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Abstract

Let R be a commutative ring with non-zero unity and M be a uni-
tary R-module. Let T (M) be the set of torsion elements of M . Atani
and Habibi [6] introduced the total torsion element graph of M over
R as an undirected graph T (Γ(M)) with vertex set as M and any two
distinct vertices x and y are adjacent if and only if x + y ∈ T (M).
The main objective of this paper is to study the domination properties
of the graph T (Γ(M)). The domination number of T (Γ(M)) and its
induced subgraphs Tor(Γ(M)) and Tof(Γ(M)) has been determined.
Some domination parameters of T (Γ(M)) are also studied. In partic-
ular, the bondage number of T (Γ(M)) has been determined. Finally,
it has been proved that T (Γ(M)) is excellent, domatically full and well
covered under certain conditions.
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1. Introduction

The study of graphs associated to algebraic structures has become an ex-
citing research topic in the last two decades, leading to many fascinating
results and questions. Many fundamental papers assigning graphs to rings
and modules have appeared recently, for instance see,[1,2,4,7,19]. In 2008,
Anderson and Badawi [3] have introduced the total graph of a commuta-
tive ring and later on this notion has been generalised to many algebraic
structures, in particular to module over a commutative ring (see [10,11]).

The concepts of dominating sets and domination numbers play a vital
role in graph theory. Dominating sets are the focus of many books of graph
theory, for example see [14] and [15]. But not much research has been done
on the domination parameters of graphs associated to algebraic structures
such as groups, rings, modules in terms of algebraic properties. However,
some works on domination of graphs associated to rings and modules have
appeared recently, for instance see,[9,12,17,18,20,21].

The study of the torsion elements is one of the important aspects of
module theory. Atani and Habibi [6] have generalised the notion of total
graph introduced by Anderson and Badawi [3] by introducing the total
torsion element graph of a module M over a commutative R, denoted by
T (Γ(M)), to be an undirected graph with all elements of M as vertices,
and for distinct x, y ∈ M , the vertices x and y are adjacent if and only if
x+y ∈ T (M). Let Tor(Γ(M)) be the (induced) subgraph of T (Γ(M)), with
vertices T (M), and let Tof(Γ(M)) be the (induced) subgraph of T (Γ(M))
with vertices Tof(M). They have studied the characteristics of T (Γ(M))
and its two induced subgraphs Tor(Γ(M)) and Tof(Γ(M)) by considering
two cases, T (M) is a submodule of M or is not a submodule of M .

In this paper an attempt has been made to study the domination prop-
erties of the graph T (Γ(M)). The domination number of T (Γ(M)) and
its induced subgraphs Tor(Γ(M)) and Tof(Γ(M)) has been determined.
Some domination parameters of T (Γ(M)) has been studied. The bondage
number of T (Γ(M)) has also been determined. Finally, it has been proved
that T (Γ(M)) is excellent, domatically full and well covered under certain
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conditions.

2. Preliminaries

In this section, we recall the definitions,concepts and results which is needed
in the later sections.

Throughout this paper, R is a commutative ring with non-zero unity
and M is an unitary R-module, unless otherwise specified. An element a
of a commutative ring R is called a zero-divisor of R if ab = 0 for some
non-zero element b of R. Let Z(R) be the set of zero-divisors of R. Let
T (M) = {m ∈ M |rm = 0 for some 0 6= r ∈ R} be the set of torsion
elements of M . Let T (M)∗ be the set of non-zero torsion elements of M .
So, if R is an integral domain, then T (M) is a submodule of M . Let
Tof(M) =M − T (M) be the set of non-torsion elements of M . A module
M is called torsion module if T (M) =M . On the other hand, a moduleM
is called torsion-free if T (M) = {0}. For a submodule N of M , we denote
by (N :R M) the set of all r in R such that rM ⊆ N . The annihilator of
M denoted by AnnR(M) is (0 :R M). For any undefined terminology in
rings and modules we refer to [5,16].

By a graph G, we mean a simple undirected graph without loops. For
a graph G, we denote by V (G) and E(G) the set of all vertices and edges
respectively. We recall that a graph is finite if both V (G) and E(G) are
finite sets, and we use the symbol |G| to denote the number of vertices in
the graph G. We say that G is a null graph if E(G) = φ. A subgraph
of G is a graph having all of its vertices and edges in G. A spanning
subgraph of G contains all vertices of it. For any set S of vertices of G, the
induced subgraph < S > is the maximal subgraph of G with vertex set S.
Two vertices x and y of a graph G are connected if there is a path in G
connecting them. Also, a graph G is connected if there is a path between
any two distinct vertices. A graph G is disconnected if it is not connected.
A graph G is complete if any two distinct vertices are adjacent. We denote
the complete graph on n vertices by Kn. A complete subgraph of G is
called a clique. A maximum clique of G is a clique with largest number
of vertices. The number of vertices in a maximum clique of G is called
the clique number of G and it is denoted by ω(G). If the vertex set V (G)
of the graph G are partitioned into two non-empty disjoint sets X and Y
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of cardinality |X| = m and |Y | = n, and two vertices are adjacent if and
only if they are not in the same partite set, then G is called a bipartite
graph. A graph G is called a complete bipartite graph if every vertex in
X is connected to every vertex in Y . We denote the complete bipartite
graph on m and n vertices by Km,n. For vertices x, y ∈ G one defines the
distance d(x, y), as the length of the shortest path between x and y, if the
vertices x, y ∈ G are connected and d(x, y) =∞, if they are not. Then, the
diameter of the graph G is

diam(G) = sup{d(x, y)|x, y ∈ G}.

The cycle is a closed path which begins and ends in the same vertex.
The cycle of n vertices is denoted by Cn. The girth of the graph G,denoted
by gr(G) is the length of the shortest cycle in G and gr(G) = ∞ if G has
no cycles.

For a subset S ⊆ V , < S > denotes the subgraph of G induced by S.
For a vertex v ∈ V , deg(v) is the degree of the vertex v, N(v) = {u ∈ V | u
is adjacent to v} and N [v] = N(v) ∪ {v}. A subset S of V is called a
dominating set if every vertex in V − S is adjacent to at least one vertex
in S. A dominating set S is called a strong(or weak) dominating set if for
every vertex u ∈ V − S there is a vertex v ∈ S with deg(v) ≥ deg(u) (or
deg(v) ≤ deg(u)) and u is adjacent to v. The domination number γ(G) of
G is defined to be minimum cardinality of a dominating set in G and such
a dominating set is called γ-set of G. If G is a trivial graph, then γ(G) = 0.
In a similar way, we define the strong domination number γs and the weak
domination number γw. A graph G is called excellent if for every vertex
v ∈ V , there exists a γ-set S containing v. A domatic partition of G is a
partition of V into dominating sets in G. The maximum number of classes
of a domatic partition ofG is called the domatic number ofG and is denoted
by d(G). A graph G is called domatically full if d(G) = δ(G) + 1, which
is the maximum possible order of a domatic partition of V (G) and δ(G)
is the minimum degree of a vertex of G. The disjoint domination number
γγ(G) defined by γγ(G) =min{|S1| + |S2| : S1, S2 are disjoint dominating
sets of G}. Similarly, we can define ii(G) and γi(G). The double domi-
nation parameters are referred to [13]. The bondage number b(G) is the
minimum number of edges whose removal increases the domination num-
ber. A set of vertices S ⊆ V is said to be independent if no two vertices
in S are adjacent in G. The independence number β0(G), is the maximum
cardinality of an independent set in G. The minimum cardinality i(G) of a
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maximal independent set of a graph G is called the independent domination
number of G. A graph G is called well-covered if β0(G) = i(G). For basic
definitions and results in domination we refer to [14] and for any undefined
graph-theoretic terminology we refer to [8].

Now we summarize some results on domination number and bondage
number of a graph which will be useful for the later sections.

Lemma 2.1:[8]

(i) If G is a graph of order n, then 1 ≤ γ(G) ≤ n. A graph G of order
n has domination number 1 if and only if G contains a vertex v of
degree n− 1; while γ(G) = n if and only if G ∼= Kn.

(ii) γ(Kn) = 1 for a complete graph Kn, but the converse is not true, in
general and γ(Kn) = n for a null graph Kn.

(iii) LetG be a complete r-partite graph (r ≥ 2) with partite sets V1, V2, ..., Vr.
If |Vi| ≥ 2 for 1 ≤ i ≤ r, then γ(G) = 2; because one vertex of V1 and
one vertex of V2 dominate G. If |Vi| = 1 for some i, then γ(G) = 1.

(iv) γ(K1,n) = 1 for a star graph K1,n.

(v) If G is a partition of disjoint subgraphs G1, G2, ..., Gk, then γ(G) =
γ(G1) + γ(G2) + ...+ γ(Gk).

(vi) Domination number of a bistar graph is 2; because the set consisting
of two centres of the graph is a minimal dominating set.

(vii) Let Cn and Pn be a n-cycle and a path with n vertices, respectively.

Then γ(Cn) = d
n

3
e = γ(Pn).

Lemma 2.2:[15]

(i) If G is a simple graph of order n, then 1 ≤ b(G) ≤ n− 1.

(ii) b(Kn) = n− 1 for a complete graph Kn, but the converse is not true,
in general and b(Kn) = 0 for a null graph Kn.

(iii) Let G be a complete r-partite graph with partite sets V1, V2, ..., Vr.
Then b(G) = min{|V1|, |V2|, ..., |Vr|}. In particular, b(Km,n) = min{m,n}.
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(iv) If G is a partition of disjoint subgraphs G1,G2, ...,Gk, then b(G) =
min{b(G1), b(G2), ..., b(Gk)}.

(v) Let Cn and Pn be a n-cycle and a path with n vertices, respectively.
Then b(Pn) = 1 and b(Cn) = 2.

3. Domination number of T (Γ(M)) and induced subgraphs

In this section, an attempt has been made to study the domination prop-
erties of the graph T (Γ(M)). In particular, the domination number of
T (Γ(M)) and its induced subgraphs Tor(Γ(M)) and Tof(Γ(M)) have been
determined.

We begin with the following examples.

Example 3.1:
Let R = Z4 and M = Z8. Then M is an R-module with the usual op-
erations, and T (M) = {0, 4} is a submodule of M . Therefore Tof(M) =
{1, 2, 3, 5, 6, 7}.
Now we can easily observe that the induced subgraphs Tor(Γ(M)) is a
complete graph K2 and Tof(Γ(M)) is a disjoint union of a 4-cycle and
K2. Thus, we have γ(Tor(Γ(M))) = γ(K2) = 1 and γ(Tof(Γ(M))) =

γ(C4 ∪K2) = γ(C4) + γ(K2) = d
4

3
e+ 1 = 2 + 1 = 3.

Also, we can see that the total graph T (Γ(M)) is the disjoint union of a
4-cycle and two disjoint K2’s. Hence, we have γ(T (Γ(M))) = γ(C4 ∪K2 ∪
K2) = γ(C4) + γ(K2) + γ(K2) = d

4

3
e+ 1 + 1 = 2 + 1 + 1 = 4.

Example 3.2:
Let R = Z8 and M = Z4. Then M is an R-module with the usual opera-
tions, and T (M) = {0, 2, 3}. Thus Tof(M) = {1}.
Now we can see that the induced subgraphs Tor(Γ(M)) is a star graph
K1,2 and Tof(Γ(M)) contains only an isolated vertex. Thus, we have
γ(Tor(Γ(M))) = γ(K1,2) = 1 and γ(Tof(Γ(M))) = γ(K1) = 1.
Also, we observe that the total graph T (Γ(M)) is a complete bipartite
graph K2,2. Hence, we have γ(T (Γ(M))) = γ(K2,2) = 2.

Theorem 3.3:
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Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then the following hold:

(1) The graph T (Γ(M)) is complete if and only if T (M) =M .

(2) The graph T (Γ(M)) is null if and only if T (M) = {0} and |M | ≥ 2.

Proof.

(1) If T (M) = M , then for any two vertices x, y ∈ M , one has x + y ∈
T (M). Therefore, they are adjacent in T (Γ(M)). On the other hand,
if T (Γ(M)) is complete, then every vertex is adjacent to 0. Thus,
x = x+ 0 ∈ T (M) for each m ∈M , from which the claim follows.

(2) If T (Γ(M)) is null, then for every 0 6= x ∈ M , x = x+ 0 ∈ Tof(M).
So T (M) = {0}.
On the other hand, if T (M) = {0}, then x+ y /∈ T (M) for any pair
of distinct elements x, y ∈M . Thus T (Γ(M)) is null.

2

The condition of the theorem 3.3(1) is necessarily fulfilled ifAnnR(M) 6=
{0}. let us observe the following examples.

Example 3.4:
Let R = Zn × Zm and M = Zn an R-module defined by (a, b).m = am.
Then AnnR(M) 6= {(0, 0)} since (0, b) ∈ AnnR(M) for every b ∈ Zm. Thus,
T (Γ(M)) is complete and consequently γ(T (Γ(M))) = 1.

Example 3.5:
Every finite Abelian groupM is a torsion Z-module. In particular, if R = Z
and M = Zn, an R-module with usual multiplication, then T (Γ(M)) ∼= Kn

and consequently γ(T (Γ(M))) = 1.

Theorem 3.6:[6]
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then the following hold:

(1) Tor(Γ(M)) is a complete (induced) subgraph of T (Γ(M)) and Tor(Γ(M))
is disjoint from Tof(Γ(M)).

(2) If N is a submodule of M , then T (Γ(N)) is the (induced) subgraph
of T (Γ(M)).
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(3) If AnnR(M) 6= {0}, then T (Γ(M)) is a complete graph.

The following proposition is an immediate observation of the above
theorems.

Proposition 3.7:
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then the following hold:

(1) γ(T (Γ(M))) = 1 if T (M) =M .

(2) γ(T (Γ(M))) = |M | if and only if T (M) = {0} and |M | ≥ 2.

(3) γ(Tor(Γ(M))) = 1.

(4) If AnnR(M) 6= {0}, then γ(T (Γ(M))) = 1.

Corollary 3.8:
Let M be a torsion R-module, then γ(T (Γ(M))) = 1.

Proof. This is obvious asM being torsion, we have T (M) =M and the
result follows from proposition 3.7(1). 2

The next theorem gives a complete description of T (Γ(M)). We allow

α, β to be infinite, then of course β − 1 = (β − 1)
2

= β.

Theorem 3.9:[6]
Let M be a module over a commutative ring R such that T (M) is a sub-

module of M , |T (M)| = α and | M

T (M)
| = β.

(1) If 2 = 1R+1R ∈ Z(R) then Tof(Γ(M)) is the union of β− 1 disjoint
Kα’s.

(2) If 2 = 1R+1R /∈ Z(R) then Tof(Γ(M)) is the union of
β − 1
2

disjoint

Kα,α’s.

Example 3.10:
Let R be a ring and M = R⊕R a module over R.

(1) If R = Z4, then T (Γ(M)) is a union of 4 disjoint complete graphs K4.
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(2) If R = Z9, then T (Γ(M)) is a disjoint union of one complete graph
K9 and 4 bipartite graphs K9,9.

Proposition 3.11:
Let M be a module over a commutative ring R such that T (M) is a sub-

module of M , |T (M)| = α and | M

T (M)
| = β, then γ(T (Γ(M))) = β.

Proof. Let us consider the following two cases for Z(R).

Case 1: Suppose that 2 = 1R + 1R ∈ Z(R). Then we have from the-
orem 3.9(1) that the graph Tof(Γ(M)) is the union β − 1 disjoint Kα’s
and we know that γ(Kα) = 1. Thus γ(Tof(Γ(M))) = β − 1. But
Tor(Γ(M)) is complete by theorem 3.6(1), so γ(Tor(Γ(M))) = 1. Also
by theorem 3.6(1), Tor(Γ(M)) is disjoint from Tof(Γ(M)). consequently,
γ(T (Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M))) = 1 + β − 1 = β.

Case 2: Suppose that 2 = 1R + 1R /∈ Z(R). Then again we have from

theorem 3.9(2) that the graph Tof(Γ(M)) is the union of
β − 1
2

disjoint

Kα,α’s and we know that γ(Kα,α) = 2. Thus γ(Tof(Γ(M))) =
β − 1
2

×2 =
β−1. But Tor(Γ(M)) is complete by theorem 3.6(1), so γ(Tor(Γ(M))) = 1.
Also by theorem 3.6(1), Tor(Γ(M)) is disjoint from Tof(Γ(M)). Therefore,
γ(T (Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M))) = 1 + β − 1 = β. 2

Proposition 3.12:
Let M be a non-zero torsion-free module over a commutative ring R such

that | M

T (M)
| = β, then γ(T (Γ(M))) =

β + 1

2
.

Proof. Since M is torsion-free, so we have T (M) = {0}. Therefore,
| M

T (M)
| = |M | = β. Now, we show that Z(R) = {0}. Let 0 6= x ∈ Z(R),

then there exist 0 6= y ∈ R such that xy = 0. Let us consider an el-
ement 0 6= m ∈ M , and we have (xy)m = 0 which yields x(ym) = 0.
Then ym = 0 as x 6= 0 which yields either y = 0 or m = 0, a con-
tradiction. Therefore, Z(R) = 0. So, 2 = 1R + 1R /∈ Z(R) and from

theorem 3.9(2) we have the graph Tof(Γ(M)) is the union of
β − 1
2

dis-

joint K1,1’s. Thus γ(Tof(Γ(M))) =
β − 1
2

× 1 = β − 1
2

. But Tor(Γ(M))
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is complete by theorem 3.6(1), so γ(Tor(Γ(M))) = 1. Also by theorem
3.6(1), Tor(Γ(M)) is disjoint from Tof(Γ(M)). Therefore we will have

γ(T (Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M))) = 1 +
β − 1
2

=
β + 1

2
. 2

Theorem 3.13:[6]
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M with M − T (M) 6= ∅. Then

(1) Tof(Γ(M)) is complete if and only if either | M

T (M)
| = 2 or | M

T (M)
| =

|M | = 3.

(2) Tof(Γ(M)) is connected if and only if either | M

T (M)
| = 2 or | M

T (M)
| =

3.

(3) Tof(Γ(M)) ( and hence Tor(Γ(M))) and T (Γ(M)) are totally dis-
connected if and only if T (M) = {0} and 2 ∈ Z(R).

Theorem 3.14:[6]
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then

(1) diam(Tof(Γ(M))) = 0 if and only if T (M) = {0} or |M | = 2.

(2) diam(Tof(Γ(M))) = 1 if and only if either T (M) 6= {0} and | M

T (M)
| =

2 or T (M) = {0} and |M | = 3.

(3) diam(Tof(Γ(M))) = 2 if and only if T (M) 6= {0} and | M

T (M)
| = 3.

(4) Otherwise, diam(Tof(Γ(M))) =∞.

Note that m + 0 ∈ T (M) for each m ∈ T (M) − {0}. So 0 is adjacent
to any vertex of T (M)− {0} in Tor(Γ(M)). Thus, S = {0} is a containing
set for Tor(Γ(M)) and hence γ(Tor(Γ(M))) = 1.

We now establish a relationship between the domination number of T (Γ(M))
and the same of Tof(Γ(M)).

Proposition 3.15:
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then the following are equivalent:
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(1) γ(T (Γ(M))) = 2.

(2) γ(Tof(Γ(M))) = 1.

(3) | M

T (M)
| = 2 or | M

T (M)
| = |M | = 3.

Proof. (1)⇔ (2):
Since T (M) is a submodule of M , so by theorem 3.6(1), Tor(Γ(M)) and
Tof(Γ(M)) are disjoint and Tor(Γ(M)) is complete. Therefore, γ(Tor(Γ(M))) =
1 and hence γ(T (Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M))) which yields
γ(T (Γ(M))) = 1 + γ(Tof(Γ(M))).

(2)⇒ (3):
Suppose γ(Tof(Γ(M))) = 1. Then clearly Tof(Γ(M)) is connected. If

2 ∈ Z(R), then β−1 = 1 and hence β = 2, where β = | M

T (M)
|, by theorem

3.9(1). Thus | M

T (M)
| = 2.

If 2 /∈ Z(R), then
β − 1
2

= 1 and so β = | M

T (M)
| = 3, by theorem

3.9(2). Also, by assumption, α = |T (M)| = 1 and hence T (M) = {0}.
Thus | M

T (M)
| = |M | = 3.

(3)⇒ (2):

Assume | M

T (M)
| = 2 or | M

T (M)
| = |M | = 3. Then by theorem 3.13(1),

Tof(Γ(M)) is complete and hence γ(Tof(Γ(M))) = 1. 2

In the following a relationship between diameter and domination num-
ber of Tof(Γ(M)) has been established.

Corollary 3.16:
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then

(1) diam(Tof(Γ(M))) = 1 if and only if γ(Tof(Γ(M))) = 1.

(2) diam(Tof(Γ(M))) = 2 if and only if γ(Tof(Γ(M))) = 2.
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Proof. (1) It is clear by theorem 3.14(2) and proposition 3.15.

(2) If diam(Tof(Γ(M))) = 2, then T (M) 6= {0} and | M

T (M)
| = 3, by

theorem 3.14(3). Hence Tof(Γ(M)) is connected, by theorem 3.13(2).
Therefore Tof(Γ(M)) is a complete bipartite graph Kα,α with α ≥ 2. So
γ(Tof(Γ(M))) = 2.
Conversely, if γ(Tof(Γ(M))) = 2, then Tof(Γ(M)) is the union of twoKα’s
or is a complete bipartite graph Kα,α with α ≥ 2, by theorem 3.9(1) and

theorem 3.9(2). So β−1 = 2 or β − 1
2

= 1. In either case, | M

T (M)
| = 3 and

|T (M)| ≥ 2. Thus |T (M)| 6= {0} and diam(Tof(Γ(M))) = 2, by theorem
3.14(3). 2

4. Bondage number of T (Γ(M))

In this section, the bondage number of the graph T (Γ(M)) has been studied.
We begin with the following proposition.

Proposition 4.1:
Let M be a module over a commutative ring R such that T (M) is a sub-

module of M , |T (M)| = α and | M

T (M)
| = β. Then b(T (Γ(M))) = α− 1.

Proof. Suppose that 2 = 1R + 1R ∈ Z(R). Then, by theorem 3.9(1),
the graph Tof(Γ(M)) is the union of β − 1 disjoint Kα’s and we know
that b(Kα) = α − 1. Hence b(Tof(Γ(M))) = α − 1. Also T (M) is a
submodule of M , so Tor(Γ(M)) is complete, by theorem 3.6(1). Thus,
b(Tor(Γ(M))) = α − 1. On the other hand, Tor(Γ(M)) and Tof(Γ(M))
are disjoint, by theorem 3.6(1). Therefore, b(T (Γ(M))) = α− 1.

Now, suppose that 2 = 1R + 1R /∈ Z(R). Then, by theorem 3.9(2),

Tof(Γ(M)) is the union of
β − 1
2

disjointKα,α’s and we know that b(Kα,α) =

α. Thus b(Tof(Γ(M))) = α. But Tor(Γ(M)) is complete and disjoint from
Tof(Γ(M)), by theorem 3.6(1). So, b(Tor(Γ(M))) and hence b(T (Γ(M)))
is equal to α− 1. 2

Example 4.2:



On domination in the total torsion element graph of a module 807

(i) If T (Γ(M)) is complete, then b(T (Γ(M))) = n− 1. But T (M) =M ,
by theorem 3.3(1). So, b(T (Γ(M))) = |T (M)|− 1.

(ii) If γ(G) = |V (G)|, then b(G) = 0. So, by proposition 3.3(2), if
T (M) = 0 and |M | ≥ 2, then b(T (Γ(M))) = 0.

(iii) If M be a R-module such that T (M) is a submodule of M , then
b(Tor(Γ(M))) = |T (M)|− 1.

Theorem 4.3:[6]
Let M be a module over a commutative ring R such that T (M) is a sub-
module of M . Then the following hold:

(1)(a) gr(Tof(Γ(M))) = 3 if and only if 2 ∈ Z(R) and |T (M)| ≥ 3.

(1)(b) gr(Tof(Γ(M))) = 4 if and only if 2 /∈ Z(R) and |T (M)| ≥ 2.

(1)(c) Otherwise, gr(Tof(Γ(M))) =∞.

(2)(a) gr(T (Γ(M))) = 3 if and only if |T (M)| ≥ 3.

(2)(b) gr(T (Γ(M))) = 4 if and only if 2 /∈ Z(R) and |T (M)| = 2.

(2)(c) Otherwise, gr(T (Γ(M))) =∞.

In the following a relationship between girth and bondage number of
Tof(Γ(M)) has been established.

Proposition 4.4:
Let M be a module over a commutative ring R such that T (M) is a sub-

module of M , |T (M)| = α and | M

T (M)
| = β. Then

(1) gr(Tof(Γ(M))) = 3 if and only if b(Tof(Γ(M))) = α−1 and |T (M)| ≥
3.

(2) gr(Tof(Γ(M))) = 4 if and only if b(Tof(Γ(M))) = α and |T (M)| ≥
2.
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Proof.

(1) If gr(Tof(Γ(M))) = 3, then 2 ∈ Z(R) and |T (M)| ≥ 3, by theorem
4.3(1)(a). Since 2 ∈ Z(R) so Tof(Γ(M)) is the union of β−1 disjoint
Kα’s, by theorem 3.9(1). Therefore, b(Tof(Γ(M))) = α− 1.

Now assume that b(Tof(Γ(M))) = α − 1 and |T (M)| ≥ 3. If 2 /∈
Z(R), then Tof(Γ(M)) is the union of

β − 1
2

disjoint Kα,α’s, by the-

orem 3.9(2) and hence b(Tof(Γ(M))) = α, a contradiction by as-
sumption. Therefore 2 ∈ Z(R), and then gr(Tof(Γ(M))) = 3, by
theorem 4.3(1)(a).

(2) If gr(Tof(Γ(M))) = 4, then 2 /∈ Z(R) and |T (M)| ≥ 2, by theorem
4.3(1)(b). So b(Tof(Γ(M))) = α, by the same argument to above.
Now, let b(Tof(Γ(M))) = α and |T (M)| ≥ 2. If 2 ∈ Z(R), then
b(Tof(Γ(M))) = α − 1, by theorem 3.9(1), a contradiction. So 2 /∈
Z(R). Therefore, Tof(Γ(M)) is the union of Kα,α’s, where α ≥ 2.
Thus gr(Kα,α) and hence gr(Tof(Γ(M))) is equal to 4.

2

5. When is T (Γ(M)) is excellent, domatically full and well
covered ?

In this section, some domination parameters of T (Γ(M)) has been studied.
It has been proved that T (Γ(M)) is excellent, domatically full and well
covered under some conditions.

We begin with the following proposition.

Proposition 5.1:
LetM be a module over a commutative ring R such that T (M) is a submod-

ule of M , |T (M)| = α 6= 0 and | M

T (M)
| = β. A set S = {x1, x2, ..., xβ} ⊂

V (T (Γ(M))) is a γ-set of T (Γ(M)) if and only if xj /∈ xi + T (M) for all
1 ≤ i, j ≤ β and i 6= j.

Proof. If part follows directly from proposition 3.11 as γ(T (Γ(M))) = β.
Conversely, let S be a γ-set of T (Γ(M)). Let us assume that there exist
j, k ∈ {1, 2, ..., β} such that xj ∈ xk+T (M). Since |S| = β, so there exist a
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coset x+ T (M) such that xi /∈ x+ T (M) for all xi ∈ S. Now, the vertices
in −x+ T (M) cannot be dominated by S, a contradiction. 2

Theorem 5.2:[11]
Let x be a vertex of the graph T (Γ(M)). Then

deg(x) =

(
|T (M)|− 1, if 2 ∈ Z(R) or x ∈ T (M)
|T (M)|, otherwise.

Proposition 5.3:
Let M be a module over a commutative ring R such that T (M) is a sub-

module of M , |T (M)| = α 6= 0 and | M

T (M)
| = β, then

(1) T (Γ(M)) is excellent.

(2) the domatic number d(T (Γ(M))) = α.

(3) T (Γ(M)) is domatically full.

Proof. The proof for (1) and (2) are trivial.
(3) By (2) we have d(T (Γ(M))) = α = |T (M)|. Also, we have by the-
orem 5.2 that δ(T (Γ(M))) = |T (M)| − 1 = α − 1. Therefore, we have
d(T (Γ(M))) = δ(T (Γ(M))) + 1. Hence, T (Γ(M)) is domatically full. 2

Theorem 5.4:[6]
Let M be a module over a commutative ring R such that T (M) is not a
submodule ofM . Then T (Γ(M)) is connected if and only ifM =< T (M) >
(that is, M =< a1, a2, ...., ak > for some a1, a2, ...., ak ∈ T (M)).

Lemma 5.5:
Let M be a module over a commutative ring R and N be a maximum

annihilator submodule in M such that |N | = α 6= 0 and |M
N
| = β. If

γ(T (Γ(M))) = µ, then the set S = {x1, x2, ..., xµ} ⊂ V (T (Γ(M))) is a
γ-set of T (Γ(M)) where xj /∈ xi +N for all 1 ≤ i, j ≤ β and i 6= j.

Proposition 5.6:
Let M be a module over a commutative ring R. If T (M) is not a sub-
module of M , M =< T (M) > (that is, M is generated by T (M)) and
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γ(T (Γ(M))) = µ,
then γt(T (Γ(M))) = γc(T (Γ(M))) = µ.

Proof. If T (M) is not a submodule of M and M =< T (M) >, then
by theorem 5.4, T (Γ(M)) is connected. Let N be a maximum annihilator
submodule in M and x1 ∈ N . Since T (Γ(M)) is connected, there exists a
vertex x2 ∈ a1 +N for some a1 ∈ M −N such that x2 is adjacent to x1.
Again by connectedness of T (Γ(M)), there exists a coset a2 +N for some
a2 /∈ N as well as a2 /∈ a1 +N such that at least one element of a2 +N is
adjacent to either a vertex in N or in a1 +N , say N .

If there exists an element a ∈ ai+N which is adjacent to some b ∈ aj+N
with a /∈ aj+N , then each vertex in ai+N is adjacent to at least one vertex
in aj +N . For, if a+ b = c for some c ∈ T (M), then c ∈ ai + aj +N . Let
d1 ∈ ai+N and take d2 ∈M such that d1+ d2 = c. From this d2 ∈ aj +N
and d1 is adjacent to d2. Therefore, each vertex in ai+N is adjacent to at
least one vertex in aj +N .

Thus x1 is adjacent to some vertex x3 ∈ a2 + N . Similarly, we can
choose coset representatives xi, for 4 ≤ i ≤ µ, in distinct cosets of N in M
other than N , a1+N and a2+N such that < x1, x2, ...., xµ >⊆ T (Γ(M)) is
connected. Then by lemma 5.5, {x1, x2, ..., xµ} is a γc-set of T (Γ(M)) and so
γc(T (Γ(M))) = µ. Since, for any graph G, we have γ(G) ≤ γt(G) ≤ γc(G),
so γt(T (Γ(M))) = µ. 2

Lemma 5.7:
Let M be a finite module over a commutative ring R such that T (M) is a

submodule of M , |T (M)| = α and | M

T (M)
| = β. Then

T (Γ(M)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Kα ∪Kα ∪Kα ∪ ... ∪Kα| {z }
(β−1)copies

,if 2 ∈ Z(R)

Kα ∪Kα,α ∪Kα,α ∪ ... ∪Kα,α| {z }
(
β − 1
2

)copies

, if 2 /∈ Z(R).

Proof. It follows from theorem 3.9 directly. 2
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Proposition 5.8:
Let M be a finite module over a commutative ring R such that T (M) is

a submodule of M , |T (M)| = α and | M

T (M)
| = β. Then T (Γ(M)) is well

covered.

Proof. If 2 ∈ Z(R), then by lemma 5.7 we have i(T (Γ(M))) = β.
If 2 /∈ Z(R), then all the vertices in one partition of Kα,α together with a

vertex of T (M), form an i-set of T (Γ(M)) and so i(T (Γ(M))) = (
β − 1
2

)α+

1. Similarly β0(T (Γ(M))) is same as i(T (Γ(M))). Thus

i(T (Γ(M))) = β0(T (Γ(M))) =

⎧⎨⎩ β, if 2 ∈ Z(R)

(
β − 1
2

)α+ 1, otherwise.

Hence, T (Γ(M)) is well covered. 2

Corollary 5.9:
Let M be a finite module over a commutative ring R such that T (M) is a
submodule of M and |T (M)| = α, then ω(T (Γ(M))) = α.

As proved above, we can prove the following.

Proposition 5.10:
Let M be a finite module over a commutative ring R such that T (M) is a

submodule of M , |T (M)| = α and | M

T (M)
| = β. Then

(1)

γt(T (Γ(M))) =

(
2β, if 2 ∈ Z(R)
β + 1, otherwise.

.

(2) γs(T (Γ(M))) = γw(T (Γ(M))) = β.

(3) γp(T (Γ(M))) = β.

Proposition 5.11:
Let M be a finite module over a commutative ring R such that T (M) is a

submodule of M , |T (M)| = α and | M

T (M)
| = β. Then



812 Jituparna Goswami and Moytri Sarmah

(1) γγ(T (Γ(M))) = 2β.

(2)

γi(T (Γ(M))) =

⎧⎨⎩ 2β, if 2 ∈ Z(R)

β + (
β − 1
2

)α+ 1, otherwise.

.

(3)

ii(T (Γ(M))) =

(
2β, if 2 ∈ Z(R)
(β − 1)α+ 2, otherwise.

.

(4)

tt(T (Γ(M))) =

⎧⎪⎨⎪⎩
4β, if 2 ∈ Z(R) and α ≥ 4
2(β + 1), if 2 /∈ Z(R)
does not exist, otherwise.

.
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