Proyecciones Journal of Mathematics Vol. 41, N^o 5, pp. 1035-1050, October 2022. Universidad Católica del Norte Antofagasta - Chile

Lie (Jordan) centralizers on alternative algebras

Aisha Jabeen Jamia Millia Islamia, India and Bruno L. M. Ferreira Federal University of Technology, Brazil Received : March 2021. Accepted : June 2022

Abstract

In this article, we study Lie (Jordan) centralizers on alternative algebras and prove that every multiplicative Lie centralizer has proper form on alternative algebras under certain assumptions.

Subjclass: 16W25, 15A78, 47L35.

Keywords: alternative algebra, Lie centralizer, centralizer.

1. Introduction

The study of nonassociative rings has received fair amount of attention during the last few decades. Many authors studied nonassociative algebras (see [22] and references therein), in particular, alternative rings after the discovery of their connection with the theory of projective planes. Let \mathcal{A} be an alternative ring unless otherwise mentioned. For any $x, y \in \mathcal{A}$, $x \circ y = xy + yx$ will denote the Jordan product on \mathcal{A} . We recall that a ring \mathcal{A} (not necessarily associative or commutative) is called an alternative ring if \mathcal{A} satisfies $x^2y = x(xy)$ and $yx^2 = (yx)x$ for all $x, y \in \mathcal{A}$ and flexible if x(yx) = (xy)x holds for all $x, y \in \mathcal{A}$. It can be easily seen that all associative rings are alternative and any alternative ring is flexible. Hence the product xyx will denote the product x(yx) or (xy)x for all $x, y \in \mathcal{A}$. An alternative ring \mathcal{A} is said to be k-torsion free if kx = 0 implies that x = 0for $k \in \mathbb{N}$ and for all $x \in \mathcal{A}$. For any $x, y \in \mathcal{A}$, [x, y] = xy - yx will denote the Lie product on \mathcal{A} . The commutative center of an algebra \mathcal{A} is defined by $Z(\mathcal{A}) = \{a \in \mathcal{A} \mid [a, x] = 0$ for all $x \in \mathcal{A}\}$.

Remark 1.1. [9, Theorem 1.1] Let \mathcal{A} be a 3-torsion free alternative ring. Then \mathcal{A} is a prime ring if and only if $x\mathcal{A} \cdot y = 0$ (or $x \cdot \mathcal{A}y = 0$) implies x = 0 or y = 0 for $x, y \in \mathcal{A}$.

In the remaining part of the paper, let \mathcal{A} be an alternative ring with a nontrivial idempotent e_1 and formally set $e_0 = 1 - e_1$ (\mathcal{A} need not have an identity element). It can be easily seen that $(e_i x)e_j = e_i(xe_j)$, where i, j =0, 1 for all $x \in \mathcal{A}$. By Pierce decomposition $\mathcal{A} = \mathcal{A}_{11} + \mathcal{A}_{10} + \mathcal{A}_{01} + \mathcal{A}_{00}$, where $\mathcal{A}_{ij} = e_i \mathcal{A} e_j$ for $i, j \in \{0, 1\}$. The symbol x_{ij} denote an arbitrary element by \mathcal{A}_{ij} and any element $x \in \mathcal{A}$ can be expressed as $x = x_{11} + x_{10} + x_{01} + x_{00}$. Pierce decomposition of alternative rings satisfy the following relations:

- (i) $\mathcal{A}_{ij}\mathcal{A}_{jk} \subseteq \mathcal{A}_{ik}$, when $i, j, k \in \{0, 1\}$,
- (*ii*) $\mathcal{A}_{ij}\mathcal{A}_{ij} \subseteq \mathcal{A}_{ji}$ with $x_{ij}^2 = x_{ij}y_{ij} + y_{ij}x_{ij} = 0$,
- (*iii*) $\mathcal{A}_{ij}\mathcal{A}_{kl} = 0, \ (j \neq k), \ (i, j) \neq (k, l).$

for all $x_{ij}, y_{ij} \in \mathcal{A}_{ij}$.

For $x, y \in \mathcal{A} [x, y]$ (resp. $x \circ y$) will denote the Lie product xy - yx (resp. Jordan product xy + yx). A map (not necessarily linear) $L : \mathcal{A} \to \mathcal{A}$ is called multiplicative left centralizer (resp. multiplicative right centralizer) if L(xy) = L(x)y (resp. L(xy) = xL(y)) for all $x, y \in \mathcal{A}$. Further, L is called a

multiplicative centralizer if it is both multiplicative left centralizer as well as multiplicative right centralizer. A map (not necessarily linear) $L : \mathcal{A} \to \mathcal{A}$ is called a multiplicative Jordan centralizer if $L(x \circ y) = L(x) \circ y = x \circ L(y)$ for all $x, y \in \mathcal{A}$. A map (not necessarily linear) $L : \mathcal{A} \to \mathcal{A}$ is called a multiplicative Lie centralizer if L([x, y]) = [L(x), y] = [x, L(y)] for all $x, y \in \mathcal{A}$.

Characterizing the interrelation between the multiplicative and additive maps on algebraic structures is an interesting topic and has received fair amount of attention of many mathematicians (see for reference [29, 9, 10] where further references can be found). It was Martindale [29], who first studied this problem and raised the question : When is a multiplicative map additive? He answered this question for a multiplicative isomorphism of an associative ring with a family of idempotents under certain assumptions. More precisely, he proved the following result:

Theorem 1.2. [29, Theorem 1] Let \mathcal{A} be a ring (not necessarily with identity element) containing a family $\{e_{\alpha} : \alpha \in \Lambda\}$ of idempotents which satisfies :

- (i) $x\mathcal{A} = \{0\}$ implies x = 0,
- (ii) if $e_{\alpha}\mathcal{A}x = \{0\}$ for each $\alpha \in \Lambda$, then x = 0 (and hence $\mathcal{A}x = \{0\}$ implies x = 0),
- (*iii*) for each $\alpha \in \Lambda$, $e_{\alpha} x e_{\alpha} \mathcal{A}(1 e_{\alpha}) = \{0\}$ implies $e_{\alpha} x e_{\alpha} = \{0\}$.

Then any multiplicative bijective map from \mathcal{A} onto an arbitrary ring \mathcal{A}' is additive.

Ferreira and Nascimento [19] initiated the study of this problem for nonassociative rings named as alternative rings for derivable maps. Further this problem was studied by Ferreira and Ferreira [10, 9] for Jordan (triple) derivable map on alternative rings. Later on many authors studied the different maps on alternative rings or algebras see [32, 18, 17, 31, 30] and references therein. Centralizers on rings as well as algebras have been extensively investigated by many mathematicians see [6, 5, 4, 1, 2, 3] and references therein. In this paper, we obtain the necessary and sufficient conditions for a Lie centralizer map to be proper on alternative algebras. Further, we prove that every Jordan centralizer is a centralizer on alternative algebras under certain assumptions.

Lemma 1.1. [33, Lemma 8] For $z_{ii} \in Z(\mathcal{A}_{ii})$, i = 1, 2, there exists an element $z \in Z(\mathcal{A})$ such that $z_{ii} = ze_i$.

2. Lie Centralizer

Theorem 2.1. Let \mathcal{A} be a 2-torsion free unital alternative algebra with nontrivial idempotent and $L : \mathcal{A} \to \mathcal{A}$ be a multiplicative Lie centralizer satisfying the following for $i \neq j = 1, 2$:

1.
$$e_i \mathcal{L}(\mathcal{A}_{jj}) e_i \subseteq \mathcal{Z}(\mathcal{A}) e_i,$$

2. $x_{ii} \mathcal{A}_{ij} = 0 \text{ or } \mathcal{A}_{ji} x_{ii} = 0 \text{ then } x_{ii} = 0.$

Then L has the form $L = \delta + \tau$ where $\delta : \mathcal{A} \to \mathcal{A}$ is an additive centralizer and $\tau : \mathcal{A} \to Z(\mathcal{A})$ maps commutators into the zero.

We prove the above theorem via series of lemmas as follows:

Lemma 2.1. L(0) = 0.

Proof. For any
$$x \in \mathcal{A}$$
, we have $L(0) = L([0, x]) = [0, L(x)] = 0$.

Lemma 2.2. L is almost additive.

Proof. For any $x, y, z \in \mathcal{A}$, it follows that

$$\begin{split} [\mathrm{L}(x+y),z] &= &\mathrm{L}([(x+y),z]) \\ &= & [x+y,\mathrm{L}(z)] \\ &= & [x,\mathrm{L}(z)] + [y,\mathrm{L}(z)] \\ &= & \mathrm{L}([(x),z]) + \mathrm{L}([(y),z]) \\ &= & [\mathrm{L}(x),z] + [\mathrm{L}(y),z] \\ \mathrm{L}(x+y) - & \mathrm{L}(x) & -\mathrm{L}(y) \in \mathrm{Z}(\mathcal{A}). \end{split}$$

Hence L is almost additive on \mathcal{A} .

Lemma 2.3. $L(e_i) \in Z(\mathcal{A})$ for $i \neq j = 1, 2$.

Proof. By definition of Lie centralizer, we have

$$\begin{aligned} \mathbf{L}([e_1, e_2]) &= [\mathbf{L}(e_1), e_2] = [e_1, \mathbf{L}(e_2)] \\ 0 &= \mathbf{L}(e_1)e_2 - e_2\mathbf{L}(e_1) = e_1\mathbf{L}(e_2) - \mathbf{L}(e_2)e_1 \end{aligned}$$

This implies that $e_2 L(e_1)e_1 = 0 = e_1 L(e_1)e_2$ and $e_2 L(e_2)e_1 = 0 = e_1 L(e_2)e_2$. Now for any $a_{11} \in \mathcal{A}_{11}$, we arrive at

$$L([a_{11}, e_1]) = [a_{11}, L(e_1)] = [L(a_{11}), e_1]$$

$$0 = a_{11}L(e_1)e_1 - e_1L(e_1)a_{11} = e_2L(a_{11})e_1 - e_1L(a_{11})e_2.$$

This leads to $e_1 L(e_1)e_1 \in Z(\mathcal{A}_{11})$ and $e_2 L(a_{11})e_1 = 0 = e_1 L(a_{11})e_2$. Likewise, we have $e_1 L(e_2)e_1 \in Z(\mathcal{A}_{11})$. Therefore, in view of Lemma 1.1, we conclude that $L(e_1) \in Z(\mathcal{A})$. With similar arguments, we can have $L(e_2) \in Z(\mathcal{A})$.

Lemma 2.4. $L(A_{ij}) \subseteq A_{ij}$ for $i \neq j, i, j = 1, 2$.

Proof. For any $a_{12} \in \mathcal{A}_{12}$, we find that

$$\begin{aligned} \mathcal{L}([e_1, a_{12}]) &= [e_1, \mathcal{L}(a_{12})] \\ \mathcal{L}(a_{12}) &= e_1 \mathcal{L}(a_{12}) - \mathcal{L}(a_{12})e_1 \\ \mathcal{L}(a_{12}) &= e_1 \mathcal{L}(a_{12})e_2 - e_2 \mathcal{L}(a_{12})e_1. \end{aligned}$$

Then we see that $e_1 L(a_{12})e_1 = 0 = e_2 L(a_{12})e_2$. Also, on using 2-torsion freeness, we have $e_2 L(a_{12})e_1 = 0$. Hence $L(a_{12}) = e_1 L(a_{12})e_2 \in \mathcal{A}_{12}$ for all $a_{12} \in \mathcal{A}_{12}$. With similar calculations, we get that $L(a_{21}) \in \mathcal{A}_{21}$ for all $a_{21} \in \mathcal{A}_{21}$.

Lemma 2.5. $L(A_{ii}) \subseteq A_{ii} + Z(A)$ for i = 1, 2.

Proof. Consider i = 1. For any $a_{11} \in \mathcal{A}_{11}$, we have

$$\begin{aligned} \mathcal{L}([a_{11},e_1]) &= [a_{11},\mathcal{L}(e_1)] = [\mathcal{L}(a_{11}),e_1] \\ 0 &= a_{11}\mathcal{L}(e_1)e_1 - e_1\mathcal{L}(e_1)a_{11} = e_2\mathcal{L}(a_{11})e_1 - e_1\mathcal{L}(a_{11})e_2. \end{aligned}$$

It follows that $e_2L(a_{11})e_1 = 0 = e_1L(a_{11})e_2$ for all $a_{11} \in A_{11}$. Similarly, we get $e_2L(a_{22})e_1 = 0 = e_1L(a_{22})e_2$ for all $a_{22} \in A_{22}$. Also for any $a_{11} \in \mathcal{A}_{11}$ and $a_{22} \in \mathcal{A}_{22}$, we have

$$L([a_{11}, a_{22}]) = [L(a_{11}), a_{22}] = [a_{11}, L(a_{22})]$$

$$0 = [e_2L(a_{11})e_2, a_{22}] = [a_{11}, e_1L(a_{22})e_1].$$

Hence we obtain that $e_2 L(a_{11})e_2 \in Z(\mathcal{A}_{22})$ and $e_1 L(a_{22})e_1 \in Z(\mathcal{A}_{11})$. In view of Lemma 1.1, we get

$$L(a_{11}) = e_1 L(a_{11}) e_1 + e_2 L(a_{11}) e_2$$

= $e_1 L(a_{11}) e_1 + z_{22}$
= $e_1 L(a_{11}) e_1 + z e_2$
= $e_1 L(a_{11}) e_1 - z e_1 + z$
 $\in \mathcal{A}_{11} + Z(\mathcal{A}).$

for all $a_{11} \in \mathcal{A}_{11}$. Likewise, we can find for i = 2.

Remark 2.2. In view of Lemmas 2.1-2.5, we conclude that $L(a_{ij}) = b_{ij}$ and $L(a_{ii}) = b_{ii} + z_i$ for each $b_{ij}, a_{ij} \in \mathcal{A}_{ij}$ and $z_i \in Z(\mathcal{A})$. Now let us define a mapping $\delta : \mathcal{A} \to \mathcal{A}$ by $\delta(a_{ij}) = b_{ij}, a_{ij} \in \mathcal{A}_{ij}$. For each $a = a_{11} + a_{12} + a_{21} + a_{22} \in \mathcal{A}$, we define $\delta(a) = \sum \delta(a_{ij})$. Again, define a mapping $\tau : \mathcal{A} \to Z(\mathcal{A})$ by

$$\tau(a) = \mathcal{L}(a) - \delta(a) \text{ for all } a \in \mathcal{A}.$$

Lemma 2.6. For any $a, b \in \mathcal{A}$, we have

1.
$$\tau(a+b) - \tau(a) - \tau(b) \in \mathbb{Z}(\mathcal{A}),$$

2. $\delta(a+b) = \delta(a) + \delta(b).$

Proof. (1) For any $a_{12}, b_{12} \in \mathcal{A}_{12}$, it follows for i = 1, j = 2,

$$\begin{aligned} \tau(a_{12} + b_{12}) &= \mathcal{L}(a_{12} + b_{12}) - \delta(a_{12} + b_{12}) \\ &= \mathcal{L}(a_{12}) + \mathcal{L}(b_{12}) + z_{a_{12},b_{12}} - \delta(a_{12}) - \delta(b_{12}) \\ &= \tau(a_{12}) + \tau(b_{12}) + z_{a_{12},b_{12}} \\ \tau(a_{12} + b_{12}) - \tau(a_{12}) - \tau(b_{12}) &\in \mathcal{Z}(\mathcal{A}). \end{aligned}$$

Likewise, we can prove other cases and in the end, we get $\tau(a+b) - \tau(a) - \tau(b) \in \mathbb{Z}(\mathcal{A})$ for all $a, b \in \mathcal{A}$.

(2) In view of part (1) it is easy to verify that δ is an additive mapping. \Box

Lemma 2.7. For every $a_{ij}, b_{ij} \in A_{ij}$ and for i, j = 1, 2 we have

- 1. $\delta(a_{ii}b_{ij}) = \delta(a_{ii})b_{ij} = a_{ii}\delta(b_{ij}),$
- 2. $\delta(a_{ij}b_{jj}) = \delta(a_{ij})b_{jj} = a_{ij}\delta(b_{jj}),$
- 3. $\delta(a_{ii}b_{ii}) = \delta(a_{ii})b_{ii} = a_{ii}\delta(b_{ii}),$
- 4. $\delta(a_{ij}b_{ij}) = \delta(a_{ij})b_{ij} = a_{ij}\delta(b_{ij}),$
- 5. $\delta(a_{ij}b_{ji}) = \delta(a_{ij})b_{ji} = a_{ij}\delta(b_{ji}).$

Proof. (1) Consider the case for i = 1, j = 2, we have

$$\begin{split} \delta(a_{11}b_{12}) &= & \delta([a_{11},b_{12}]) \\ &= & \mathcal{L}([a_{11},b_{12}]) \\ &= & [\mathcal{L}(a_{11}),b_{12}] = [a_{11},\mathcal{L}(b_{12})] \\ &= & \delta(a_{11})b_{12} = a_{11}\delta(b_{12}). \end{split}$$

On similar pattern, we can prove other parts and (2).

(3) For i = 1 with (1), we have $\delta(a_{11}b_{11}b_{12}) = \delta(a_{11}b_{11})b_{12} = a_{11}b_{11}\delta(b_{12})$. On the other hand, we get

$$\begin{split} \delta(a_{11}b_{11}b_{12}) &= \delta(a_{11})b_{11}b_{12} = a_{11}\delta(b_{11}b_{12}) \\ &= \delta(a_{11})b_{11}b_{12} = a_{11}b_{11}\delta(b_{12}) = a_{11}\delta(b_{11})b_{12}. \end{split}$$

Now combining last two expressions, we obtain

$$(\delta(a_{11}b_{11}) - \delta(a_{11})b_{11})b_{12} = 0, (\delta(a_{11}b_{11}) - a_{11}\delta(b_{11}))b_{12} = 0.$$

With application of assumption (2), we obtain the result. Likewise we can obtain other cases.

(4) For i = 1, j = 2, it follows by 2-torsion freeness

$$2\delta(a_{12}b_{12}) = \delta([a_{12}, b_{12}])$$

= $L([a_{12}, b_{12}])$
= $[L(a_{12}), b_{12}] = [a_{12}, L(b_{12})]$
= $\delta(a_{12})b_{12} - b_{12}\delta(a_{12}) = a_{12}\delta(b_{12}) - \delta(b_{12})a_{12}$
= $2\delta(a_{12})b_{12} = 2a_{12}\delta(b_{12})$
 $\delta(a_{12}b_{12}) = \delta(a_{12})b_{12} = a_{12}\delta(b_{12}).$

(5) Again, for i = 1, j = 2, we have

$$\begin{aligned} \tau([a_{12}, b_{21}]) &= \mathrm{L}([a_{12}, b_{21}]) - \delta([a_{12}, b_{21}]) \\ &= [\mathrm{L}(a_{12}), b_{21}] - \delta([a_{12}, b_{21}]) = [a_{12}, \mathrm{L}(b_{21})] - \delta([a_{12}, b_{21}]) \\ &= [\delta(a_{12}), b_{21}] - \delta([a_{12}, b_{21}]) = [a_{12}, \delta(b_{21})] - \delta([a_{12}, b_{21}]). \end{aligned}$$

This implies that

$$\delta(a_{12})b_{21} - b_{21}\delta(a_{12}) - \delta(a_{12}b_{21}) + \delta(b_{21}a_{12}) = z \in \mathcal{Z}(\mathcal{A}),$$

$$a_{12}\delta(b_{21}) - \delta(b_{21})a_{12} - \delta(a_{12}b_{21}) + \delta(b_{21}a_{12}) = z \in \mathcal{Z}(\mathcal{A}).$$

Now multiplying a_{12} by left side and b_{21} by right side in above expressions respectively, we arrive at

$$a_{12}(\delta(a_{12})b_{21} - b_{21}\delta(a_{12}) - \delta(a_{12}b_{21}) + \delta(b_{21}a_{12})) = a_{12}z,$$

$$(a_{12}\delta(b_{21}) - \delta(b_{21})a_{12} - \delta(a_{12}b_{21}) + \delta(b_{21}a_{12}))b_{21} = zb_{21}.$$

Hence we find that

$$-a_{12}b_{21}\delta(a_{12}) + a_{12}\delta(b_{21}a_{12}) = a_{12}z = 0,$$

$$-\delta(b_{21})a_{12}b_{21} + \delta(b_{21}a_{12})b_{21} = zb_{21} = 0.$$

Now in view of (2) we have

$$\begin{aligned} -\delta(a_{12}b_{21})a_{12} + \delta(a_{12})b_{21}a_{12} &= 0, \\ -b_{21}\delta(a_{12}b_{21}) + b_{21}a_{12}\delta(b_{21}) &= 0. \end{aligned}$$

On applying assumption (2), we get $\delta(a_{12}b_{21}) = \delta(a_{12})b_{21} = a_{12}\delta(b_{21})$ and follow similarly for other cases.

Lemma 2.8. δ is a centralizer.

Proof. Suppose that $a, b \in \mathcal{A}$, then in view of Lemmas 2.6 and 2.7, we have

$$\begin{split} \delta(ab) &= \delta((a_{11} + a_{12} + a_{21} + a_{22})(b_{11} + b_{12} + b_{21} + b_{22})) \\ &= \delta(a_{11}b_{11}) + \delta(a_{11}b_{12}) + \delta(a_{12}b_{12}) + \delta(a_{12}b_{21}) + \delta(a_{12}b_{22}) \\ &+ \delta(a_{21}b_{11}) + \delta(a_{21}b_{12}) + \delta(a_{21}b_{21}) + \delta(a_{22}b_{21}) + \delta(a_{22}b_{22}) \\ &= \delta(a)b. \end{split}$$

Similarly, we can have $\delta(ab) = a\delta(b)$ for all $a, b \in \mathcal{A}$.

Lemma 2.9. For any $a, b \in \mathcal{A}$, $\tau([a, b]) = 0$.

Proof. For any $a, b \in \mathcal{A}$, we have

$$\begin{aligned} \tau([a,b]) &= \operatorname{L}([a,b]) - \delta([a,b]) \\ &= [\operatorname{L}(a),b] - \delta(ab) + \delta(ba) \\ &= [\tau(a) + \delta(a),b] - \delta(ab) + \delta(ba) \\ &= [\delta(a),b] - \delta(a)b + b\delta(a) \\ &= 0. \end{aligned}$$

Proof. [Proof of Theorem 2.1] In view of Remark 2.2 and Lemmas 2.6-2.9, we conclude that multiplicative Lie centralizer can be written as a sum of additive centralizer and a central map vanishing at commutators on \mathcal{A} . \Box

3. Jordan Centralizer

Theorem 3.1. Let \mathcal{A} be a 2-torsion free unital alternative algebra with nontrivial idempotent and $J : \mathcal{A} \to \mathcal{A}$ be a multiplicative Jordan centralizer satisfying for i, j, k = 1, 2; $x_{ij}\mathcal{A}_{jk} = 0$ or $\mathcal{A}_{ki}x_{ij} = 0$ then $x_{ij} = 0$. Then J is an additive centralizer.

We prove the above theorem via series of lemmas as follows:

Lemma 3.1. J(0) = 0.

Proof. For any $x \in \mathcal{A}$, we have $J(0) = J(0 \circ x) = 0 \circ J(x) = 0$.

Lemma 3.2. $J(e_i) \in A_{ii}$ for i = 1, 2.

Proof. By definition of Jordan centralizer, we find that

$$\begin{aligned} \mathbf{J}(e_1 \circ e_2) &= \mathbf{J}(e_1) \circ e_2 = e_1 \circ \mathbf{J}(e_2) \\ 0 &= \mathbf{J}(e_1)e_2 + e_2\mathbf{J}(e_1) = e_1\mathbf{J}(e_2) + \mathbf{J}(e_2)e_1 \\ &= e_1\mathbf{J}(e_1)e_2 + 2e_2\mathbf{J}(e_1)e_2 + e_2\mathbf{J}(e_1)e_1 = e_1\mathbf{J}(e_2)e_2 + 2e_1\mathbf{J}(e_2)e_1 + e_2\mathbf{J}(e_2)e_1. \end{aligned}$$

This implies that $e_2 J(e_1)e_1 = e_1 J(e_1)e_2 = e_2 J(e_1)e_2 = 0$ and $e_2 J(e_2)e_1 = e_1 J(e_2)e_2 = e_1 J(e_2)e_1 = 0$.

Lemma 3.3. $J(A_{ij}) \subseteq A_{ij}$ for $i \neq j, i, j = 1, 2$.

Proof. For any $a_{12} \in \mathcal{A}_{12}$, we find that

$$J(e_1 \circ a_{12}) = e_1 \circ J(a_{12})$$

$$J(a_{12}) = e_1 J(a_{12}) + J(a_{12})e_1$$

$$J(a_{12}) = 2e_1 J(a_{12})e_1 + e_1 J(a_{12})e_2 + e_2 J(a_{12})e_1.$$

Then we see that $e_1 J(a_{12})e_1 = 0 = e_2 J(a_{12})e_2$. Hence $J(a_{12}) = e_1 J(a_{12})e_2 + e_2 J(a_{12})e_1 \in \mathcal{A}_{12} + \mathcal{A}_{21}$ for all $a_{12} \in \mathcal{A}_{12}$. Since

$$\begin{array}{rcl} {\rm J}(e_1 \circ a_{12}) & = & {\rm J}(e_1) \circ a_{12} \\ {\rm J}(a_{12}) & = & {\rm J}(e_1)a_{12} + a_{12}{\rm J}(e_1) \\ & = & e_1{\rm J}(e_1)a_{12} + a_{12}{\rm J}(e_1)e_2. \end{array}$$

So $e_2 J(a_{12})e_1 = 0$ and $J(a_{12}) \in \mathcal{A}_{12}$, for all $a_{12} \in \mathcal{A}_{12}$. With similar calculations, we get that $J(a_{21}) \in \mathcal{A}_{21}$ for all $a_{21} \in \mathcal{A}_{21}$.

Lemma 3.4. $J(A_{ii}) \subseteq A_{ii}$ for i = 1, 2.

Proof. Consider i = 1. For any $a_{11} \in \mathcal{A}_{11}$, we have

$$\begin{aligned} \mathbf{J}(a_{11} \circ e_2) &= & \mathbf{J}(a_{11}) \circ e_2 \\ &= & \mathbf{J}(a_{11})e_2 + e_2\mathbf{J}(a_{11}) \\ 0 &= & e_2\mathbf{J}(a_{11})e_1 + e_1\mathbf{J}(a_{11})e_2 + 2e_2\mathbf{J}(a_{11})e_2 \end{aligned}$$

It follows that $e_2 J(a_{11})e_1 = e_1 J(a_{11})e_2 = e_2 J(a_{11})e_2 = 0$ for all $a_{11} \in A_{11}$. Similarly, we get $e_2 J(a_{22})e_1 = e_1 J(a_{22})e_2 = e_1 J(a_{22})e_1 = 0$ for all $a_{22} \in A_{22}$.

Lemma 3.5. For every $a_{ij}, b_{ij} \in \mathcal{A}_{ij}$ and for i, j = 1, 2, we have

1. $J(a_{ii}b_{ij}) = J(a_{ii})b_{ij} = a_{ii}J(b_{ij}),$ 2. $J(a_{ij}b_{jj}) = J(a_{ij})b_{jj} = a_{ij}J(b_{jj}),$ 3. $J(a_{ii}b_{ii}) = J(a_{ii})b_{ii} = a_{ii}J(b_{ii}),$ 4. $J(a_{ij}b_{ij}) = J(a_{ij})b_{ij} = a_{ij}J(b_{ij}),$ 5. $J(a_{ij}b_{ji}) = J(a_{ij})b_{ji} = a_{ij}J(b_{ji}).$

Proof. (1) Consider the case for i = 1, j = 2, we have

$$\begin{aligned} \mathbf{J}(a_{11}b_{12}) &= & \mathbf{J}(a_{11}\circ b_{12}) \\ &= & \mathbf{J}(a_{11})\circ b_{12} = a_{11}\circ \mathbf{J}(b_{12}) \\ &= & \mathbf{J}(a_{11})b_{12} = a_{11}\mathbf{J}(b_{12}). \end{aligned}$$

On similar pattern, we can prove other parts and (2).

(3) For i = 1 with (1), we have $J(a_{11}b_{11}b_{12}) = J(a_{11}b_{11})b_{12} = a_{11}b_{11}J(b_{12})$. On the other hand, we get

$$\begin{aligned} \mathbf{J}(a_{11}b_{11}b_{12}) &= \mathbf{J}(a_{11})b_{11}b_{12} = a_{11}\mathbf{J}(b_{11}b_{12}) \\ &= \mathbf{J}(a_{11})b_{11}b_{12} = a_{11}b_{11}\mathbf{J}(b_{12}) = a_{11}\mathbf{J}(b_{11})b_{12}. \end{aligned}$$

Now combining last two expressions, we obtain

$$(\mathbf{J}(a_{11}b_{11}) - \mathbf{J}(a_{11})b_{11})b_{12} = 0, (\mathbf{J}(a_{11}b_{11}) - a_{11}\mathbf{J}(b_{11}))b_{12} = 0.$$

With assumption we obtain the result. Likewise we can obtain the other cases. $\hfill \Box$

Remark 3.2. In view of above lemma we can conclude that J is a multiplicative centralizer, that is, J(xy) = J(x)y = xJ(y) for all $x, y \in A$.

Lemma 3.6. For every $a_{ij}, b_{ij} \in \mathcal{A}_{ij}$ and for i, j = 1, 2, we have

1.
$$J(a_{ii} + b_{ij}) = J(a_{ii}) + J(b_{ij})$$

- 2. $J(a_{ii} + b_{ii}) = J(a_{ii}) + J(b_{ii}),$
- 3. $J(a_{ii} + b_{jj}) = J(a_{ii}) + J(b_{ii}),$
- 4. $J(a_{ij} + b_{ij}) = J(a_{ij}) + J(b_{ij}),$
- 5. $J(a_{ij} + b_{ji}) = J(a_{ij}) + J(b_{ji}).$

Proof. For any $a_{ij}, b_{ij} \in \mathcal{A}_{ij}$, we obtain that

$$\begin{aligned} \mathbf{J}(a_{ii} + b_{ij})b_{jk} &= (a_{ii} + b_{ij})\mathbf{J}(b_{jk}) \\ &= a_{ii}\mathbf{J}(b_{jk}) + b_{ij}\mathbf{J}(b_{jk}) \\ &= \mathbf{J}(a_{ii}b_{jk}) + \mathbf{J}(b_{ij}b_{jk}) \\ &= \mathbf{J}(a_{ii})b_{jk} + \mathbf{J}(b_{ij})b_{jk} \\ (\mathbf{J}(a_{ii} + b_{ij}) - \mathbf{J}(a_{ii}) - \mathbf{J}(b_{ij}))_{ij}b_{jk} &= 0. \end{aligned}$$

With assumption, we obtain the result. Likewise, we can obtain other cases. \square

Proof. [Proof of Theorem 3.1] In view of Lemma 3.5 and 3.6, we can say that a multiplicative Jordan centralizer is an additive centralizer on alternative algebras. \Box

4. Applications

Clearly, using Remark 1.1, any alternative algebra over a basic field of characteristic not 3 satisfies

If
$$x_{ij}\mathcal{A}_{jk} = 0$$
 or $\mathcal{A}_{ki}x_{ij} = 0$ then $x_{ij} = 0$.

Consequently, we have the following applications on prime alternative algebras. **Corollary 4.1.** Let \mathcal{A} be a 2,3-torsion free unital prime alternative algebra with nontrivial idempotent and $L : \mathcal{A} \to \mathcal{A}$ be a multiplicative Lie centralizer satisfying (1) condition of the Theorem 2.1. Then L has the form $L = \delta + \tau$, where $\delta : \mathcal{A} \to \mathcal{A}$ is an additive centralizer and $\tau : \mathcal{A} \to Z(\mathcal{A})$ maps commutators into the zero.

Corollary 4.2. Let \mathcal{A} be a 2, 3-torsion free unital prime alternative algebra with nontrivial idempotent and $J : \mathcal{A} \to \mathcal{A}$ be a multiplicative Jordan centralizer. Then J is an additive centralizer.

5. Acknowledgments

This research is supported by Dr. D. S. Kothari Postdoctoral Fellowship under University Grants Commission (Grant No. F.4-2/2006 (BSR)/MA/18-19/0014), awarded to the author.

References

- [1] L. Liu, "On Jordan centralizers of triangular algebras", *Banach Journal of Mathematical Analysis*, vol. 10, no. 2, pp. 223-234, 2016. doi: 10.1215/17358787-3492545
- [2] L. Liu, "On nonlinear Lie centralizers of generalized matrix algebras", *Linear and Multilinear Algebra*, 2020. doi: 10.1080/03081087.2020. 1810605
- [3] A. Jabeen, "Lie (Jordan) centralizers on generalized matrix algebras", *Communications in Algebra*, pp. 278-291, 2020. doi: 10.1080/00927872. 2020.1797759
- [4] A. Fošner and W. Jing, "Lie centralizers on triangular rings and nest algebras", *Advances in Operator Theory*, vol. 4, no. 2, pp. 342-350, 2019. doi: 10.15352/aot.1804-1341
- [5] F. Ghomanjani and M. A. Bahmani, "A note on Lie centralizer maps", *Palestine Journal of Mathematics,* vol. 7, no. 2, pp. 468-471, 2018.
- [6] B. E. Johson, "An introduction to the theory of centralizers", *Proceedings of the London Mathematical Society*, vol. 14, pp. 299-320, 1964. doi: 10.1112/plms/s3-14.2.299
- [7] M. Ashraf and N. Parveen, "On Jordan triple higher derivable mappings on rings", *Mediterranean Journal of Mathematics*, vol. 13, no. 4, pp. 1465-1477, 2016. doi: 10.1007/s00009-015-0606-3

- [8] M. Ashraf and N. Parveen, "Jordan higher derivable mappings on rings", *Algebra*, vol. 2014, 2014. doi: 10.1155/2014/672387
- [9] R. N. Ferreira and B. L. M. Ferreira, "Jordan triple derivation on alternative rings", *Proyecciones (Antofagasta)*, vol. 37, no. 1, pp. 171-180, 2018. doi: 10.4067/S0716-09172018000100171
- [10] R. N. Ferreira and B. L. M. Ferreira, "Jordan derivation on alternative rings", *International Journal of Mathematics, Game Theory, and Algebra*, vol. 25, no. 4, pp. 435-444, 2016.
- [11] M. Ashraf and M.S. Akhtar and A. Jabeen, "Additivity of r-Jordan triple maps on triangular algebras", Pacific Journal of Applied Mathematics, vol. 9, no. 2, pp. 121-136, 2017.
- [12] M. Ashraf and A. Jabeen, "Nonlinear Jordan triple higher derivable mappings of triangular algebras", *Southeast Asian Bulletin of Mathematics*, vol. 42, no. 4, pp. 503-520, 2018.
- [13] M. Ashraf and N. Parveen, "Lie triple higher derivable mappings on rings", *Communications in Algebra*, vol. 45, no. 5, pp. 2256-2275, 2014.
- [14] M. Ashraf and N. Parveen, "On Lie higher derivable mappings on prime rings", *Beiträge zur Algebra und Geometrie*, vol. 57, no. 1, pp. 137-153, 2016. doi: 10.1007/s13366-015-0246-6
- [15] C. Haetinger, M. Ashraf and S. Ali, "On higher derivations: a survey", *International Journal of Mathematics, Game Theory*, vol. 19, nos. 5-6, pp. 359-379, 2011.
- M. N. Daif, "When is a multiplicative derivation additive?", *International Journal of Mathematics and Mathematical Sciences*, vol. 14, no. 3, pp. 615-618, 1991. doi: 10.1155/s0161171291000844
- [17] J. C. M. Ferreira and H. Guzzo Jr., "Multiplicative mappings of alternative rings", *Algebras Groups and Geometries*, vol. 31, no. 3, 239-250, 2014.
- [18] J. C. M. Ferreira and H. Guzzo Jr., "Jordan elementary maps on alternative rings", *Communications in Algebra*, vol. 42, no. 2, pp. 779-794, 2014. doi: 10.1080/00927872.2012.724252
- [19] B. L. M. Ferreira and R. Nascimento, "Derivable maps on alternative rings", *Revista Ciencias Exatas e Naturais*, vol. 16, no. 1, pp. 1-5, 2014. doi: 10.5935/recen.2014.01.01
- [20] R. D. Schafer, "Alternative algebras over an arbitrary field", *Bulletin of the American Mathematical Society*, vol. 49, no. 8, pp. 549-555, 1943. doi: 10.1090/s0002-9904-1943-07967-0
- [21] R. D. Schafer, "Generalized standard algebras", *Journal of Algebra*, vol. 12, no. 3, pp. 386-417, 1969. doi: 10.1016/0021-8693(69)90039-8

- [22] R. D. Schafer, *An introduction to nonassociative algebras.* Academic Press, 1966.
- [23] M. Ferrero and C. Haetinger, "Higher derivations and a theorem by Herstein", *Quaestiones Mathematicae*, vol. 25, no. 2, pp. 249-257, 2002. doi: 10.2989/16073600209486012
- [24] M. Ferrero and C. Haetinger, "Higher derivations of semiprime rings", *Communications in Algebra*, vol. 30, no. 5, pp. 2321-2333, 2002. doi: 10.1081/agb-120003471
- [25] H. Hasse and F. K. Schimdt, "Noch eine Begründung ger Theorie der höheren Differential quotenten in einem algebraischen Fünktiosenkörper einer Unbestimten", *Journal für die reine und angewandte Mathematik*, vol. 177, pp. 215-237, 1937. doi: 10.1515/ crll.1937.177.215
- [26] C. Haetinger, M. Ashraf and S. Ali, "Higher derivations: A survey", *International Journal of Mathematics, Game Theory and Algebra*, vol. 19, nos. 5-6, pp. 359-379, 2011.
- [27] W. Jing and F. Lu, "Additivity of Jordan (triple) derivations on rings", *Communications in Algebra*, vol. 40, no. 8, pp. 2700-2719, 2012. doi: 10.1080/00927872.2011.584927
- [28] F. Lu, "Jordan derivable maps of prime rings", *Communications in Algebra*, vol. 38, no. 12, pp. 4430-4440, 2010. doi: 10.1080/00927870903366884
- [29] W. S. Martindale III, "When are multiplicative mappings additive?", *Proceedings of the American Mathematical Society*, vol. 21, no. 3, pp. 695-698, 1969. doi: 10.1090/s0002-9939-1969-0240129-7
- [30] B. L. M. Ferreira and H. Guzzo Jr, "Lie maps on alternative rings", *Bollettino dell'Unione Matematica Italiana*, vol. 13, no. 2, pp. 181-192, 2020. doi: 10.1007/s40574-019-00213-9
- [31] B. L. M. Ferreira, H. Guzzo Jr. and F. Wei, "Multiplicative Lie-type derivations on alternative rings", *Communications in Algebra*, vol. 48, no. 12, pp. 5396-5411, 2020. doi:10.1080/00927872.2020.1789160
- [32] B. L. M. Ferreira, H. Guzzo Jr., R. N. Ferreira and F. Wei, "Jordan derivations of alternative rings", *Communications in Algebra*, vol. 48, no. 2, pp. 717-723, 2020. doi: 10.1080/00927872.2019.1659285
- [33] B. L. M. Ferreira and I. Kaygorodov, "Commuting maps on alternative rings", *Ricerche di Matematica*, vol. 71, pp. 67-78, 2020. doi: 10.1007/s11587-020-00547-z

Aisha Jabeen

Department of Applied Sciences & Humanities Jamia Millia Islamia New Delhi 110025, India e-mail: ajabeen329@gmail.com

and

Bruno L. M. Ferreira

Federal University of Technology Professora Laura Pacheco Bastos Avenue, 800 85053-510, Guarapuava, Brazil e-mail: brunoferreira@utfpr.edu.br Corresponding author