I-convergent triple fuzzy normed spaces

Tanweer Jalal
National Institute of Technology Srinagar, India and
Ishfaq Ahmad Malik
National Institute of Technology Srinagar, India
Received : April 2021. Accepted : April 2022

Abstract

In this paper we introduce the concept of lacunary ideal convergence of triple sequences in fuzzy normed spaces and the relation between lacunary convergence and lacunary ideal convergence is investigated for triple sequences in fuzzy normed spaces. Concept of limit point and cluster point for triple sequences in fuzzy normed spaces and theorems related to these concepts are also given.

Keywords and phrases: Triple sequence, Statistical Convergence, Fuzzy Normed Space, Lacunary Convergence, I-convergence.

2010 M athematics Subject Classification: 26E50, 46A 45, 40A 35 .

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [34] in 1965. Subsequently several authors discussed various aspects of the theory and applications of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming. In 2005 Saadati and Vaezpour [19] introduced Fuzzy normed spaces by means of definition that was closely modeled on the theory of (classical) normed spaces. Matloka [16] introduced the notion of convergence of sequence of fuzzy numbers. Nanda [18] studied the sequences of fuzzy numbers and Sencimen and Pehlivan [23] introduced the notions of a statistically convergent sequence and a statistically Cauchy sequence in a fuzzy normed linear space. The concepts of I-convergence, I*-convergence, and I Cauchy sequence were studied by Hazarika [9] in a fuzzy normed linear space.

A triple sequence (real or complex) is a function $x: \mathbf{N} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{R}(\mathbf{C})$, where $\mathbf{N}, \mathbf{R a n d} \mathbf{C}$ are the set of natural numbers, real numbers, and complex numbers respectively. We denote by ${ }_{3} \omega$ the class of all complex triple sequence $\left(x_{p q r}\right)$, where $p, q, r \in \mathbf{N}$. Then under the coordinate wise addition and scalar multiplication ${ }_{3} \omega$ is a linear space. A triple sequence can be represented by a matrix in the form of a box in three dimensions, like in case of double sequences matrix is in the form of a square.

The different types of notions of triple sequences and their statistical convergence were introduced and investigated initially by Sahiner et. al [21]. Later Debnath et.al [1, 2], Esi et.al [3, 4, 5], and many authors have studied it further and obtained various results [25, 28, 31].

Statistical convergence was introduced by Fast [6] and later on it was studied by Fridy $[7,8]$ from the sequence space point of view and linked it with summability theory. The notion of statistical convergent double sequence was introduced by Mursaleen and Edely [17].
I-convergence is a generalization of the statistical convergence. Kostyrko et. al. [20] introduced the notion of I-convergence of real sequence and studied its several properties. Later Jalal [10, 11], Salat et. al. [20] and many other researchers contributed in its study. Sahiner and Tripathy [22] studied I-related properties in triple sequence spaces and showed some interesting results. Tripathy [24] extended the concept of I-convergent to double sequence and later Kumar [15] obtained some results on I-
convergent double sequence. Recently Jalal and Malik [12, 13] extended the concept of n-norms to triple sequence spaces and proved several algebraic and topological properties.

A sequence $x=\left(x_{k}\right)$ of fuzzy numbers is said to be convergent to a fuzzy number x_{0} if there exists a positive integer k_{0} such that $D\left(x_{k}, x_{0}\right)<\varepsilon$, for every $\varepsilon>0$ and $k>k_{0}$. A sequence $x=\left(x_{k}\right)$ of fuzzy numbers convergent to level wise to x_{0} if and only if $\lim _{k \rightarrow \infty}\left[x_{k}\right]_{\alpha}^{-}=\left[x_{0}\right]_{\alpha}^{-}$and $\lim _{k \rightarrow \infty}\left[x_{k}\right]_{\alpha}^{+}=\left[x_{0}\right]_{\alpha}^{+}$, where $\left[x_{k}\right]_{\alpha}=\left[\left(x_{k}\right)_{\alpha}^{+},\left(x_{k}\right)_{\alpha}^{+}\right]$and $\left[x_{0}\right]_{\alpha}=\left[\left(x_{0}\right)_{\alpha}^{+},\left(x_{0}\right)_{\alpha}^{+}\right]$, for every $\alpha \in$ $(0,1)$.

A sequence $x=\left(x_{k}\right)$ of fuzzy numbers is said to be statistically convergent to a fuzzy number x_{0} if every $\varepsilon>0$,

$$
\lim _{n} \frac{1}{n}\left|\left\{k \leq n: \bar{d}\left(x_{k}, x_{0}\right) \geq \varepsilon\right\}\right|=0 .
$$

Let X be a vector space over $\mathbf{R},\|\cdot\|: X \rightarrow L^{*}(\mathbf{R})$, and let the mappings $L, R:[0,1] \times[0,1] \rightarrow[0,1]$ be symmetric, non-decreasing in both arguments, and satisfy $L(0,0)=0$ and $R(1,1)=1$. The quadruple $(X,\|\cdot\|, L, R)$ is called a fuzzy normed linear space (briefly, $(X,\|\cdot\|)$ FNS) and $\|\cdot\|$ is a fuzzy norm if the following axioms are satisfied:
(1) $\|x\|=\tilde{0}$ if and only if $x=0$,
(2) $\|r x\|=|r| \odot\|x\|$ for $x \in X, r \in \mathbf{R}$,
(3) For all $x, y \in X$,
a) $\|x+y\|(s+t) \geq L(\|x\|(s),\|y\|(t))$,] whenever $\quad s \leq\|x\|_{1}^{-}, t \leq\|y\|_{1}^{-}$
and $s+t \leq\|x+y\|_{1}^{-}$.
$s \geq\|x\|_{1}^{-}, t \geq\|y\|_{1}^{-}$
and $s+t \geq\|x+y\|_{1}^{-}$.
Let $(X,\|\cdot\|)$ be a fuzzy normed linear space. A sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in X is convergent to $L \in X$ with respect to the fuzzy norm on X and it is denoted by $x_{n} F N \rightarrow L$, provided $(D)-\lim _{n \rightarrow \infty}\left\|x_{n}-L\right\|=\tilde{0}$, i.e., for every $\varepsilon>0$ there exists an $N(\varepsilon) \in \mathbf{N}$ such that $D\left(\left\|x_{n} L\right\|, \tilde{0}\right)<\varepsilon$, for all $n \geq N(\varepsilon)$. This means that for every $\varepsilon>0$ there exists an integer $N(\varepsilon) \in \mathbf{N}$ such that

$$
\sup _{\alpha \in[0,1]}\left\|x_{n}-L\right\|_{\alpha}^{+}=\left\|x_{n}-L\right\|_{0}^{+}<\varepsilon
$$

for all $n \geq N(\varepsilon)$.
From now on wards we write TFNS for "Triple Fuzzy Normed Space". Let $(X,\|\cdot\|)$ be an TFNS, if for every $\varepsilon>0$ there exist a number $N=N(\varepsilon)$ such that

$$
D\left(\left\|x_{p q r}-L, \tilde{0}\right\|\right)<\varepsilon
$$

for all, $p, q, r \geq N$, then the triple sequence $x=\left(x_{p q r}\right)$ is said to be convergent to $L \in X$ with respect to the fuzzy norm on X, and we denote it by $x_{p q r}[] T F N L$. Which means that for every $\varepsilon>0$ there exists a number $N=N(\varepsilon)$ such that $\sup _{\alpha \in[0,1]}\left\|x_{p q r}-L\right\|_{\alpha}^{+}=\left\|x_{p q r}-L\right\|_{0}^{+}<\varepsilon$, for all $p, q, r \geq N$.

2. Definitions and Preliminaries

Let $K \subset \mathbf{N} \times \mathbf{N} \times \mathbf{N}$ and $C_{i j k}$ be the number of $(p, q, r) \in K$ such that $p \leq$ $i, q \leq j, r \leq k$. If the sequence $\left\{\frac{C_{i j k}}{i \cdot j \cdot k}\right\}$ has a limit in Pringsheim's sense then we say that the sub-sequence K has triple natural density denoted by

$$
\delta_{3}(K)=\lim _{i, j, k \rightarrow \infty} \frac{C_{i j k}}{i \cdot j \cdot k} .
$$

If for every $\varepsilon>0$,

$$
\delta_{3}\left(\left\{(i, j, k) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: D\left(\left\|x_{i j k}-L, \tilde{0}\right\|\right) \geq \varepsilon\right\}\right)=0,
$$

then the triple sequence $x=\left(x_{i j k}\right)$ is said to be statistically convergent to $L \in X$ with respect to the fuzzy norm on X.

This implies that $\left\|x_{i j k}-L\right\|_{0}^{+}<\varepsilon$ for almost all i, j, k and each $\varepsilon>0$, and we denote it as $\mathrm{F} S_{3}-\lim \left\|x_{i j k}-L\right\|=\tilde{0}$ or $x_{i j k}[] F S_{3} L$.

A class I of subsets of X is said to be ideal if the following conditions hold good
(i) $A, B \in I \Rightarrow A \cup B \in I$
(ii) $\in I, B \subset A \Rightarrow B \in I$

If $X \notin I, I$ is a nontrivial ideal. If $\{x\} \in I$ for each $x \in X$, the nontrivial ideal I in X is called admissible.

If $X \neq \phi$, a filter in X is a class of subsets of X, having the following properties
(i) $A, B \in \Rightarrow A \cap B \in$
(ii) $A \in, B \subseteq A \Rightarrow B \in$

Let I be a nontrivial ideal in $X \neq \phi$. The class $(I)=\{M \subset X:(\exists A \in I)(M=X \backslash A)\}$ is a filter associated with I on X.

Definition 2.1. [21] A triple sequence $\left(x_{p q r}\right)$ is said to be convergent to L in Pringsheim's sense if for every $\varepsilon>0$, there exists $\mathbf{N} \in \mathbf{N}$ such that

$$
\left|x_{p q r}-L\right|<\varepsilon \text { whenever } p \geq \mathbf{N}, q \geq \mathbf{N}, r \geq \mathbf{N}
$$

and write as $\lim _{p, q, r \rightarrow \infty} x_{p q r}=L$.
Note: A triple sequence is convergent in Pringsheim's sense may not be bounded [21].

Example Consider the sequence $\left(x_{p q r}\right)$ defined by

$$
x_{p q r}= \begin{cases}p+q & \text { for all } p=q \text { and } r=1 \\ \frac{1}{p^{2} q r} & \text { otherwise }\end{cases}
$$

Then $x_{p q r} \rightarrow 0$ in Pringsheim's sense but is unbounded.
Definition 2.2. A triple sequence $\left(x_{p q r}\right)$ is said to be I-convergent to a number L if for every $\varepsilon>0$,

$$
\left.\left\{(p, q, r) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:\left|x_{p q r}-L\right|\right) \geq \varepsilon\right\} \in I
$$

In this case we write $I-\lim x_{p q r}=L$.
Definition 2.3. A triple sequence $\left(x_{p q r}\right)$ is said to be I-null if $L=0$. In this case we write $I-\lim x_{p q r}=0$.

Definition 2.4. [21] A triple sequence $\left(x_{p q r}\right)$ is said to be Cauchy sequence if for every $\varepsilon>0$, there exists $\mathbf{N} \in \mathbf{N}$ such that

$$
\left|x_{p q r}-x_{l m n}\right|<\varepsilon \quad \text { whenever } p \geq l \geq \mathbf{N}, q \geq m \geq \mathbf{N}, r \geq n \geq \mathbf{N}
$$

Definition 2.5. A triple sequence $\left(x_{p q r}\right)$ is said to be I-Cauchy sequence if for every $\varepsilon>0$, there exists $\mathbf{N} \in \mathbf{N}$ such that

$$
\left\{(p, q, r) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:\left|x_{p q r}-a_{l m n}\right| \geq \varepsilon\right\} \in I
$$

whenever $p \geq l \geq \mathbf{N}, q \geq m \geq \mathbf{N}, r \geq n \geq \mathbf{N}$.

Definition 2.6. [21] A triple sequence $\left(x_{p q r}\right)$ is said to be bounded if there exists $M>0$, such that $\left|x_{p q r}\right|<M$ for all $p, q, r \in \mathbf{N}$.

Definition 2.7. A triple sequence $\left(x_{p q r}\right)$ is said to be I-bounded if there exists $M>0$, such that $\left\{(p, q, r) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:\left|x_{p q r}\right| \geq M\right\} \in I$ for all $p, q, r \in \mathbf{N}$.

Let $(X,\|\cdot\|)$ be a fuzzy normed space. A sequence $x=\left(x_{n}\right)_{n \in \mathbf{N}}$ in X is said to be I-convergent to $L \in X$ with respect to fuzzy norm on X if for each $\varepsilon>0$, the set $A(\varepsilon)=\left\{n \in N:\left\|x_{n} L\right\|_{0}^{+} \geq \varepsilon\right\}$ belongs to I. In this case, we write $x_{n} F I \rightarrow L$. The element L is called the I-limit of x in X.

A sequence $\left(x_{n}\right)$ in X is said to be I^{*}-convergent to L in X with respect to the fuzzy norm on X if there exists a set $M \in F(I), M=\left\{t_{1}<t_{2}<\right.$ $\cdots\} \subset \mathbf{N}$ such that $\lim _{k \rightarrow \infty}\left\|x_{t_{k}} L\right\|=0$.

Let $(X,\|\cdot\|)$ be a fuzzy normed space. A sequence $x=\left(x_{i j k}\right)$ in X is said to be I_{3}-convergent to $L \in X$ with respect to fuzzy norm on X, if for each $\varepsilon>0$, the set $A(\varepsilon)=\left\{(i, j, k) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:\left\|x_{i j k} L\right\|_{0}^{+} \geq \varepsilon\right\}$ belongs to I_{3}. In this case, it is denoted by $x_{i j k} F I_{3} \rightarrow L$. The element L is called the I_{3}-limit of x in X.

The triple sequence $\theta_{3}=\left\{\left(r_{k}, s_{l}, t_{m}\right)\right\}$ is called a triple lacunary sequence if there exist three increasing sequences of integers such that

$$
r_{0}=0, h_{k}=r_{k} r_{k 1} \rightarrow \infty, s_{0}=0, h_{l}=s_{l} s_{l 1} \rightarrow \infty
$$

and $\quad t_{0}=0, h_{m}=t_{m} t_{m-1} \rightarrow \infty$, as $k, l, m \rightarrow \infty$.
We use following notations in the sequel:

$$
\begin{gathered}
r_{j k l}=r_{j} s_{k} t_{l}, h_{j k l}=h_{j} h_{k} h_{l} \\
C_{i j k}=\left\{(r, s, t): r_{i-1}<r \leq r_{i}, s_{j-1}<s \leq s_{j} \text { and } t_{k-1}<r \leq t_{k}\right\}
\end{gathered}
$$

Different properties of lacunary sequence spaces can be found in $[26,27$, 29, 30, 32].
In this paper we introduce the concept of $F \theta_{3}$-convergence and $F I_{\theta_{3}}$ convergence. We gave the definition of $F I_{\theta_{3}}$-limit point and $F I_{\theta_{3}}$-cluster point.

Definition 2.8. A sequence $x=\left(x_{r s t}\right)_{(r, s, t) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}}$ in X is said to be $F \theta_{3}$-convergent to $L_{1} \in X$ with respect to fuzzy norm on X if for each
$\varepsilon>0$, there exists $n_{0} \in \mathbf{N}$ such that

$$
\frac{1}{h_{k l m}} \sum_{(r, s, t) \in C_{k l m}} D\left(\left\|x_{r s t}-L_{1}\right\|, \tilde{0}\right)<\varepsilon
$$

for all $k, l, m \geq n_{0}$. In this case, we write $x_{r s t} F \theta_{3} \rightarrow L_{1}$ or $x_{r s t} \rightarrow L 1\left(F \theta_{3}\right)$, or $F \theta_{3}-\lim _{r, s, t \rightarrow \infty} x_{r s t}=L_{1}$. The element L_{1} is called the $F \theta_{3}$-limit of x in X.

Definition 2.9. A sequence $x=\left(x_{r s t}\right)$ in X is said to be lacunary $F I_{3}$ - convergent to $l_{1} \in X$ with respect to fuzzy norm on X if for each $\varepsilon>0$, the set

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}} D\left(\left\|x_{r s t}-l_{1}\right\|, \tilde{0}\right) \geq \varepsilon\right\}
$$

belongs to I_{3}. In this case, we write $x_{r s t}[] F I_{\theta_{3}} l_{1}$ or $x_{r s t} \rightarrow l_{1}\left(F I_{\theta_{3}}\right)$, or $F I_{\theta_{3}}-\lim _{r, s, t \rightarrow \infty} x_{r s t}=l_{1}$. The number l_{1} is called the $F I_{\theta_{3}}$ - limit of $\left(x_{r s t}\right)$ in X.

3. Lacunary I_{3}-Convergence

Theorem 3.1. If $x=\left(x_{r s t}\right)$ in X is $F \theta_{3}$-convergent, then $F \theta_{3}-\lim x$ is unique.

Proof. Let, $F \theta_{3}-\lim x=l_{1}$ and $F \theta_{3}-\lim x=l_{2}$. Then, for any $\varepsilon>0$, there exists $n_{1}, n_{2} \in \mathbf{N}$ such that

$$
\frac{1}{h_{k l m}} \sum_{(r, s, t) \in C_{k l m}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{2} \forall k, l, m \geq n_{1}
$$

and

$$
\frac{1}{h_{k l m}} \sum_{(r, s, t) \in C_{k l m}}\left\|x_{r s t}-l_{2}\right\|_{0}^{+}<\frac{\varepsilon}{2} \forall k, l, m \geq n_{2} .
$$

Let $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for $k, l, m \geq n_{0}$, we have for $(a, b, c) \in \mathbf{N} \times$ $\mathbf{N} \times \mathbf{N}$,

$$
\left\|x_{a b c}-l_{1}\right\|_{0}^{+}<\frac{1}{h_{k l m}} \sum_{(r, s, t) \in C_{k l m}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{2}
$$

and

$$
\left\|x_{a b c}-l_{2}\right\|_{0}^{+}<\frac{1}{h_{k l m}} \sum_{(r, s, t) \in C_{k l m}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{2} .
$$

Therefore,

$$
\left\|l_{1}-l_{2}\right\|_{0}^{+} \leq\left\|x_{a b c}-l_{1}\right\|_{0}^{+}+\left\|x_{a b c}-l_{2}\right\|_{0}^{+}<\varepsilon .
$$

Since, $\varepsilon>0$ is arbitrary, we have $l_{1}=l_{2}$.
Lemma 3.2. For every $\varepsilon>0$, the following statements are equivalent
(a) $F I_{\theta_{3}}-\lim _{r, s, t \rightarrow \infty} x_{r s t}=l_{1}$,
(b) $\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+} \geq \varepsilon\right\} \in I_{3}$
(c) $\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\varepsilon\right\} \in\left(I_{3}\right)$
(d) $F I_{\theta_{3}}-\lim _{r, s, t \rightarrow \infty}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}=0$.

Theorem 3.3. If $x=\left(x_{r s t}\right)$ in X is lacunary I_{3}-convergent with respect to fuzzy norm on X, then $F I_{\theta_{3}}-\lim x$ is unique.

Proof. The proof of this theorem is similar to proof of Theorem 3.1.
Theorem 3.4. Let $x=\left(x_{r s t}\right)$ and $y=\left(y_{r s t}\right)$ be the two triple triple sequences in X. Then
(i) if $F I_{\theta_{3}}-\lim x_{r s t}=l_{1}$, and $F I_{\theta_{3}}-\lim y_{r s t}=l_{2}$, then $F I_{\theta_{3}}-\lim \left(x_{r s t}+\right.$ $\left.y_{\text {rst }}\right)=l_{1}+l_{2}$;
(ii) if $F I_{\theta_{3}}-\lim x_{r s t}=l_{1}$, then $F I_{\theta_{3}}-\lim c x_{r s t}=l_{1}$, for $c \in \mathbf{R}-\{0\}$.

Proof. For any $\varepsilon>0$, we define the following sets

$$
A_{1}=\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+} \geq \frac{\varepsilon}{2}\right\}
$$

and

$$
A_{2}=\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l_{2}\right\|_{0}^{+} \geq \frac{\varepsilon}{2}\right\} .
$$

Since, $F I_{\theta_{3}}-\lim x_{r s t}=l_{1}$, and $F I_{\theta_{3}}-\lim y_{r s t}=l_{2}$, using Lemma 3.2, we have $A_{1}, A_{2} \in I_{3}$ for all $\varepsilon>0$.

Now, let $A_{3}=A_{1} \cup A_{2}$. Then, $A_{3} \in I_{3}$, so the complement $\left(A_{3}\right)^{c}$ is a nonempty set in $\left(I_{3}\right)$. We claim that

$$
\left(A_{3}\right)^{c} \subset\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|\left(x_{r s t}+y_{r s t}\right)-\left(l_{1}+l_{2}\right)\right\|_{0}^{+}<\varepsilon\right\} .
$$

Let $(j, k, l) \in\left(A_{3}\right)^{c}$, then we have
$\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{2} \quad$ and $\quad \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l_{2}\right\|_{0}^{+}<\frac{\varepsilon}{2}$.
Now, for $(a, b, c) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}$, we have

$$
\left\|x_{a b c}-l_{1}\right\|_{0}^{+}<\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{2},
$$

and

$$
\left\|y_{a b c}-l_{2}\right\|_{0}^{+}<\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l_{2}\right\|_{0}^{+}<\frac{\varepsilon}{2} .
$$

Then, we have

$$
\left\|\left(x_{a b c}+y_{a b c}\right)-\left(l_{1}+l_{2}\right)\right\|_{0}^{+} \leq\left\|x_{a b c}-l_{1}\right\|_{0}^{+}+\left\|y_{a b c}-l_{2}\right\|_{0}^{+}<\varepsilon .
$$

Hence,
$\left(A_{3}\right)^{c} \subset\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|\left(x_{r s t}+y_{r s t}\right)-\left(l_{1}+l_{2}\right)\right\|_{0}^{+}<\varepsilon\right\}$.
Since, $\left(A_{3}\right)^{c} \in\left(I_{3}\right)$, we have

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|\left(x_{r s t}+y_{r s t}\right)-\left(l_{1}+l_{2}\right)\right\|_{0}^{+} \geq \varepsilon\right\} \in I_{3} .
$$

Therefore, $F I_{\theta_{3}}-\lim \left(x_{r s t}+y_{r s t}\right)=l_{1}+l_{2}$. This proves part (i) of the theorem.

Again, let $F I_{\theta_{3}}-\lim x_{r s t}=l_{1}$. Then, for $\varepsilon>0$ and $c \in \mathbf{R}-\{0\}$, we define the following sets:

$$
D=\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{|c|}\right\} .
$$

So, $D \in\left(I_{3}\right)$. Let $(j, k, l) \in D$, then we have

$$
\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\frac{\varepsilon}{|c|}
$$

$$
\Rightarrow \frac{|c|}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<|c| \times \frac{\varepsilon}{|c|}
$$

$$
\Rightarrow \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}|c|\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\varepsilon
$$

$$
\Rightarrow \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|c x_{r s t}-c l_{1}\right\|_{0}^{+}<\varepsilon .
$$

Therefore,

$$
D \subset\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|c x_{r s t}-c l_{1}\right\|_{0}^{+}<\varepsilon\right\}
$$

and

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|c x_{r s t}-c l_{1}\right\|_{0}^{+}<\varepsilon\right\} \in\left(I_{3}\right) .
$$

Hence, $F I_{\theta_{3}}-\lim c x_{r s t}=c l_{1}$.
Theorem 3.5. Let $x=\left(x_{r s t}\right)$ be a triple sequence in X. If $F \theta_{3}-\lim x=l_{1}$, then $F I_{\theta_{3}}-\lim x=l_{1}$.

Proof. Assuming, $F \theta_{3}-\lim x=l_{1}$, we have for every $\varepsilon>0$, there exists $n_{0} \in \mathbf{N}$ such that

$$
\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\varepsilon
$$

for all $j, k, l \geq n_{0}$. Therefore, the set

$$
\begin{gathered}
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+} \geq \varepsilon\right\} \\
\subset\left(\mathbf{N} \times \mathbf{N} \times\left\{1,2, \ldots,\left(n_{0}-1\right)\right\}\right) \cup\left(\left\{1,2, \ldots,\left(n_{0}-1\right)\right\} \times \mathbf{N} \times \mathbf{N}\right)
\end{gathered}
$$

So, we have $E \in I_{3}$. Hence, $F I_{\theta_{3}}-\lim x=l_{1}$.

Theorem 3.6. Let $x=\left(x_{r s t}\right)$ be a triple sequence in X. If $F \theta_{3}-\lim x=l_{1}$, then there exists a subsequence $\left(x_{r_{i} s_{j} t_{k}}\right)$ such that $x_{r_{i} s_{j} t_{k}}[] T F N l_{1}$

Proof. Let $F \theta_{3}-\lim x=l_{1}$. Then, for every $\varepsilon>0$, there exists $n_{0} \in \mathbf{N}$ such that

$$
\frac{1}{h_{a b c}} \sum_{(r, s, t) \in C_{a b c}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\varepsilon
$$

for all $a, b, c \geq n_{0}$. Clearly, for each $a, b, c \geq n_{0}$, we select a $\left(r_{i}, s_{j}, t_{k}\right) \in C_{a b c}$ such that

$$
\left\|x_{r_{i} s_{j} t_{k}}-l_{1}\right\|_{0}^{+}<\frac{1}{h_{a b c}} \sum_{(r, s, t) \in C_{a b c}}\left\|x_{r s t}-l_{1}\right\|_{0}^{+}<\varepsilon
$$

It follows that $x_{r_{i} s_{j} t_{k}}[] T F N l_{1}$.

4. Limit point and cluster point

In this section, we introduce the notions of $F I_{\theta_{3}}$-limit point and $F I_{\theta_{3}}$-cluster point for triple sequences in a fuzzy normed space. Also, we examine the relations between $F I_{\theta_{3}}$-limit point and $F I_{\theta_{3}}$-cluster point of triple sequences in fuzzy normed space.

Definition 4.1. An element $L \in X$ is said to be an $F I_{\theta_{3}}$-limit point of $x=\left(x_{r s t}\right)$ if there is a set $M_{1}=\left\{r_{1}<r_{2}<\cdots<r_{a}<\cdots\right\} \subset \mathbf{N}, M_{2}=$ $\left\{s_{1}<s_{2}<\cdots<s_{b}<\cdots\right\} \subset \mathbf{N}$ and $M_{3}=\left\{t_{1}<t_{2}<\cdots<t_{c}<\cdots\right\} \subset \mathbf{N}$ such that the set $M^{\prime}=\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:\left(r_{a}, s_{b}, t_{c}\right) \in C_{j k l}\right\} \notin I_{3}$, and $F \theta_{3}-\lim x_{r_{a} s_{b} t_{c}}=l$.
We denote the set of all $F I_{\theta_{3}}$-limit points of x as $\Lambda_{F}^{I_{\theta_{3}}}(x)$.
Definition 4.2. An element $L \in X$ is said to be an $F I_{\theta_{3}}$-cluster point of $x=\left(x_{r s t}\right)$ if for every $\varepsilon>0$, we have

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l\right\|_{0}^{+}<\varepsilon\right\} \notin I_{3}
$$

We denote the set of all $F I_{\theta_{3}}$-cluster point of x as $\Gamma_{F}^{I_{\theta_{3}}}(x)$.
Theorem 4.3. For each $x=\left(x_{r s t}\right)$ in X, we have $\Lambda_{F}^{I_{\theta_{3}}}(x) \subset \Gamma_{F}^{I_{\theta_{3}}}(x)$.

Proof. Let $l \in \Lambda_{F}^{I_{\theta_{3}}}(x)$, then there exists three sets $M_{1}, M_{2}, M_{3} \subset \mathbf{N}$ such that $M^{\prime} \notin I_{3}$, where M_{1}, M_{2}, M_{3} and M^{\prime} are as in Definition 4.1, and also $F \theta_{3}-\lim x_{r_{a} s_{b} t_{c}}=l$. Thus, for every $\varepsilon>0$ there exists $n_{0} \in \mathbf{N}$ such that

$$
\frac{1}{h_{j k l}} \sum_{\left(r_{a}, s_{b}, t_{c}\right) \in C_{j k l}}\left\|x_{r_{a} s_{b} t_{c}}-l\right\|_{0}^{+}<\varepsilon,
$$

for all $j, k, l \geq n_{0}$. Then we get

$$
\begin{aligned}
& \qquad\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l\right\|_{0}^{+}<\varepsilon\right\} \\
& \supseteq M^{\prime}-\left\{\left\{r_{1}, r_{2}, \ldots, r_{n_{0}}\right\} \times\left\{s_{1}, s_{2}, \ldots, s_{n_{0}}\right\} \times\left\{t_{1}, t_{2}, \ldots, t_{n_{0}}\right\}\right\} . \\
& \text { Therefore, we have } \\
& M^{\prime}-\left\{\left\{r_{1}, r_{2}, \ldots, r_{n_{0}}\right\} \times\left\{s_{1}, s_{2}, \ldots, s_{n_{0}}\right\} \times\left\{t_{1}, t_{2}, \ldots, t_{n_{0}}\right\}\right\} \notin I_{3} \\
& \text { and as such } D \notin I_{3} . \text { Consequently, } l \in \Gamma_{F}^{I_{\theta_{3}}}(x) .
\end{aligned}
$$

Theorem 4.4. For every triple sequence $x=\left(x_{r s t}\right)$, the following statements are equivalent:
(i) l is an $F I_{\theta_{3}}$-limit point of x,
(ii) there exists two triple sequences $y=\left(y_{r s t}\right)$ and $z=\left(z_{r s t}\right)$ in X such that $x=y+z, F \theta_{3}-\lim y=l$ and $\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:(r, s, t) \in$ $\left.C_{j k l}, z_{r s t} \neq 0\right\} \in I_{3}$.

Proof. Suppose (i) hold, then there exists sets M_{1}, M_{2}, M_{3} and M^{\prime} as in Definition 4.1 such that $M^{\prime} \notin I_{3}$ and $F \theta_{3}-\lim x_{r_{i} s_{j} t_{k}}=l$. Define the sequences y and z as follows:

$$
y_{r s t}= \begin{cases}x_{r s t}, & \text { if }(r, s, t) \in C_{j k l},(j, k, l) \in M^{\prime} \\ l, & \text { otherwise }\end{cases}
$$

and

$$
z_{r s t}= \begin{cases}0, & \text { if }(r, s, t) \in C_{j k l},(j, k, l) \in M^{\prime} \\ x_{r s t}-l, & \text { otherwise }\end{cases}
$$

It suffices to consider the case $(r, s, t) \in C_{j k l}$, such that $(j, k, l) \in \mathbf{N} \times$ $\mathbf{N} \times \mathbf{N} \backslash M^{\prime}$. For each $\varepsilon>0$, we have $\left\|y_{r s t}-l\right\|_{0}^{+}=0<\varepsilon$. Thus,

$$
\frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l\right\|_{0}^{+}=0<\varepsilon
$$

Therefore, $F \theta_{3}-\lim y=l$. Now

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:(r, s, t) \in C_{j k l}, z_{r s t} \neq 0\right\} \subset \mathbf{N} \times \mathbf{N} \times \mathbf{N} \backslash M^{\prime}
$$

But, $\mathbf{N} \times \mathbf{N} \times \mathbf{N} \backslash M^{\prime} \in I_{3}$, and so

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:(r, s, t) \in C_{j k l}, z_{r s t} \neq 0\right\} \in I_{3}
$$

Now, suppose that (ii) holds. Let
$M^{\prime}=\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}:(r, s, t) \in C_{j k l}, z_{r s t}=0\right\}$. Then, clearly $M^{\prime} \in$ $F\left(I_{3}\right)$ and so it is an infinite set. Construct the sets $M_{1}=\left\{r_{1}<r_{2}<\right.$ $\left.\cdots<r_{a}<\cdots\right\} \subset \mathbf{N}, M_{2}=\left\{s_{1}<s_{2}<\cdots<s_{b}<\cdots\right\} \subset \mathbf{N}$ and $M_{3}=\left\{t_{1}<t_{2}<\cdots<t_{c}<\cdots\right\} \subset \mathbf{N}$ such that $\left(r_{i}, s_{j}, t_{k}\right) \in C_{j k l}$ and $z_{r_{i} s_{j} t_{k}}=0$. Since, $x_{r_{i} s_{j} t_{k}}=y_{r_{i} s_{j} t_{k}}$ and $F \theta_{3}-\lim y=l$,
We obtain $F \theta_{3}-\lim x_{r_{i} s_{j} t_{k}}=l$.
This completes the proof.
Theorem 4.5. If there is an $F I_{\theta_{3}}$-convergent sequence $y=\left(y_{r s t}\right) \in X$ such that $\left\{(r, s, t) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: y_{r s t} \neq x_{r s t}\right\} \in I_{3}$, then $x=\left(x_{r s t}\right)$ is also $F I_{\theta_{3}}$ - convergent.

Proof. \quad Suppose that $\left\{(r, s, t) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: y_{r s t} \neq x_{r s t}\right\} \in I_{3}$ and $F I_{\theta_{3}}-$ $\lim y=l$. Then, for every $\varepsilon>0$, the set

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l\right\|_{0}^{+} \geq \varepsilon\right\} \in I_{3}
$$

For every $\varepsilon>0$, we get

$$
\begin{gathered}
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l\right\|_{0}^{+} \geq \varepsilon\right\} \\
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: y_{r s t} \neq x_{r s t}\right\} \\
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|y_{r s t}-l\right\|_{0}^{+} \geq \varepsilon\right\}
\end{gathered}
$$

Therefore, we have

$$
\left\{(j, k, l) \in \mathbf{N} \times \mathbf{N} \times \mathbf{N}: \frac{1}{h_{j k l}} \sum_{(r, s, t) \in C_{j k l}}\left\|x_{r s t}-l\right\|_{0}^{+} \geq \varepsilon\right\} \in I_{3}
$$

This completes the proof of the theorem.
Acknowledgement: The authors are thankful to the reviewers for their valuable suggestions and comments which improved the presentation of the paper.

References

[1] S. Debnath, B. Sarma and B. C. Das, "Statistically convergent triple sequence space defined by Orlicz functions", Journal of M athematical A nalysis, vol. 4, no. 2, pp. 16-22, 2013. [On line]. Available: https://bit.Iy/2VX5XAI
[2] S. Debnath, B. Sarma and B. C. Das, "Some generalized triple sequence spaces of real numbers", Journal of N onlinear A nalysis and O ptimization: Theory \& A pplications, vol. 6, no. 1, pp. 71-79, 2015.
[3] A. Esi, "On some triple almost lacunary sequence spaces defined by Orlicz functions", R esearch and Review s: Discrete M athematical structures, vol. 1, pp. 16-25, 2014. [On line]. A vailable: https://bit.Iy/2M ymlpj
[4] A. Esi and M . N. Catal bas, "Almost convergence of triple sequences", G lobal Journal of Mathematical Analysis, vol. 2, no. 1, pp. 6-10, 2014. doi: 10.14419/gjma.v2i11709
[5] A. Esi and E. Savas, "On lacunary statiscally convergent triple sequences in probabilistic normed space", A pplied Mathematics \& Information Sciences. An International Journal, vol. 9, pp. 2529-2534, 2015. doi: 10.12785/amis/090537
[6] H. Fast, "Sur la convergence statistique", Colloquium M athematicum, vol. 2, pp. 241-244, 1951 doi: 10.4064/cm-2-3-4-241-244
[7] J. A. Fridy, "On statistical convergence", A nalysis: International mathematical journal of A nalysis and its Applications, vol. 5, no. 4, pp. 301-313, 1985. doi: 10.1524/anly.1985.5.4.301
[8] J. A. Fridy, "Statistical limit points", Proceedings of the A merican M athematical Society, vol. 118, no. 4, pp. 1187-1192, 1993. doi: 10.1090/s0002-9939-1993-1181163-6
[9] B. Hazarika, "On ideal convergent sequences in fuzzy normed linear spaces", Afrika Matematika, v.25, no. 4, pp. 987-999, 2013. doi: 10.1007/s13370-013-0168-0
[10] T. Jalal, "Some new I-convergent sequence spaces defined by using a sequence of modulus functions in n-normed spaces", International Journal of M athematical Archive, vol. 5, no. 9, pp. 202-209, 2014. [On line]. Available: https://bit.ly/3K aVP06
[11] T. Jalal, Some new I-lacunary generalized difference sequence spaces defined in n-normed spaces, In: Vinai K. Singh (Ed.), M odern Mathematical Methods and High Performance Computing in Science and T echnology, Springer Proceedings in M athematics \& Statistics, vol. 171, pp. 249-258, 2016. doi: 10.1007/ 978-981-10-1454-3_21
[12] T. Jalal and I. A. M alik, "I-convergence of triple difference sequence spaces over n-normed space", Tbilisi M athematical Journal, vol. 11, no. 4, pp. 93-102, 2018. doi: $10.32513 /$ tbilisi/ 1546570888
[13] T. Jalal and I. A. M alik, "Some new triple sequence spaces over n-normed space", Proyecciones (Antofagasta), vol. 37, no. 3, pp. 547-564, 2018. doi: 10.4067/s0716-09172018000300547
[14] P. Kostyrko, T. Salat, W. W ilczynski, "I-convergence", Real A nalysis Exchange, vol. 26, no. 2, pp. 669-686, 2000. doi: 10.2307/44154069
[15] V. Kumar, "On I-convergence of double sequences", Mathematical Communications, vol. 12, no. 2, pp. 171-181, 2007.
[16] M. M atloka, "Sequences of fuzzy numbers", BU SEFAL, vol. 28, pp. 28-37, 1986.
[17] M. Mursaleen and O. H. H. Edely, "Statistical convergence of doublé sequences", Journal of M athematical A nalysis and A pplications, vol. 288, no. 1, pp. 223-231, 2003. doi: 10.1016/j.jmaa.2003.08.004
[18] S. N anda, "On sequences of fuzzy numbers", Fuzzy Sets and Systems, vol. 33, no. 1, pp. 123-126, 1989. doi: 10.1016/0165-0114(89)90222-4
[19] R. Saadati, S.M . V aezpour, Some results on fuzzy Banach spaces", Journal of A pplied Mathematics and Computing, vol. 17, pp. 475-484, 2005. doi: 10.1007/BF02936069
[20] T. Salat, B. C. Tripathy, M . Ziman, "On some properties of I-convergence", Tatra M ountain M athematical Publications, pp. 669-686, 2000.
[21] A. Sahiner, M. Gurdal and F. K. Duden, "Triple Sequences and their statistical convergence", Selcuk Journal of Applied Mathematics, vol. 8, pp. 49-55, 2007.
[22] A. Sahiner and B.C. Tripathy, "Some I related properties of triple sequences", Selcuk Journal of A pplied M athematics, vol. 9, pp. 9-18, 2008.
[23] C. Sencimen and S. Pehlivan, "Statistical convergence in fuzzy normed linear spaces", Fuzzy Sets and Systems, vol. 159, no. 3, pp. 361-370, 2008. doi: 10.1016/j.fss.2007.06.008
[24] B. C. Tripathy, "Statistically convergent double sequence", Tamkang Journal of Mathematics, vol. 34, no. 3, pp. 231-237, 2003. doi: 10.5556/j.tkjm.34.2003.314
[25] B. C. Tripathy, and A. Baruah, "Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers", K yungpook mathematical journal, vol. 50, no. 4, pp. 565-574, 2010. doi: 10.5666/kmj.2010.50.4.565
[26] B. C. Tripathy; B. Hazarika and B. Choudhary, "Lacunary I-convergent sequences", K yungpook mathematical journal, vol. 52 (4), 473-482, 2012. doi: 10.5666/kmj.2012.52.4.473
[27] B. C. Tripathy and A. J. Dutta, "Lacunary bounded variation sequence of fuzzy real numbers", Journal of Intelligent \& Fuzzy Systems, vol. 24, no. 1, 185-189, 2013. doi: 10.3233/ifs-2012-0544
[28] B. C. Tripathy and R. Goswami, "On triple difference sequences of real numbers in probabilistic normed spaces", Proyecciones (A ntofagasta), vol. 33, no. 2, pp. 157-174, 2014. doi: 10.4067/s0716-09172014000200003
[29] B. C. Tripathy and M. Sen, "On lacunary strongly almost convergent double sequences of fuzzy numbers", A nnals of the U niversity of Craiova-M athematics and Computer Science Series, vol. 42, no. 2, pp. 254-259, 2015.
[30] B. C. Tripathy and A. J. Dutta, "Lacunary I-convergent sequences of fuzzy real numbers", Proyecciones (A ntofagasta), vol. 34, no. 3, pp. 205-218, 2015. doi: 10.4067/s0716-09172015000300001
[31] B. C. Tripathy and R. Goswami, "Statistically convergent multiple sequences in probabilistic normed spaces", UPB Scientific Bulletin, Series A: A pplied M athematics and Physics, vol. 78, no. 4, pp. 83-94, 2016.
[32] P. J. Dow ari and B. C. Tripathy, "Lacunary convergence of double sequences of complex uncertain variables", Journal of U ncertain Systems, vol. 14, no. 3, 2150017, 2021 doi: 10.1142/S1752890921500173
[33] B. C. Tripathy, R. Goswami, "On triple difference sequences of real numbers in probabilistic normed spaces", Proyecciones (A ntofagasta), vol. 33, no. 2, pp. 157-174, 2014. doi: 10.4067/S0716-09172014000200003
[34] L. A. Zade, "Fuzzy sets", Information and Control, vol. 98, no. 3, pp. 338-353, 1965. doi: 10.1016/S0019-9958(65)90241-X

Tanweer Jalal

Department of Mathematics
National Institute of Technology
Hazratbal, Srinagar-190006
India
e-mail: tjalal@nitsri.net
Corresponding author
and

Ishfaq Ahmad Malik
Department of Mathematics
National Institute of Technology
Hazratbal, Srinagar-190006
India
e-mail: ishfaq_2phd15@nitsri.net

