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Abstract

In [4] Wei and Libin defined Quasi normal ring. In this paper we
attempt to define Quasi-k-normal ring by using the action of k-potent
element . A ring is called Quasi-k-normal ring if ac = 0 = eaRe = 0
for a € N(R)and e € K(R), where K(R) = {e € R|e* = e}. Several
analogous results give inf/] is defined here. we find here that a ring is
quasi-k-normal if and only if eR(1 — e*~1)Re = 0 for each e € K(R).
Also we get a ring is quasi-k-normal ring if and only if T, (R, R) is
quasi-k-normal ring.
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1. Introduction

In [3] Parmenter and Stewart defined the notion of normal ring as for
z,y € R and xRy = 0 then ann(x)+ ann(y) = R where ann(z) = {z € R:
zRx = 0}. In [4] Wei and Libin generalized normal rings and defined quasi
normal ring on the basis of normal ring. Here we define quasi-k-normal
ring in terms of k-potent elements as defined in [2]. Here we study several
properties of quasi-k-normal rings.

2. Preliminaries

All rings considered here are associative with identity. We use the symbols
K(R),E(R),N(R) for set of all k-potents, idempotents and nilpotents re-
spectively. Again for any subset X of a ring R, we denote 7(X) = rg(X)
and [(X) = [p(X) for right annihilator and left annihilator of X respec-
tively. Again E;;(17, jn) denote n x n matrix units over R, and write V' =
Z?:_11Ez‘,i+1 for n2. Also we use the symbol T,,(R, R) to denote the ring of
nxn upper triangular matrices whose principal diagonal elements are equals
and others belong to R and V,,(R, R) = RE, + RV + RV? + ... + RV 1
for n2, where F, is n x n identity matrix over FE.

A ring is called quasi-k-normal if ae = 0 = eaRe = 0 for e € K(R)
and a € N(R).Again a ring is semiabelian if every idempotents of R is
either left semicentral or right semicentral. A ring is called abelian [1] if
every idempotent of R is central. Semiabelian rings are quasi-k-normal.
An example of quasi-k-normal ring is reversible ring R (ab =0 = ba = 0
for a,b € R).

3. Results and Discussion
We start with the foloowing results.

Theorem 2.1. The following conditions are equivalent for a ring R :
1. R is quasi-k-normal.
2. eR(1 —eF1)Re = 0;Ve € K(R).
3. eR(1 — €F71) is right ideal of R; Ve € K(R).
4. (1 —e*~1)Re is left ideal of R Ve € K(R).
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5 [(1—eY)RNN(R)e C r(eR) N N(R)e Ve € K(R).
6. ea =0= eRae =0Va € N(R) and e € K(R).

Proof:

(1) =(2):

: Let ea =

For any a € R, € K(R), let h = " la — eFlaeb~! = ek~1lg(1 -
). So h? = eFla(eFt — e22)q(1 — 1) =0 = h € N(R) and
he = e lale — e*) = 0. Now h € N(R),he = 0. So by definition
of quasi-k-normal ring, ehRe = 0 = e.efla(l — #"1)Re = 0 =
ea(l —eF"1)Re = 0= eR(1 — e* 1 )Re = 0 as a € R is arbitrary.

: Let h = aeb™! — eFlaeb1 = (1 — e¥"1)aekF~1e € K(R).Then eh =

0,h2 = 0. So eh = 0,h € N(R) = eRhe = 0 = eR(1 — e 1)ack =
0= eR(1—cF"1YRe =0 as a € R is arbitrary.

: Let e € K(R). By (2),eR(1—eF"1)Re = 0= eR(1—eF"1)ReF~1 =0

Now eR(1 — e* R = eR(1 — F V)R(1 — eF71) C eR(1 — &+ 1)
[R(1 — 1R C R]

Again eR(1 — eF 1) =eR(1 — ¥ 1)1 CeR(1 — YR

Therefore eR(1 —e*~1) = eR(1 —eF"1)R. So eR(1 —eF~1) is left ideal
of R.

: Following (3),we have eR(1 —eF™1) = eR(1—e*"1)R = eR(e ey =

eR(1 — e 1)Re = eR(1 — e HRe = 0 = ek IR(1 - )Re =0.
Now, R(1 — e HRe = (1 — FV)R(1 — eF")Re C (1 — e HRe
[R(1 — e*~1)R C R]. Therefore eR(1 — e*"1)Re C (1 — e* 1) Re.
Again, (1 — ¥ 1)Re = 1.(1 — e 1)Re C R(1 — ¥ 1) Re.

Therefore (1 —e*~1)Re = R(1 — ¥~ 1) Re which implies (1 — e*~1)Re,
is right left ideal of R.

cLetz € (1 —e1)RNN(R)

Therefore x = (1 — e*~1)b for some b € R and ze € N(R)e. So
ex=(e—eMb=0=elx =0. Sox =x—e! = (1—eF"1z. Again
(1—e*~1)Re is left ideal of R. So eR(1—eF~!)Re C (1—e*~1)Re. Now
eRre = eR(1 — e 1)ze C eR(1 — e#"1)Re C (1 — e#~1) Re.Therefore
e*Rre C (eF 1 —e?*2)Re = eRae C (1 —eF"1)Re = 0 = eRxe =
0 = ze € r(eR). Hence ze € r(eR) N N(R)e and finally we get
[(1—eF1)RNN(R)]e C r(eR) N N(R)e.
0

= ef"lg = 0 for some a € N(R),e € K(R). Now
ae = ae — e lae = (1 — ¥ Nae € [(1 — e RN N(R)]le C r(eR) N
N(R)e = ae € r(eR) N N(R)e = ae € r(eR) = eRae = 0.
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(2) = (1) : Let ae = 0 for some a € N(R),e € K(R). So by hypothesis eR(1 —
e*1)Re = 0. Now ae*~! = 0, which implies a = a — acf~! =
a(l — e*~1). Therefore eaRe = ea(l —efFYRe C eR(l — eF D) Re.

Hence eaRe = 0.
Corollary 2.2

1. The following conditions are equivalent for a ring R

(i) R is quasi-k-normal.

ii) For any e € K(R);z,y € R,exye = exe"ye.

(ii) y ;4. € Rexy y
2. Semiabelian rings are quasi-k-normal.

3. Let R be quasi-k-normal ring. If e € E(R) with ReR = R then
k—1
e =1

Proof.

1. Ris quasi-k-normal < eR(1—e* 1) Re = 0 = exye = exeFlye;x,y €

R. For k = 2 we get the following beautiful result by Junchao [4]
(ex)"e = ex™e = e(we)".

2. As R is semiabelian so for e; € E(R), we have ejr = 617“61 or
re; = ere; Vr € R. Let e € K(R) = e = e = (ef1)?
b1 = =1 ¢ B(R). Now eR(1 —eF 1) Re = e.e? "1 R(1 — ek~ 1)Re C
e.e? TReF~1(1—eF"1)Re = 0 or eR(1—eF"1)Re = eR(1—eF 1) ReF~1e C
eR(1 — e 1)eF~1ReF =1 = 0. So eR(1 — ¢*"1)Re = 0 in both cases
implies R is quasi-k-normal.

3. As R is quasi-k-normal ring so by Theorem 2.1,eR(1—¢e*1)Re = 0.
As ReR = Rso R(1—e*1)R = ReR(1—e*"1)ReR = 0, which implies
1(1—-efFH1=0= et =0.

A ring is called directly finite if xy = 1 = yx = 1Vz,y € R. A ring is

called left min abel if for every e € M E;(R) = {e € E(R):Re is minimal
left ideal of R }, e is left semicentral in R.

Theorem 2.4 Quasi-k-normal rings are directly finite.
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Proof. Let ab = 1 where a,b € R. Let e = ba. Now e? = baba = ba = e =
ek = e so e € K(R) as idempotents are always k-potent; ae = aba = a,eb =
bab = b. As R is quasi-k-normal so eR(1 — e*"!)Re = 0 = eb(1 — €)ae =
0= b1 —e)a=0= ba = bea = b%a® = bab = b*a’b = b = b’a = ab =
ab’a = ab = ba = ba = 1. Therefore R is directly finite.

Theorem 2.5 Quasi-k-normal ring are left min-abel.

Proof. Let e € MFE{(R) and a € R. As e is idempotent it is clearly k-
potent and in that case quasi-k-normal ring takes the form of quasi normal
ring which is left min abel due to Junchao[4]. Hence the result.

A ring R is called left idempotent reflexive if aRe = 0 implies eRa = 0
for all a € R and e € K(R).

Theorem 2.6: The following conditions are equivalent for a ring R

1. R is abelian.
2. R is semiabelian and left idempotent reflexive.

3. R is quasi-k-normal and left idempotent reflexive.

Proof: By Corollary 2.2, (1) = (2) = (3)
(3) = (1) : As for idempotents, quasi-k-normal ring takes the form of quasi
normal ring. So we have the result directly from Junchao[4].

Theorem 2.7: A ring R is quasi-k-normal ring if and only if T,,(R, R) is
quasi-k-normal ring.

Proof. Suppose R is quasi-k-normal. We show that S = T,,(R, R) is
quasi-k-normal by inducting on n. For n = 1 it is trivial. Suppose 51 =
T,—1(R, R) is quasi-k-normal for any n2, that is for any
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(e e12 €13
€1n-1
0 c €23
€2n—1
B=|% 0 ¢ € K(S)),
€3n—1
0 0 0
e

Thus we have

(3.1) E1S1(1—E*F NS B =0.
(3.2) E1S1(1— EFHR e = 0.
(3.3) E1R" (1 - YHRe=0.
(3.4) eR(1 — eF1)Re = 0.
Now for n, let E = 0 e € K(S) where a € R"™" and E; € i,
e € K(R) and
EF = E.
Elk Elkfla + E*20e + ...+ EyaeF 2 4 ekt Ei «
= k =
0 e 0 e
(3.5) = B la+ EF lae+ .+ Eraeh 2 4o = o

(A& [ B1 &
NowsupposethatA(O N ),B(O b >€S’,

where A1, B1 € 51;&1,& € Rnfl;a,b € R.

Now
EA(1 - E*YBE

[ A & 1-EM —y By & Ei «o
“\0 a 0 1—eb1 0 b 0 e
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( BEA(L - EMYBIE o
~\ 0 ea(l — efF~1)be
Where
xr = E1A1(1 — Elk_l)Bla + ElAl(l — Elk_l)fge — ElAlybe
(3.6) +E1& (1 — e Nbe + aa(l — eF1)be
and
(3.7) y=E" 20+ E/"3ae+ ...+ Brae® ™3 + b2

NOW,ElAl(l - Elk_l)BlEl S E181(1 — Elk_l)lel. So by(l),we have,
(3.8) E1A1(1— B Y)B1E =0

Again ea(1 — ¥ 1)be € eR(1 — e* "1 Re, So by (4) we have
(3.9) ea(l — eF"1be = 0.

Now for z, by using(5)

E1A1(1— E1 P " Y)Bla=E1A1(1 - B F ) B (1" Ta+ BE1F 2ae + .+ EraeP T2 4+ acfTh)

=FE1A1(1— Elkil)BlElkila +E{A1(1 - Elkil)BlElkizae + ...+ E1A1(1 - E1k71)31a6k71

(3.10) =0

[Using (6) and Bja € R™ ! so E1A (1 — EyF Y Biae € E1S1(1 —
EF YR e = 0 using(2)]

Again E1A;(1 — E1*Y)ée € E1S1(1 — E1F1)R*le. So by using(2)
we have
(3.11) E1A1(1 — ByFHgee = 0.

Again E1&1(1— e Nbe € EyR" (1 —eF~1)Re. So by using (3)we have
(3.12) E161(1 — efF1be = 0.

Again aa(1 — e* e € eR(1 — eF~1)Re. So by using(4)we have

(3.13) aa(l — e e = 0.
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Using(10),(11),(12,(13)we get
x=—F1Aybe
So we have to show FyAjybe = 0.
Using(5) Ei* la+ EF 2ae + ...+ Braeb 2 + aeb = o

= El(Elk_Qa + By Bae+ By tae? + .+ Elozek_Q) =l — ek_l)

(3.14) = Fiy=a(l -
Similarly,(Elk_2a+E1k_3ae+E1k_4a62+...+E1aek*2)e = (1—E1k_1)04

(3.15) =ge=(1-FEfHa
Now b € R;y € R4 ¢ Mn—1)x(n-1), s0 A1y € R"!. So by

using(3)we get
E1A1y(1— e Nbe =0
= F1Ai1ybe
= ElAlyek_lbe
= By Ayye.ei2be [k > 2]
= F1A1(1 — Ey* Y aek2be [Using(15)]
C E151(1 — Elkfl)R"_le [A; € Sp;aek2b € R
Using(3) we get E1Ajybe =0
Therefore z =0
Hence FA(1 — EFYYBE = 0.
So T, (R, R) is quasi-k-normal. Converse part is quite obvious.

By using the above theorem we can the get the following corollaries.
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Corollary 2.8: A ring R is quasi-k-normal if and only if V;,(R, R) is quasi-
k-normal for n > 2.

Since there is a ring isomorphism 0 : V,,(R, R) = RE,, + RV + RV? +
et RV — R[2](2™) defined by 0(roEy+11V +roV2+ .41, VL) =
ro + Mz + oz 4 . + 1™ 4 (z™), So using Corollary 2.8 we get
following,.

Corollary 2.9: A ring R is quasi-k-normal if and only if R[z](z") is quasi-
k-normal for n > 2.

Theorem 2.10 If R is subdirect product of family of a quasi-k-normal
rings {R; : ¢ € I} then R is quasi-k-normal.

Proof. Let R, = RA; where A; are ideals such that N;crA; = 0.Let
e € K(R). Then e¢; = e+ A; € K(R;) for i € I. As each R; is quasi-k-
normal, e; R;(1—e;*"1)R;e; = 0 for i € I which implies eR(1—e* 1) Re C A;
Vi € I implies eR(1 — e*"1)Re C N;erA;. Therefore eR(1 — e ~1)Re = 0.

Theorem 2.11: Let I be an ideal of a ring R and k-potents can be lifted
modulo I. If R is quasi-k-normal, then RI is quasi-k-normal.

Proof. let g + I is k-potent of RI so there exist e € K(R) such that
g+ 1 =c+1. Now (g+ D(RH((1+1)—(g+D-YRI(g+1I) =
(e+ D(RD((1+1) —(e+ DY RI(e+I)=eR(1 - HRe+ T =1 as
R is quasi-k-normal. So RI is quasi-k-normal.
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