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1. IntroductionÃ
0 −1
1 0

!Ã
y01 (x)
y02 (x)

!
+

Ã
p (x) 0
0 r (x)

!Ã
y1 (x)
y2 (x)

!
, x ∈ [a, b],(1.1)

where p (.) and r (.) are real-valued, Lebesgue integrable functions on [a, b],
is one of the classical equations in quantummechanics. This system predicts
the existence of antimatter and describes the electron spin. Some properties
of the one-dimensional Dirac systems have been considered in the literature
(see [19, 24, 23, 1] and the references therein).

The Hahn difference operator Dω,q defined by (q ∈ (0, 1) , ω > 0)

Dω,qf (x) =

(
f(ω+qx)−f(x)
ω+(q−1)x , x 6= ω0,

f 0 (ω0) , x = ω0,
was introduced by Hahn [9], [10]. This operator is known as a generalization
of the forward difference operator defined by

∆ωf (x) :=
f (ω + x)− f (x)

(ω + x)− x
, x ∈ R.

and the quantum q-difference operator ([15]) defined by

Dqf (x) :=
f (qx)− f (x)

qx− x
, x 6= 0.

Hahn difference operators are receiving an increase of interest due to
their applications in the construction of families of orthogonal polynomials
and approximation problems see [5],[8], [17], [18], [21] and the references
therein.

In the literature there exist some papers including Hahn difference equa-
tions. In [12], Hamza et al. studied the theory of linear Hahn difference
equations. The authors also study the existence and uniqueness of solu-
tions for the initial value problems for Hahn difference equations. More-
over, they proved Gronwall’s and Bernoulli’s inequalities with respect to
the Hahn difference operator and investigated the mean value theorems for
this calculus. In 2016, Hamza and Makharesh [13] investigated Leibniz’s
rule and Fubini’s theorem associated with the Hahn difference operator.
Sitthiwirattham [22] considers the nonlocal boundary value problem for
the nonlinear Hahn difference equation. Recently, in [7], the regular Hahn-
Sturm-Liouville problem

−q−1D−ωq−1,q−1Dω,qy (x) + v (x) y (x) = λy (x) ,
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a1y (ω0) + a2D−ωq−1,q−1y (ω0) = 0,

b1y (b) + b2D−ωq−1,q−1y (b) = 0,

is studied where ω0 ≤ x <∞, λ ∈ C, ai, bi ∈ R := (−∞,∞), i = 1, 2, and
p (.) is a real-valued continuous function at ω0 defined on [ω0, b]. Annaby
et al. [7] define a Hilbert space of ω, q−square summable functions. They
discussed the formulation of the self-adjoint operator and the properties
of the eigenvalues and the eigenfunctions. Furthermore, they constructed
Green’s function and gave an eigenfunction expansion theorem.

In [14], the author introduces ω, q−analogy of the Dirac system (1.1)

Γy :=

(
−q−1D−ωq−1,q−1y2 + p (x) y1

Dω,qy1 + r (x) y2
,

Γy = λy, y =

Ã
y1
y2

!
, ω0 < x < a <∞,(1.2)

with boundary conditions

k11y1 (ω0) + k12y2 (ω0) = 0,

k21y1 (a) + k22y2
³
h−1 (a)

´
= 0,

where λ is a complex eigenvalue parameter, kij ∈ R (i, j = 1, 2) and p (.) ,
r (.) are real-valued continuous functions at ω0, defined on [ω0, a]. Hira
investigated the existence and uniqueness of solutions for this problem and
gave its spectral properties. Recently, in [2, 3], the authors proved the
existence of a spectral function for the singular Hahn-Dirac system.

In this paper, we study some spectral properties of the one-dimensional
Hahn-Dirac boundary-value problem (1.2), such as formally self-adjointness,
the case that the eigenvalues are real, orthogonality of eigenfunctions,
Green’s function, the existence of a countable sequence of eigenvalues,
eigenfunctions forming an orthonormal basis of L2ω,q((ω0, a);E).

The paper is organized as follows. In preparation for our work on
ω, q−calculus, we first present some basic definitions and notational infor-
mation in Section 2. In Section 3, we formulate a self-adjoint Hahn-Dirac
system in L2ω,q((ω0, a);E). In the last section, we construct the associ-
ated Green function of the Hahn-Dirac equation and give the eigenfunction
expansions.

2. Preliminaries

In this section, we recall some necessary concepts of the Hahn calculus. For
more details, the reader may want to consult [6], [9], [10], [7]. Throughout
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the paper, we let q ∈ (0, 1) and ω > 0.

Define ω0 := ω/ (1− q) and let I be a real interval containing ω0.

Definition 1 ([9],[10]). Let f : I → R be a function. The Hahn differ-
ence operator is defined by

Dω,qf (x) =

(
f(ω+qx)−f(x)
ω+(q−1)x , x 6= ω0,

f 0 (ω0) , x = ω0,

provided that f is differentiable at ω0. In this case, we call Dω,qf, the
ω, q−derivative of f.

Remark 2. The Hahn difference operator unifies two well-known opera-
tors. When q → 1, we get the forward difference operator, which is defined
by

∆ωf (x) :=
f (ω + x)− f (x)

(ω + x)− x
, x ∈ R.

When ω → 0, we get the Jackson q− difference operator, which is
defined by

Dqf (x) :=
f (qx)− f (x)

(qx)− x
, x 6= 0.

Furthermore, under appropriate conditions, we have

ω → 0lim
q→1

Dω,qf (x) = f 0 (x) .

In what follows, we present some important properties of the ω, q−derivative.

Theorem 3 ([6]). Let f, g : I → R be ω, q−differentiable at x ∈ I and
h (x) := ω + qx, then we have for all x ∈ I :

i) Dω,q (af + bg) (x) = aDω,qf (x) + bDω,qg (x) , a, b ∈ I,

ii) Dω,q (fg) (x) = Dω,q (f (x)) g (x) + f (ω + xq)Dω,qg (x) ,

iii) Dω,q

³
f
g

´
(x) = Dω,q(f(x))g(x)−f(x)Dω,qg(x)

g(x)g(ω+xq) ,

iv) Dω,qf
¡
h−1 (x)

¢
= D−ωq−1,q−1f (x) , h

−1 (x) = q−1(x− ω)

The concept of the ω, q−integral of the function f can be defined as
follows.
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Definition 4 (Jackson-Nörlund Integral [6]). Let f : I → R be a
function and a, b, ω0 ∈ I. We define ω, q−integral of the function f from a
to b by Z b

a
f (x) dω,q (x) :=

Z b

ω0
f (x) dω,q (x)−

Z a

ω0
f (x) dω,q (x) ,

where

Z x

ω0
f (x) dω,q (x) := ((1− q)x− ω)

∞X
n=0

qnf

µ
ω
1− qn

1− q
+ xqn

¶
, x ∈ I

provided that the series converges at x = a and x = b. In this case, f is
called ω, q−integrable on [a, b].

The following properties of ω, q−integration can be found in [6].

Theorem 5 ([6]). Let f, g : I → R be ω, q−integrable on I, a, b, c ∈ I,
a < c < b and α, β ∈ R. Then the following formulas hold:

i)
R b
a {αf (x) + βg (x)} dω,q (x) = α

R b
a f (x) dω,q (x) + β

R b
a g (x) dω,q (x) ,

ii)
R a
a f (x) dω,q (x) = 0,

iii)
R b
a f (x) dω,q (x) =

R c
a f (x) dω,q (x) +

R b
c f (x) dω,q (x) ,

iv)
R b
a f (x) dω,q (x) = −

R a
b f (x) dω,q (x) .

Next, we present the ω, q−integration by parts.

Lemma 6 ([6]). Let f, g : I → R be ω, q−integrable on I, a, b ∈ I, and
a < b. Then the following formula holds:

Z b

a
f (x)Dω,qg (x) dω,q (x) +

Z b

a
g (ω + qx)Dω,qf (x) dω,q (x)

= f (b) g (b)− f (a) g (a) .

The next result is the fundamental theorem of the Hahn calculus.
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Theorem 7 ([6]). Let f : I → R be continuous at ω0. Define

F (x) :=

Z x

ω0
f (t) dω,q (t) , x ∈ I.

Then F is continuous at ω0. Moreover, Dω,qF (x) exists for every x ∈ I
and Dω,qF (x) = f (x) . Conversely,Z b

a
Dω,qF (x) dω,q (x) = f (b)− f (a) .

Let L2ω,q(ω0, a) be the space of all complex-valued functions defined on
[ω0, a] such that

kfk :=
µZ a

ω0
|f (x)|2 dω,qx

¶1/2
<∞.

The space L2ω,q(ω0, a) is a separable Hilbert space with the inner product

(f, g) :=

Z a

ω0
f (x) g (x)dω,qx, f, g ∈ L2ω,q(ω0, a)

(see [6]).

3. Self-adjoint Hahn-Dirac system

In this section, we formulate a self-adjoint Hahn-Dirac system in L2ω,q((ω0, a);E)
and give some spectral properties of this system.

Now, we consider the Hahn-Dirac system

Γ (y) :=

(
−q−1D−ωq−1,q−1y2 + p (x) y1,

Dω,qy1 + r (x) y2,

Γ (y) = λy, y =

Ã
y1
y2

!
, ω0 < x < a <∞,(3.1)

with boundary conditions

Γ1 (y) : = a11y1 (ω0) + a12y2 (ω0) = 0,(3.2)

Γ2 (y) : = a21y1 (a) + a22y2
³
h−1 (a)

´
= 0,(3.3)

where λ is a complex eigenvalue parameter, aij (i, j = 1, 2) are arbitrary
real numbers, p (.) and r (.) are real-valued continuous functions at ω0,
defined on [ω0, h

−1(a)], h−1 (a) = q−1(a− ω) > a.
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We introduce convenient Hilbert space L2ω,q((ω0, a);E)E := C2) of
vector-valued functions using the inner product

(f, g) :=

Z a

ω0
(f(x), g(x))Edω,qx.

Next denote by D the linear set of all vector-valued functions y ∈
L2ω,q((ω0, a), E) such that y are continuous functions at ω0 defined on [ω0, h

−1(a)],
Γy ∈ L2ω,q((ω0, a), E) and satisfying the boundary conditions (3.2), (3.3).

Theorem 1. The boundary-value problem defined by (3.1)-(3.3) is for-
mally self-adjoint on L2ω,q((ω0, a);E).

Proof. Firstly, we will prove Green’s formula. Let y (.) , z (.) ∈ D. Then,
we have

(Γy, z)− (y,Γz)

=

Z a

ω0

³
−q−1D−−1,q−1y2 + p (x) y1

´
z1dω,qx

+

Z a

ω0
(Dω,qy1 + r (x) y2) z2dω,qx

−
Z a

ω0
y1
³
−q−1D−ωq−1,q−1z2 + p (x) z1

´
dω,qx

−
Z a

ω0
y2(Dω,qz1 + r (x) z2)dω,qx

= −
Z a

ω0

h³
−q−1D−ωq−1,q−1y2

´
z1 + y2(Dω,qz1)

i
dω,qx

+

Z a

ω0

∙
(Dω,qy1) z2 + y1

³
−q−1D−ωq−1,q−1z2

´¸
dω,qx

Since

Dω,q

³
z1 (x)y2

³
h−1 (x)

´´
=

³
Dω,qy2

³
h−1 (x)

´´
z1 (x) + y2 (x) (Dω,qz1 (x))

=
³
−q−1D−ωq−1,q−1y2

´
z1 + y2(Dω,qz1)

and
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Dω,q

³
z2 (h−1 (x))y1 (x)

´
= (Dω,qz2 (h−1 (x)))y1 (x) + z2 (x) (Dω,qy1 (x))

=
³
−q−1D−ωq−1,q−1z2

´
y1 + z2 (x)Dω,qy1 (x) .

Hence we get

(Γy, z)− (y,Γz) = −
Z a

ω0
Dω,q

³
z1 (x)y2

³
h−1 (x)

´´
dω,qx

+

Z a

ω0
Dω,q

³
y1 (x) z2 (h−1 (x))

´
dω,qx

=

Z a

ω0
Dω,q

h
y1 (x) z2 (h−1 (x))− z1 (x)y2

³
h−1 (x)

´i
dω,qx.

Let us define [y, z]x := y1 (x) z2 (h−1 (x))− z1 (x)y2
¡
h−1 (x)

¢
. Hence we

obtain

(Γy, z)− (y,Γz) = [y, z]a − [y, z]ω0 .(3.4)

We proceed to show that the operator Γ is formally self-adjoint. It is
sufficient to prove that (Γy, z) = (y,Γz) for any y (.) , z (.) ∈ D.

Let y (.) , z (.) ∈ D. Then, we have (3.4), and from the boundary condi-
tions (3.2) and (3.3), we get [y, z]a = 0 and [y, z]ω0 = 0.

Consequently,

(Γy, z) = (y,Γz) .(3.5)

This completes the proof. 2

Lemma 2. All eigenvalues of the problem defined by (3.1)-(3.3) are real.

Proof. Let λ be an eigenvalue with an eigenfunction z. From (3.5), we
get

(Γz, z) = (z,Γz) = (z, λz) = λ (z, z) .(3.6)

On the other hand,

(Γz, z) = (λz, z) = λ (z, z) .(3.7)

From (3.6) and (3.7), we obtain λ (z, z) = λ (z, z) or
³
λ− λ

´
(z, z) = 0.

Since z 6= 0, we have λ = λ. 2
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Lemma 3. If λ1 and λ2 are two different eigenvalues of the problem de-
fined by (3.1)-(3.3), then the corresponding eigenfunctions v1 and v2 are
orthogonal.

Proof. Let λ1 and λ2 be two different real eigenvalues with correspond-
ing eigenfunctions v1 and v2, respectively. From (3.5), we obtain

(λ1 − λ2)

Z a

ω0
(v1 (x) , v2 (x))Edω,qx = 0.

Since λ1 6= λ2, we obtain that v1 and v2 are orthogonal. 2

Theorem 4. Let

y(x) =

Ã
y1 (x)
y2 (x)

!
, z (x) =

Ã
z1 (x)
z2 (x)

!
.

Then, we define the Wronskian of y (x) and z (x) by the formula

W(y, z) (x) = y1 (x) z2
¡
h−1 (x)

¢
− z1 (x) y2

¡
h−1 (x)

¢
(x ∈ (ω0, a]). The

Wronskian of any solution of Eq. (3.1) is independent of x (x ∈ [ω0, a]).

Proof. Let y (x) and z (x) be two solutions of Eq. (3.1). By Green’s
formula (3.4), we haveZ x

ω0
[(Γy, z)E − (y,Γz)E](t)dω,qt = [y, z]x − [y, z]ω0 .

Since Γy = λy and Γz = λz, we have

Z x

ω0
[(λy, z)E −

³
y, λz

´
E
](t)dω,qt = [y, z]x − [y, z]ω0 ,

(λ− λ)

Z x

ω0
(y(t), z(t))E dω,qt = [y, z]x − [y, z]ω0 = 0,

or W (y, z) (x) = [y, z]x = [y, z]ω0 = W (y, z) (ω0) (x ∈ (ω0, a]), i.e., the
Wronskian is independent of x. 2

Corollary 5. If y (x) and z (x) are both solutions of Eq. (3.1), then either
W (y, z) = 0 or W (y, z) 6= 0 for all x ∈ [ω0, a] .

Theorem 6. Any two solutions of Eq. (3.1) are linearly dependent if and
only if their Wronskian is zero.
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Proof. Let y (x) and z (x) be two linearly dependent solutions of Eq.
(3.1). Then, there exists a constant c > 0 such that y (x) = cz (x) . Hence

W(y, z) =

¯̄̄̄
¯ y1 (x) y2

¡
h−1 (x)

¢
z1 (x) z2

¡
h−1 (x)

¢ ¯̄̄̄¯ =
¯̄̄̄
¯ cz1 (x) cz2

¡
h−1 (x)

¢
z1 (x) z2

¡
h−1 (x)

¢ ¯̄̄̄
¯ = 0.

Conversely, the Wronskian W (y, z) = 0 and therefore, y (x) = cz (x) ,
i.e., y (x) and z (x) are linearly dependent. 2

Lemma 7. All eigenvalues of the problem defined by (3.1)-(3.3) are simple
from the geometric point of view.

Proof. Let µ be an eigenvalue with eigenfunctions z1 (x) and z2 (x) . From
the boundary condition (3.2), we have

W(z1, z2) (ω0) = z11 (ω0) z22 (ω0)− z12 (ω0) z21 (ω0) = 0.
Then, the set {z1 (x) , z2 (x)} is linearly dependent. 2

Now, our next goal is to determine the eigenvalues and the correspond-
ing eigenfunctions. Let

ψ1 (x, λ) =

Ã
ψ11 (x, λ)
ψ12 (x, λ)

!
, ψ2 (x, λ) =

Ã
ψ21 (x, λ)
ψ22 (x, λ)

!
be linearly independent solutions of (3.1) which satisfy the initial conditions

ψ11 (ω0, λ) = 1, ψ12 (ω0, λ) = 0,

ψ21 (ω0, λ) = 0, ψ22 (ω0, λ) = 1, λ ∈ C.

Then, every solution of the system (3.1) has the form

y (x, λ) = K1ψ1 (x, λ) +K2ψ2 (x, λ) ,

where K1 and K2 do not depend on x. If we can find a nontrivial solution
of the linear system

K1Γ1 (ψ1) +K2Γ1 (ψ2) = 0,

K1Γ2 (ψ1) +K2Γ2 (ψ2) = 0,

then the solution y (x, λ) is called an eigenfunction of (3.1). Hence λ ∈ R
is an eigenvalue if and only if

∆ (λ) =

¯̄̄̄
¯ Γ1 (ψ1) Γ1 (ψ2)Γ2 (ψ1) Γ2 (ψ2)

¯̄̄̄
¯ = 0.

The function ∆ (λ) is called the characteristic determinant associated
with the Hahn-Dirac system defined by (3.1)-(3.3). The eigenvalues of the
problem defined by (3.1)-(3.3) are the zeros of the function ∆ (λ) . On the
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other hand, ∆ (λ) is an entire function in λ because ψ1 (x, λ) and ψ2 (x, λ)
are entire in λ for each fixed x ∈ [ω0, a] . Hence the eigenvalues of the
Hahn-Dirac system defined by (3.1)-(3.3) are at most countable with no
finite limit points.

Theorem 8. All eigenvalues λn (n = 1, 2, ...) of the problem defined by
(3.1)-(3.3) are simple zeros of the function ∆ (λ) .

Proof. Let us define

ϕ1 (x, λ) =

Ã
ϕ11 (x, λ)
ϕ12 (x, λ)

!
and ϕ2 (x, λ) =

Ã
ϕ21 (x, λ)
ϕ22 (x, λ)

!
by

ϕ1 (x, λ) = Γ1 (ψ2)ψ1 (x, λ)− Γ1 (ψ1)ψ2 (x, λ) ,
ϕ2 (x, λ) = Γ2 (ψ2)ψ1 (x, λ)− Γ2 (ψ1)ψ2 (x, λ) .

(3.8)

Then, ϕ1 (x, λ) and ϕ2 (x, λ) are solutions of (3.1) such that

ϕ1 (ω0, λ) =

Ã
a12
−a11

!
and ϕ2 (a, λ) =

Ã
a22
−a21

!
.(3.9)

On the other hand, we have

W (ϕ1 (x, λ) , ϕ2 (x, λ))

=

¯̄̄̄
¯ ϕ11 (x, λ) ϕ12

¡
h−1 (x) , λ

¢
ϕ21 (x, λ) ϕ22

¡
h−1 (x) , λ

¢ ¯̄̄̄¯
= ϕ11 (x, λ)ϕ22

³
h−1 (x) , λ

´
− ϕ12

³
h−1 (x) , λ

´
ϕ21 (x, λ)

= (Γ1 (ψ2)ψ11 (x, λ)− Γ1 (ψ1)ψ21 (x, λ))
× (Γ2 (ψ2)ψ12 (x, λ)− Γ2 (ψ1)ψ22 (x, λ))
− (Γ1 (ψ2)ψ12 (x, λ)− Γ1 (ψ1)ψ22 (x, λ))
× (Γ2 (ψ2)ψ11 (x, λ)− Γ2 (ψ1)ψ21 (x, λ))

= Γ1 (ψ2)Γ2 (ψ1)

Ã
−ψ11 (x, λ)ψ22

¡
h−1 (x) , λ

¢
+ψ12

¡
h−1 (x) , λ

¢
ψ21 (x, λ)

!

+Γ1 (ψ1)Γ2 (ψ2)

Ã
ψ11 (x, λ)ψ22

¡
h−1 (x) , λ

¢
−ψ12

¡
h−1 (x) , λ

¢
ψ21 (x, λ)

!
=

³
ψ11 (x, λ)ψ22

³
h−1 (x) , λ

´
− ψ12

³
h−1 (x) , λ

´
ψ21 (x, λ)

´
× (Γ1 (ψ1)Γ2 (ψ2)− Γ1 (ψ2)Γ2 (ψ1))

= W (ψ1 (x, λ) , ψ2 (x, λ))∆ (λ) = ∆ (λ) .(3.10)
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Let λ0 be an eigenvalue of the problem defined by (3.1)-(3.3). Since λ0
is a real number, ψi (x, λ0) (i = 1, 2) can be taken to be real-valued. Then,
by (3.21), ϕ1 (x, λ0) and ϕ2 (x, λ0) are linearly dependent eigenfunctions.
Hence there exists a nonzero constant η0 such that

ϕ2 (x, λ0) = η0ϕ1 (x, λ0) .

From (3.8) and (3.9), we have

ϕ21 (ω0, λ0) = η0a12 = η0ϕ11 (ω0, λ) ,(3.11)

ϕ22 (ω0, λ0) = −η0a11 = −η0ϕ12 (ω0, λ) .(3.12)

If we take y (x) = ϕ2 (x, λ) and z (x) = ϕ2 (x, λ0) in (3.4), then we get

(λ− λ0)

Z a

ω0
(ϕ2 (x, λ) , ϕ2 (x, λ0))Edω,qx

= − (ϕ21 (ω0, λ)ϕ22 (ω0, λ0)− ϕ21 (ω0, λ0)ϕ22 (ω0, λ))

= − (ϕ21 (ω0, λ) (−η0ϕ12 (ω0, λ))− η0ϕ11 (ω0, λ)ϕ22 (ω0, λ))

= η0 (ϕ11 (ω0, λ)ϕ22 (ω0, λ)− ϕ12 (ω0, λ)ϕ21 (ω0, λ))

= η0W (ϕ1 (x, λ) , ϕ2 (x, λ)) = η0∆ (λ) .

Since ∆ (λ) is an entire function in λ, we have

d

dλ
∆ (λ) := lim

λ→λ0

∆ (λ)

λ− λ0
=
1

η0

Z a

ω0
kϕ2 (x, λ0)k2E dω,qx 6= 0.

Consequently, λ0 is a simple zero of ∆ (λ) . 2

4. Green’s function and eigenfunction expansion formula

In this section, we will study the solution of the nonhomogeneous system

− q−1D−ωq−1,q−1y2 + {p (x)− λ} y1 = f1 (x) ,(4.1)

Dω,qy1 + {r (x)− λ} y2 = f2 (x) ,(4.2)

where ω0 < x < a <∞, which fulfills the boundary conditions

a11y1 (ω0) + a12y2 (ω0) = 0,(4.3)

a21y1 (a) + a22y2
³
h−1 (a)

´
= 0,(4.4)
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where aij ∈ R (i, j = 1, 2) and

f(.) =

Ã
f1 (.)
f2 (.)

!
∈ L2ω,q((ω0, a);E).

For this, we construct Green’s function of the nonhomogeneous sys-
tem (4.1)-(4.4). We also obtain an eigenfunction expansion for the above
system.

Theorem 1. If λ is not an eigenvalue of the problem defined by (3.1)-(3.3),
then the nonhomogeneous system (4.1)-(4.4) is solvable for any vector-
valued function f (.) in L2ω,q((ω0, a);E). Conversely, if λ is an eigenvalue
of the problem defined by (3.1)-(3.3), then the nonhomogeneous system
(4.1)-(4.4) is, generally unsolvable.

Proof. Let us define

G (x, t, λ) =

⎧⎨⎩ −
ϕ2(x,λ)ϕT1 (t,λ)

∆(λ) , ω0 ≤ t ≤ x,

−ϕ1(x,λ)ϕT2 (t,λ)
∆(λ) , x < y ≤ a

(4.5)

which is called Green’s matrix. We will show that the function

y (x, λ) =

Z a

ω0
G (x, t, λ) f (t) dω,qt(4.6)

is the solution of the nonhomogeneous system (4.1)-(4.4).
By definition of Green’s matrix, we have

G (x, t, λ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

∆(λ)

Ã
ϕ21 (x, λ)ϕ11 (t, λ) ϕ21 (x, λ)ϕ12 (t, λ)
ϕ22 (x, λ)ϕ11 (t, λ) ϕ22 (x, λ)ϕ12 (t, λ)

!
, ω0 ≤ t ≤ x,

− 1
∆(λ)

Ã
ϕ11 (x, λ)ϕ21 (t, λ) ϕ11 (x, λ)ϕ22 (t, λ)
ϕ12 (x, λ)ϕ21 (t, λ) ϕ12 (x, λ)ϕ22 (t, λ)

!
, x < t ≤ a.

From (4.6), we have
y1 (x, λ)

= − 1

∆ (λ)
ϕ21 (x, λ)

Z x

ω0

Ã
ϕ11 (t, λ) f1 (t)
+ϕ12 (t, λ) f2 (t)

!
dω,qt(4.7)

− 1

∆ (λ)
ϕ11 (x, λ)

Z a

x

Ã
ϕ21 (t, λ) f1 (t)
+ϕ22 (t, λ) f2 (t)

!
dω,qt,(4.8)
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y2 (x, λ)

= − 1

∆ (λ)
ϕ22 (x, λ)

Z x

ω0

Ã
ϕ11 (t, λ) f1 (t)
+ϕ12 (t, λ) f2 (t)

!
dω,qt(4.9)

− 1

∆ (λ)
ϕ12 (x, λ)

Z a

x

Ã
ϕ21 (t, λ) f1 (t)
+ϕ22 (t, λ) f2 (t)

!
dω,qt.(4.10)

From (4.8), it follows that

Dω,qy1 (x, λ)

= − 1

∆ (λ)
Dω,qϕ21 (x, λ)

Z x

ω0

Ã
ϕ11 (t, λ) f1 (t)
+ϕ12 (t, λ) f2 (t)

!
dω,qt

− 1

∆ (λ)
Dω,qϕ11 (x, λ)

Z a

x

Ã
ϕ21 (t, λ) f1 (t)
+ϕ22 (t, λ) f2 (t)

!
dω,qt

+
1

∆ (λ)
W (ϕ1, ϕ2) f2 (x)

=
1

∆ (λ)
{r (x)− λ}ϕ22 (x, λ)

Z x

ω0

Ã
ϕ11 (t, λ) f1 (t)
+ϕ12 (t, λ) f2 (t)

!
dω,qt

1

∆ (λ)
{r (x)− λ}ϕ12 (x, λ)

Z a

x

Ã
ϕ21 (t, λ) f1 (t)
+ϕ22 (t, λ) f2 (t)

!
dω,qt

+f2 (x) = − {r (x)− λ} y2 (x) + f2 (x) .

The validity of (4.1) is proved similarly. Hence the function y (x, λ) in
(4.6) is the solution of the system (4.1)-(4.2). We check at once that (4.6)
satisfies the boundary conditions (4.3)-(4.4). 2

Theorem 2. The Green’s matrix defined by the formula (4.5) has the
following properties:

(i) The Green’s matrix G (x, t, λ) is unique, i.e., if there exists another
Green’s matrix eG (x, t, λ) for the nonhomogeneous system (4.1)-(4.4), then
G (x, t, λ) = eG (x, t, λ) in L2ω,q((ω0, a)× (ω0, a);E).
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(ii) G (x, t, λ) is continuous at the point (ω0, ω0) .

(iii) G (x, t, λ) = GT (t, x, λ) .

(iv) Let λ0 be a zero of ∆ (λ) . Then λ0 can be a simple pole of the matrix
G (x, t, λ) . Therefore, we have

G (x, t, λ) =
−υ (x) υT (t)

λ− λ0
+ eG (x, t, λ) ,

where eG (x, t, λ) is an analytic function of λ in the neighborhood of λ0 and
υ (x) is a normalized eigenfunction corresponding to λ0.

Proof. Since the proof is similar to that of Hahn-Sturm Liouville equa-
tions (see [7]), we omit it. 2

Now we define the operator Υ : D ⊂ L2ω,q((ω0, a), E)→ L2ω,q((ω0, a), E)
as follows. The domain of definition of Υ is D and we put Υy = Γy for
y ∈ D.

We next prove the existence of a countable sequence of eigenvalues of
Υ with no finite limit points. Later, we will prove that the corresponding
eigenfunctions form an orthonormal basis of L2ω,q((ω0, a);E). Hence we
need the following definition and theorems.

Definition 3. A matrix-valued function M (x, t) of two variables with
ω0 ≤ x, t ≤ a is called the ω, q−Hilbert-Schmidt kernel ifZ a

ω0

Z a

ω0
kM (x, t)k2E dω,qxdω,qt < +∞.

Theorem 4 ([20]). If
∞X

i,k=1

|aik|2 < +∞(4.11)

then the operator A defined by the formula

A {xi} = {yi} , i = 1, 2, ...,

where

yi =
∞X
k=1

aikxk, i = 1, 2, ...(4.12)

is compact in the sequence space l2.
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Theorem 5 (Hilbert-Schmidt). Let A be a compact self-adjoint oper-
ator mapping a Hilbert space H into itself. Then there is an orthonormal
system θ1, θ2, ... of eigenvectors of A, with corresponding nonzero eigenval-
ues λ1, λ2, ..., such that every element x ∈ H has a unique representation
of the form

x =
X
n

cnθn + x0,

where x0 satisfies the condition Ax0 = 0. Moreover

Ax =
X
n

λncnθn,

and

lim
n→∞

λn = 0

in the case where there are infinitely many nonzero eigenvalues ([16]).

It is clear that the operator Υ has the same eigenvalues of the Hahn-
Dirac problem defined by (3.1)-(3.3). Without loss of generality, we can
assume that λ = 0 is not an eigenvalue. Then, kerΥ = {0} . Thus the
solution of the problem (Υy) (x) = f (x) , f (x) ∈ L2ω,q((ω0, a);E) is given
by

y (x) =

Z a

ω0
G (x, t) f (t) dω,qt,

where

G (x, t) = G (x, t, 0) =

⎧⎨⎩ −
ϕ2(x)ϕT1 (t)
W (ϕ1,ϕ2)

, ω0 ≤ t ≤ x,

−ϕ1(x)ϕT2 (t)
W (ϕ1,ϕ2)

, x < y ≤ a.
(4.13)

Theorem 6. G (x, t) defined by (4.13) is a Hilbert-Schmidt kernel.

Proof. By the upper half of the formula (4.13), we haveZ a

ω0
dω,qx

Z x

ω0
kG (x, t)k2E dω,qt < +∞;

and by the lower half of (4.13), we haveZ a

ω0
dω,qx

Z a

x
kG (x, t)k2E dω,qt < +∞
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since the inner integral exists and is a linear combination of the products
ϕij (x)ϕkl (t) (i, j, k, l = 1, 2), and these products belong to L

2
ω,q((ω0, a);E)

because each of the factors belongs to L2ω,q(ω0, a). Then, we obtainZ a

ω0

Z a

ω0
kG (x, t)k2E dω,qxdω,qt < +∞.(4.14)

2

Theorem 7. The operator K defined by the formula

(Kf) (x) =

Z a

ω0
G (x, t) f (t) dω,qt

is compact and self-adjoint in L2ω,q((ω0, a);E).

Proof. Let ψi = ψi (t) , i = 1, 2, ... be a complete, orthonormal basis of
L2ω,q((ω0, a);E). Since G (x, t) is a Hilbert-Schmidt kernel, we can define

xi = (f, ψi) =

Z a

ω0
(f (t) , ψi (t))Edω,qt,

yi = (g, ψi) =

Z a

ω0
(g (t) , ψi(t))Edω,qt,

aik =

Z a

ω0

Z a

ω0
(G (x, t)ψi (x) , ψi (t))Edω,qxdω,qt.

Then, L2ω,q((ω0, a);E) is mapped isometrically l2. Consequently, our
integral operator transforms into the operator defined by the formula (4.12)
in the space l2 by this mapping, and the condition (4.14) is translated into
the condition (4.11). By Theorem 4, this operator is compact. Therefore,
the original operator is compact.

Let f, g ∈ L2ω,q((ω0, a);E). As G (x, t) = GT (t, x) and G (x, t) is a real-
valued matrix function defined on [ω0, a]× [ω0, a] , we have

(Kf, g) =

Z a

ω0
((Kf) (x) , g (x))Edω,qx

=

Z a

ω0

Z a

ω0
(G (x, t) f (t) , g (x))Edω,qtdω,qx

=

Z a

ω0
(f (t) ,

Z a

ω0
G (x, t) g (x) dω,qx)Edω,qt = (f,Kg) .
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Thus we have proved thatK is the self-adjoint operator in L2ω,q((ω0, a);E).
2

Theorem 8. The eigenvalues of the operator Υ form an infinite sequence
{λn}∞n=1 of real numbers which can be ordered so that

|λ1| < |λ2| < ... < |λn| < ...→∞ as n→∞.

The set of all normalized eigenfunctions of Υ forms an orthonormal
basis for L2ω,q((ω0, a);E).

Proof. By Theorems 5 and 7, the operator K has an infinite sequence
of non-zero real eigenvalues {ξn}∞n=1 with limn→∞ ξn = 0. Then,

|λn| =
1

|ξn|
→∞ as n→∞.

Furthermore, let {χn}∞n=1 denote an orthonormal set of eigenfunctions
corresponding to {ξn}∞n=1 . Let y ∈ D, then Υy = f and y = Kf for some
f ∈ L2ω,q((ω0, a);E). So

y = Kf =
∞X
n=1

ξn (f, χn)χn =
∞X
n=1

ξn (Υy, χn)χn

=
∞X
n=1

ξn (y,Υχn)χn =
∞X
n=1

ξn (y, λnχn)χn =
∞X
n=1

(y, χn)χn.

2
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