Proyecciones Journal of Mathematics Vol. 41, N° 3, pp. 777-790, June 2022. Universidad Católica del Norte Antofagasta - Chile

Convergence of an iteration scheme in convex metric spaces

Nehjamang Haokip (1)
Churachandpur College, India
Received: May 2021. Accepted: October 2021

Abstract

In this paper, a new iteration scheme in a uniformly convex metric space is defined and its convergence is obtained. A numerical example is also considered to compare the rate of convergences of the iteration with that of an existing iteration scheme.

MSC (2010): 47H09; 47H10

Keywords: Convex metric space, convergence, fundamentally non-expansive mappings, iteration scheme.

1. Introduction

If T is a self mapping on a metric space (X,d), then F(T) denotes the set of all fixed points of T, that is, $F(T) = \{x \in X : Tx = x\}$. In the study of fixed point theory, there is a natural interest in finding conditions on T and X, as general as possible, and which also guarantee the strong convergence of the sequence of iterates $\{x_n\}$ to a fixed point of T in X.

Moreover, if the sequence of iterates converges to a fixed point of T, it is interesting to evaluate the rate of convergence (or, alternately, the error estimate) of the method, i.e., in obtaining a stopping criterion for the sequence of successive approximation. For a weaker contractive condition, the Picard iterates need not converge to the fixed point of T, and some other iteration schemes must be considered. For $x_0 \in X$, the iteration given by

$$x_{n+1} = Tx_n, \qquad n = 0, 1, 2, \dots$$

is called Picard iteration.

In this regard, many authors have introduced and investigated various iteration schemes to approximate fixed point for different classes of contractive conditions (for instance, refer [1], [3], [6], [9], [10], [11], [7], etc. and the references therein).

In 2007, Agarwal et al. [1] introduced the S-iteration scheme for a hyperbolic metric space. Let K be a nonempty subset of a hyperbolic metric space (X, d). For $x_0 \in K$, define

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in (0,1).

In 2014, Kadioglu and Yildirim [7] defined Picard normal S-iteration scheme for a convex subset of a normed space. The same iteration may be defined in a nonempty closed and convex subset K of a hyperbolic metric space as follows. For $x_0 \in K$,

(1.2)
$$\begin{cases} x_{n+1} = Ty_n \\ y_n = \mathcal{W}(z_n, Tz_n, \alpha_n) \\ z_n = \mathcal{W}(x_n, Tx_n, \beta_n) \end{cases}$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in (0,1).

They showed that (1.2) converges faster than that of Picard, Mann, Ishikawa and (1.1).

In 2018, Ullah and Arshad [16] introduced a three-step iteration process called 'M-iteration' as follows.

For x_0 in K, a nonempty convex subset of a Banach space, the Miteration process is defined by

$$\left.\begin{array}{rcl}
 x_{n+1} & = & Ty_n, \\
 y_n & = & Tz_n, \\
 z_n & = & \mathcal{W}(x_n, Tx_n, \alpha_n)
 \end{array}\right}$$

where $\{\alpha_n\}$ is a real sequence in (0,1).

They showed that the M-iteration converges (to the fixed point) faster than that of S-iteration and Picard S-iteration processes, using numerical examples.

In this paper, we introduce a new iteration scheme (*N-iteration scheme*) and prove the convergence of the sequence generated by it to the fixed point of a fundamentally nonexpansive mapping T, when $F(T) \neq \emptyset$.

For x_0 in K, a nonempty convex subset of a uniformly convex metric space space,

where $\{\alpha_n\}$ is a real sequence in (0,1).

The convergence rate of the sequence generated by (1.4) is also compared to that of the sequence generated by (1.3), taking a numerical example.

2. Preliminaries

In this section, some preliminary definitions and results required for our subsequent discussion are presented, starting with the notion of convex metric space introduced by Takahashi [15] in 1970.

Definition 2.1. [15] A convex metric space (X, d, \mathcal{W}) is a metric space with a convex structure $\mathcal{W}: X \times X \times [0, 1] \longrightarrow X$ satisfying

$$d(z, \mathcal{W}(x, y, t)) \le td(z, x) + (1 - t)d(z, y)$$

for all x, y and z in X, and $t \in [0, 1]$.

Definition 2.2. [13] A convex metric space (X, d, W) is said to be uniformly convex if for any $\varepsilon > 0$, there exists $\alpha = \alpha(\varepsilon)$ such that, for all r > 0 and $x, y, z \in X$ with $d(z, x) \leq r$, $d(z, y) \leq r$ and $d(x, y) \geq r\varepsilon$,

$$d(z, \mathcal{W}(x, y, 1/2)) \le r(1 - \alpha) < r.$$

In 2012, Khan et al. [8] proved the following result for uniformly convex hyperbolic spaces which is also valid for uniformly convex metric spaces.

Lemma 2.1. [8] Let (X, d, W) be a uniformly convex hyperbolic metric space with monotone modulus of uniform convexity η . Let $z \in X$ and $\{t_n\}$ be a sequence in [a,b] for some $a,b \in (0,1)$. If $\{x_n\}$, $\{y_n\}$ are sequences in X such that $\limsup_{n\to\infty} d(x_n,z) \leq c$, $\limsup_{n\to\infty} d(y_n,z) \leq c$ and $\limsup_{n\to\infty} d(W(x_n,y_n,t_n),z) = c$ for some $c \geq 0$, then

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

In 2014, Ghoncheh and Razani [2] introduced a class of mappings called fundamentally nonexpansive mappings in a metric space (X, d) which generalizes Suzuki mappings, where a mapping $T: X \longrightarrow X$ is said to be fundamentally nonexpansive if

$$d(T^2x, Ty) \le d(Tx, y)$$

for all x and y in X. They showed that every mapping which satisfies condition C is fundamentally nonexpan-sive, but the converse is not true.

A mapping $T: X \longrightarrow X$ is said to be a fundamental contraction [5] if there exists a positive number k < 1 such that

$$d(T^2x, Ty) \le kd(Tx, y)$$

for all x and y in X.

Senter and Doston [12] defined the following condition to obtain a convergence result for nonexpansive mappings in metric spaces.

Definition 2.3. [12] Let K be a nonempty subset of a metric spaces (X, d). A mapping $T: K \longrightarrow K$ with $F(T) \neq \emptyset$ is said to satisfy Condition (I) if

there exists a non-decreasing function $f:[0,\infty) \longrightarrow [0,\infty)$ with f(0)=0, f(t)>0 for all $t\in(0,\infty)$ such that

$$f(d(x, F(T))) \le d(x, Tx)$$
 for all $x \in K$,

where
$$d(x, F(T)) = \inf \{d(x, p) : p \in F(T)\}.$$

The following is the definition of T-stability of iteration schemes given by Harder and Hicks [4].

Definition 2.4. [4] Let $T: X \longrightarrow X$ and w be a fixed point of T. For any $x_0 \in X$, let the sequence $\{x_n\}$ generated by the iteration scheme $x_{n+1} = \mu(T, x_n), n = 0, 1, 2, \ldots$ converges to w. Let $\{u_n\}$ be an arbitrary sequence, and set $\epsilon_n = d(u_{n+1}, x_{n+1})), n = 0, 1, 2, \ldots$ Then the iterative scheme $\mu(T, x_n)$ is called T-stable if and only if $\lim_{n \to \infty} \epsilon_n = 0$ implies $\lim_{n \to \infty} u_n = w$.

3. Convergence of N-iteration scheme

In this section, we obtain convergence results for the N-iteration scheme for fundamentally nonexpansive mappings T with $F(T) \neq \emptyset$, where $F(T) = \{x \in X : Tx = x\}$.

Lemma 3.1. Let K be a nonempty closed convex subset of a complete convex metric space (X, d, \mathcal{W}) and $T: X \longrightarrow X$ be a fundamentally non-expansive mapping with $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by (1.4). Then the sequence $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

Proof. For $w \in F(T)$, using (1.4) and the condition $d(T^2x, Ty) \leq d(Tx, y)$, one can easily show that

$$d(x_{n+1}) \le d(x_n, w), \qquad n = 0, 1, 2, \dots$$

Since the sequence of positive real numbers $\{d(x_n, w)\}$ is monotonically decreasing, it must be convergent, say to $\mu \geq 0$, and therefore,

$$d(x_m, x_n) \le d(x_m, w) + d(x_n, w) = 2\mu,$$

from which we conclude that $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(x_n, w)$ exists.

Let $\lim_{n\to\infty} d(x_n, w) = \mu \ge 0$. If $\mu = 0$, then $d(x_n, Tx_n) \le 2d(x_n, w)$ and taking the limit as $n \to \infty$, we get $\lim_{n\to\infty} d(x_n, Tx_n) = 0$.

If $\mu > 0$, since $d(Tx_n, w) \leq d(x_n, w)$, taking $\limsup as n \to \infty$, we get

$$\limsup_{n \to \infty} d(Tx_n, w) \le \mu.$$

Now, since $y_n = \mathcal{W}(Tz_n, z_n, \alpha_n)$ and $z_n = Tx_n$, we have

$$d(y_n, w) \le (1 - \alpha_n)d(Tz_n, w) + \alpha_n d(z_n, w) \le d(z_n, w) \le d(x_n, w)$$

and as in the above, we get

$$\lim_{n\to\infty} \sup d(y_n, w) \le \mu.$$

Since $d(x_{n+1}, w) = d(Ty_n, w) \le d(y_n, w)$, taking $\liminf as n \to \infty$, we get

$$\mu = \liminf_{n \to \infty} d(x_{n+1}, w) \le \liminf_{n \to \infty} d(y_n, w) \le \mu,$$

i.e.,

$$\lim_{n \to \infty} d(y_n, w) = \mu.$$

This implies that

$$\mu = \limsup_{n \to \infty} d(y_n, w) = \limsup_{n \to \infty} d\left(\mathcal{W}(Tz_n, z_n, \alpha_n), w\right)$$

$$\leq \lim \sup_{n \to \infty} \left\{ (1 - \alpha_n) d(Tz_n, w) + \alpha_n d(z_n, w) \right\}$$

$$\leq \lim \sup_{n \to \infty} \left\{ (1 - \alpha_n) d(Tx_n, w) + \alpha_n d(x_n, w) \right\}$$

$$= \lim \sup_{n \to \infty} d\left(\mathcal{W}(Tx_n, x_n, \alpha_n), w\right)$$

$$\leq \lim \sup_{n \to \infty} d\left(x_n, w\right) = \mu,$$
i.e.,

$$\lim_{n\to\infty}\sup \mathcal{W}(Tx_n,x_n,\alpha_n)=\mu.$$

It then follows from Lemma 2.1 that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. \square

Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly convex metric space (X, d, \mathcal{W}) and $T: X \longrightarrow X$ be a fundamentally nonexpansive mapping with $F(T) \neq \emptyset$. Then the sequence $\{x_n\}$ generated by (1.4) converges strongly to an element of F(T) if and only if $\liminf_{n\to\infty} d(x_n, F(T)) = 0$, where, $d(x_n, F(T)) = \inf_{w\in F(T)} d(x_n, w)$.

Proof. If $\{x_n\}$ defined by (1.4) strongly converges to a fixed point of T, then obviously $\liminf_{n\to\infty} d(x_n, F(T)) = 0$.

To show the sufficiency part, we first note that F(T) is closed. For, if $\{w_k\}$ is a sequence in F(T) which converges to some $w \in K$, then T is fundamentally nonexpansive, $d(w_n, Tw) = d(T^2w_n, Tw) \leq d(Tw_n, w) = d(w_n, w)$, and thus,

$$0 = \lim_{n \to \infty} d(w_n, w) \ge \lim_{n \to \infty} d(w_n, Tw) = d\left(\lim_{n \to \infty} w_n, Tw\right) = d(w, Tw),$$

showing that $w \in F(T)$, and hence F(T) is closed.

From the proof of Lemma 3.1 that $\lim_{n\to\infty} d(x_n,w)$ exists for all w in F(T) so that $d\left(x_{n+1},F(T)\right) \leq d\left(x_n,F(T)\right)$, which implies the sequence $\left\{d\left(x_n,F(T)\right)\right\}$ is non-increasing and bounded below, and so, $\liminf_{n\to\infty} d\left(x_n,F(T)\right)$ exists.

Since $\liminf_{n\to\infty} d\left(x_n, F(T)\right) = 0$, it follows that $\lim_{n\to\infty} d\left(x_n, F(T)\right) = 0$. Consider a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $d(x_{n_k}, w_k) < \frac{1}{2^k}$ for all $k \geq 1$ and $\{w_k\} \subseteq F(T)$. Then $d(x_{n_{k+1}}, w_k) \leq d(x_{n_k}, w_k), w_k) < \frac{1}{2^k}$ which implies

$$d(w_{k+1}, w_k) \le d(w_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, w_k) < \frac{1}{2^{k-1}},$$

showing that $\{w_k\}$ is a Cauchy sequence. Since F(T) is closed, $\{w_k\}$ converges in F(T). Let $\lim_{k\to\infty} w_k = w$. Then as $k\to\infty$,

$$d(x_{n_k}, w) \le d(x_{n_k}, w_k) + d(w_k, w) \longrightarrow 0,$$

showing that $\lim_{k\to\infty} d(x_{n_k}, w) = 0$. Now, since $\lim_{n\to\infty} d(x_n, w)$ exists, we must have

$$\lim_{n \to \infty} d(x_n, w) = 0,$$

as required. \square

Next, we prove a strong convergence result using the definition of condition (I) given by Senter and Doston [12] for metric spaces.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex metric space (X, d, \mathcal{W}) and $T: K \longrightarrow K$ be a fundamentally non-expansive mapping with $F(T) \neq \emptyset$. If T satisfies Condition (I), then the sequence defined by (1.4) converges strongly to some fixed point of T.

Proof. As in the proof of Theorem 3.2, F(T) is closed. We observe that by Lemma 3.1, $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. Since T satisfies Condition (I), we have

$$\lim_{n \to \infty} f(d(x_n, F(T))) \le \lim_{n \to \infty} d(x_n, Tx_n) = 0.$$

Since f is a non-decreasing function $f:[0,\infty) \longrightarrow [0,\infty)$ with f(0)=0, f(t)>0 for all $t\in(0,\infty)$,

$$\lim_{n\to\infty} d\left((x_n, F(T))\right) = 0.$$

The conclusion of the proof follows as in the proof of Theorem 3.2. \square Next, we prove a stability result for the iterative scheme (1.4).

Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly convex metric space (X, d, \mathcal{W}) and $T: X \longrightarrow X$ be a fundamental contraction mapping with $F(T) \neq \emptyset$. For $x_0 \in K$, let $\{x_n\}$ be the sequence generated by the iterative scheme $x_{n+1} = \mu(T, x_n), n \geq 0$ as defined in (1.4). Then the iteration scheme is T-stable if $\liminf_{n\to\infty} d(x_n, F(T)) = 0$ or T satisfies condition (I).

Proof. Let $\{u_n\}$ be an arbitrary sequence in K and $\varepsilon_n = d(u_n, x_{n+1}), n \ge 0$, where $x_{n+1} = \mu(T, x_n)$. Then, for $w \in F(T)$, we have

$$d(u_{n+1}, w) \le d(u_{n+1}, x_{n+1}) + d(x_{n+1}, w) = \varepsilon_n + d(x_{n+1}, w).$$

By Theorem 3.2 and Theorem 3.3, $\{x_n\}$ converges to a fixed point of T, i.e., $\lim_{n\to\infty} x_n = w$ and hence the result. \square

4. Numerical examples

In this section, some examples are considered.

Example 4.1. Consider the uniformly convex metric space (X, d, W), where $X = \mathbf{R}$, $W : X \times X \times [0, 1] : \longrightarrow X$ is defined by W(x, y, t) = tx + (1 - t)y and the metric d is given by

$$d(x,y) = \begin{cases} x+y, & x \neq y \\ 0, & x=y \end{cases}$$

Then K = [0, 1] is a closed convex subset of X. Consider the mapping $T : K \longrightarrow K$ defined by $Tx = x^2$ for all x in K. One can easily check that T is fundamentally nonexpansive and $F(T) \neq \emptyset$.

Consider f(t) = t, for all $t \ge 0$, then the mapping T satisfies condition (I) as

$$f\Big(d(x,F(T))\Big)=\inf\Big\{d(x,w):w\in F(T)\Big\}=x+0\leq x+x^2=d(x,Tx)$$

for all x in K. Thus all the conditions of Theorem 3.3 are satisfied and hence the convergence of the sequence generated by (1.4).

Now, the iteration (1.4) reduces to

$$\begin{cases} x_{n+1} &= Ty_n, \\ y_n &= (1 - \alpha_n)Tz_n + \alpha_n z_n, \\ z_n &= Tx_n \end{cases}$$

where $\{\alpha_n\}$ is a real sequence in (0,1), which can be written as

$$x_{n+1} = T\left((1 - \alpha_n)T^2x_n + \alpha_n Tx_n\right), \quad n = 0, 1, 2, \dots$$

Taking $\alpha_n = \frac{n+1}{3n+2}$ we generate and plot the graph of the sequence generated by (1.4) for the initial points $x_0 = 0.95$, 0.65 and 0.35.

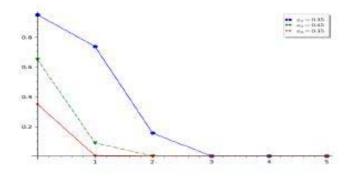


Figure 4.1: N-iteration with different initial points

n	$x_0 = 0.95$	$x_0 = 0.65$	$x_0 = 0.35$
1	0.73702761	0.09030212	0.00472699
2	0.15549611	0.00001090	7.98893E-11
3	0.00008897	1.98586E-21	5.72818E-42
4	8.28630E-18	2.05652E-84	1.42364E-166
5	6.01349E-70	2.28148E-336	5.23957E-665
6	1.62896E-278	3.37503E-1344	9.3883E-2659
7	8.62556E-1113	1.58945E-5375	9.51667E-10634
8	6.696895E-4450	7.7217E-21501	9.9235E-42534
9	2.41008E-17798	4.2598E-86002	1.1619E-170133
10	4.0117E-71192	3.9153E-344007	2.1677E-680533

From Table 1 and Fig. 4.1, it is seen that for any x_0 in K, the sequence $\{x_n\}$ generated by (1.4) converges to the fixed point 0 of T.

Next, we consider a numerical example and compare the convergence rate of N-iteration scheme (1.4) against that of M-iteration scheme (1.3).

Example 4.2. Consider the uniformly convex metric space (X, d, W), where $X = \mathbf{R}$ and $W : X \times X \times [0, 1] : \longrightarrow X$ is defined by W(x, y, t) = tx + (1 - t)y with the usual metric.

Let K be the closed convex subset [0,1] of X and $T: K \longrightarrow K$ be defined by $Tx = \frac{2}{3}x$ for all x in K. Then it is easily seen that T is fundamentally non-expansive and $F(T) \neq \emptyset$. Moreover, since $F(T) = \{0\}$ and T satisfies condition (I) for f(t) = t, the sequences $\{u_n\}$ and $\{x_n\}$ generated respectively by (1.3) and (1.4) both converges to 0, the fixed point of T.

Now, the iteration (1.3) reduces to

$$\left. \begin{array}{lll} x_{n+1} & = & Ty_n, \\ y_n & = & Tz_n, \\ z_n & = & (1-\alpha_n)x_n + \alpha_n Tx_n \end{array} \right\}$$

where $\{\alpha_n\}$ is a real sequence in (0,1), which may be written as

$$x_{n+1} = T^2 \Big((1 - \alpha_n) x_n + \alpha_n T x_n \Big), \quad n = 0, 1, 2, \dots$$

Taking $\alpha_n = \frac{n+1}{3n+2}$ we generate and plot the graph of the sequences generated by (1.3) and (1.4) for the initial point $x_0 = 0.75$.

n	N-iteration	M-iteration
2	0.0987654320987654	0.106995884773663
3	0.0347508001828989	0.040695016003658
4	0.0121686303670757	0.015253895455084
5	0.0042493629853280	0.005645941597439
6	0.0014812594284367	0.002068047307533
7	0.0005156977269372	0.000751047977717
8	0.0001793731224129	0.000270842657831
9	0.0000623462134882	0.000097103656711
10	0.0000216579438937	0.000034645377789

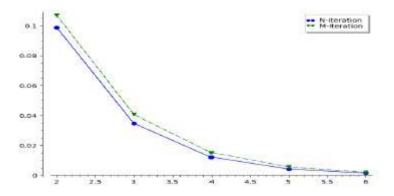


Figure 4.2: Rate of convergence

From Table 2 and Figure 4.2, we can see that the considered iteration converges to the fixed point of T faster than that of M-iteration.

Remark 1. It is interesting to note the following. Considering the following iteration scheme in the settings of Example 4.2. For x_0 in K,

$$\left. \begin{array}{rcl}
 x_{n+1} & = & (1 - \alpha_n) T y_n + \alpha_n y_n, \\
 y_n & = & T z_n, \\
 z_n & = & T x_n
 \end{array} \right\}$$

where $\{\alpha_n\}$ is a real sequence in (0,1).

Then with initial points $x_0 = 0.45$, $x_0 = 0.65$ and $x_0 = 0.75$, the sequences generated by (1.4) and (4.1) are identical.

The equivalence of the two iterations is however not obtained when taking $x_0 = 0.65$ with $Tx = x^2$.

References

- [1] R. P. Agarwal, D. O'Regan and D. R. Sahu, "Iterative construction of fixed points of nearly asymptotically nonexpansive mappings", *Journal of Nonlinear and Covnex Analysis*, vol. 8, no. 1, pp. 61-79, 2007. [On line]. Available: https://bit.ly/394pqds
- [2] S. J. H. Ghoncheh and A. Razani, "Fixed point theorems for some generalized nonexpansive mappings in Ptolemy spaces", *Fixed Point Theory and Applications*, vol. 2014, Art. ID. 76, 2014. doi: 10.1186/1687-1812-2014-76
- [3] N. Goswami, N. Haokip and V. N. Mishra, "An extended S-iteration scheme for G-contractive type mappings in b-metric space with graph", *International Journal of Analysis and Applications*, vol. 18, no. 1, pp. 33-49, 2020. [Online]. Available: https://bit.ly/3MbKUTf
- [4] A. M. Harder and T. L. Hicks, "A stable iteration procedure for nonexpansive mappings", *Math. Japon.*, vol. 33, no. 5, pp. 687-692, 1988.
- [5] N. Haokip, "Iterated F-contraction mappings in b-metric spaces", *Scientific Bulletin "Politehnica" University of Bucharest. Series A, Applied mathematics and physics (Online)*, vol. 83, no. 1, pp. 27-36, 2021. [Online]. Available: https://bit.ly/3zecoVj
- [6] S. Ishikawa, "Fixed points by new iteration method", *Proceeding of the American Mathematical Society*, vol. 44, pp. 147-150, 1974. doi: 10.1090/S0002-9939-1974-0336469-5
- [7] N. Kadioglu and I. Yildirim, "Approximating fixed points of non-expansive mappings by faster iteration process", 2014, arXiv:1402.6530v1

- [8] A. R. Khan, H. Fukhar-ud-din and M. A. Khan, "An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces", *Fixed Point Theory and Algorithms for Sciences and Engineering*, vol. 2012, Art. ID. 54, 2012. doi: 10.1186/1687-1812-2012-54
- [9] M. A. Krasnosel'ski, "Two remarks on the method of successive approximations", *Uspekhi Matematicheskikh Nauk*, vol. 10, no. 1, pp. 123-127, 1955.
- [10] W. R. Mann, "Mean value methods in iteration", *Proceeding of the American Mathematical Society, vol.* 4, pp. 506-510, 1953. doi: 10.1090/S0002-9939-1953-0054846-3
- [11] M. A. Noor, "New approximation schemes for general variational inequalities", *Journal of Mathematical Analysis and Applications*, vol. 251, pp. 217-229, 2000. doi: 10.1006/jmaa.2000.7042
- [12] H. F. Senter and W. G. Doston Jr., "Approximating fixed points of nonexpansive mappings", *Proceeding of the American Mathematical Society*, vol. 44, no.2, pp. 375-380, 1974. doi:10.1090/S0002-9939-1974-0346608-8
- [13] T. Shimizu and W. Takahashi, "Fixed points of multivalued mappings in certain convex metric spaces", *Topological Methods in Nonlinear Analysis*, vol. 8, no. 1, pp. 197-203, 1996. [Online]. Available: https://bit.ly/3PThAnw
- [14] T. Suzuki, "Fixed point theorems and convergence theorems for some generalized nonexpansive mappings", *Journal of Mathematical Analysis and Applications*, vol. 340, no.2, pp. 1088-1095, 2008. doi: 10.1016/j.jmaa. 2007.09.023
- [15] W. Takahashi, "A convexity in metric spaces and nonexpansive mappings. I", *Kodai Mathematical Seminar Reports,* vol. 22, no. 2, pp. 142-149, 1970. doi: 10.2996/kmj/1138846111
- [16] K. Ullah and M. Arshad, "Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process", *Filomat*, vol. 32, no. 1, pp. 187-196, 2018. doi: 10.2298/FIL1801187U

Nehjamang Haokip

Department of Mathematics, Churachandpur College, Manipur 795128, India

e-mail: mark02mm@yahoo.co.in