabilistic sum $S_{P}(x ; y)=x+$ $y-x . y$ and the Lukasiewicz $T-$ conorm $S_{L}(x ; y)=\min (x+y, 1) \forall x, y \in[0,1]$ are some of the T-conorms.

Definition 2.8. [14] An interval valued triangular conorm denoted by \bar{T}-conorm is a function $\bar{S}: D[0,1] \times D[0,1] \rightarrow D[0,1]$ if it satisfies the following conditions,

1. $\bar{S}(\bar{x}, \overline{0})=\bar{x}$ (boundary condition)
2. $\bar{S}(\bar{x}, \bar{y})=\bar{S}(\bar{y}, \bar{x})$ (commutativity)
3. $\bar{S}(\bar{S}(\bar{x}, \bar{y}), \bar{z})=\bar{S}(\bar{x}, \bar{S}(\bar{y}, \bar{z}))($ associativity)
4. $\bar{S}(\bar{x}, \bar{y}) \leq \bar{S}(\bar{x}, \bar{z})$ if $\bar{y} \leq \bar{z}$ (monotonicity) $\forall \bar{x}, \bar{y}, \bar{z} \in D[0,1]$

The following are some \bar{T}-conorms used in general,

1. Standard $\bar{T}-$ conorm $\left(\bar{S}_{M}\right): \bar{S}(\bar{x}, \bar{y})=\operatorname{rmax}(\bar{x}, \bar{y})$
2. Bounded difference $\bar{T}-\operatorname{conorm}\left(\bar{S}_{L}\right): \bar{S}(\bar{x}, \bar{y})=\operatorname{rmin}(\overline{1}, \bar{x}+\bar{y}-\overline{0})$
3. Algebraic product \bar{T}-conorm $\left(\bar{S}_{P}\right): \bar{S}(\bar{x}, \bar{y})=\bar{x} \bar{y}$
4. Drastic intersection:

$$
\bar{S}_{D}: \bar{S}(\bar{x}, \bar{y})=\left\{\begin{array}{cc}
\bar{x} & \text { when } \bar{y}=\overline{0} \\
\bar{y} & \text { when } \bar{x}=\overline{0} \\
\overline{1} & \text { otherwise }
\end{array}\right.
$$

The maximum $\bar{S}_{M}(\bar{x} ; \bar{y})=\operatorname{rmax}(\bar{x}, \bar{y})$, the product $\bar{S}_{P}(\bar{x} ; \bar{y})=\bar{x} . \bar{y}$ and the Lukasiewicz \bar{T}-conorm $\bar{S}_{L}(\bar{x} ; \bar{y})=\operatorname{rmin}(\bar{x}+\bar{y} ; \overline{1}) \forall \bar{x}, \bar{y} \in D[0,1]$ are some of the \bar{T}-conorms.

Definition 2.9. [8] Let A be an Intuitionistic fuzzy subset of X, and $s, t \in$ $[0,1]$. Then $A_{s, t}=\left\{x, \zeta_{A}(x) \geq s, \eta_{A}(x) \leq t / x \in X\right\}$ where $0 \leq \zeta_{A}(x)+$ $\eta_{A}(x) \leq 1$ is called an intuitionistic level set of X.

Definition 2.10. [8] Let A be an interval valued intuitionistic (i_v_i_) fuzzy subset of X, and $(\bar{s}, \bar{t}) \in D[0,1]$. Then $A_{\bar{s}, \bar{t}}=\{x, \bar{\zeta}(x) \geq \bar{s}, \bar{\eta}(x) \leq \bar{t}: x \in X\}$ where $\overline{0} \leq \bar{\zeta}_{A}(x)+\bar{\eta}_{A}(x) \leq \overline{1}$ is called an interval valued intuitionistic level set of X. Since $\overline{0}=[0,0] \& \overline{1}=[1,1]$.

Definition 2.11. [15],[7] A β - algebra is a non-empty set X with a constant 0 and two binary operations + and - satisfying the following axioms:
(i) $x-0=x$
(ii) $(0-x)+x=0$
$($ iii) $(x-y)-z=x-(z+y) \quad \forall x, y, z \in X$.
Example 2.12. The following Cayley table shows $(X=\{0,1,2,3\},+,-, 0)$ is a β-algebra.

Table 1. β-algebra

+	0	1	2	3
0	0	1	2	3
1	1	3	0	2
2	2	0	3	1
3	3	2	1	0
-	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Definition 2.13. [15],[1] A non empty subset A of a β-algebra ($X,+,-, 0$) is called a β-subalgebra of X, if
(i) $x+y \in A \quad$ and
(ii) $x-y \in A \quad \forall x, y \in A$.

Definition 2.14. [9],[2],[10] Let X be a non-empty set. By a cubic set in X we mean a structure $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ in which $\bar{\zeta}_{C}$ is an interval valued fuzzy set in X and η_{C} is a fuzzy set in X.

Definition 2.15. [13] Let $C=\left\{\left\langle x, \bar{\zeta}_{C}(x), \eta_{C}(x)\right\rangle: x \in X\right\}$ be a cubic fuzzy set in X. Then the set C is a cubic fuzzy β - subalgebra if it satisfies the following conditions.
(i) $\bar{\zeta}_{C}(x+y) \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\} \& \bar{\zeta}_{C}(x-y) \geq \operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\}$ (ii) $\eta_{C}(x+y) \leq \max \left\{\eta_{C}(x), \eta_{C}(y)\right\} \& \eta_{C}(x-y) \leq \max \left\{\eta_{C}(x), \eta_{C}(y)\right\}$ $\forall x, y \in X$

Definition 2.16. [11],[12],[16] Let X be a non-empty set. By a Cubic intuitionistic set in X we indicate a structure $\left.\tilde{C}=\left\{\left\langle x,(x), \rho_{(} x\right)\right\rangle: x \in X\right\}$ in which is an interval valued intuitionistic fuzzy set in X and ρ is an intuitionistic fuzzy set in X. Since $=\{\langle x, \bar{\zeta}(x), \bar{\eta}(x)\rangle: x \in X\}$ and $\rho=\left\{\left\langle x, \sigma_{\rho}(x), \phi_{\rho}(x)\right\rangle: x \in X\right\}$

3. Cubic Intuitionistic β - subalgebras of β-algebras

This section provides the notion of cubic intuitionistic β - subalgebras of β-algebras and also some interesting results were examined. Also throughout the paper, X is a β-algebra and $=\{\langle x, \bar{\zeta}(x), \bar{\eta}(x)\rangle: x \in X\}$ and $\rho=\left\{\left\langle x, \sigma_{\rho}(x), \phi_{\rho}(x)\right\rangle: x \in X\right\}$ unless and otherwise specified.

Definition 3.1. Let $\left.\tilde{C}=\left\{\left\langle x,(x), \rho_{(} x\right)\right\rangle: x \in X\right\}$ be a cubic intuitionistic set in X, where is an interval valued intuitionistic fuzzy set in X and ρ is
an intuitionistic fuzzy set in X.Then the set \tilde{C} is called a cubic intuitionistic β-subalgebra if it satisfies the following conditions:
(i) $\bar{\zeta}(x+y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\} \& \bar{\zeta}(x-y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\}$
(ii) $\bar{\eta}(x+y) \leq \operatorname{rmax}\{\bar{\eta}(x), \bar{\eta}(y)\} \quad \& \bar{\eta}(x-y) \leq \operatorname{rmax}\{\bar{\eta}(x), \bar{\eta}(y)\}$
(iii) $\sigma_{\rho}(x+y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\} \quad \& \sigma_{\rho}(x-y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}$
(iv) $\phi_{\rho}(x+y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\} \& \phi_{\rho}(x-y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}$
$\forall x, y \in X$
Example 3.2. Let $X=\{0,1,2,3\}$ be a β-algebra with constant 0 and binary operations + and - are defined on X as in the following cayley's table.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Define a Cubic intuitionistic set $\left.\tilde{C}=\left\{\left\langle x,(x), \rho_{(} x\right)\right\rangle: x \in X\right\}$ in X as follows:

X	$=\langle\overline{,}, \bar{\eta}\rangle$	$\rho=\left(\sigma_{\rho}, \phi_{\rho}\right)$
height0	$\langle[0.4,0.6],[0.1,0.4]\rangle$	$(0.4,0.7)$
1	$\langle[0.2,0.4],[0.3,0.6]\rangle$	$(0.4,0.7)$
2	$\langle[0.3,0.5],[0.2,0.5]\rangle$	$(0.4,0.7)$
3	$\langle[0.2,0.4],[0.3,0.6]\rangle$	$(0.6,0.5)$

Then \tilde{C} is a Cubic intuitionistic β-subalgebra of X. If it is considered as below

X	$=\langle\bar{\zeta}, \bar{\eta}\rangle$	$\rho=\left(\sigma_{\rho}, \phi_{\rho}\right)$
height0	$\langle[0.4,0.6],[0.1,0.4]\rangle$	$(0.6,0.5)$
1	$\langle[0.4,0.6],[0.2,0.5]\rangle$	$(0.4,0.7)$
2	$\langle[0.2,0.4],[0.2,0.5]\rangle$	$(0.4,0.7)$
3	$\langle[0.3,0.5],[0.3,0.6]\rangle$	$(0.6,0.5)$

Then \tilde{C} is not a Cubic intuitionistic β-subalgebra of X.

Proposition 3.3. Let $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ cubic intuitionistic β-subalgebra of X. Then
$(1) \bar{\zeta}(0) \geq \bar{\zeta}(x), \bar{\eta}(0) \leq \bar{\eta}(x), \sigma_{\rho}(0) \leq \sigma_{\rho}(x)$ and $\phi_{\rho}(0) \geq \phi_{\rho}(x), \quad \forall x \in X$
$(2) \bar{\zeta}(x) \leq \bar{\zeta}\left(x^{*}\right) \leq \bar{\zeta}(0) \& \bar{\eta}(x) \geq \bar{\eta}\left(x^{*}\right) \geq \bar{\eta}(0)$,
$\sigma_{\rho}(x) \geq \sigma_{\rho}\left(x^{*}\right) \geq \sigma_{\rho}(0) \& \phi_{\rho}(x) \leq \phi_{\rho}\left(x^{*}\right) \leq \phi_{\rho}(0) \quad \forall x \in X$ where $x^{*}=0-x$
The proof is straight forward.
Proposition 3.4. Let $\left.\tilde{C}=\left\{\left\langle x,(x), \rho_{(} x\right)\right\rangle: x \in X\right\}$ be a cubic intuitionistic β-subalgebra of X. Then
$(1) \bar{\zeta}(0+x) \geq \bar{\zeta}(x) \& \bar{\zeta}(0-x) \geq \bar{\zeta}(x)$
$(2) \bar{\eta}(0+x) \leq \bar{\eta}(x) \& \bar{\eta}(0-x) \leq \bar{\eta}(x)$
(3) $\sigma_{\rho}(0+x) \leq \sigma_{\rho}(x) \& \sigma_{\rho}(0-x) \leq \sigma_{\rho}(x)$
(4) $\phi_{\rho}(0+x) \geq \phi_{\rho}(x) \& \phi_{\rho}(0-x) \geq \phi_{\rho}(x) \quad \forall x \in X$

The proof is straight forward.
Remark 3.5. The sets $\{x \in X: \bar{\zeta}(x)=\bar{\zeta}(0)\},\{x \in X: \bar{\eta}(x)=\bar{\eta}(0)\}$, $\left\{x \in X: \sigma_{\rho}(x)=\sigma_{\rho}(0)\right\}$ and $\left\{x \in X: \phi_{\rho}(x)=\phi_{\rho}(0)\right\}$ are denoted by $T_{\bar{\zeta}}, T_{\bar{\eta}}, T_{\sigma_{\rho}}$ and $T_{\phi_{\rho}}$ respectively.

Theorem 3.6. Let $\tilde{C}=\left\{\left\langle x,(x), \rho_{(}(x)\right\rangle: x \in X\right\}$ be a cubic intuitionistic β-subalgebra of X. Then the sets $T_{\bar{\zeta}}, T_{\bar{\eta}}, T_{\sigma_{\rho}}$ and $T_{\phi_{\rho}}$ are β-subalgebras of X.

Proof: Let $x, y \in T_{\bar{\zeta}}$ and $x, y \in T_{\bar{\eta}}$. Then $\bar{\zeta}(x)=\bar{\zeta}(0)=\bar{\zeta}(y)$ and $\bar{\eta}(x)=$ $\underline{\bar{\eta}}(0)=\bar{\eta}(y) . \quad \operatorname{Thus} \bar{\zeta}(x+y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\}=\operatorname{rmin}\{\bar{\zeta}(0), \bar{\zeta}(0)\}=$ $\bar{\zeta}(0)$. Therefore $\bar{\zeta}(x+y) \geq \bar{\zeta}(0)$. Similarly, $\bar{\zeta}(x-y) \geq \bar{\zeta}(0)$. Consequently, $\bar{\eta}(x+y) \leq \operatorname{rmax}\{\bar{\eta}(x), \bar{\eta}(y)\}=\operatorname{rmax}\{\bar{\eta}(0), \bar{\eta}(0)\}=\bar{\eta}(0)$. Hence, $\bar{\eta}(x+y) \leq \bar{\eta}(0)$. Likewise, we can obtain $\bar{\eta}(x-y) \leq \bar{\eta}(0)$. By using Proposition 3.3, it can be conclude that $\bar{\zeta}(x+y) \leq \bar{\zeta}(0) \& \bar{\zeta}(x-y) \leq \bar{\zeta}(0)$ and $\bar{\eta}(x+y) \geq \bar{\eta}(0) \& \bar{\eta}(x-y) \geq \bar{\eta}(0)$. Hence $\bar{\zeta}(x+y)=\bar{\zeta}(0) \& \bar{\zeta}(x-y)=\bar{\zeta}(0)$ and $\bar{\eta}(x+y)=\bar{\eta}(0) \& \bar{\eta}(x-y)=\bar{\eta}(0)$ or equivalently, $x+y, x-y \in T_{\bar{\zeta}} \& T_{\bar{\eta}}$. Let $x, y \in T_{\sigma_{\rho}}$ and $x, y \in T_{\phi_{\rho}}$. Then $\sigma_{\rho}(x)=\sigma_{\rho}(0)=\sigma_{\rho}(y)$ and $\phi_{\rho}(x)=$ $\phi_{\rho}(0)=\phi_{\rho}(y)$. Thus $\sigma_{\rho}(x+y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}=\max \left\{\sigma_{\rho}(0), \sigma_{\rho}(0)\right\}=$ $\sigma_{\rho}(0)$. Hence $\sigma_{\rho}(x+y) \leq \sigma_{\rho}(0)$. In the similar way, $\sigma_{\rho}(x-y) \leq \sigma_{\rho}(0)$. $\phi_{\rho}(x+y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}=\min \left\{\phi_{\rho}(0), \phi_{\rho}(0)\right\}=\phi_{\rho}(0)$. Therefore, $\phi_{\rho}(x+y) \geq \phi_{\rho}(0)$. Similarly, $\phi_{\rho}(x-y) \geq \phi_{\rho}(0)$. By Using Proposition 3.3, it can be conclude that $\sigma_{\rho}(x+y) \geq \sigma_{\rho}(0) \& \sigma_{\rho}(x-y) \geq \sigma_{\rho}(0)$ and $\phi_{\rho}(x+y) \leq \phi_{\rho}(0) \& \phi_{\rho}(x-y) \leq \phi_{\rho}(0)$. Hence, $\sigma_{\rho}(x+y)=\sigma_{\rho}(0) \&$
$\sigma_{\rho}(x-y)=\sigma_{\rho}(0)$ and $\phi_{\rho}(x+y)=\phi_{\rho}(0) \& \phi_{\rho}(x-y)=\phi_{\rho}(0)$ or equivalently, $x+y, x-y \in T_{\sigma_{\rho}} \& T_{\phi_{\rho}}$. Therefore the sets $T_{\bar{\zeta}}, T_{\bar{\eta}}, T_{\sigma_{\rho}}$ and $T_{\phi_{\rho}}$ are β-subalgebras of X.

Definition 3.7. Let $A=\left\{\left\langle x,_{A}(x), \rho_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle x,_{B}(x), \rho_{B}(x)\right\rangle: x \in X\right\}$ be two cubic intuitionistic sets on X, then the intersection of A and B is defined by $A \cap B=\left\{\left\langle x, A \cap B(x), \rho_{A \cap B}(x)\right\rangle\right\}=$ $\left\{\left\langle x, r \min \left\{\bar{\zeta}_{\psi_{A}}(x), \bar{\zeta}_{\psi_{B}}(x)\right\}, \operatorname{rmax}\left\{\bar{\eta}_{\psi_{A}}(x), \bar{\eta}_{\psi_{B}}(x)\right\}, \max \left(\sigma_{\rho_{A}}(x), \sigma_{\rho_{B}}(x)\right)\right.\right.$, $\left.\left.\min \left(\phi_{\rho_{A}}(x), \phi_{\rho_{B}}(x)\right)\right\rangle: x \in X\right\}$.

Proposition 3.8. Let $A=\left\{\left\langle x, A(x), \rho_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle x,_{B}(x), \rho_{B}(x)\right\rangle: x \in X\right\}$ be two cubic intuitionistic fuzzy β-subalgebras. Then the intersection of A and B is also a cubic intuitionistic fuzzy β-subalgebra.

Proof: Let $x, y \in A \cap B$. Then

$$
\begin{aligned}
\bar{\zeta}_{\psi_{A \cap B}}(x+y) & =\operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A}}(x+y), \bar{\zeta}_{\psi_{B}}(x+y)\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A}}(x), \bar{\zeta}_{\psi_{A}}(y)\right\}, \operatorname{rmin}\left\{\bar{\zeta}_{\psi_{B}}(x), \bar{\zeta}_{\psi_{B}}(y)\right\}\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A}}(x), \bar{\zeta}_{\psi_{B}}(x)\right\}, \operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A}}(y), \bar{\zeta}_{\psi_{B}}(y)\right\}\right. \\
& \geq \operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A \cap B}}(x), \bar{\zeta}_{\psi_{A \cap B}}(y)\right\} .
\end{aligned}
$$

Similarly, $\bar{\zeta}_{\psi_{A \cap B}}(x-y) \geq \operatorname{rmin}\left\{\bar{\zeta}_{\psi_{A \cap B}}(x), \bar{\zeta}_{\psi_{A \cap B}}(y)\right\}$. By applying the same process, then we get $\bar{\eta}_{\psi_{A \cap B}}(x+y) \leq \operatorname{rmax}\left\{\bar{\eta}_{\psi_{A \cap B}}(x), \bar{\eta}_{\psi_{A \cap B}}(y)\right\}$ In the similar way, we obtain $\bar{\eta}_{\psi_{A \cap B}}(x-y) \leq \operatorname{rmax}\left\{\bar{\eta}_{\psi_{A \cap B}}(x), \bar{\eta}_{\psi_{A \cap B}}(y)\right\}$.

Further,

$$
\begin{aligned}
\sigma_{\rho_{A \cap B}}(x+y) & =\max \left\{\sigma_{\rho_{A}}(x+y), \sigma_{\rho_{B}}(x+y)\right\} \\
& \leq \max \left\{\max \left\{\sigma_{\rho_{A}}(x), \sigma_{\rho_{A}}(y)\right\}, \max \left\{\sigma_{\rho_{B}}(x), \sigma_{\rho_{B}}(y)\right\}\right\} \\
& \left.\leq \max \left\{\sigma_{\rho_{A}}(x), \sigma_{\rho_{B}}(x)\right\}, \max \left\{\sigma_{\rho_{A}}(y), \sigma_{\rho_{B}}(y)\right\}\right\} \\
& \leq \max \left\{\sigma_{\rho_{A \cap B}}(x), \sigma_{\rho_{A \cap B}}(y)\right\} .
\end{aligned}
$$

Likewise, we have $\sigma_{\rho_{A \cap B}}(x-y) \leq \max \left\{\sigma_{\rho_{A \cap B}}(x), \sigma_{\rho_{A \cap B}}(y)\right\}$. By using the same process, we obtain $\phi_{\rho_{A \cap B}}(x+y) \geq \min \left\{\phi_{\rho_{A \cap B}}(x), \phi_{\rho_{A \cap B}}(y)\right\}$. In the same manner, we can get $\phi_{\rho_{A \cap B}}(x-y) \geq \min \left\{\phi_{\rho_{A \cap B}}(x), \phi_{\rho_{A \cap B}}(y)\right\}$. Therefore, the intersection of A and B are cubic intuitionistic β-subalgebras.

Theorem 3.9. If $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ be a cubic intuitionistic β-subalgebra of X. Let $\chi_{\tilde{C}}=\left\{x \in X / \bar{\zeta}(x)=\bar{\zeta}(0), \bar{\eta}(x)=\bar{\eta}(0), \sigma_{\rho}(x)=\right.$ $\left.\sigma_{\rho}(0) \phi_{\rho}(x)=\phi_{\rho}(0)\right\}$. Then $\chi_{\tilde{C}}$ is a β-subalgebra of X.

Proof: For any $x, y \in \chi_{\tilde{C}}$.
$\bar{\zeta}(x)=\bar{\zeta}(0), \bar{\zeta}(y)=\bar{\zeta}(0)$ and
$\left.\left.\left.\bar{\eta}_{(}(x)=\bar{\eta}_{(} 0\right), \bar{\eta}_{(} y\right)=\bar{\eta}_{(} 0\right)$
$\sigma_{\rho}(x)=\sigma_{\rho}(0), \sigma_{\rho}(y)=\sigma_{\rho}(0)$ and $\phi_{\rho}(x)=\phi_{\rho}(0), \phi_{\rho}(y)=\phi_{\rho}(0)$

It is known that,

$$
\begin{align*}
\bar{\zeta}(x+y) & =\left[\zeta^{L}(x+y), \zeta^{U}(x+y)\right] \\
& \geq\left[\min \left\{\zeta^{L}(x), \zeta^{L}(y)\right\}, \min \left\{\zeta^{U}(x), \zeta^{U}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[\zeta^{L}(x), \zeta^{U}(x)\right],\left[\zeta^{L}(y), \zeta^{U}(y)\right]\right\} \\
& \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\} \\
& =\operatorname{rmin}\{\bar{\zeta}(0), \bar{\zeta}(0)\} \\
& =\bar{\zeta}(0) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1) \tag{1}\\
\bar{\zeta}(0) & =\bar{\zeta}(0-0) \\
& =\left[\zeta^{L}(0-0), \zeta^{U}(0-0)\right] \\
& \geq\left[\min \left\{\zeta^{L}(0), \zeta^{L}(0)\right\}, \min \left\{\zeta^{U}(0), \zeta^{U}(0)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[\zeta^{L}(0), \zeta^{U}(0)\right],\left[\zeta^{L}(0), \zeta^{U}(0)\right]\right\} \quad \text { From }(1) \text { and }(2) w e \\
& \geq \operatorname{rmin}\{\bar{\zeta}(0), \bar{\zeta}(0)\} \\
& =\operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\} \\
& =\bar{\zeta}(x+y) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

get $\bar{\zeta}(x+y)=\bar{\zeta}(0)$. Similarly, $\bar{\zeta}(x-y)=\bar{\zeta}(0)$. By using the same process, we get $\bar{\eta}(x+y) \leq \bar{\eta}(0)$ and $\bar{\eta}(0) \leq \bar{\eta}(x+y)$ which yields that $\bar{\eta}(x+y)=\bar{\eta}(0)$. Similarly, $\bar{\eta}(x-y)=\bar{\eta}(0)$. Now,

$$
\begin{align*}
\sigma_{\rho}(x+y) & \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\} \\
& =\max \left\{\sigma_{\rho}(0), \sigma_{\rho}(0)\right\} \\
& =\sigma_{\rho}(0) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{3}
\end{align*}
$$

$$
\sigma_{\rho}(0)
$$

$$
\begin{align*}
& =\sigma_{\rho}(0-0) \\
& \leq \max \left\{\sigma_{\rho}(0), \sigma_{\rho}(0)\right\} \\
& =\max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\} \\
& =\sigma_{\rho}(x+y) \ldots \ldots \ldots \ldots \ldots \tag{4}
\end{align*}
$$

From (3) and (4) we obtain $\sigma_{\rho}(x+y)=\sigma_{\rho}(0)$. In a similar way, $\sigma_{\rho}(x-$ $y)=\sigma_{\rho}(0)$. By applying the same process, we can have $\phi_{\rho}(x+y) \geq \phi_{\rho}(0)$ and $\phi_{\rho}(0) \geq \phi_{\rho}(x+y)$ which gives $\phi_{\rho}(x+y)=\phi_{\rho}(0)$. Likewise $\phi_{\rho}(x-y)=$ $\phi_{\rho}(0)$
Thus $x+y, x-y \in \chi_{\tilde{C}}$. Hence $\chi_{\tilde{C}}$ is a $\beta-$ subalgebra of X.
Theorem 3.10. If $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ be a cubic intuitionistic β-subalgebra of X, then
$\bar{\zeta}(x) \leq \bar{\zeta}(x-0), \bar{\eta}(x) \geq \bar{\eta}(x-0), \sigma_{\rho}(x) \geq \sigma_{\rho}(x-0)$ and $\phi_{\rho}(x) \leq \phi_{\rho}(x-0)$

Proof: Let \tilde{C} be a cubic intuitionistic β-subalgebra of X.

$$
\begin{aligned}
\bar{\zeta}(x-0) & =\left[\zeta^{L}(x-0), \zeta^{U}(x-0)\right] \\
& \left.\geq \min \left\{\zeta^{L}(x), \zeta^{L}(0)\right\}, \min \left\{\zeta^{U}(x), \zeta^{U}(0)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[\zeta^{L}(x), \zeta^{U}(x)\right],\left[\zeta^{L}(0), \zeta_{C}^{U}(0)\right]\right\} \\
& =\operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(0)\} \\
& =\operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(x-x)\} \\
& =\operatorname{rmin}\{\bar{\zeta}(x), \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(x)\}\} \\
& =\operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(x)\} \\
& =\bar{\zeta}(x)
\end{aligned}
$$

Thus, $\bar{\zeta}(x) \leq \bar{\zeta}(x-0)$. In the same way, for another component η, we can obtain $\bar{\eta}(x) \geq \bar{\zeta}(x-0)$. Further, we consider

$$
\begin{aligned}
\sigma_{\rho}(x-0) & \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(0)\right\} \\
& =\max \left\{\sigma_{\rho}(x), \sigma_{\rho}(x-x)\right\} \\
& =\max \left\{\sigma_{\rho}(x), \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(x)\right\}\right\} \\
& =\max \left\{\sigma_{\rho}(x), \sigma_{\rho}(x)\right\} \\
& =\sigma_{\rho}(x)
\end{aligned}
$$

Hence, $\sigma_{\rho}(x) \geq \sigma_{\rho}(x-0)$. By applying the same process for another component ϕ_{ρ}, we will have $\phi_{\rho}(x) \leq \phi_{\rho}(x-0)$.

Remark 3.11. Let $\tilde{C}=\{\langle x,(x), \rho(x)\rangle\}$ be a cubic intuitionistic set in a non-empty set X. Given $\left(\left[u_{1}, v_{1}\right],\left[u_{2}, v_{2}\right]\right) \in D[0,1] \times D[0,1]$ and $\left(\theta_{1}, \theta_{2}\right) \in$ $[0,1] \times[0,1]$. We consider the sets

$$
\begin{gathered}
\bar{\zeta}\left[u_{1}, v_{1}\right]=\left\{x \in X / \bar{\zeta}(x) \geq\left[u_{1}, v_{1}\right]\right\} ; \bar{\eta}\left[u_{2}, v_{2}\right]=\left\{x \in X / \bar{\eta}(x) \leq\left[u_{2}, v_{2}\right]\right\} \\
\sigma_{\rho}\left(\theta_{1}\right)=\left\{x \in X / \sigma_{\rho}(x) \leq\left(\theta_{1}\right)\right\} ; \phi_{\rho}\left(\theta_{2}\right)=\left\{x \in X / \phi_{\rho}(x) \geq\left(\theta_{2}\right)\right\}
\end{gathered}
$$

By using the above remark, the following theorem will be proved.
Theorem 3.12. If $\tilde{C}=\{\langle x,(x), \rho(x)\rangle\}$ be a cubic intuitionistic β-subalgebra of X then the sets $\bar{\zeta}[u, v], \bar{\eta}[u, v], \sigma_{\rho}(\theta)$ and $\phi_{\rho}(\theta)$ are β-subalgebra of X for every $[u, v] \in D[0,1]$ and $\theta \in[0,1]$.

Proof: For every $[u, v] \in D[0,1]$ and $\theta \in[0,1]$. Let $x, y \in X$ be such that $x, y \in \bar{\zeta}[u, v] \cap \bar{\eta}[u, v] \cap \sigma_{\rho}(\theta) \cap \phi_{\rho}(\theta)$. Then $\bar{\zeta}(x) \geq[u, v], \bar{\eta}(x) \leq[u, v]$, $\sigma_{\rho}(x) \leq \theta, \phi_{\rho}(x) \geq \theta$ and $\bar{\zeta}(y) \geq[u, v], \bar{\eta}(y) \leq[u, v], \sigma_{\rho}(y) \leq \theta, \phi_{\rho}(y) \geq$ θ. It follows that $\bar{\zeta}(x+y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\}=\operatorname{rmin}\{[u, v],[u, v]\}=$ $[u, v]$. Similarly, $\bar{\zeta}(x-y) \geq[u, v]$ and $\bar{\eta}(x+y) \leq \operatorname{rmax}\{\bar{\eta}(x), \bar{\eta}(y)\}=$ $r \max \{[u, v],[u, v]\}=[u, v]$. In the similar way, $\bar{\eta}(x-y) \leq[u, v]$. Also $\sigma_{\rho}(x+y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}=\max \{\theta, \theta\}=\theta$ implies $\quad \sigma_{\rho}(x+y) \leq \theta$.

Likewise, $\sigma_{\rho}(x-y) \leq \theta$ and $\phi_{\rho}(x+y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}=\min \{\theta, \theta\}=\theta$ which gives $\phi_{\rho}(x+y) \geq \theta$. Similarly, $\phi_{\rho}(x-y) \geq \theta$. That is $x+y, x-y \in$ $\bar{\zeta}[u, v] \cap \bar{\eta}[u, v] \cap \sigma_{\rho}(\theta) \cap \phi_{\rho}(\theta)$. Therefore, $\bar{\zeta}[u, v], \bar{\eta}[u, v], \sigma_{\rho}(\theta), \phi_{\rho}(\theta)$ are β-subalgebras of X, for all $[u, v] \in D[0,1]$ and $\theta \in[0,1]$.

4. Product on Cubic Intuitionistic β-subalgebra

This section, introduces the notion of product on Cubic intuitionistic $\beta-$ subalgebras of β - algebras and provides some fascinating results.

Definition 4.1. Let $A=\left\{\left\langle x,_{A}(x), \rho_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle y,_{B}(y), \rho_{B}(y)\right\rangle:\right.$ $y \in Y\}$ be cubic intuitionistic sets in X and Y respectively. The Cartesian product of A and B denoted by $A \times B$ is defined to be the set $A \times B=\left\{\left\langle(x, y)_{A \times B}(x, y), \rho_{A \times B}(x, y)\right\rangle:(x, y) \in X \times Y\right\}$ where $A \times B=$ $\left[\bar{\zeta}_{A \times B}, \bar{\eta}_{A \times B}\right] \& \rho_{A \times B}=\left(\sigma_{A \times B}, \phi_{A \times B}\right)$ and $\bar{\zeta}_{A \times B}: X \times Y \rightarrow D[0,1]$ is given by $\bar{\zeta}_{A \times B}(x, y)=\operatorname{rmin}\left\{\bar{\zeta}_{A}(x), \bar{\zeta}_{B}(y)\right\}$, $\bar{\eta}_{A \times B}: X \times Y \rightarrow D[0,1]$ is given by $\bar{\eta}_{A \times B}(x, y)=\operatorname{rmax}\left\{\bar{\eta}_{A}(x), \bar{\eta}_{B}(y)\right\}$, $\sigma_{A \times B}: X \times Y \rightarrow[0,1]$ is given by $\sigma_{A \times B}(x, y)=\max \left\{\sigma_{A}(x), \sigma_{B}(y)\right\}$ and $\phi_{A \times B}: X \times Y \rightarrow[0,1]$ is given by $\phi_{A \times B}(x, y)=\min \left\{\phi_{A}(x), \phi_{B}(y)\right\}$

Theorem 4.2. $\operatorname{Let} A=\left\{\left\langle x,_{A}(x), \rho_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle y,_{B}(y), \rho_{B}(y)\right\rangle: y \in Y\right\}$ be any two cubic intuitionistic β-subalgebras of X and Y respectively. Then $A \times B$ is also an cubic intuitionistic β-subalgebra of $X \times Y$.

Proof: Let $A=\left\{\left\langle x,_{A}(x), \rho_{A}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle y,_{B}(y), \rho_{B}(y)\right\rangle:\right.$ $y \in Y\}$ be cubic intuitionistic β-subalgebras in X and Y. Take $(a, b) \in$ $X \times Y$, where $a=\left(x_{1}, x_{2}\right)$ and $b=\left(y_{1}, y_{2}\right)$. It follows that

$$
\begin{aligned}
\bar{\zeta}_{A \times B}(a+b) & =\bar{\zeta}_{A \times B}\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) \\
& =\left(\bar{\zeta}_{A} \times \bar{\zeta}_{B}\right)\left(\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right) \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{A}\left(x_{1}+y_{1}\right), \bar{\zeta}_{B}\left(x_{2}+y_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{A}\left(x_{1}\right), \bar{\zeta}_{A}\left(y_{1}\right)\right\}, \operatorname{rmin}\left\{\bar{\zeta}_{B}\left(x_{2}\right), \bar{\zeta}_{B}\left(y_{2}\right)\right\}\right. \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{A}\left(x_{1}\right), \bar{\zeta}_{B}\left(x_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\zeta}_{A}\left(y_{1}\right), \bar{\zeta}_{B}\left(y_{2}\right)\right\}\right. \\
& \left.=\operatorname{rmin}\left\{\left(\bar{\zeta}_{A} \times \bar{\zeta}_{B}\right)\left(\left(x_{1}, x_{2}\right), \bar{\zeta}_{A} \times \bar{\zeta}_{B}\right)\left(y_{1}, y_{2}\right)\right)\right\} \\
& =\operatorname{rmin}\left\{\bar{\zeta}_{A \times B}(a), \bar{\zeta}_{A \times B}(b)\right\}
\end{aligned}
$$

Similarly, we can $\operatorname{get} \bar{\zeta}_{A \times B}(a-b) \geq \operatorname{rmin}\left\{\bar{\zeta}_{A \times B}(a), \bar{\zeta}_{A \times B}(b)\right\}$. By applying the same process we will obtain $\bar{\eta}_{A \times B}(a+b) \leq \operatorname{rmax}\left\{\bar{\eta}_{A \times B}(a), \bar{\eta}_{A \times B}(b)\right\}$ and $\bar{\eta}_{A \times B}(a-b) \leq \operatorname{rmax}\left\{\bar{\eta}_{A \times B}(a), \bar{\eta}_{A \times B}(b)\right\}$.

Further,

$$
\begin{aligned}
\sigma_{A \times B}(a+b) & =\sigma_{A \times B}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \\
& =\left(\sigma_{A} \times \sigma_{B}\right)\left\{\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right\} \\
& =\max \left\{\sigma_{A}\left(x_{1}+y_{1}\right), \sigma_{B}\left(x_{2}+y_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{\sigma_{A}\left(x_{1}\right), \sigma_{A}\left(y_{1}\right)\right\}, \max \left\{\sigma_{B}\left(x_{2}\right), \sigma_{B}\left(y_{2}\right)\right\}\right\} \\
& \leq \max \left\{\max \left\{\sigma_{A}\left(x_{1}\right), \sigma_{B}\left(x_{2}\right)\right\}, \max \left\{\sigma_{A}\left(y_{1}\right), \sigma_{B}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\left(\sigma_{A} \times \sigma_{B}\right)\left(x_{1}, x_{2}\right),\left(\sigma_{A} \times \sigma_{B}\right)\left(y_{1}, y_{2}\right)\right\} \\
& =\max \left\{\sigma_{A \times B}(a), \sigma_{A \times B}(b)\right\}
\end{aligned}
$$

In the similar way, one can have, $\sigma_{A \times B}(a-b) \leq \max \left\{\sigma_{A \times B}(a), \sigma_{A \times B}(b)\right\}$. By applying the similar process, we can have $\phi_{A \times B}(a+b) \geq \min \left\{\phi_{A \times B}(a)\right.$, $\left.\phi_{A \times B}(b)\right\}$ and $\phi_{A \times B}(a-b) \geq \min \left\{\phi_{A \times B}(a), \phi_{A \times B}(b)\right\}$.

Theorem 4.3. If $A \times B$ is an cubic intuitionistic β-subalgebra of $X \times Y$, then either A is a cubic intuitionistic β-subalgebra of X or B is a cubic intuitionistic β-subalgebra of Y.

Proof: Let $A \times B$ is a cubic intuitionistic fuzzy β-subalgebra of $X \times Y$. Take $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in X \times Y$. Then, $\bar{\zeta}_{A \times B}\left\{\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\} \geq$ $\operatorname{rmin}\left\{\bar{\zeta}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\zeta}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Put $x_{1}=x_{2}=0 \quad$ which implies that $\bar{\zeta}_{A \times B}\left\{\left(0, y_{1}\right),\left(0, y_{2}\right)\right\} \geq \operatorname{rmin}\left\{\bar{\zeta}_{A \times B}\left(0, y_{1}\right), \bar{\zeta}_{A \times B}\left(0, y_{2}\right)\right\}$. Now consider, $\bar{\zeta}_{A \times B}\left\{(0+0),\left(y_{1}+y_{2}\right)\right\} \geq \operatorname{rmin}\left\{\bar{\zeta}_{A \times B}\left(0, y_{1}\right), \bar{\zeta}_{A \times B}\left(0, y_{2}\right)\right\}$. So, $\bar{\zeta}_{B}\left(y_{1}+\right.$ $\left.y_{2}\right) \geq \operatorname{rmin}\left\{\bar{\zeta}_{B}\left(y_{1}\right), \bar{\zeta}_{B}\left(y_{2}\right)\right\}$. Similarly, $\bar{\zeta}_{B}\left(y_{1}-y_{2}\right) \geq \operatorname{rmin}\left\{\bar{\zeta}_{B}\left(y_{1}\right), \bar{\zeta}_{B}\left(y_{2}\right)\right\}$ and also $\bar{\eta}_{A \times B}\left\{\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\} \leq \operatorname{rmax}\left\{\bar{\eta}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\eta}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Put $x_{1}=x_{2}=0$ which gives $\bar{\eta}_{A \times B}\left\{\left(0, y_{1}\right),\left(0, y_{2}\right)\right\} \leq \operatorname{rmax}\left\{\bar{\eta}_{A \times B}\left(0, y_{1}\right)\right.$, $\left.\bar{\eta}_{A \times B}\left(0, y_{2}\right)\right\}$. Now $\bar{\eta}_{A \times B}\left\{(0+0),\left(y_{1}+y_{2}\right)\right\} \leq \operatorname{rmax}\left\{\bar{\eta}_{A \times B}\left(0, y_{1}\right), \bar{\eta}_{A \times B}\left(0, y_{2}\right)\right\}$. Moreover, $\bar{\eta}_{B}\left(y_{1}+y_{2}\right) \leq \operatorname{rmax}\left\{\bar{\eta}_{B}\left(y_{1}\right), \bar{\eta}_{B}\left(y_{2}\right)\right\}$. In the similar way, we have $\bar{\eta}_{B}\left(y_{1}-y_{2}\right) \leq \operatorname{rmax}\left\{\bar{\eta}_{B}\left(y_{1}\right), \bar{\eta}_{B}\left(y_{2}\right)\right\}$. Further, $\sigma_{A \times B}\left\{\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\} \leq$ $\max \left\{\sigma_{A \times B}\left(x_{1}, y_{1}\right), \sigma_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Put $x_{1}=x_{2}=0$ gives $\sigma_{A \times B}\left\{\left(0, y_{1}\right),\left(0, y_{2}\right)\right\} \leq \max \left\{\sigma_{A \times B}\left(0, y_{1}\right), \sigma_{A \times B}\left(0, y_{2}\right)\right\}$. Then we have $\sigma_{A \times B}\left\{(0+0),\left(y_{1}+y_{2}\right)\right\} \leq \max \left\{\sigma_{A \times B}\left(0, y_{1}\right), \sigma_{A \times B}\left(0, y_{2}\right)\right\}$. It follows that $\sigma_{B}\left(y_{1}+y_{2}\right) \leq \max \left\{\sigma_{B}\left(y_{1}\right), \sigma_{B}\left(y_{2}\right)\right\}$. In the same manner, $\sigma_{B}\left(y_{1}-y_{2}\right) \leq$ $\max \left\{\sigma_{B}\left(y_{1}\right), \sigma_{B}\left(y_{2}\right)\right\}$ and $\phi_{A \times B}\left\{\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\} \geq \min \left\{\phi_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\phi_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Put $x_{1}=x_{2}=0 \quad$ which gives $\phi_{A \times B}\left\{\left(0, y_{1}\right),\left(0, y_{2}\right)\right\}$ $\geq \min \left\{\phi_{A \times B}\left(0, y_{1}\right), \phi_{A \times B}\left(0, y_{2}\right)\right\}$. Then we can have $\phi_{A \times B}\left\{(0+0),\left(y_{1}+\right.\right.$ $\left.\left.y_{2}\right)\right\} \geq \min \left\{\phi_{A \times B}\left(0, y_{1}\right), \phi_{A \times B}\left(0, y_{2}\right)\right\}$ which yields that $\phi_{B}\left(y_{1}+y_{2}\right) \geq$ $\min \left\{\phi_{B}\left(y_{1}\right), \phi_{B}\left(y_{2}\right)\right\}$. Likewise, $\phi_{B}\left(y_{1}-y_{2}\right) \geq \min \left\{\phi_{B}\left(y_{1}\right), \phi_{B}\left(y_{2}\right)\right\}$. Hence B is a Cubic intuitionistic β-subalgebra of Y.

5. Level set of Cubic Intuitionistic β-Subalgebras

Definition 5.1. Let $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ be a cubic intuitionistic set of X. Define $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}=\left\{x \in X: \bar{\zeta} \geq \bar{\alpha}, \bar{\eta} \leq \bar{\gamma}, \sigma_{\rho} \leq \lambda, \phi_{\rho} \geq \omega\right\}$, where $\bar{\alpha}, \bar{\gamma} \in D[0,1]$ and $\lambda, \omega \in[0,1]$ is called a cubic intuitionistic level set of \tilde{C}.
Example 5.2. Consider a subset \tilde{C} of the β-algebra X, given in example 3.2. If we define $\bar{\alpha}=[0.1,0.5], \bar{\gamma}=[0.4,0.5], \lambda=0.5$ and $\omega=0.6$ then $\tilde{C}_{[0.1,0.5],[0.4,0.5], 0.5,0.6}=\{0,2\}$ is a cubic intuitionistic level set of \tilde{C}.
Theorem 5.3. If $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ be a cubic intuitionistic β-sub
algebra in X if and only if $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ is a β-subalgebra of X, for every $\bar{\alpha}, \bar{\gamma} \in D[0,1]$ and $\lambda, \omega \in[0,1]$.

Proof. For $x, y \in \tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ and $\bar{\zeta}(x) \geq \bar{\alpha}$ and $\bar{\zeta}(y) \geq \bar{\alpha}$, we can write $\bar{\zeta}(x+y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\} \geq \operatorname{rmin}\{\bar{\alpha}, \bar{\alpha}\}=\bar{\alpha}$.

Similarly, $\bar{\zeta}(x-y) \geq \bar{\alpha}$. For $x, y \in \tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ and
$\bar{\eta}(x) \leq \bar{\gamma}$ and $\bar{\eta}(y) \leq \bar{\gamma}$, we can write $\bar{\eta}(x+y) \leq \operatorname{rmax}\{\bar{\eta}(x), \bar{\eta}(y)\} \leq$ $\operatorname{rmax}\{\bar{\gamma}, \bar{\gamma}\}=\bar{\gamma}$. In the similar way, $\bar{\eta}(x-y) \leq \bar{\gamma}$. For $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ and $\sigma_{\rho}(x) \leq$ λ and $\sigma_{\rho}(y) \leq \lambda$, we have $\sigma_{\rho}(x+y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}=\lambda$. Likewise, $\sigma_{\rho}(x-y) \leq \lambda$. For $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ and $\phi_{\rho}(x) \geq \omega$ and $\phi_{\rho}(y) \geq \omega$, we have $\phi_{\rho}(x+y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}=\omega$. Similarly, $\phi_{\rho}(x-y) \geq \omega$. So, we conclude that $x+y, x-y \in \tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$. Hence, $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ is a β-subalgebra of X.

Conversely, assume that $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ is a cubic intuitionistic set in X. Since $\tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ is a β-subalgebra of X for $\bar{\alpha}, \bar{\gamma} \in D[0,1]$ and $\lambda, \omega \in[0,1]$, it follows that $x+y$ and $x-y \in \tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$. Now, take $\left.\bar{\alpha}=\operatorname{rmin}\left\{\bar{\zeta}_{(}(x), \bar{\zeta}_{(}(y)\right\}, \quad \bar{\gamma}=\operatorname{rmax}\left\{\bar{\eta}_{(} x\right), \bar{\eta}_{(}(y)\right\} \quad$ and $\lambda=\max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}$, $\underline{\omega}=\min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}$ then we obtain $x+y \in C_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ this implies that $\bar{\zeta}(x+y) \geq \bar{\alpha}$ and $\bar{\eta}(x-y) \leq \bar{\gamma}$ and $\sigma_{\rho}(x-y) \geq \lambda, \phi_{\rho}(x-y) \leq \omega$.

Also, $x-y \in \tilde{C}_{\bar{\alpha}, \bar{\gamma}, \lambda, \omega}$ which yields that $\bar{\zeta}(x-y) \geq \bar{\alpha}, \bar{\eta}(x-y) \leq \bar{\gamma}$ and $\sigma_{\rho}(x-y) \geq \underline{\lambda}, \phi_{\rho}(x-y) \leq \omega$. Therefore, we conclude that $\bar{\zeta}_{C}(x+y) \geq$ $\operatorname{rmin}\left\{\bar{\zeta}_{C}(x), \bar{\zeta}_{C}(y)\right\}, \bar{\eta}_{C}(x+y) \leq \operatorname{rmax}\left\{\bar{\eta}_{C}(x), \bar{\eta}_{C}(y)\right\}$. Similarly, we have $\bar{\zeta}(x-y) \geq \operatorname{rmin}\{\bar{\zeta}(x), \bar{\zeta}(y)\}, \quad \bar{\eta}(x-y) \leq \operatorname{rmax}\left\{\bar{\eta}(x), \bar{\eta}_{C}(y)\right\}$. Also, we know that $\sigma_{\rho}(x+y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}, \phi_{\rho}(x+y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}$. Similarly, $\sigma_{\rho}(x-y) \leq \max \left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}, \phi_{\rho}(x-y) \geq \min \left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}$. Hence \tilde{C} is a cubic intuitionistic β-subalgebra of X.

6. (\bar{T}, \bar{S}, S, T)-Normed Cubic Intuitionistic β-subalgebras

This section introduces (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of a β-algebra and discusses few of its associated outcomes.

Definition 6.1. Let $(X,+,-, 0)$ be a β-algebra. A cubic intuitionistic set $\tilde{C}=\left\{\left\langle x,(x), \rho_{(}(x)\right\rangle: x \in X\right\}$ is called (\bar{T}, \bar{S}, S, T) normed cubic intuitionistic β-subalgebra of X, if it satisfies the following conditions
(i) $\bar{\zeta}(x+y) \geq \bar{T}\{\bar{\zeta}(x), \bar{\zeta}(y)\} \quad \& \quad \bar{\zeta}(x-y) \geq \bar{T}\{\bar{\zeta}(x), \bar{\zeta}(y)\}$
(ii) $\bar{\eta}(x+y) \leq \bar{S}\{\bar{\eta}(x), \bar{\eta}(y)\} \quad \& \bar{\eta}(x-y) \leq \bar{S}\{\bar{\eta}(x), \bar{\eta}(y)\}$
(iii) $\sigma_{\rho}(x+y) \leq S\left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\} \quad \& \sigma_{\rho}(x-y) \leq S\left\{\sigma_{\rho}(x), \sigma_{\rho}(y)\right\}$
(iv) $\phi_{\rho}(x+y) \geq T\left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\} \& \phi_{\rho}(x-y) \geq T\left\{\phi_{\rho}(x), \phi_{\rho}(y)\right\}$
$\forall x, y \in X$
Example 6.2. Let $X=\{0,1,2,3\}$ be a set with constant 0 and binary operations + and - are defined on X by the following cayley's tables.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Let $\bar{T}_{L}, \bar{S}_{L}: D[0,1] \times D[0,1] \rightarrow D[0,1]$ and $S_{L}, T_{L}:[0,1] \times[0,1] \rightarrow[0,1]$ be functions defined by $\bar{T}_{L}(\bar{x}, \bar{y})=\operatorname{rmax}(\bar{x}+\bar{y}-\overline{1}, \overline{0}), \bar{S}_{L}(\bar{x}, \bar{y})=r \min (\bar{x}+$ $\bar{y}, \overline{1}), S_{L}(x, y)=\min (x+y, 1)$ and $T_{L}(x, y)=\max (x+y-1,0) \forall x, y \in[0,1]$. Here \bar{T}_{L} is a \bar{T}-norm, \bar{S}_{L} - is a \bar{T}-conorm and S_{L} is a T-conorm, T_{L} is a T-norm. In all the T-norm and T-conorm Lukasiewicz property has been used. Define a Cubic intuitionistic set $\tilde{C}=\{\langle x,(x), \rho(x)\rangle: x \in X\}$ in X as follows:

X	$=\langle\bar{\zeta}, \bar{\eta}\rangle \& \rho=\left(\sigma_{\rho}, \phi_{\rho}\right)$	
0	$\langle[0.3,0.6],[0.2,0.4]\rangle$	$(0.6,0.4)$
1	$\langle[0.1,0.3],[0.4,0.6]\rangle$	$(0.5,0.7)$
2	$\langle[0.2,0.5],[0.3,0.5]\rangle$	$(0.5,0.7)$
3	$\langle[0.1,0.3],[0.4,0.6]\rangle$	$(0.5,0.7)$

Then \tilde{C} is (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra.

Definition 6.3. Let $f: X \rightarrow Y$ be a function. Let A and B be two (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic sets in X and Y respectively. Then inverse image of B under f is defined by $f^{-1}(B)=\left\{f^{-1}\left(\bar{\zeta}_{B}(x)\right)\right.$,
$\left.f^{-1}\left(\bar{\eta}_{B}(x)\right), f^{-1}\left(\sigma_{B}(x)\right), f^{-1}\left(\phi_{B}(x)\right): x \in X\right\}$ such that $f^{-1}\left(\bar{\zeta}_{B}(x)\right)=$ $\left(\bar{\zeta}_{B}(f(x)), f^{-1}\left(\bar{\eta}_{B}(x)\right)=\left(\bar{\eta}_{B}(f(x)), f^{-1}\left(\sigma_{B}(x)\right)=\left(\sigma_{B}(f(x))\right.\right.\right.$ and $f^{-1}\left(\phi_{B}(x)\right)=$ $\left(\phi_{B}(f(x))\right.$

Theorem 6.4. Let $f: X \rightarrow Y$ be a β - homomorphism. If \tilde{C} is a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of Y, then $f^{-1}(\tilde{C})$ is a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of X.

Proof. Let \tilde{C} be a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of Y,
For $x, y \in Y$,

$$
\begin{aligned}
f^{-1}(\bar{\zeta}(x+y)) & =\bar{\zeta}(f(x+y)) \\
& =\bar{\zeta}(f(x)+f(y)) \\
& \geq \bar{T}\{\bar{\zeta}(f(x)), \bar{\zeta}(f(y))\} \\
& \geq \bar{T}\left\{f^{-1}(\bar{\zeta}(x)), f^{-1}(\bar{\zeta}(y))\right\}
\end{aligned}
$$

Similarly, $f^{-1}(\bar{\zeta}(x-y)) \geq \bar{T}\left\{f^{-1}(\bar{\zeta}(x)), f^{-1}(\bar{\zeta}(y))\right\}$. On the other hand, $f^{-1}(\bar{\eta}(x+y))=\bar{\eta}(f(x+y))$

$$
=\overline{\bar{\eta}}(f(x)+f(y))
$$

$$
\leq \bar{S}\{\bar{\eta}(f(x)), \bar{\eta}(f(y))\}
$$

$$
\leq \bar{S}\left\{f^{-1}(\bar{\eta}(x)), f^{-1}(\bar{\eta}(y))\right\}
$$

In the similar manner, $f^{-1}(\bar{\eta}(x-y)) \leq \bar{S}\left\{f^{-1}(\bar{\eta}(x)), f^{-1}(\bar{\eta}(y))\right\}$. Moreover,

$$
\begin{aligned}
f^{-1}\left(\sigma_{\rho}(x+y)\right) & =\sigma_{\rho}(f(x+y)) \\
& =\sigma_{\rho}(f(x)+f(y)) \\
& \leq S\left\{\sigma_{\rho}(f(x)), \sigma_{\rho}(f(y))\right\} \\
& \leq S\left\{f^{-1}\left(\sigma_{\rho}(x)\right), f^{-1}\left(\sigma_{\rho}(y)\right)\right\}
\end{aligned}
$$

Similarly, one can have $f^{-1}\left(\sigma_{\rho}(x-y)\right) \leq S\left\{f^{-1}\left(\sigma_{\rho}(x)\right), f^{-1}\left(\sigma_{\rho}(y)\right)\right\}$. Also,

$$
\begin{aligned}
f^{-1}\left(\phi_{\rho}(x+y)\right) & =\phi_{\rho}(f(x+y)) \\
& =\phi_{\rho}(f(x)+f(y)) \\
& \geq T\left\{\phi_{\rho}(f(x)), \phi_{\rho}(f(y))\right\} \\
& \geq T\left\{f^{-1}\left(\phi_{\rho}(x)\right), f^{-1}\left(\phi_{\rho}(y)\right)\right\}
\end{aligned}
$$

In the same way, $f^{-1}\left(\phi_{\rho}(x-y)\right) \geq T\left\{f^{-1}\left(\phi_{\rho}(x)\right), f^{-1}\left(\phi_{\rho}(y)\right)\right\}$. Hence $f^{-1}(\tilde{C})$ is a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of X.

Definition 6.5. Let f be a mapping from a set X into a set Y. Let \tilde{C} be a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic set in X. Then the image of \tilde{C}, denoted by $f[\tilde{C}]$, is the (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic in Y with the membership function defined by

$$
\begin{aligned}
& f(\tilde{C})=\left\{\left\langle x, f_{\text {rsup }}(\bar{\zeta}), f_{\text {rinf }}(\bar{\eta}), f_{\text {sup }}\left(\sigma_{\rho}\right), f_{\text {inf }}\left(\phi_{\rho}\right)\right\rangle: x \in Y\right\}, \text { where } \\
& f_{\text {rsup }}(\bar{\zeta})(y)= \begin{cases}\operatorname{rsup_{x\in f^{-1}(y)}\overline {\zeta }(x),} \begin{array}{l}
\text { if } f^{-1}(y) \neq \emptyset \\
0,
\end{array} \\
f_{\text {rinf }}(\bar{\eta})(y)= \begin{cases}\operatorname{rinf}_{x \in f^{-1}(y)} \bar{\eta}(x), & \text { if } f^{-1}(y) \neq \emptyset \\
\overline{1}, & \text { otherwise }\end{cases} \\
f_{\text {inf }}\left(\sigma_{\rho}\right)(y)= \begin{cases}\text { inf } f_{x \in f^{-1}(y)} \sigma_{\rho}(x), & \text { if } f^{-1}(y) \neq \emptyset \\
1, & \text { otherwise }\end{cases} \\
f_{\text {sup }}\left(\phi_{\rho}\right)(y)= \begin{cases}\sup _{x \in f^{-1}(y)} \phi_{\rho}(x), & \text { if } f^{-1}(y) \neq \emptyset \\
0, & \text { otherwise }\end{cases} \end{cases}
\end{aligned}
$$

Theorem 6.6. Let $f: X \rightarrow X$ be an endomorphism of β - algebra. If \tilde{C} is normed cubic intuitionistic β-subalgebra of X, then $f(\tilde{C})$ is a (\bar{T}, \bar{S}, S, T) normed cubic intuitionistic β-subalgebra of X.

Proof. Let \tilde{C} be a (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic β-subalgebra of $Y, x, y \in X$.

$$
\begin{aligned}
\bar{\zeta}_{f}(x+y) & =\bar{\zeta}(f(x+y)) \\
& =\bar{\zeta}(f(x)+f(y)) \\
& =\bar{\zeta}(f(x))+\bar{\zeta}(f(y)) \\
& \geq \bar{T}\{\bar{\zeta}(f(x)), \bar{\zeta}(f(y))\} \\
& =\bar{T}\left\{\bar{\zeta}_{f}(x), \bar{\zeta}_{f}(y)\right\}
\end{aligned}
$$

Similarly, $\bar{\zeta}_{f}(x-y) \geq \bar{T}\left\{\bar{\zeta}_{f}(x), \bar{\zeta}_{f}(y)\right\}$

$$
\begin{aligned}
\bar{\eta}_{f}(x+y) & =\bar{\eta}(f(x+y)) \\
& =\bar{\eta}(f(x)+f(y)) \\
& =\bar{\eta}(f(x))+\bar{\eta}(f(y)) \\
& \leq \bar{S}\{\bar{\eta}(f(x)), \bar{\eta}(f(y))\} \\
& =\bar{S}\left\{\bar{\eta}_{f}(x), \bar{\eta}_{f}(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\text { Similarly, } \bar{\eta}_{f} & (x-y) \leq \bar{S}\left\{\bar{\eta}_{f}(x), \bar{\eta}_{f}(y)\right\} \\
\sigma_{f}(x+y) & =\sigma(f(x+y)) \\
& =\sigma(f(x)+f(y)) \\
& =\sigma(f(x))+\sigma(f(y)) \\
& \leq S\{\sigma(f(x)), \sigma(f(y))\} \\
& =S\left\{\sigma_{f}(x), \sigma_{f}(y)\right\}
\end{aligned}
$$

Similarly, $\sigma_{f}(x-y) \leq S\left\{\sigma_{f}(x), \sigma_{f}(y)\right\}$

$$
\begin{aligned}
\phi_{f}(x+y) & =\phi(f(x+y)) \\
& =\phi(f(x)+f(y)) \\
& =\phi(f(x))+\phi(f(y)) \\
& \geq T\{\phi(f(x)), \phi(f(y))\} \\
& =T\left\{\phi_{f}(x), \phi_{f}(y)\right\}
\end{aligned}
$$

Similarly, $\sigma_{f}(x-y) \geq T\left\{\sigma_{f}(x), \sigma_{f}(y)\right\}$. Hence $f(\tilde{C})$ is a normed cubic fuzzy β-subalgebras of Y.

7. Conclusion

The theory of cubic sets initiated in[9], influenced many researchers. This theory have been utilized in numerous algebraic structures like $B C K / B C I-$ algebras and so on. The concept of intuitionistic fuzzy introduced in[3], applied in various algebraic systems. In this study, we have introduced the concept of cubic intuitionistic β-subalgebras. In addition, we extended the idea into cubic intuitionistic level set and product of cubic intuitionistic β-subalgebras. Consequently, the thought of (\bar{T}, \bar{S}, S, T)-normed cubic intuitionistic fuzzy β-subalgebra has been initiated using \bar{T}-norm, \bar{T} conorm, T-norm and T-conorm. In future, this can be extended in other substructures of different algebraic systems.

References

[1] M. A. A. Ansari and M. Chandramouleeswaran, "Fuzzy β-subalgebras of β-algebras", International Journal of Mathematical Sciences and Engineering Applications, vol. 7, no. 5, pp. 239-249, 2013.
[2] M. Akram, N. Yaqoob, and M. Gulistan, "Cubic Ku-Subalgebras", International journal of pure and applied mathematics, vol. 89, no. 5, pp. 659-665, 2013. doi: 10.12732/ijpam.v89i5.2
[3] K. T. Atanassov, "Intuitionistic fuzzy sets", Fuzzy sets and systems, vol. 20, no. 1, pp. 87-96, 1986. doi: 10.1016/ s0165-0114(86)80034-3
[4] R. Biswas, "Rosenfelds fuzzy subgroups with interval-valued membership functions", Fuzzy sets and systems, vol. 63, no. 1, pp. 87-90, 1994. doi: 10.1016/0165-0114(94)90148-1
[5] A. Borumand Saeid, P. Muralikrishna and P. Hemavathi, "Bi-normed intuitionistic fuzzy β-ideals of β-algebras", Journal of uncertain systems, vol. 13, no. 1, pp. 42-55, 2019. [On line]. Available: https:// bit.ly/ 33dswIU
[6] A. J. Dutta and B. C. Tripathy, "On the class of p-absolutely sumable sequence $\overline{\mathrm{I}}(\mathrm{p})$ of interval numbers", Songklanakarin journal of science and technology, vol. 38, no. 2, pp. 143-146, 2016. [On line]. Available: https:/ / bit.ly/ 3zyGVvl
[7] P. Hemavathi, P. Muralikrishna, and K. Palanivel, "A note on interval valued fuzzy β-subalgebras", Global journal of pure and applied mathematics, vol. 11, no.4, pp. 2553-2560, 2015.
[8] P. Hemavathi, P. Muralikrishna, and K. Palanivel, "On interval valued intuitionistic fuzzy β-subalgebras", Afrika matematika, vol. 29, no. 1, pp. 249-262, 2018. doi: 10.1007/s13370-017-0539-z
[9] Y. B. Jun, C. S. Kim and K. O. Yang, "Cubic sets", Annals of fuzzy mathematics and informatics, vol. 4, no. 1, pp. 83-98, 2012. [On line]. Available: https:/ / bit.ly/ 3JRxT0W
[10] Y. B. Jun, C. S. Kim and M. S. Kang, "Cubic subalgebras and ideals of BCK/ BCI-algebras", Far east journal of mathematical sciences, vol. 44, no. 2, pp. 239-250, 2010.
[11] Y. B. Jun, "A novel extension of cubic sets and its applications in BCK/ BCI-algebras", Annals of fuzzy mathematics and informatics, vol. 14, no. 5, pp. 475-486, 2017. doi: 10.30948/ afmi.2017.14.5.475
[12] Y. B. Jun, S.-Z. Song, and S. J. Kim, "Cubic interval-valued intuitionistic fuzzy sets and their application in BCK/ BCI-algebras", Axioms, vol. 7, no. 1, p. 1-17, 2018. doi: 10.3390/axioms7010007
[13] P. Muralikrishna, R. Vinodkumar, and G. Palani, "Some aspects on cubic fuzzy β-subalgebra of β-algebra", Journal of physics: Conference series, vol. 1597, no. 1, pp. 012-018, 2020. doi: 10.1088/1742-6596/ 1597/ 1/012018
[14] N. Yaqoob, M. Khan, M. Akram and K. Asghar, "Interval valued intuitionistic (S,T)-fuzzy ideals of ternary semigroups", Indian journal of science and technology, vol. 6, no. 11, pp. 5418-5428, 2013. doi: 10.17485/ ijst/ 2013/ v6i11.7
[15] J. Neggers and H. S. Kim, "On β-algebras", Mathematica slovaca, vol. 52, no. 5, pp. 517-530, 2002.
[16] T. Senapati, Y. B. Jun, and K. P. Shum, "Cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B-algebras", Journal of intelligent \& fuzzy systems, vol. 36, no. 2, pp. 1563-1571, 2019. doi: 10.3233/jifs-18518
[17] B. C. Tripathy and A. J. Dutta, "Lacunary I-convergent sequences of fuzzy real numbers", Proyecciones (Antofagasta), vol. 34, no. 3, pp. 205-218, 2015. doi: 10.4067/ s0716-09172015000300001
[18] B. C. Tripathy and P. C. Das, "On the class of fuzzy number sequences bvFp ", Songklanakarin Journal of Science and Technology, vol. 41, no. 4, pp. 934-941, 2019. doi: 10.14456/ sjst-psu.2019.118
[19] L. A. Zadeh, "Fuzzy sets", Information and control, vol. 8, no. 3, pp. 338-353, 1965. doi: 10.1016/s0019-9958(65)90241-x

P. Muralikrishna

PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomous), Vellore-632002
India
e-mail: pmkrishna@rocketmail.com
Corresponding author
A. Borumand Saeid

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman-Iran
e-mail: a_b_saeid@yahoo.com

R. Vinodkumar

Research Scholar (PT),
Department of Mathematics,
Muthurangam Government Arts College (Autonomous), Vellore - 632002
India
e-mail: vinodmaths85@gmail.com
and

G. Palani

Department of Mathematics,
Dr. Ambedkar Government Arts College,
Chennai-600 039
India
e-mail: gpalani32@yahoo.co.in

