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Abstract

If H is a Hilbert space, the non-compact Stiefel manifold St(n,H)
consists of independent n-tuples in H. In this article, we contribute
to the topological study of non-compact Stiefel manifolds, mainly by
proving two results on the path-connectedness and topological closure
of some sets related to the non-compact Stiefel manifold. In the first
part, after introducing and proving an essential lemma, we prove thatT
j∈J (U(j) + St(n,H)) is path-connected by polygonal paths under a

condition on the codimension of the span of the components of the
translating J-family. Then, in the second part, we show that the topo-
logical closure of St(n,H)∩S contains all polynomial paths contained
in S and passing through a point in St(n,H). As a consequence, we
prove that St(n,H) is relatively dense in a certain class of subsets
which we illustrate with many examples from frame theory coming
from the study of the solutions of some linear and quadratic equations
which are finite-dimensional continuous frames. Since St(n,L2(X,µ;F))

is isometric to FF(X,µ),n, this article is also a contribution to the theory
of finite-dimensional continuous Hilbert space frames.
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1. Introduction

Duffin and Shaeffer introduced in 1952 [13] the notion of a Hilbert space
frame to study some deep problems in nonharmonic Fourier series. How-
ever, the general idea of signal decomposition in terms of elementary sig-
nals was known to Gabor [16] in 1946. The landmark paper of Daubechies,
Grossmann, and Meyer [12] (1986) accelerated the development of the the-
ory of frames which then became more widely known to the mathematical
community. Nowadays, frames have a wide range of applications in both
engineering science and mathematics: they have found applications in sig-
nal processing, image processing, data compression, and sampling theory.
They are also used in Banach space theory. Intuitively, a frame in a Hilbert
space K is an overcomplete basis allowing non-unique linear expansions,
though technically, it must satisfy a double inequality called the frame in-
equality. There are many generalizations of frames in the literature, for
instance frames in Banach space [10] or Hilbert C*-modules [15]. A general
introduction to frame theory can be found in ([8],[10]).

The space FF(X,µ),n of continuous frames indexed by (X,µ) and with

values in Fn is isometric to the Stiefel manifold St(n,L2(X,µ;F)). If H
is a Hilbert space, the non-compact Stiefel manifold St(n,H) is the set of
independent n-frames in H, where an independent n-frame simply denotes
an independent n-tuple. Stiefel manifolds are studied in differential topol-
ogy and are one of the fundamental examples in this area. Even though
the theory of finite dimensional Stiefel manifolds is generally well-known
([24],[20],[23]), there are still some aspects under study ([22],[25]). The the-
ory of infinite dimensional Stiefel manifolds is less studied and some recent
results can be found in ([5],[19]).

There have been also many studies directly devoted to the geome-
try of frames and their subsets. Connectivity properties of some impor-
tant subsets of the frame space FFk,n were studied in ([7],[27]). Differ-
ential and algebro-geometric properties of these subsets were studied in
([14],[29],[?],[?]) and (chapter 4 of [9]) respectively. A fiber bundle struc-
ture with respect to the L1 and L∞ norms was established for continuous
frames in ([1],[2]). A notion of density for general frames analogous to
Beurling density was introduced and studied in [3]. Finally, connectivity
and density properties were studied for Gabor ([4],[11],[21],[26]) and wavelet
([6],[17],[18],[28]) frames.
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Plan of the article. This article is organized as follows. In section
2, we set some notations, introduce the definition of continuous Bessel and
frame families and their basic properties inFn, and present Stiefel manifolds
with an emphasis on their topological aspects. In section 3, after introduc-
ing and proving an essential lemma, we prove that

T
j∈J (U(j) + St(n,H))

is path-connected by polygonal paths under a condition on the codimension
of the span of the components of the translating J-family. Then, in section
4, we show that the topological closure of St(n,H)∩S contains all polyno-
mial paths contained in S and passing through a point in St(n,H). As a
consequence, we prove that St(n,H) is relatively dense in a certain class of
subsets which we illustrate, in section 6, with many examples from frame
theory coming from the study of the solutions of some linear and quadratic
equations which are finite-dimensional continuous frames (section 5).

2. Preliminaries

2.1. Notation

The following notations are used throughout this article.
N denotes the set of natural numbers including 0 and N∗ =N \ {0}.
We denote by n an element of N∗ and by F one of the fields R or C.
If K is a Hilbert space, we denote by L(K) and B(K) respectively the set
of linear and bounded operators in K. IdK is the identity operator of K.
If K is a Hilbert space, m ∈ N∗, and θ1, · · · , θm ∈ H, the Gram ma-
trix of (θ1, · · · , θm) is the matrix Gram(θ1, · · · , θm) whose k, l-coefficient is
Gram(θ1, · · · , θm)k,l = hθk, θli.
If σ, τ ∈ N∗, we denote by Mσ,τ (F) the algebra of matrices of size σ × τ
over the field F. When σ = τ , we denote this algebra Mσ(F).
An element x ∈ Fn is a n-tuple (x1, · · · , xn) with xk ∈ F for all k ∈ [1, n].
If S ∈ L(Fn), we denote by [S] ∈ Mn(F) the matrix of S in the standard
basis of Fn, and we write In as a shorthand for [IdFn ].
If U = (ux)x∈X is a family in Fn indexed by X, then for each k ∈ [1, n], we
denote by Uk the family (ukx)x∈X .

2.2. Continuous frames in Fn

Let K be a Hilbert space and (X,Σ, µ) a measure space.
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Definition 2.1. [10] We say that a family Φ = (ϕx)x∈X with ϕx ∈ K for
all x ∈ X is a continuous frame in K if

∃ 0 < A ≤ B : ∀v ∈ K : Akvk2 ≤
Z
X
|hv, ϕxi|2dµ(x) ≤ Bkvk2

A frame is tight if we can choose A = B as frame bounds. A tight frame
with bound A = B = 1 is called a Parseval frame. A Bessel family is a
family satisfying only the upper inequality. A frame is discrete if Σ is the
discrete σ-algebra and µ is the counting measure. We denote by F(X,µ),K

and FF(X,µ),n respectively the set of continuous frames with values in K and
the set of continuous frames with values in Fn.

If U = (ux)x∈X with ux ∈ K for all x ∈ K is a continuous Bessel family
in K, we define its analysis operator TU : K → L2(X,µ;F) by

∀v ∈ K : TU (v) := (hv, uxi)x∈X .

The adjoint of TU is an operator T
∗
U : L

2(X,µ;F)→ K given by

∀c ∈ L2(X,µ;F) : T ∗U(c) =
Z
X
c(x)uxdµ(x).

The composition SU = T ∗UTU : K → K is given by

∀v ∈ K : SU (v) =

Z
X
hv, uxiuxdµ(x)

and called the frame operator of U . Since U is a Bessel family, TU , T
∗
U , and

SU are all well defined and continuous. If U is a frame in K, then SU is
a positive self-adjoint operator satisfying 0 < A ≤ SU ≤ B and thus, it is
invertible.

We now recall a proposition preventing that a frame belongs to L2(X,µ;K)
when dim(K) =∞. Here the set L2(X,µ;K) refers to Bochner square in-
tegrable (classes) of functions in M(X;K), where the latter refers to the
set of measurable functions from X to K. It explains why we only study
the L2 topology of frame subspaces in the finite dimensional case.

Proposition 2.1. Let K be a Hilbert space with dimK = ∞. Then
F(X,µ),K ∩ L2(X,µ;K) = ∅
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Proof. Let Φ = (ϕx)x∈X ∈ F(X,µ),K ∩L2(X,µ;K). Let {em}m∈M be an
orthonormal basis of K. We have

Tr(SΦ) = Tr(T
∗
ΦTΦ) =

P
m∈M kT (em)k2

=
P

m∈M
R
X |hem, ϕxi|2dµ(x)

=
R
X

¡P
m∈M |hem, ϕxi|2

¢
dµ(x)

=
R
X kϕxk2.

Since Φ ∈ F(X,µ),K ,

there exists a constant A > 0 such that

SΦ ≥ A · Id,

so Z
X
kϕxk2 = Tr(SΦ) = +∞

since dim(K) =∞. Hence Φ /∈ L2(X,µ;K). 2

From now on, we consider K = Fn. In what follows, we will recall some
elementary facts about Bessel sequences and frames in this setting.

Proposition 2.2. A family U = (ux)x∈X with ux ∈ Fn for all x ∈ X is a
continuous Bessel family if and only if it belongs to L2(X,µ,Fn).

Proof. (⇒) Suppose that U = (ux)x∈X is a continuous Bessel family.
For each k ∈ [1, n], denote by ek the k-th vector of the standard basis of
Fn.
Applying the definition to the vector ek, we have for each k ∈ {1, · · · , n} :
kUkk2L2(X,µ,F) <∞, and so

kUk2L2(X,µ,Fn) =
nX

k=1

kUkk2L2(X,µ,F) <∞,

which implies U ∈ L2(X,µ;Fn).
(⇐) Suppose that U = (ux)x∈I ∈ L2(X,µ;Fn). We have

∀v ∈ Fn :

Z
x∈X

|hv, uxi|2dµ(x) ≤ kUk2L2(X,µ;Fn)v
2 <∞

by the Cauchy-Schwarz inequality, which implies that U = (ux)x∈X is a
continuous Bessel family. 2

Lemma 2.1. If U ∈ L2(X,µ;Fn), then [SU ] = Gram(U
1, · · · , Un).
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Proof. Let (ek)k∈[1,n] the standard basis of F
n. Let i, j ∈ [1, n]. Then

[SU ]i,j = hSej , eii =
Z
X
hej , uxihux, eiidµ(x) =

Z
X
ujxu

i
xdµ(x) = hU i, U ji.

2

Proposition 2.3. [10] Suppose Φ = (ϕx)x∈X is a family in Fn. Then
Φ is a continuous frame ⇔ Φ ∈ L2(X,µ;Fn) and SΦ is invertible

⇔ Φ ∈ L2(X,µ;Fn) and det(Gram(Φ1, · · · ,Φn)) > 0
⇔ Φ ∈ L2(X,µ;Fn) and {Φ1, · · · ,Φn} is free.

Proposition 2.4. [10] Suppose Φ = {ϕx}x∈X is a family in Fn and let
a > 0. Then

Φ is a measurable a-tight frame ⇔ Φ ∈ L2(X,µ;Fn) and SΦ = aIn
⇔ Φ ∈ L2(X,µ;Fn) and Gram(Φ1, · · · ,Φn) = aIn
⇔ Φ ∈ L2(X,µ;Fn) and (Φ1, · · · ,Φn)
is an orthogonal family of L2(X,µ;F)
and (∀i ∈ [1, n] : Φi = √a).

Example 2.1. Define ϕ1m = 1
me2πiam and ϕ2m = 1

me2πibm with a, b two
real numbers such that a − b is not an integer. Then Φ1 = (ϕ1m)m∈N and

Φ2 = (ϕ2m)m∈N are square summable with sum π2

6 . Since the sequences Φ
1

and Φ2 are not proportional due to the constraint on a and b, it follows by
2.3 that Φ is a discrete frame in C2. It is not however a tight frame since
Φ1 and Φ2 are not orthogonal.

2.3. Basic topological properties of St(n,H)St(n,H) and
Sto(n,H)

In this subsection, we introduce St(n,H) and Sto(n,H) as well as some
of their basic topological properties. We recall that n is a fixed element
of N∗. If H is a Hilbert space, then St(n,H) is non-empty exactly when
dim(H) ≥ n. In the following, we will always suppose this condition.

Definition 2.2. The non-compact Stiefel manifold of independent n-frames
in H is defined by

St(n,H) := {h = (h1, · · · , hn) ∈ Hn : {h1, · · · , hn} is free}. The Stiefel
manifold of orthonormal n-frames in H is defined by
Sto(n,H) := {h = (h1, · · · , hn) ∈ Hn : {h1, · · · , hn} is an orthonormal system}.

Proposition 2.5. We have
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1. St(n,L2(X,µ;F)) is isometric to FF(X,µ),n.

2. Sto(n,L
2(X,µ;F)) is isometric to the set of continuous (X,µ)-Parseval

frames with values in Fn.

Proof. Define

Transpose :

(
L2(X,µ;Fn) → L2(X,µ;F)n

F = (fx)x∈X 7→ ((f1x)x∈X , · · · , (fnx )x∈X)
.

ThenTranspose is clearly an isometry, and it sends FF(X,µ),n to St(n,L
2(X,µ;F))

and Sto(n,L
2(X,µ;F)) to the set of continuous (X,µ)-Parseval frames with

values in Fn by propositions 2.3 and 2.4 respectively. 2

Remark 2.1. Because of proposition 2.5, the reader should keep in mind
that the following topological properties and the new results of this article
are also shared, for any measure space (X,Σ, µ), by FF(X,µ),n or the set

of continuous (X,µ)-Parseval frames with values in Fn, depending on the
context.

Proposition 2.6. We have

1. St(n,H) is open in Hn.

2. Sto(n,H) is closed in Hn.

Proof.

1. St(n,H) is open because St(n,H) = (det ◦Gram)−1((0,∞)).

2. Sto(n,H) is closed because Sto(n,H) = Gram
−1(In).

2

By joining continuously each element of St(n,H) to its corresponding
Gram-Schmidt orthonormalized system in Sto(n,H), we can prove

Proposition 2.7. Sto(n,H) is a deformation retract of St(n,H).

Concerning the connectedness properties of Stiefel manifolds, we have
the following

Definition 2.3. Let X be a topological space and m ∈ N. Then X is said
to bem-connected if its homotopy groups πi(X) are trivial for all i ∈ [0,m].
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Proposition 2.8. (see pp. 382-383 of [20]) We have

1. St(n,Rk) is (k − n− 1)-connected.

2. St(n,Ck) is (2k − 2n)-connected.

3. If H is infinite dimensional, then St(n,H) is contractible.

Moreover, we have

Proposition 2.9. IfH is infinite dimensional, then St(n,H) is contractible.

A proof can be found in this math.stackexchange thread.
The following proposition asserts the density of St(n,H) in Hn. A

corollary of one of our results in this article (corollary 4.1) gives a general-
ization of this proposition.

Proposition 2.10. St(n,H) is dense in Hn.

Proof. Consider h = (h1, · · · , hn) ∈ Hn. Pick some θ = (θ1, · · · , θn) ∈
St(n,H). Let γ be the straight path connecting θ to h, i.e. for each t ∈
[0, 1] : γ(t) = th+(1− t)θ ∈ Hn. Let Γ(t) = det(Gram((γ(t)1, · · · , γ(t)n))).
Clearly, Γ(t) is a polynomial function in t which satisfies Γ(0) 6= 0 since
θ ∈ St(n,H). Therefore

Γ(t) 6= 0 except for a finite number of t0s.

Moreover,

||γ(t)−u||2Hn =
nX

k=1

||γ(t)k−hk||2H =
nX
i=1

|1−t|2||θk−hk||2H → 0 when t → 1

Hence, there exists t ∈ [0, 1] such that γ(t) is close to h and Γ(t) 6= 0, and
so γ(t) ∈ St(n,H). 2

We also include the following proposition on the differential structure
of the Stiefel manifolds.

Proposition 2.11. [24] We have

1. St(n,Rk) is a real manifold of dimension nk.

2. Sto(n,R
k) is a real manifold of dimension nk − n(n+1)

2 .
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3. St(n,Ck) is a real manifold of dimension 2nk.

4. Sto(n,C
k) is a real manifold of dimension 2nk − n2.

5. If dim(H) = ∞, then St(n,H) and Sto(n,H) are Hilbert manifolds
of infinite dimension.

We ask the reader to keep in mind remark 2.1 when reading the remain-
ing parts of this article.

3. Path-connectedness of
T
j∈J (U(j) + St(n,H))

Definition 3.1. Let E be a topological vector space and γ : [0, 1]→ E be
a continuous path. We say that γ is a polygonal path if there exists q ∈N∗,
(ek)k∈[1,q] and (fk)k∈[1,q] two finite sequences with ek, fk ∈ E for all k ∈
[1, q], and (γk)k∈[1,q] a finite sequence of (continuous) straight paths with

γk =

(
[k−1q , kq ] → E

t 7→ q(t− k−1
q )fk + q(kq − t)ek

such that γ = γ1 ∗ · · · ∗ γq,

where ∗ is the path composition operation. We say that a subset S ⊆ E is
polygonally connected if every two points of S are connected by a polygonal
path.

In the following, when we say that S ⊆ E is polygonally connected, we
mean that each two points of S are connected by a polygonal path of the
type γ1 ∗ γ2 where γ1 and γ2 are two straight paths.

Before we prove the main proposition of this section, let’s prove a useful
lemma.

Lemma 3.1. 1. Suppose we have a family (a(j))j∈J indexed by J where
each a(j) belongs to St(n,H). Then if (a(j)k)j∈J,k∈[1,n] is free, we
have

Span({a(j)}j∈J) \ {0} ⊆ St(n,H)

.

2. Suppose we have a family indexed by J where each a(j) belongs to
Sto(n,H) for all j ∈ J . Then if (a(j)k)j∈J,k∈[1,n] is an orthonormal
system, we have

{x ∈ Span({a(j)}j∈J) : kxk =
√
n} ⊆ Sto(n,H)
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Proof.

1. Let h = (h1, · · · , hn) ∈ Span({a(j)}j∈J) \ {0}. We can write h =Pr
u=1 λua(ju) with λu ∈ F for all u ∈ [1, r] and the λu’s are not all

zeros. We need to show that (h1, · · · , hn) is an independent system.
Suppose otherwise

Pn
k=1 ckhk = 0. This means thatPn

k=1 ck(
Pr

u=1 λua(ju)k) = 0, and so
Pn

k=1

Pr
u=1(λuck)a(ju)k = 0.

Since
S
j∈J

S
k∈[1,n]{a(j)k} is free, we deduce that λuck = 0 for all

u ∈ [1, r] and k ∈ [1, n], which implies that ck = 0 for all k ∈ [1, n]
since the λu’s are not all zeros. Therefore, h ∈ St(n,H).

2. Let h = (h1, · · · , hn) ∈ Span({a(j)}j∈J) such that khk =
√
n. We

can write h =
Pr

u=1 λua(ju) with λu ∈ F for all u ∈ [1, r]. We need
to show that hhk, hli = δk,l for all k, l ∈ [1, n]. For k 6= l, we have :
hhk, hli = h

Pr
u=1 λua(ju)k,

Pr
u=1 λua(ju)li

=
Pr

u=1

Pr
v=1 λuλvha(ju)k, a(jv)li = 0 since

S
j∈J

S
k∈[1,n]{a(j)k} is

an orthogonal system. Moreover, khkk2
=
Pr

u=1

Pr
v=1 λuλvha(ju)k, a(jv)ki =

Pr
u=1 |λu|2ka(ju)kk2 =

Pr
u=1 |λu|2

since
S
j∈J

S
k∈[1,n]{a(j)k} is an orthonormal system. By hypothesis,

n = khk2 =Pn
k=1 khkk2 = n(

Pr
u=1 |λu|2), so khkk2 =

Pr
u=1 |λu|2 = 1

for all k ∈ [1, n] as desired.

2

Proposition 3.1. Let H be a Hilbert space with dim(H) ≥ n, J an
index set and (U(j))j∈J a family with U(j) ∈ Hn for all j ∈ J . If

H(Span({u(j)k : j ∈ J, k ∈ [1, n]})) ≥ 3n, then
T
j∈J(U(j) + St(n,H))

is polygonally-connected.

Proof. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) in
T
j∈J(U(j) +

St(n,H)).
Let (z1, · · · , zn) be an independent family in H such that
Span({zk : k ∈ [1, n]})

T
Span ({xk : k ∈ [1, n]}

S{yk : k ∈ [1, n]}S{u(j)k : j ∈ J, k ∈ [1, n]}) = {0}

This is possible since H(Span({u(j)k : j ∈ J, k ∈ [1, n]}) ≥ 3n.
This ensures that we have for all j ∈ J

Span({−u(j)k + zk : k ∈ [1, n]}) ∩ Span({−u(j)k + xk : k ∈ [1, n]}) = {0},

Span({−u(j)k + zk : k ∈ [1, n]}) ∩ Span({−u(j)k + yk : k ∈ [1, n]}) = {0},
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and
(−u(j)k + zk)k∈[1,n] is independent.

We define the straight paths(
γ1 : [0, 1]→ Hn

γ2 : [0, 1]→ Hn

by γ1(t) = tZ + (1− t)X and γ2(t) = tY + (1− t)Z respectively.

We have γ1(0) = X, γ1(1) = γ2(0) = Z, and γ2(1) = Y .

Since for all j ∈ J

Span({−u(j)k + zk : k ∈ [1, n]}) ∩ Span({−u(j)k + xk : k ∈ [1, n]}) = {0},

we have for all t ∈ [0, 1] and j ∈ J

−U(j) + tZ + (1− t)X = t(−U(j) + Z) + (1− t)(−U(j) +X) ∈ St(n,H)

by lemma 3.1, and so γ1(t) ∈
T
j∈J(U(j) + St(n,H)).

Similarly, γ2(t) ∈
T
j∈J(U(j) + St(n,H)) for all t ∈ [0, 1].

Composing γ1 with γ2, we see that
T
j∈J(U(j) + St(n,H)) is polygonally

connected. 2

4. Topological closure of St(n,H) ∩ S

Before moving on, we need a definition and a small lemma.

Definition 4.1. Let V be a F-vector space, q ∈ N, and v, v0 ∈ V . We say
that γ : [0, 1] → V is a polynomial path up to reparametrization joining v
and v0 if there exist q ∈ N and a finite sequence of vectors (vk)k∈[0,q] with

vk ∈ V for all k ∈ [0, q] and a homeomorphism φ : [0, 1] → [a, b] ⊆ R such
that ∀t ∈ [a, b] : γ(φ−1(t)) = Pq

k=0 t
kvk, γ(0) = v and γ(1) = v0. If V is

equipped with a topology, then we say that γ is a continuous polynomial
path when it is continuous as a map from [0, 1] to V .

Remark 4.1. Every expression of the form
Pq

k=0 Pk(t)v
k where vk ∈ V

and Pk ∈ F[X] for all k ∈ [0, q] can be written in the form
Pq0

k=0 t
kwk where

q0 ∈ N and wk ∈ V for all k ∈ [0, q0] (group by increasing powers of t).
Therefore there is no difference whether we define polynomial paths using
the first expression or the second.
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Lemma 4.1. Let E be a normed vector space, and v, v0 ∈ E. Then each
polynomial path up to reparametrization γ : [0, 1]→ E joining v and v0 is
continuous.

Proof. Let γ : [0, 1]→ E be a polynomial path up to reparametrization
joining v and v0. Hence we can write ∀t ∈ [0, 1] : γ(t) =Pq

k=0 φ(t)
kvk. The

continuity of γ follows from

γ(t)− γ(t0) ≤
qX

k=0

vk|φ(t)k − φ(t0)k)|

which goes to 0 when t goes to t0 by continuity of φk for all k ∈ [0, q]. 2

The following is our first original proposition in this section.

Proposition 4.1. Let S ⊆ Hn and
E := {γ : [0, 1]→ S such that γ is a polynomial path up to

reparametrization and (∃aγ ∈ [0, 1]) : γ(aγ) ∈ St(n,H) ∩ S}.
Then

S
γ∈E Range(γ) ⊆ St(n,H) ∩ S

Proof. Let γ ∈ E. We have ∀t ∈ [a, b] : γ(φ−1(t)) =Pq
k=0 t

kV k.
Let Γ(t) := det(Gram((γ(φ−1(t))1, · · · , γ(φ−1(t))n))) for all t ∈ [a, b].
Since for all i, j ∈ [1, n] and t ∈ [a, b]

hγ(φ−1(t))i, γ(φ−1(t))ji =
DPq

k=0 t
kvki ,

Pq
k=0 t

kvkj

E
=
Pq

k,k0=0

D
vki , v

k0
j

E
tk+k

0

is a polynomial function in t ∈ [a, b], and the determinant of a matrix in
Mn,n(F) is a polynomial function in its coefficients, Γ(t) is a polynomial
function in t ∈ [a, b] which satisfies Γ(φ(aγ)) 6= 0 since γ(aγ) ∈ St(n,H).
Therefore

Γ(t) 6= 0 for t in a cofinite set L ⊆ [a, b].
Hence Range(γ)\{γ(φ−1(t))}t∈[a,b]\L ⊆ St(n,H)∩S ⊆ St(n,H) ∩ S. Since
[a, b] \ L is finite, the continuity of γ (see lemma 4.1) at {φ−1(t))}t∈[a,b]\L
implies

Range(γ) = Range(γ) = Range(γ) \ {γ(φ−1(t))}t∈[a,b]\L ⊆ St(n,H) ∩ S.

This being true for all γ ∈ E, the result follows. 2

The following is a corollary.

Corollary 4.1. Let S ⊆ Hn such that for all U ∈ S there exists a polyno-
mial path up to reparametrization connecting U to some Θ(U) ∈ St(n,H)∩
S and contained in S. Then St(n,H) ∩ S is dense in S.
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Proof. For all U ∈ S, there exists by the hypothesis γ ∈ E such that
γ(0) = U . By proposition 4.1, we have Range(γ) ⊆ St(n,H) ∩ S. It follows
that U ∈ St(n,H) ∩ S since U ∈ Range(γ). 2

This result shows the abundance of independent n-frames not only in
Hn but also in many subsets S of the form of corollary 4.1. Importantly,
notice that for S 6= ∅, there should exist at least one Θ ∈ St(n,H)∩S (i.e.
St(n,H) ∩ S 6= ∅) for the result to follow.

As an example, this is true when S is a star domain of Hn with respect
to some Θ ∈ St(n,H)∩S; if it is a convex subset of Hn and contains some
Θ ∈ St(n,H) ∩ S; and if it is in particular an affine subspace containing
some Θ ∈ St(n,H) ∩ S.

In the next section, we will find sufficient conditions under which some
sets of the form f−1({d}) ⊆ L2(X,µ;Fn) where f is some linear or quadratic
function contain a continuous frame. This will allow us to apply corollary
4.1 to these examples, which will be done in section 6.

5. Existence of solutions of some linear and quadratic equa-
tions which are finite-dimensional continuous frames

In this section, we show how to construct continuous finite-dimensional
frames that are mapped to a given element by a linear operator or a
quadratic function. In other words, we show the existence of frames in
the inverse image of singletons by these functions.

5.1. Linear equations

Proposition 5.1. Let n ∈ N∗, V an F-vector field of dimension ≥ n
and T : V n → F a non-zero linear form. Then for all d 6= 0, there
exists (a1, · · · , an) ∈ V n such that the system (a1, · · · , an) is free and
T (a1, · · · , an) = d.

The proof relies on the following lemma, which may be of independent
interest.

Lemma 5.1. Let n ∈ N∗ and V be a vector space of dimension ≥ n. Let
(x1, · · · , xn) ∈ V n \ {(0, · · · , 0)}. Then there exist e ∈ N∗ with

e =

(
1 if k = n
2 if k ∈ [1, n− 1] where k = dim(Span{x1, · · · , xn}), and e in-

dependent systems (au1 , · · · , aun) in V for u ∈ [1, e] such that (x1, · · · , xn) =Pe
u=1(a

u
1 , · · · , aun).
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Proof. Without loss of generality, suppose that (x1, · · · , xk) is free where
k = dim(Span{x1, · · · , xn}) ≥ 1. Let (bi)i∈[1,n−k] be an n−k-tuple of vectors
of V such that the system (xj1 , · · · , xjk , b1, · · · , bn−k) is free.

• If k = n, then (x1, · · · , xn) is already free and so we can choose e = 1
and a1i = xi for all i ∈ [1, n].

• If k ∈ [1, n− 1], we can write

(x1, · · · , xn) = (
x1
2
, · · · , xk

2
, b1, · · · , bn−k)

+(
x1
2
, · · · , xk

2
, xk+1 − b1, · · · , xn − bn−k).

(x12 , · · · ,
xk
2 , b1, · · · , bn−k) is free by assumption, and we can easily

show that (x12 , · · · ,
xk
2 , xk+1 − b1, · · · , xn − bn−k) is free by express-

ing xk+1, · · · , xn in terms of x1, · · · , xk. Hence we can choose e = 2
and a1i = a2i =

xi
2 for all i ∈ [1, k], a1i = bi−k, and a2i = xi − bi−k for

all i ∈ [k + 1, n].

2

Proof. (of proposition 5.1)
Let’s show that there exists a free system (a1, · · · , an) such that
T (a1, · · · , an) 6= 0. Suppose to the contrary that T (a1, · · · , an) = 0 for all
free systems (a1, · · · , an) in V . Let (x1, · · · , xn) ∈ V n \ {(0, · · · , 0)}. By
lemma 5.1, (x1, · · · , xn) decomposes as a finite sum of free systems. By
linearity of T , we thus have T (x1, · · · , xn) = 0. Hence T is the zero form,
a contradiction. Hence there exists a free system (a1, · · · , an) such that
T (a1, · · · , an) 6= 0. Then d

T (a1,···,an)(a1, · · · , an) satisfies the requirement.
2

Corollary 5.1. Let n ∈ N∗ and T : L2(X,µ;Fn)→ F be a non-zero linear
form.
Suppose that dim(L2(X,µ;F)) ≥ n.
Then for all d 6= 0, there exists a continuous frame Φ = (ϕx)x∈X such that
T (Φ) = d.

Proposition 5.2. Let n ∈N∗, V be a vector space over F, and S : V → F
be a non-zero linear form.
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Define the linear operator

T :

(
V n → Fn

(x1, · · · , xn) 7→ (S(x1), · · · , S(xn))
.

For all d ∈ Fn, suppose that

• if d 6= 0, then dim(V ) ≥ n,

• if d = 0 then dim(V ) ≥ n+ 1.

Then T−1({d}) contains an independent n-tuple (a1, · · · , an).

Proof.

• Suppose that d 6= 0 and dim(V ) ≥ n. Let h ∈ V such that S(h) = 1,
(h(2), · · · , h(n)) be an independent system in Ker(S) (this is possible
since (Ker(S)) = 1), and (d, d(2), · · · , d(n)) be an independent system

in Fn. Consider the V -valued column matrix H =

⎡⎢⎢⎢⎢⎣
h
h(2)
...

h(n)

⎤⎥⎥⎥⎥⎦ and the

F-valued square matrix D =

⎡⎢⎣ d1

...
dn

¯̄̄̄
¯̄̄ d1(2) · · · d1(n)

...
...

...
dn(2) · · · dn(n)

⎤⎥⎥⎦. Moreover, we

set A =

⎡⎢⎣ a1
...
an

⎤⎥⎦ = DH.
We have T (a1, · · · , an) = (S(a1), · · · , S(an))
= (S(dih +

Pn
k=2 d

i
(k)h(k)))i∈[1,n] = (di)i∈[1,n] = d since h(2), · · · , h(n)

belong to Ker(S).
Let’s show that (a1, · · · , an) is free. Let λ = (λ1, · · · , λn) ∈ Fn

such that
Pn

i=1 λ
iai = 0. Consider Λ =

⎡⎢⎣ λ1

...
λn

⎤⎥⎦. Therefore we

have 0 = Λ>A = Λ>DH ∈ V . At this point, we can complete
(h, h(2), · · · , h(n)) into a Hamel basis of V , and denote by (h∗, h∗(2), · · · , h∗(n))
the first n linear forms of its dual basis. Applying these linear forms
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to Λ>DH, we see that Λ>D = [0] · · · [0] , therefore λ = 0 as
D> is obviously invertible since (h, d(2), · · · , d(n)) is an independent
system in Fn.

• Suppose that d = 0 and dim(V ) ≥ n + 1. Let h ∈ V such that
S(h) = 1 and (a1, · · · , an) be an independent system in Ker(S).

We have T (a1, · · · , an) = (S(a1), · · · , S(an)) = 0 ∈ Fn.

Moreover, we have by construction that (a1, · · · , an) is free.

2

Remark 5.1. In the previous proposition, if d 6= 0, the condition dim(V ) ≥
n is necessary for the existence of an independent n-tuple because the ex-
istence of an independent n-tuple implies that dim(V ) ≥ n, and if d = 0,
the condition dim(V ) ≥ n + 1 is also necessary for the existence of an
independent n-tuple in T−1({0} because the existence of an independent
n-tuple (a1, · · · , an) in T−1({0} implies that S(ai) = 0 for all i ∈ [1, n], and
since there exists h ∈ V such that S(h) = 1 because S is non-zero, then
(a1, · · · , an, h) is free which implies dim(V ) ≥ n+ 1.

Corollary 5.2. Let h ∈ L2(X,µ;F) 6= 0. Define the linear operator

T :

(
L2(X,µ;Fn) → Fn

F = (fx)x∈X 7→
R
X h(x)fxdµ(x)

.

For all d ∈ Fn, suppose that

• if d 6= 0, then dim(L2(X,µ;F)) ≥ n,

• if d = 0 then dim(L2(X,µ;F)) ≥ n+ 1.

Then T−1({d}) contains a continuous frame Φ = (ϕx)x∈X .

Proposition 5.3. Let h ∈ L2(X,µ;F). Define the linear operator

T :

(
L2(X,µ;Fn) → Fn

F = (fx)x∈X 7→
R
X h(x)fxdµ(x)

.

If there exists a measurable subset Y ⊂ X such that dim(L2(Y, µ;F)) ≥ n
and µ((X \ Y ) ∩ h−1(F∗)) > 0, then for all d ∈ Fn, T−1({d}) contains a
continuous frame Φ = (ϕx)x∈X .
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Proof. Since dim(L2(Y, µ;F)) ≥ n, there exists a continuous frame
(ϕy)y∈Y ∈ FF(Y,µ),n. We extend (ϕy)y∈Y by setting

ϕx :=
h(x)

h2L2(X\Y,µ;F)

µ
d−

Z
Y
h(y)ϕydµ(y)

¶
for all x ∈ X \ Y

Let Φ = (ϕx)x∈X . We have
T (Φ) =

R
X h(x)ϕxdµ(x)

=
R
Y h(y)ϕydµ(y) +

ÃR
X\Y h(x) h(x)

h2
L2(X\Y,µ;F)

dµ(x)

!
(d−

R
Y h(y)ϕydµ(y))

= d.

Moreover, Φ ∈ FF(X,µ),n since we have only completed (ϕy)y∈Y by a

function in L2(X \ Y, µ;Fn). 2

Proposition 5.4. Let (X,Σ, µ) be a measure space, l ∈ N∗, (Xj)j∈[1,l] a
partition of X by measurable subsets, and h ∈ L2(X,µ;F) such that there
exist a family (Yj)j∈[1,l] with Yj a measurable subset of Xj for all j ∈ [1, l],

µ((Xj \ Yj) ∩ h−1(F∗)) > 0 for all j ∈ [1, l], and
lP

j=1
dim(L2(Yj , µ;F)) ≥ n.

Define the operator

W :

(
L2(X,µ;Fn) → Q

j∈[1,l]F
n

F = (fx)x∈X 7→ (
R
Xj

h(x)fxdµ(x))j∈[1,l]
.

Then for all D = (dj)j∈[1,l] ∈
Q

j∈[1,l]F
n, W−1({D}) contains at least one

continuous frame Φ ∈ FF(X,µ),n.

Remark 5.2. Proposition 5.3 results from proposition 5.4 by taking l = 1.

Remark 5.3. Proposition 5.4 can be generalized to l = +∞ or to par-
titions indexed by a general index set J if we restrict to D = 0 (due to
convergence issues).

Proof. For each i ∈ [1, n], let ei be the i-th vector of the standard basis

of Fn. Since
lP

j=1
dim(L2(Yj , µ;F)) ≥ n, we can find distinct j1, · · · , jr ∈ [1, l]

such that for each u ∈ [1, r], dim(L2(Yju , µ;F)) ≥ 1 and
Pr

u=1 dim(L
2(Yju , µ;F)) ≥

n. Take a partition P1, · · · , Pr of {e1, · · · , en} with |Pu| ≤ dim(L2(Yju , µ;F))
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for all u ∈ [1, r].
For all u ∈ [1, r], let (gpu)p∈Pu be an orthonormal family in L2(Yju , µ;F) and
define (ϕx)x∈Xju

by

ϕy =
X
p∈Pu

gpu(y)p for all y ∈ Yju

and

ϕx :=
h(x)

h2L2(Xju\Yju ,µ;F)

µ
dju −

Z
Y
h(y)ϕydµ(y)

¶
for all x ∈ Xju \ Yju .

For all j /∈ {ju : u ∈ [1, r]}, define (ϕx)x∈Xj by

ϕy = 0 for all y ∈ Yj

and

ϕx :=
h(x)

h2L2(Xj\Yj ,µ;F)
dj for all x ∈ Xj \ Yj .

Let Φ = (ϕx)x∈X . We have

W (Φ) =
³R

Xj
h(x)ϕxdµ(x)

´
j∈[1,l]

=

⎛⎝ R
Yj
h(y)ϕydµ(y)

+

ÃR
Xj\Yj h(x)

h(x)
h2
L2(Xj\Yj,µ;F)

dµ(x)

!³
dj −

R
Yj
h(y)ϕydµ(y)

´⎞⎠
j∈[1,l]

= (dj)j∈[1,l] = D.

Moreover, Φ ∈ FF(X,µ),n since

∀v ∈ Fn : v2 =
rX

u=1

Z
Yju

|hv, ϕxi|2dµ(x) ≤
Z
X
|hv, ϕxi|2dµ(x)

and R
X |hv, ϕxi|2dµ(x) ≤ v2 +

ÃPr
u=1

dju−
R
Y
h(y)ϕydµ(y)2

h2
L2(Xju\Yju ,µ;F)

!
v2

+

ÃP
j /∈{ju:u∈[1,r]}

d2j
h2
L2(Xj\Yj,µ;F)

!
v2

2
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5.2. A quadratic equation

Proposition 5.5. Let (X,Σ, µ) be a σ-finite measure space, b ∈ Cn \ {0},
� > 0 and h ∈ L∞(X,µ;C).
Consider

q :

(
L2(X,µ;Cn) → Cn

F = (fx)x∈X 7→
R
X h(x)hb, fxifxdµ(x)

.

Then for all d ∈ Cn such that

• if d 6= 0, then there exists a measurable subset Y ⊆ X, two measur-
able subsets B1 ⊆ {z ∈ C : Re(hb, diz) > � and Im(hb, diz) < −�}
and B2 ⊆ {z ∈ C : Re(hb, diz) > � and Im(hb, diz) > �} such
that dim(L2(Y, µ;C)) ≥ n and µ((X \ Y ) ∩ h−1(B1)), µ((X \ Y ) ∩
h−1(B2)) > 0,

• if d = 0, then there exist a measurable subset Y ⊆ X such that
dim(L2(Y, µ;C)) ≥ n and h(x) < 0 µ-almost everywhere on Y , and
[(two measurable subsets B1 ⊆ {z ∈ C : Re(z) > 0 and Im(z) < 0}
and B2 ⊆ {z ∈ C : Re(z) > 0 and Im(z) > 0} such that µ((X \
Y ) ∩ h−1(B1)), µ((X \ Y ) ∩ h−1(B2)) > 0) or (a measurable subset
B3 ⊆ {z ∈ C : Re(z) > 0 and Im(z) = 0} such that µ((X \ Y ) ∩
h−1(B3)) > 0)],

there exists a continuous frame Φ = (ϕx)x∈X ∈ q−1({d}).

Proof.

• Suppose d 6= 0. Let fB1 = (X \ Y ) ∩ h−1(B1) and fB2 = (X \
Y ) ∩ h−1(B2). There is no loss in generality in assuming that µ(fB1)
and µ(fB2) are finite since µ is σ-finite. Let 0 < a < �

h2∞b2 . Since

dim(L2(Y, µ;C)) ≥ n, we can pick an a-tight frame (ϕy)y∈Y ∈ FC(Y,µ),n).
Let eh(x) = ¡

hb, di−
R
Y h(y)|hb, ϕyi|2dµ(y)

¢
h(x) for all x ∈ X. Notice

that we have

Re(eh(x)) > 0 µ− almost everywhere on fB1,
Im(eh(x)) < 0 µ− almost everywhere on fB1,
Re(eh(x)) > 0 µ− almost everywhere on fB2,

and
Im(eh(x)) > 0 µ− almost everywhere on fB2.
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Let

A =
1

h−Im(h̃),Re(h̃)i
L2(B̃1,µ;C)

Im(h̃)2
L2(B̃1,µ;C)

+
hIm(h̃),Re(h̃)i

L2(B̃2,µ;C)

Im(h̃)2
L2(B̃2,µ;C)

> 0

and

g(x) =
√
A

q
−Im(eh(x))

Im(eh)
L2(fB1,µ;C) 1fB1(x) +

√
A

q
Im(eh(x))

Im(eh)
L2(fB2,µ;C) 1fB2(x)

for all x ∈ X \ Y .

Then it is easily seen thatÃZ
X\Y

h(x)|g(x)|2dµ(x)
!µ
−hb, di+

Z
Y
h(y)|hb, ϕyi|2dµ(y)

¶
= −1.

(5.1)

Consider (ϕx)x∈X\Y defined by ϕx = g(x) (−d+
R
Y h(y)hb, ϕyiϕydµ(y))

for all x ∈ X \ Y . Then Φ = (ϕx)x∈X ∈ FC(X,µ),n since we have only

completed (ϕy)y∈Y by a function in L2(X \ Y, µ;Cn). Moreover

q(Φ) =
R
X h(x)hb, ϕxiϕxdµ(x)

=
R
Y h(y)hb, ϕyiϕydµ(y)
+
R
X\Y h(x)hb, g(x) (−d+

R
Y h(y)hb, ϕyiϕydµ(y))i

.g(x) (−d+
R
Y h(y)hb, ϕyiϕydµ(y)) dµ(x)

=
R
Y h(y)hb, ϕyiϕydµ(y)

−
"Z

X\Y
h(x)|g(x)|2

µ
−hb, di+

Z
Y
h(y)|hb, ϕyi|2dµ(y)

¶
dµ(x)

#
| {z }

=−1

d

+

"Z
X\Y

h(x)|g(x)|2
µ
−hb, di+

Z
Y
h(y)|hb, ϕyi|2dµ(y)

¶
dµ(x)

#
| {z }

=−1
. (
R
Y h(y)hb, ϕyiϕydµ(y))

= d

using equality 1.

• Suppose d = 0. Let fB1 = (X \ Y ) ∩ h−1(B1) and fB2 = (X \ Y ) ∩
h−1(B2).
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Suppose first that µ(fB1), µ(fB2) > 0. There is no loss in generality in
assuming that µ(fB1) and µ(fB2) are finite since µ is σ-finite. Since
dim(L2(Y, µ;C)) ≥ n, we can pick a frame (ϕy)y∈Y ∈ FC(Y,µ),n. Leteh(x) = − ¡RY h(y)|hb, ϕyi|2dµ(y)

¢
h(x) for all x ∈ X. Notice that we

have
Re(eh(x)) > 0 µ− almost everywhere on fB1,
Im(eh(x)) < 0 µ− almost everywhere on fB1,
Re(eh(x)) > 0 µ− almost everywhere on fB2,

and
Im(eh(x)) > 0 µ− almost everywhere on fB2.

Let

A =
1

h−Im(h̃),Re(h̃)i
L2(B̃1,µ;C)

Im(h̃)2
L2(B̃1,µ;C)

+
hIm(h̃),Re(h̃)i

L2(B̃2,µ;C)

Im(h̃)2
L2(B̃2,µ;C)

> 0

and

g(x) =
√
A

q
−Im(eh(x))

Im(eh)
L2(fB1,µ;C) 1fB1(x) +

√
A

q
Im(eh(x))

Im(eh)
L2(fB2,µ;C) 1fB2(x)

for all x ∈ X \ Y .
Then it is easily seen thatÃZ

X\Y
h(x)|g(x)|2dµ(x)

!µZ
Y
h(y)|hb, ϕyi|2dµ(y)

¶
= −1.(5.2)

Consider (ϕx)x∈X\Y defined by ϕx = g(x)
R
Y h(y)hb, ϕyiϕydµ(y) for

all x ∈ X \ Y . Then Φ = (ϕx)x∈X ∈ FC(X,µ),n since we have only

completed (ϕy)y∈Y by a function in L2(X \ Y, µ;Cn). Moreover

q(Φ) =
R
X h(x)hb, ϕxiϕxdµ(x)

=
R
Y h(y)hb, ϕyiϕydµ(y)
+
R
X\Y h(x)hb, g(x) (

R
Y h(y)hb, ϕyiϕydµ(y))i

.g(x) (
R
Y h(y)hb, ϕyiϕydµ(y)) dµ(x)

=
R
Y h(y)hb, ϕyiϕydµ(y)

+

"Z
X\Y

h(x)|g(x)|2
µZ

Y
h(y)|hb, ϕyi|2dµ(y)

¶
dµ(x)

#
| {z }

=−1
. (
R
Y h(y)hb, ϕyiϕydµ(y))

= 0
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using equality 2.

Now let fB3 = (X \Y )∩h−1(B3) and suppose instead that µ(fB3) > 0.
There is no loss in generality in assuming that µ(fB3) is finite since µ is
σ-finite. Since dim(L2(Y, µ;C)) ≥ n, we can pick a frame (ϕy)y∈Y ∈
FC(Y,µ),n. Let eh(x) = − ¡RY h(y)|hb, ϕyi|2dµ(y)

¢
h(x) for all x ∈ X.

Notice that we haveeh(x) > 0 µ− almost everywhere on fB3.
Let

g(x) =

qeh(x)eh
L2(fB3,µ;C) 1fB3(x) for all x ∈ X \ Y

Then it is easily seen thatÃZ
X\Y

h(x)|g(x)|2dµ(x)
!µZ

Y
h(y)|hb, ϕyi|2dµ(y)

¶
= −1.(5.3)

Consider (ϕx)x∈X\Y defined by ϕx = g(x)
R
Y h(y)hb, ϕyiϕydµ(y) for

all x ∈ X \ Y . Then Φ = (ϕx)x∈X ∈ FC(X,µ),n since we have only

completed (ϕy)y∈Y by a function in L2(X \ Y, µ;Cn). Moreover we
can prove that q(Φ) = 0 as before using equality 3.

2

6. Examples of subspsaces in which the space of continuous
frames is relatively dense

Corollary 6.1. Let n ∈ N∗ and T : L2(X,µ;Fn)→ F be a non-zero linear
form.
Suppose that dim(L2(X,µ;F)) ≥ n.

Then since T−1({d}) is affine and by corollaries 4.1 and 5.1, for all
d 6= 0, FF(X,µ),n ∩ T−1({d}) is dense in T−1({d})

Corollary 6.2. Let (X,Σ, µ) be a measure space, d ∈ Cn, and h ∈ L2(X,µ;F)
such that T−1({d}) contains a continuous frame Φ = (ϕx)x∈X (see for in-
stance corollary 5.2 and proposition 5.3), where

T :

(
L2(X,µ;Fn) → Fn

F = (fx)x∈X 7→
R
X h(x)fxdµ(x)

.
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Then since T−1({d}) is affine, by corollary 4.1, FF(X,µ),n∩T−1({d}) is dense
in T−1({d}).

Corollary 6.3. Let (X,Σ, µ) be a measure space, l ∈ N∗, (Xj)j∈[1,l] a
partition of X by measurable subsets, h ∈ L2(X,µ;F), and D ∈ Fn such
thatW−1({D}) contains a continuous frame Φ = (ϕx)x∈X (see for instance
proposition 5.4), where

W :

(
L2(X,µ;Fn) → Q

j∈[1,l]F
n

F = (fx)x∈X 7→ (
R
Xj

h(x)fx)j∈[1,l]
.

Then since since W−1({d}) is affine, and by corollary 4.1, FF(X,µ),n ∩
W−1({D}) is dense in W−1({D}).

Remark 6.1. Consider the function q of proposition 5.5. If Φ = (ϕx)x∈X ∈
q−1({0}), then we also have Φ ∈ q−1({0})∩(q−1({0})−Φ) since q(2Φ) = 0.

Proposition 6.1. Consider the function q of proposition 5.5. Let Φ =
(ϕx)x∈X ∈ q−1({0}) and U = (ux)x∈X ∈ q−1({0}) ∩ (q−1({0})− Φ). Then
for all λ, µ ∈ R, λΦ+ µU ∈ q−1({0}) ∩ (q−1({0})− Φ).
In particular, q−1({0}) ∩ (q−1({0})− Φ) is a star domain relatively to Φ.

Proof. Let λ, µ ∈ R. Let s be the sesquilinear form

L2(X,µ;Cn) → Cn

(F,G) 7→
R
Xhb, gxifxdµ(x)

. We have

q(λΦ+ µU) = λ2 q(Φ)| {z }
0

+λµ(s(Φ, U) + s(U,Φ)) + µ2 q(U)| {z }
0

= λµ(q(Φ+ U)| {z }
0

− q(Φ)| {z }
0

− q(U)| {z }
0

)

= 0.

We can show similarly that q((λ+ 1)Φ+ µU) = 0. 2

Corollary 6.4. Let (X,Σ, µ) be a σ-finite measure space, b ∈ Cn \ {0},
and h ∈ L∞(X,µ;C) such that q−1({0}) contains a continuous frame Φ =
(ϕx)x∈X (see for instance proposition 5.5), where

q :

(
L2(X,µ;Cn) → Cn

F = (fx)x∈X 7→
R
X h(x)hb, fxifxdµ(x)

.
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Then by proposition 6.1 and corollary 4.1, FC(X,µ),n∩q−1({0})∩(q−1({0})−
Φ) is dense in q−1({0}) ∩ (q−1({0})−Φ).
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