
Convergence of an iteration scheme in convex
metric spaces

Nehjamang Haokip
Churachandpur College, India

Received : May 2021. Accepted : October 2021

Proyecciones Journal of Mathematics
Vol. 41, No 3, pp. 777-790, June 2022.
Universidad Católica del Norte
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Abstract

In this paper, a new iteration scheme in a uniformly convex metric
space is defined and its convergence is obtained. A numerical example
is also considered to compare the rate of convergences of the iteration
with that of an existing iteration scheme.
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1. Introduction

If T is a self mapping on a metric space (X, d), then F (T ) denotes the set

of all fixed points of T , that is, F (T ) =
n
x ∈ X : Tx = x

o
. In the study of

fixed point theory, there is a natural interest in finding conditions on T and
X, as general as possible, and which also guarantee the strong convergence
of the sequence of iterates {xn} to a fixed point of T in X.

Moreover, if the sequence of iterates converges to a fixed point of T ,
it is interesting to evaluate the rate of convergence (or, alternately, the
error estimate) of the method, i.e., in obtaining a stopping criterion for the
sequence of successive approximation. For a weaker contractive condition,
the Picard iterates need not converge to the fixed point of T , and some
other iteration schemes must be considered. For x0 ∈ X, the iteration
given by

xn+1 = Txn, n = 0, 1, 2, . . .

is called Picard iteration.

In this regard, many authors have introduced and investigated various
iteration schemes to approximate fixed point for different classes of con-
tractive conditions (for instance, refer [1], [3], [6], [9], [10], [11], [7], etc.
and the references therein).

In 2007, Agarwal et al. [1] introduced the S-iteration scheme for a
hyperbolic metric space. Let K be a nonempty subset of a hyperbolic
metric space (X,d). For x0 ∈ K, define

xn+1 = W (Txn, Tyn, αn)
yn = W (xn, Txn, βn)

)
(1.1)

where {αn} and {βn} are real sequences in (0, 1).
In 2014, Kadioglu and Yildirim [7] defined Picard normal S-iteration

scheme for a convex subset of a normed space. The same iteration may be
defined in a nonempty closed and convex subset K of a hyperbolic metric
space as follows. For x0 ∈ K,

xn+1 = Tyn
yn = W (zn, Tzn, αn)
zn = W (xn, Txn, βn)

⎫⎪⎬⎪⎭(1.2)

where {αn} and {βn} are real sequences in (0, 1).
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They showed that (1.2) converges faster than that of Picard, Mann,
Ishikawa and (1.1).

In 2018, Ullah and Arshad [16] introduced a three-step iteration process
called ’M-iteration’ as follows.

For x0 in K, a nonempty convex subset of a Banach space, the M-
iteration process is defined by

xn+1 = Tyn,
yn = Tzn,
zn = W(xn, Txn, αn)

⎫⎪⎬⎪⎭(1.3)

where {αn} is a real sequence in (0, 1).
They showed that the M-iteration converges (to the fixed point) faster

than that of S-iteration and Picard S-iteration processes, using numerical
examples.

In this paper, we introduce a new iteration scheme (N-iteration scheme)
and prove the convergence of the sequence generated by it to the fixed point
of a fundamentally nonexpansive mapping T , when F (T ) 6= ∅.

For x0 in K, a nonempty convex subset of a uniformly convex metric
space space,

xn+1 = Tyn,
yn = W(Tzn, zn, αn),
zn = Txn

⎫⎪⎬⎪⎭(1.4)

where {αn} is a real sequence in (0, 1).
The convergence rate of the sequence generated by (1.4) is also com-

pared to that of the sequence generated by (1.3), taking a numerical exam-
ple.

2. Preliminaries

In this section, some preliminary definitions and results required for our
subsequent discussion are presented, starting with the notion of convex
metric space introduced by Takahashi [15] in 1970.

Definition 2.1. [15] A convex metric space (X,d,W) is a metric space
with a convex structure W : X ×X × [0, 1] −→ X satisfying

d
³
z,W(x, y, t)

´
≤ td(z, x) + (1− t)d(z, y)
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for all x, y and z in X, and t ∈ [0, 1].

Definition 2.2. [13] A convex metric space (X, d,W) is said to be uni-
formly convex if for any ε > 0, there exists α = α(ε) such that, for all r > 0
and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε,

d
³
z,W(x, y, 1/2)

´
≤ r(1− α) < r.

In 2012, Khan et al. [8] proved the following result for uniformly convex
hyperbolic spaces which is also valid for uniformly convex metric spaces.

Lemma 2.1. [8] Let (X, d,W) be a uniformly convex hyperbolic metric
space with monotone modulus of uniform convexity η. Let z ∈ X and
{tn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xn}, {yn} are se-
quences in X such that lim supn→∞ d(xn, z) ≤ c, lim supn→∞ d(yn, z) ≤ c

and lim supn→∞ d
³
W(xn, yn, tn), z

´
= c for some c ≥ 0, then

lim
n→∞

d(xn, yn) = 0.

In 2014, Ghoncheh and Razani [2] introduced a class of mappings called
fundamentally nonexpansive mappings in a metric space (X, d) which gen-
eralizes Suzuki mappings, where a mapping T : X −→ X is said to be
fundamentally nonexpansive if

d(T 2x, Ty) ≤ d(Tx, y)

for all x and y in X. They showed that every mapping which satisfies
condition C is fundamentally nonexpan- sive, but the converse is not true.

A mapping T : X −→ X is said to be a fundamental contraction [5] if
there exists a positive number k < 1 such that

d(T 2x, Ty) ≤ kd(Tx, y)

for all x and y in X.

Senter and Doston [12] defined the following condition to obtain a con-
vergence result for nonexpansive mappings in metric spaces.

Definition 2.3. [12] LetK be a nonempty subset of a metric spaces (X, d).
A mapping T : K −→ K with F (T ) 6= ∅ is said to satisfy Condition (I) if
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there exists a non-decreasing function f : [0,∞) −→ [0,∞) with f(0) = 0,
f(t) > 0 for all t ∈ (0,∞) such that

f (d(x,F (T ))) ≤ d(x, Tx) for all x ∈ K,

where d(x, F (T )) = inf
n
d(x, p) : p ∈ F (T )

o
.

The following is the definition of T -stability of iteration schemes given
by Harder and Hicks [4].

Definition 2.4. [4] Let T : X −→ X and w be a fixed point of T . For any
x0 ∈ X, let the sequence {xn} generated by the iteration scheme xn+1 =
µ(T, xn), n = 0, 1, 2, . . . converges to w. Let {un} be an arbitrary sequence,
and set �n = d (un+1, xn+1)), n = 0, 1, 2, . . .. Then the iterative scheme
µ(T, xn) is called T -stable if and only if limn→∞ �n = 0 implies limn→∞ un =
w.

3. Convergence of N-iteration scheme

In this section, we obtain convergence results for the N-iteration scheme for
fundamentally nonexpansive mappings T with F (T ) 6= ∅, where F (T ) =
{x ∈ X : Tx = x}.

Lemma 3.1. Let K be a nonempty closed convex subset of a complete
convex metric space (X, d,W) and T : X −→ X be a fundamentally non-
expansive mapping with F (T ) 6= ∅. Let {xn} be a sequence generated by
(1.4). Then the sequence {xn} is bounded and limn→∞ d(xn, Txn) = 0.

Proof. For w ∈ F (T ), using (1.4) and the condition d(T 2x, Ty) ≤
d(Tx, y), one can easily show that

d(xn+1) ≤ d(xn, w), n = 0, 1, 2, . . .

Since the sequence of positive real numbers {d(xn, w)} is monotonically
decreasing, it must be convergent, say to µ ≥ 0, and therefore,

d(xm, xn) ≤ d(xm, w) + d(xn, w) = 2µ,

from which we conclude that {xn} is bounded and limn→∞ d(xn, w) exists.

Let limn→∞ d(xn, w) = µ ≥ 0. If µ = 0, then d(xn, Txn) ≤ 2d(xn, w)
and taking the limit as n→∞, we get limn→∞ d(xn, Txn) = 0.
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If µ > 0, since d(Txn, w) ≤ d(xn, w), taking lim sup as n→∞, we get

lim sup
n→∞

d(Txn, w) ≤ µ.

Now, since yn =W(Tzn, zn, αn) and zn = Txn, we have

d(yn, w) ≤ (1− αn)d(Tzn, w) + αnd(zn, w) ≤ d(zn, w) ≤ d(xn, w)

and as in the above, we get

lim sup
n→∞

d(yn, w) ≤ µ.

Since d(xn+1, w) = d(Tyn, w) ≤ d(yn, w), taking lim inf as n → ∞, we
get

µ = lim inf
n→∞

d(xn+1, w) ≤ lim inf
n→∞

d(yn, w) ≤ µ,

i.e.,

lim
n→∞

d(yn, w) = µ.

This implies that

µ = lim supn→∞ d(yn, w) = lim supn→∞ d
³
W(Tzn, zn, αn), w

´
≤ lim supn→∞

½
(1− αn)d(Tzn, w) + αnd(zn, w)

¾
≤ lim supn→∞

½
(1− αn)d(Txn, w) + αnd(xn, w)

¾
= lim supn→∞ d

³
W(Txn, xn, αn), w

´
≤ lim supn→∞ d

³
xn, w) = µ,

i.e.,

lim sup
n→∞

W(Txn, xn, αn) = µ.

It then follows from Lemma 2.1 that limn→∞ d(xn, Txn) = 0. 2

Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly
convex metric space (X, d,W) and T : X −→ X be a fundamentally
nonexpansive mapping with F (T ) 6= ∅. Then the sequence {xn} gen-
erated by (1.4) converges strongly to an element of F (T ) if and only if

lim infn→∞ d
³
xn, F (T )

´
= 0, where, d

³
xn, F (T )

´
= infw∈F (T ) d(xn, w).
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Proof. If {xn} defined by (1.4) strongly converges to a fixed point of T ,
then obviously lim infn→∞ d(xn, F (T )) = 0.

To show the sufficiency part, we first note that F (T ) is closed. For,
if {wk} is a sequence in F (T ) which converges to some w ∈ K, then T
is fundamentally nonexpansive, d(wn, Tw) = d(T 2wn, Tw) ≤ d(Twn, w) =
d(wn, w), and thus,

0 = lim
n→∞

d(wn, w) ≥ lim
n→∞

d(wn, Tw) = d
³
lim
n→∞

wn, Tw
´
= d(w, Tw),

showing that w ∈ F (T ), and hence F (T ) is closed.

From the proof of Lemma 3.1 that limn→∞ d(xn, w) exists for all w

in F (T ) so that d
³
xn+1, F (T )

´
≤ d

³
xn, F (T )

´
, which implies the sequencen

d
³
xn, F (T )

´o
is non-increasing and bounded below, and so, lim infn→∞ d

³
xn, F (T )

´
exists.

Since lim infn→∞ d
³
xn, F (T )

´
= 0, it follows that limn→∞ d

³
xn, F (T )

´
=

0. Consider a subsequence {xnk} of {xn} such that d(xnk , wk) <
1
2k
for all

k ≥ 1 and {wk} ⊆ F (T ). Then d(xnk+1 , wk) ≤ d(xnk , wk), wk) <
1
2k
which

implies

d(wk+1, wk) ≤ d(wk+1, xnk+1) + d(xnk+1 , wk) <
1

2k−1
,

showing that {wk} is a Cauchy sequence. Since F (T ) is closed, {wk} con-
verges in F (T ). Let limk→∞wk = w. Then as k →∞,

d(xnk , w) ≤ d(xnk , wk) + d(wk, w) −→ 0,

showing that limk→∞ d(xnk , w) = 0. Now, since limn→∞ d(xn, w) exists, we
must have

lim
n→∞

d(xn, w) = 0,

as required. 2
Next, we prove a strong convergence result using the definition of con-

dition (I) given by Senter and Doston [12] for metric spaces.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly
convex metric space (X, d,W) and T : K −→ K be a fundamentally non-
expansive mapping with F (T ) 6= ∅. If T satisfies Condition (I), then the
sequence defined by (1.4) converges strongly to some fixed point of T .
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Proof. As in the proof of Theorem 3.2, F (T ) is closed. We observe that
by Lemma 3.1, limn→∞ d(xn, Txn) = 0. Since T satisfies Condition (I), we
have

lim
n→∞

f (d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0.

Since f is a non-decreasing function f : [0,∞) −→ [0,∞) with f(0) = 0,
f(t) > 0 for all t ∈ (0,∞),

lim
n→∞

d ((xn, F (T )) = 0.

The conclusion of the proof follows as in the proof of Theorem 3.2. 2

Next, we prove a stability result for the iterative scheme (1.4).

Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly
convex metric space (X,d,W) and T : X −→ X be a fundamental con-
traction mapping with F (T ) 6= ∅. For x0 ∈ K, let {xn} be the sequence
generated by the iterative scheme xn+1 = µ(T, xn), n ≥ 0 as defined in

(1.4). Then the iteration scheme is T -stable if lim infn→∞ d
³
xn, F (T )

´
= 0

or T satisfies condition (I).

Proof. Let {un} be an arbitrary sequence in K and εn = d(un, xn+1),
n ≥ 0, where xn+1 = µ(T, xn). Then, for w ∈ F (T ), we have

d(un+1, w) ≤ d(un+1, xn+1) + d(xn+1, w) = εn + d(xn+1, w).

By Theorem 3.2 and Theorem 3.3, {xn} converges to a fixed point of
T , i.e., limn→∞ xn = w and hence the result. 2

4. Numerical examples

In this section, some examples are considered.

Example 4.1. Consider the uniformly convex metric space (X, d,W), where
X = R, W : X ×X × [0, 1] :−→ X is defined by W(x, y, t) = tx+ (1− t)y
and the metric d is given by

d(x, y) =

(
x+ y, x 6= y
0, x = y
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Then K = [0, 1] is a closed convex subset of X. Consider the mapping
T : K −→ K defined by Tx = x2 for all x in K. One can easily check that
T is fundamentally nonexpansive and F (T ) 6= ∅.

Consider f(t) = t, for all t ≥ 0, then the mapping T satisfies condition
(I) as

f
³
d(x, F (T ))

´
= inf

n
d(x,w) : w ∈ F (T )

o
= x+ 0 ≤ x+ x2 = d(x, Tx)

for all x in K. Thus all the conditions of Theorem 3.3 are satisfied and
hence the convergence of the sequence generated by (1.4).

Now, the iteration (1.4) reduces to

xn+1 = Tyn,
yn = (1− αn)Tzn + αnzn,
zn = Txn

⎫⎪⎬⎪⎭
where {αn} is a real sequence in (0, 1), which can be written as

xn+1 = T

µ
(1− αn)T

2xn + αnTxn

¶
, n = 0, 1, 2, . . .

Taking αn =
n+1
3n+2 we generate and plot the graph of the sequence

generated by (1.4) for the initial points x0 = 0.95, 0.65 and 0.35.

Figure 4.1: N-iteration with different initial points

pc
fig-1
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From Table 1 and Fig. 4.1, it is seen that for any x0 in K, the sequence
{xn} generated by (1.4) converges to the fixed point 0 of T .

Next, we consider a numerical example and compare the convergence
rate of N-iteration scheme (1.4) against that of M-iteration scheme (1.3).

Example 4.2. Consider the uniformly convex metric space (X, d,W), where
X = R andW : X×X×[0, 1] :−→ X is defined byW(x, y, t) = tx+(1−t)y
with the usual metric.

Let K be the closed convex subset [0, 1] of X and T : K −→ K be
defined by Tx = 2

3x for all x in K. Then it is easily seen that T is funda-
mentally non-expansive and F (T ) 6= ∅. Moreover, since F (T ) = {0} and T
satisfies condition (I) for f(t) = t, the sequences {un} and {xn} generated
respectively by (1.3) and (1.4) both converges to 0, the fixed point of T .

Now, the iteration (1.3) reduces to

xn+1 = Tyn,
yn = Tzn,
zn = (1− αn)xn + αnTxn

⎫⎪⎬⎪⎭
where {αn} is a real sequence in (0, 1), which may be written as

xn+1 = T 2
µ
(1− αn)xn + αnTxn

¶
, n = 0, 1, 2, . . .

pc
table-1
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Taking αn =
n+1
3n+2 we generate and plot the graph of the sequences

generated by (1.3) and (1.4) for the initial point x0 = 0.75.

Figure 4.2: Rate of convergence

From Table 2 and Figure 4.2, we can see that the considered iteration
converges to the fixed point of T faster than that of M-iteration.

Remark 1. It is interesting to note the following. Considering the follow-
ing iteration scheme in the settings of Example 4.2. For x0 in K,

xn+1 = (1− αn)Tyn + αnyn,
yn = Tzn,
zn = Txn

⎫⎪⎬⎪⎭(4.1)

pc
table-2

pc
fig-2
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where {αn} is a real sequence in (0, 1).
Then with initial points x0 = 0.45, x0 = 0.65 and x0 = 0.75, the

sequences generated by (1.4) and (4.1) are identical.

The equivalence of the two iterations is however not obtained when
taking x0 = 0.65 with Tx = x2.
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