Quasi-k-normal ring

Kumar Napoleon Deka
Gauhati University, India and
Helen K. Saikia
Gauhati University, India
Received : March 2021. Accepted : December 2021

Abstract

In [4] Wei and Libin defined Quasi normal ring. In this paper we attempt to define Quasi-k-normal ring by using the action of k-potent element .A ring is called Quasi-k-normal ring if ae $=0 \Rightarrow$ eaRe $=0$ for $a \in N(R)$ and $e \in K(R)$, where $K(R)=\left\{e \in R \mid e^{k}=e\right\}$. Several analogous results give in[4] is defined here. we find here that a ring is quasi-k-normal if and only if e $R\left(1-e^{k-1}\right) R e=0$ for each $e \in K(R)$. Also we get a ring is quasi-k-normal ring if and only if $T_{n}(R, R)$ is quasi-k-normal ring.

Key Words: Abelian rings; Quasi-k-normal rings; Π-Regular rings

2020 Mathematics Subject Classification: 16A30; 16A50; 16E50; 16D30

1. Introduction

In [3] Parmenter and Stewart defined the notion of normal ring as for $x, y \in R$ and $x R y=0$ then $\operatorname{ann}(x)+\operatorname{ann}(y)=R$ where $\operatorname{ann}(x)=\{z \in R$: $z R x=0\}$. In [4] Wei and Libin generalized normal rings and defined quasi normal ring on the basis of normal ring. Here we define quasi-k-normal ring in terms of k -potent elements as defined in [2]. Here we study several properties of quasi-k-normal rings.

2. Preliminaries

All rings considered here are associative with identity. We use the symbols $K(R), E(R), N(R)$ for set of all k-potents, idempotents and nilpotents respectively. Again for any subset X of a ring R, we denote $r(X)=r_{R}(X)$ and $l(X)=l_{R}(X)$ for right annihilator and left annihilator of X respectively. Again $E_{i j}(1 i, j n)$ denote $n \times n$ matrix units over R, and write $V=$ $\sum_{i=1}^{n-1} E_{i, i+1}$ for $n 2$. Also we use the symbol $T_{n}(R, R)$ to denote the ring of $n \times n$ upper triangular matrices whose principal diagonal elements are equals and others belong to R and $V_{n}(R, R)=R E_{n}+R V+R V^{2}+\ldots+R V^{n-1}$ for $n 2$, where E_{n} is $n \times n$ identity matrix over E.

A ring is called quasi-k-normal if $a e=o \Rightarrow e a R e=0$ for $e \in K(R)$ and $a \in N(R)$.Again a ring is semiabelian if every idempotents of R is either left semicentral or right semicentral. A ring is called abelian [1] if every idempotent of R is central. Semiabelian rings are quasi-k-normal. An example of quasi-k-normal ring is reversible ring $\mathrm{R}(a b=0 \Rightarrow b a=0$ for $a, b \in R)$.

3. Results and Discussion

We start with the foloowing results.
Theorem 2.1. The following conditions are equivalent for a ring R :

1. R is quasi- k-normal.
2. $e R\left(1-e^{k-1}\right) R e=0 ; \forall e \in K(R)$.
3. $e R\left(1-e^{k-1}\right)$ is right ideal of R ; $\forall e \in K(R)$.
4. $\left(1-e^{k-1}\right) R e$ is left ideal of $\mathrm{R} \forall e \in K(R)$.
5. $\left[\left(1-e^{k-1}\right) R \cap N(R)\right] e \subseteq r(e R) \cap N(R) e \forall e \in K(R)$.
6. $e a=0 \Rightarrow e R a e=0 \forall a \in N(R)$ and $e \in K(R)$.

Proof:

$(1) \Rightarrow(2):$ For any $a \in R, e \in K(R)$, let $h=e^{k-1} a-e^{k-1} a e^{k-1}=e^{k-1} a(1-$ $\left.e^{k-1}\right)$. So $h^{2}=e^{k-1} a\left(e^{k-1}-e^{2 k-2}\right) a\left(1-e^{k-1}\right)=0 \Rightarrow h \in N(R)$ and $h e=e^{k-1} a\left(e-e^{k}\right)=0$. Now $h \in N(R)$, he $=0$. So by definition of quasi-k-normal ring, ehRe $=0 \Rightarrow e . e^{k-1} a\left(1-e^{k-1}\right) R e=0 \Rightarrow$ $e a\left(1-e^{k-1}\right) R e=0 \Rightarrow e R\left(1-e^{k-1}\right) R e=0$ as $a \in R$ is arbitrary.
$(6) \Rightarrow(2):$ Let $h=a e^{k-1}-e^{k-1} a e^{k-1}=\left(1-e^{k-1}\right) a e^{k-1} ; e \in K(R)$.Then $e h=$ $0, h^{2}=0$. So $e h=0, h \in N(R) \Rightarrow e R h e=0 \Rightarrow e R\left(1-e^{k-1}\right) a e^{k}=$ $0 \Rightarrow e R\left(1-e^{k-1}\right) R e=0$ as $a \in R$ is arbitrary.
$(2) \Rightarrow(3):$ Let $e \in K(R) . \operatorname{By}(2), e R\left(1-e^{k-1}\right) R e=0 \Rightarrow e R\left(1-e^{k-1}\right) R e^{k-1}=0$ Now $e R\left(1-e^{k-1}\right) R=e R\left(1-e^{k-1}\right) R\left(1-e^{k-1}\right) \subseteq e R\left(1-e^{k-1}\right)$ $\left[R\left(1-e^{k-1}\right) R \subseteq R\right]$
Again $e R\left(1-e^{\bar{k}-1}\right)=e R\left(1-e^{k-1}\right) .1 \subseteq e R\left(1-e^{k-1}\right) R$
Therefore $e R\left(1-e^{k-1}\right)=e R\left(1-e^{k-1}\right) R$. So $e R\left(1-e^{k-1}\right)$ is left ideal of R.
$(3) \Rightarrow(4)$: Following (3), we have $e R\left(1-e^{k-1}\right)=e R\left(1-e^{k-1}\right) R \Rightarrow e R\left(e-e^{k}\right)=$ $e R\left(1-e^{k-1}\right) R e \Rightarrow e R\left(1-e^{k-1}\right) R e=0 \Rightarrow e^{k-1} R\left(1-e^{k-1}\right) R e=0$. Now, $R\left(1-e^{k-1}\right) R e=\left(1-e^{k-1}\right) R\left(1-e^{k-1}\right) R e \subseteq\left(1-e^{k-1}\right) R e$ $\left[R\left(1-e^{k-1}\right) R \subseteq R\right]$. Therefore $e R\left(1-e^{k-1}\right) R e \subseteq\left(1-e^{k-1}\right) R e$.
Again, $\left(1-e^{k-1}\right) R e=1 .\left(1-e^{k-1}\right) R e \subseteq R\left(1-e^{k-1}\right) R e$.
Therefore $\left(1-e^{k-1}\right) R e=R\left(1-e^{k-1}\right) R e$ which implies $\left(1-e^{k-1}\right) R e$, is right left ideal of R.
$(4) \Rightarrow(5):$ Let $x \in\left(1-e^{k-1}\right) R \cap N(R)$
Therefore $x=\left(1-e^{k-1}\right) b$ for some $b \in R$ and $x e \in N(R) e$. So $e x=\left(e-e^{k}\right) b=0 \Rightarrow e^{k-1} x=0$. So $x=x-e^{k-1}=\left(1-e^{k-1}\right) x$. Again $\left(1-e^{k-1}\right) R e$ is left ideal of R . So $e R\left(1-e^{k-1}\right) R e \subseteq\left(1-e^{k-1}\right) R e$. Now $e R x e=e R\left(1-e^{k-1}\right) x e \subseteq e R\left(1-e^{k-1}\right) R e \subseteq\left(1-e^{k-1}\right) R e$. Therefore $e^{k} R x e \subseteq\left(e^{k-1}-e^{2 k-2}\right) R e \Rightarrow e R x e \subseteq\left(e^{k-1}-e^{k-1}\right) R e=0 \Rightarrow e R x e=$ $0 \Rightarrow x e \in r(e R)$. Hence $x e \in r(e R) \cap N(R) e$ and finally we get $\left[\left(1-e^{k-1}\right) R \cap N(R)\right] e \subseteq r(e R) \cap N(R) e$.
(5) \Rightarrow (6) : Let $e a=0 \Rightarrow e^{k-1} a=0$ for some $a \in N(R), e \in K(R)$. Now $a e=a e-e^{k-1} a e=\left(1-e^{k-1}\right) a e \in\left[\left(1-e^{k-1}\right) R \cap N(R)\right] e \subseteq r(e R) \cap$ $N(R) e \Rightarrow a e \in r(e R) \cap N(R) e \Rightarrow a e \in r(e R) \Rightarrow e R a e=0$.
$(2) \Rightarrow(1):$ Let $a e=0$ for some $a \in N(R), e \in K(R)$. So by hypothesis $e R(1-$ $\left.e^{k-1}\right) R e=0$. Now $a e^{k-1}=0$, which implies $a=a-a e^{k-1}=$ $a\left(1-e^{k-1}\right)$. Therefore $e a R e=e a\left(1-e^{k-1}\right) R e \subseteq e R\left(1-e^{k-1}\right) R e$. Hence $e a R e=0$.

Corollary 2.2

1. The following conditions are equivalent for a ring R
(i) R is quasi-k-normal.
(ii) For any $e \in K(R) ; x, y \in R$,exye $=e x e^{k-1} y e$.
2. Semiabelian rings are quasi-k-normal.
3. Let R be quasi-k-normal ring. If $e \in E(R)$ with $\operatorname{Re} R=R$ then $e^{k-1}=1$.

Proof.

1. R is quasi-k-normal $\Leftrightarrow e R\left(1-e^{k-1}\right) R e=0 \Rightarrow e x y e=e x e^{k-1} y e ; x, y \in$ R. For $k=2$ we get the following beautiful result by Junchao [4] $(e x)^{n} e=e x^{n} e=e(x e)^{n}$.
2. As R is semiabelian so for $e_{1} \in E(R)$, we have $e_{1} r=e_{1} r e_{1}$ or $r e_{1}=e_{1} r e_{1} \forall r \in R$. Let $e \in K(R) \Rightarrow e^{k}=e \Rightarrow\left(e^{k-1}\right)^{2}=$ $e^{k-1} \Rightarrow e^{k-1} \in E(R)$. Now $e R\left(1-e^{k-1}\right) R e=e . e^{k-1} R\left(1-e^{k-1}\right) R e \subseteq$ $e . e^{k-1} R e^{k-1}\left(1-e^{k-1}\right) R e=0$ or $e R\left(1-e^{k-1}\right) R e=e R\left(1-e^{k-1}\right) R e^{k-1} . e \subseteq$ $e R\left(1-e^{k-1}\right) e^{k-1} R e^{k-1}=0$. So $e R\left(1-e^{k-1}\right) R e=0$ in both cases implies R is quasi-k-normal.
3. As R is quasi-k-normal ring so by Theorem 2.1, $e R\left(1-e^{k-1}\right) R e=0$. As $R e R=R$ so $R\left(1-e^{k-1}\right) R=\operatorname{Re} R\left(1-e^{k-1}\right) R e R=0$, which implies $1\left(1-e^{k-1}\right) 1=0 \Rightarrow e^{k-1}=0$.

A ring is called directly finite if $x y=1 \Rightarrow y x=1 \forall x, y \in R$. A ring is called left min abel if for every $e \in M E_{1}(R)=\{e \in E(R): R e$ is minimal left ideal of R$\}, e$ is left semicentral in R.

Theorem 2.4 Quasi-k-normal rings are directly finite.

Proof. Let $a b=1$ where $a, b \in R$. Let $e=b a$. Now $e^{2}=b a b a=b a=e \Rightarrow$ $e^{k}=e$ so $e \in K(R)$ as idempotents are always k-potent; $a e=a b a=a, e b=$ $b a b=b$. As R is quasi-k-normal so $e R\left(1-e^{k-1}\right) R e=0 \Rightarrow e b(1-e) a e=$ $0 \Rightarrow b(1-e) a=0 \Rightarrow b a=b e a=b^{2} a^{2} \Rightarrow b a b=b^{2} a^{2} b \Rightarrow b=b^{2} a \Rightarrow a b=$ $a b^{2} a \Rightarrow a b=b a \Rightarrow b a=1$. Therefore R is directly finite.

Theorem 2.5 Quasi-k-normal ring are left min-abel.
Proof. Let $e \in M E_{1}(R)$ and $a \in R$. As e is idempotent it is clearly kpotent and in that case quasi-k-normal ring takes the form of quasi normal ring which is left min abel due to Junchao[4]. Hence the result.

A ring R is called left idempotent reflexive if $a R e=0$ implies $e R a=0$ for all $a \in R$ and $e \in K(R)$.

Theorem 2.6: The following conditions are equivalent for a ring R

1. R is abelian.
2. R is semiabelian and left idempotent reflexive.
3. R is quasi-k-normal and left idempotent reflexive.

Proof: By Corollary 2.2, (1) $\Rightarrow(2) \Rightarrow(3)$
$(3) \Rightarrow(1)$: As for idempotents, quasi-k-normal ring takes the form of quasi normal ring. So we have the result directly from Junchao[4].

Theorem 2.7: A ring R is quasi-k-normal ring if and only if $T_{n}(R, R)$ is quasi-k-normal ring.

Proof. Suppose R is quasi-k-normal. We show that $S=T_{n}(R, R)$ is quasi-k-normal by inducting on n. For $n=1$ it is trivial. Suppose $S_{1}=$ $T_{n-1}(R, R)$ is quasi-k-normal for any $n 2$, that is for any

$$
E_{1}=\left(\begin{array}{llll}
(e & e_{12} & e_{13} & . . \\
e_{1 n-1} & & & \\
0 & e & e_{23} & . . \\
e_{2 n-1} & & & \\
0 & 0 & e & . . \\
e_{3 n-1} & & & \\
. . & . . & . . & . . \\
. . & & & \\
0 & 0 & 0 & . . \\
e & & &
\end{array}\right) \in K\left(S_{1}\right)
$$

Thus we have

$$
\begin{align*}
E_{1} S_{1}\left(1-E_{1}{ }^{k-1}\right) S_{1} E_{1} & =0 . \tag{3.1}\\
E_{1} S_{1}\left(1-E_{1}^{k-1}\right) R^{n-1} e & =0 . \tag{3.2}\\
E_{1} R^{n-1}\left(1-e^{k-1}\right) R e & =0 . \tag{3.3}\\
e R\left(1-e^{k-1}\right) R e & =0 . \tag{3.4}
\end{align*}
$$

Now for n, let $E=\begin{array}{ll}E_{1} & \alpha \\ 0 & e\end{array} \in K(S)$ where $\alpha \in \mathbf{R}^{n-1}$ and $E_{1} \in S_{1}$,
$e \in K(R)$ and

$$
\begin{align*}
& E^{k}=E . \\
& \Rightarrow\left(\begin{array}{ll}
E_{1}{ }^{k} & E_{1}{ }^{k-1} \alpha+E_{1}{ }^{k-2} \alpha e+\ldots+E_{1} \alpha e^{k-2}+\alpha e^{k-1} \\
0 & e^{k}
\end{array}\right)=\left(\begin{array}{cc}
E_{1} & \alpha \\
0 & e
\end{array}\right) \\
& \quad \Rightarrow E_{1}{ }^{k-1} \alpha+E_{1}^{k-2} \alpha e+\ldots+E_{1} \alpha e^{k-2}+\alpha e^{k-1}=\alpha \tag{3.5}
\end{align*}
$$

Now suppose that $A=\left(\begin{array}{ll}A_{1} & \xi_{1} \\ 0 & a\end{array}\right), B=\left(\begin{array}{ll}B_{1} & \xi_{2} \\ 0 & b\end{array}\right) \in S$,
where $A_{1}, B_{1} \in S_{1} ; \xi_{1}, \xi_{2} \in \mathbf{R}^{n-1} ; a, b \in R$.
Now

$$
E A\left(1-E^{k-1}\right) B E
$$

$$
=\left(\begin{array}{ll}
A_{1} & \xi_{1} \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
1-E_{1}^{k-1} & -y \\
0 & 1-e^{k-1}
\end{array}\right)\left(\begin{array}{ll}
B_{1} & \xi_{2} \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
E_{1} & \alpha \\
0 & e
\end{array}\right)
$$

$=\left(\begin{array}{ll}E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} E_{1} & x \\ 0 & e a\left(1-e^{k-1}\right) b e\end{array}\right)$
Where

$$
\begin{gathered}
x=E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} \alpha+E_{1} A_{1}\left(1-E_{1}^{k-1}\right) \xi_{2} e-E_{1} A_{1} y b e \\
+E_{1} \xi_{1}\left(1-e^{k-1}\right) b e+\alpha a\left(1-e^{k-1}\right) b e
\end{gathered}
$$

and

$$
\begin{equation*}
y=E_{1}^{k-2} \alpha+E_{1}^{k-3} \alpha e+\ldots+E_{1} \alpha e^{k-3}+\alpha e^{k-2} \tag{3.7}
\end{equation*}
$$

Now, $E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} E_{1} \in E_{1} S_{1}\left(1-E_{1}^{k-1}\right) S_{1} E_{1}$. So by (1), we have,

$$
\begin{equation*}
E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} E_{1}=0 \tag{3.8}
\end{equation*}
$$

Again $e a\left(1-e^{k-1}\right) b e \in e R\left(1-e^{k-1}\right) R e$, So by (4) we have

$$
\begin{equation*}
e a\left(1-e^{k-1}\right) b e=0 \tag{3.9}
\end{equation*}
$$

Now for x, by using(5)

$$
\begin{aligned}
& E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} \alpha=E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1}\left(E_{1}{ }^{k-1} \alpha+E_{1}^{k-2} \alpha e+\ldots+E_{1} \alpha e^{k-2}+\alpha e^{k-1}\right) \\
= & E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} E_{1}^{k-1} \alpha+E_{1} A_{1}\left(1-E_{1}{ }^{k-1}\right) B_{1} E_{1}^{k-2} \alpha e+\ldots+E_{1} A_{1}\left(1-E_{1}^{k-1}\right) B_{1} \alpha e^{k-1}
\end{aligned}
$$

$$
\begin{equation*}
=0 \tag{3.10}
\end{equation*}
$$

[Using (6) and $B_{1} \alpha \in \mathbf{R}^{n-1}$ so $E_{1} A_{1}\left(1-E_{1}{ }^{k-1}\right) B_{1} \alpha e \in E_{1} S_{1}(1-$ $\left.\left.E_{1}{ }^{k-1}\right) R^{n-1} e=0 \operatorname{using}(2)\right]$

Again $E_{1} A_{1}\left(1-E_{1}^{k-1}\right) \xi_{2} e \in E_{1} S_{1}\left(1-E_{1}^{k-1}\right) R^{n-1} e . \quad$ So by using (2) we have

$$
\begin{equation*}
E_{1} A_{1}\left(1-E_{1}^{k-1}\right) \xi_{2} e=0 \tag{3.11}
\end{equation*}
$$

Again $E_{1} \xi_{1}\left(1-e^{k-1}\right) b e \in E_{1} R^{n-1}\left(1-e^{k-1}\right) R e$. So by using (3)we have

$$
\begin{equation*}
E_{1} \xi_{1}\left(1-e^{k-1}\right) b e=0 \tag{3.12}
\end{equation*}
$$

Again $\alpha a\left(1-e^{k-1}\right) b e \in e R\left(1-e^{k-1}\right) R e$. So by using(4)we have

$$
\begin{equation*}
\alpha a\left(1-e^{k-1}\right) b e=0 \tag{3.13}
\end{equation*}
$$

Using(10),(11),(12,(13)we get

$$
x=-E_{1} A_{1} y b e
$$

So we have to show $E_{1} A_{1} y b e=0$.

$$
\begin{aligned}
& \operatorname{Using}(5) E_{1}^{k-1} \alpha+E_{1}^{k-2} \alpha e+\ldots+E_{1} \alpha e^{k-2}+\alpha e^{k-1}=\alpha \\
& \Rightarrow E_{1}\left(E_{1}^{k-2} \alpha+E_{1}^{k-3} \alpha e+E_{1}^{k-4} \alpha e^{2}+\ldots+E_{1} \alpha e^{k-2}\right)=\alpha\left(1-e^{k-1}\right)
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow E_{1} y=\alpha\left(1-e^{k-1}\right) \tag{3.14}
\end{equation*}
$$

Similarly, $\left(E_{1}{ }^{k-2} \alpha+E_{1}{ }^{k-3} \alpha e+E_{1}{ }^{k-4} \alpha e^{2}+\ldots+E_{1} \alpha e^{k-2}\right) e=\left(1-E_{1}{ }^{k-1}\right) \alpha$

$$
\begin{equation*}
\Rightarrow y e=\left(1-E_{1}^{k-1}\right) \alpha \tag{3.15}
\end{equation*}
$$

Now $b \in R ; y \in \mathbf{R}^{n-1} ; A_{1} \in M_{(n-1) \times(n-1)}$, so $A_{1} y \in \mathbf{R}^{n-1}$. So by using(3)we get
$E_{1} A_{1} y\left(1-e^{k-1}\right) b e=0$
$\Rightarrow E_{1} A_{1} y b e$
$=E_{1} A_{1} y e^{k-1} b e$
$=E_{1} A_{1} y e . e^{k-2} b e[k \geq 2]$
$=E_{1} A_{1}\left(1-E_{1}^{k-1}\right) \alpha e^{k-2} b e[\operatorname{Using}(15)]$
$\subseteq E_{1} S_{1}\left(1-E_{1}^{k-1}\right) R^{n-1} e\left[A_{1} \in S_{1} ; \alpha e^{k-2} b \in \mathbf{R}^{n-1}\right]$
Using(3) we get $E_{1} A_{1} y b e=0$

Therefore $x=0$

Hence $E A\left(1-E^{k-1}\right) B E=0$.
So $T_{n}(R, R)$ is quasi-k-normal. Converse part is quite obvious.

By using the above theorem we can the get the following corollaries.

Corollary 2.8: A ring R is quasi-k-normal if and only if $V_{n}(R, R)$ is quasi-k-normal for $n \geq 2$.

Since there is a ring isomorphism $\theta: V_{n}(R, R)=R E_{n}+R V+R V^{2}+$ $\ldots .+R V^{n-1} \rightarrow R[x]\left(x^{n}\right)$ defined by $\theta\left(r_{0} E_{n}+r_{1} V+r_{2} V^{2}+\ldots .+r_{n-1} V^{n-1}\right)=$ $r_{0}+r_{1} x+r_{2} x^{2}+\ldots .+r_{n-1} x^{n-1}+\left(x^{n}\right)$, So using Corollary 2.8 we get following.

Corollary 2.9: A ring R is quasi- k -normal if and only if $R[x]\left(x^{n}\right)$ is quasi-k-normal for $n \geq 2$.

Theorem 2.10 If R is subdirect product of family of a quasi-k-normal rings $\left\{R_{i}: i \in I\right\}$ then R is quasi-k-normal.

Proof. Let $R_{i}=R A_{i}$ where A_{i} are ideals such that $\cap_{i \in I} A_{i}=0$.Let $e \in K(R)$. Then $e_{i}=e+A_{i} \in K\left(R_{i}\right)$ for $i \in I$. As each R_{i} is quasi-knormal, $e_{i} R_{i}\left(1-e_{i}{ }^{k-1}\right) R_{i} e_{i}=0$ for $i \in I$ which implies $e R\left(1-e^{k-1}\right) R e \subseteq A_{i}$ $\forall i \in I$ implies $e R\left(1-e^{k-1}\right) R e \subseteq \cap_{i \in I} A_{i}$. Therefore $e R\left(1-e^{k-1}\right) R e=0$.

Theorem 2.11: Let I be an ideal of a ring R and k-potents can be lifted modulo I. If R is quasi-k-normal, then $R I$ is quasi-k-normal.

Proof. let $g+I$ is k-potent of $R I$ so there exist $e \in K(R)$ such that $g+I=e+I$. Now $(g+I)(R I)\left((1+I)-(g+I)^{k-1}\right)(R I)(g+I)=$ $(e+I)(R I)\left((1+I)-(e+I)^{k-1}\right)(R I)(e+I)=e R\left(1-e^{k-1}\right) R e+I=I$ as R is quasi-k-normal. So $R I$ is quasi-k-normal.

4. Acknowledgments

The 1st author acknowledges UGC for granting fund.

References

[1] J. Han, Y. Lee and S. Park, "Structure of abelian rings", Frontiers of M athematics in China, vol. 12, pp. 117-134, 2016. doi: 10.1007/s11464-016-0586-z
[2] D. Mosi, "Characterizations of k-potent elements in rings", Annali di Matematica Pura ed Applicata, vol. 194, pp. 1157-1168, 2014. doi: 10.1007/s10231-014-0415-5
[3] M. M. Parmenter and P. N. Stewart, "Normal rings and local ideals", M athematica Scandinavica, vol. 60, 1987.
[4] J. W ei and L. Li, "Quasi-normal rings", Communications in Algebra, vol. 38, no. 5, pp. 1855-1868, 2010. doi: 10.1080/00927871003703943

Kumar Napoleon Deka

Department of Mathematics, Gauhati University
India
e-mail: kumarnapoleondeka@gmail.com Corresponding author
and

Helen K. Saikia

Department of Mathematics, Gauhati University
India
e-mail: hsaikia@yahoo.com

