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Abstract

In this article, we study Lie (Jordan) centralizers on alternative
algebras and prove that every multiplicative Lie centralizer has proper
form on alternative algebras under certain assumptions.
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1. Introduction

The study of nonassociative rings has received fair amount of attention
during the last few decades. Many authors studied nonassociative algebras
(see [22] and references therein), in particular, alternative rings after the
discovery of their connection with the theory of projective planes. Let
A be an alternative ring unless otherwise mentioned. For any x, y ∈ A,
x ◦ y = xy + yx will denote the Jordan product on A. We recall that a
ring A (not necessarily associative or commutative) is called an alternative
ring if A satisfies x2y = x(xy) and yx2 = (yx)x for all x, y ∈ A and
flexible if x(yx) = (xy)x holds for all x, y ∈ A. It can be easily seen that all
associative rings are alternative and any alternative ring is flexible. Hence
the product xyx will denote the product x(yx) or (xy)x for all x, y ∈ A. An
alternative ring A is said to be k-torsion free if kx = 0 implies that x = 0
for k ∈ N and for all x ∈ A. For any x, y ∈ A, [x, y] = xy − yx will denote
the Lie product on A. The commutative center of an algebra A is defined
by Z(A) = {a ∈ A [a, x] = 0 for all x ∈ A}.

Remark 1.1. [9, Theorem 1.1] Let A be a 3-torsion free alternative ring.
Then A is a prime ring if and only if xA · y = 0 (or x · Ay = 0) implies
x = 0 or y = 0 for x, y ∈ A.

In the remaining part of the paper, let A be an alternative ring with a
nontrivial idempotent e1 and formally set e0 = 1− e1 (A need not have an
identity element). It can be easily seen that (eix)ej = ei(xej), where i, j =
0, 1 for all x ∈ A. By Pierce decompositionA = A11+A10+A01+A00, where
Aij = eiAej for i, j ∈ {0, 1}. The symbol xij denote an arbitrary element
by Aij and any element x ∈ A can be expressed as x = x11+x10+x01+x00.
Pierce decomposition of alternative rings satisfy the following relations:

(i) AijAjk ⊆ Aik, when i, j, k ∈ {0, 1},

(ii) AijAij ⊆ Aji with x2ij = xijyij + yijxij = 0,

(iii) AijAkl = 0, (j 6= k), (i, j) 6= (k, l).

for all xij , yij ∈ Aij .
For x, y ∈ A [x, y] (resp. x◦y) will denote the Lie product xy−yx (resp.

Jordan product xy + yx). A map (not necessarily linear) L : A → A is
called multiplicative left centralizer (resp. multiplicative right centralizer) if
L(xy) = L(x)y (resp. L(xy) = xL(y)) for all x, y ∈ A. Further, L is called a
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multiplicative centralizer if it is both multiplicative left centralizer as well as
multiplicative right centralizer. A map (not necessarily linear) L : A→ A
is called a multiplicative Jordan centralizer if L(x◦y) = L(x)◦y = x◦L(y)
for all x, y ∈ A. A map (not necessarily linear) L : A → A is called
a multiplicative Lie centralizer if L([x, y]) = [L(x), y] = [x,L(y)] for all
x, y ∈ A.

Characterizing the interrelation between the multiplicative and additive
maps on algebraic structures is an interesting topic and has received fair
amount of attention of many mathematicians (see for reference [29, 9, 10]
where further references can be found). It was Martindale [29], who first
studied this problem and raised the question : When is a multiplicative map
additive? He answered this question for a multiplicative isomorphism of an
associative ring with a family of idempotents under certain assumptions.
More precisely, he proved the following result:

Theorem 1.2. [29, Theorem 1] Let A be a ring (not necessarily with iden-
tity element) containing a family {eα : α ∈ Λ} of idempotents which satis-
fies :

(i) xA = {0} implies x = 0,

(ii) if eαAx = {0} for each α ∈ Λ, then x = 0 (and hence Ax = {0}
implies x = 0),

(iii) for each α ∈ Λ, eαxeαA(1− eα) = {0} implies eαxeα = {0}.

Then any multiplicative bijective map from A onto an arbitrary ring A0 is
additive.

Ferreira and Nascimento [19] initiated the study of this problem for
nonassociative rings named as alternative rings for derivable maps. Fur-
ther this problem was studied by Ferreira and Ferreira [10, 9] for Jordan
(triple) derivable map on alternative rings. Later on many authors studied
the different maps on alternative rings or algebras see [32, 18, 17, 31, 30]
and references therein. Centralizers on rings as well as algebras have been
extensively investigated by many mathematicians see [6, 5, 4, 1, 2, 3] and
references therein. In this paper, we obtain the necessary and sufficient
conditions for a Lie centralizer map to be proper on alternative algebras.
Further, we prove that every Jordan centralizer is a centralizer on alterna-
tive algebras under certain assumptions.

Lemma 1.1. [33, Lemma 8] For zii ∈ Z(Aii), i = 1, 2, there exists an
element z ∈ Z(A) such that zii = zei.
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2. Lie Centralizer

Theorem 2.1. Let A be a 2-torsion free unital alternative algebra with
nontrivial idempotent and L : A → A be a multiplicative Lie centralizer
satisfying the following for i 6= j = 1, 2 :

1. eiL(Ajj)ei ⊆ Z(A)ei,

2. xiiAij = 0 or Ajixii = 0 then xii = 0.

Then L has the form L = δ+τ where δ : A→ A is an additive centralizer
and τ : A→ Z(A) maps commutators into the zero.

We prove the above theorem via series of lemmas as follows:

Lemma 2.1. L(0) = 0.

Proof. For any x ∈ A, we have L(0) = L([0, x]) = [0,L(x)] = 0. 2

Lemma 2.2. L is almost additive.

Proof. For any x, y, z ∈ A, it follows that

[L(x+ y), z] = L([(x+ y), z])

= [x+ y,L(z)]

= [x,L(z)] + [y,L(z)]

= L([(x), z]) + L([(y), z])

= [L(x), z] + [L(y), z]

L(x+ y)− L(x) −L(y) ∈ Z(A).

Hence L is almost additive on A. 2

Lemma 2.3. L(ei) ∈ Z(A) for i 6= j = 1, 2.
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Proof. By definition of Lie centralizer, we have

L([e1, e2]) = [L(e1), e2] = [e1,L(e2)]

0 = L(e1)e2 − e2L(e1) = e1L(e2)− L(e2)e1.

This implies that e2L(e1)e1 = 0 = e1L(e1)e2 and e2L(e2)e1 = 0 = e1L(e2)e2.
Now for any a11 ∈ A11, we arrive at

L([a11, e1]) = [a11,L(e1)] = [L(a11), e1]

0 = a11L(e1)e1 − e1L(e1)a11 = e2L(a11)e1 − e1L(a11)e2.

This leads to e1L(e1)e1 ∈ Z(A11) and e2L(a11)e1 = 0 = e1L(a11)e2.
Likewise, we have e1L(e2)e1 ∈ Z(A11). Therefore, in view of Lemma 1.1, we
conclude that L(e1) ∈ Z(A). With similar arguments, we can have L(e2) ∈
Z(A). 2

Lemma 2.4. L(Aij) ⊆ Aij for i 6= j, i, j = 1, 2.

Proof. For any a12 ∈ A12, we find that

L([e1, a12]) = [e1,L(a12)]

L(a12) = e1L(a12)− L(a12)e1
L(a12) = e1L(a12)e2 − e2L(a12)e1.

Then we see that e1L(a12)e1 = 0 = e2L(a12)e2. Also, on using 2-torsion
freeness, we have e2L(a12)e1 = 0. Hence L(a12) = e1L(a12)e2 ∈ A12 for
all a12 ∈ A12. With similar calculations, we get that L(a21) ∈ A21 for all
a21 ∈ A21. 2

Lemma 2.5. L(Aii) ⊆ Aii + Z(A) for i = 1, 2.

Proof. Consider i = 1. For any a11 ∈ A11, we have

L([a11, e1]) = [a11,L(e1)] = [L(a11), e1]

0 = a11L(e1)e1 − e1L(e1)a11 = e2L(a11)e1 − e1L(a11)e2.
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It follows that e2L(a11)e1 = 0 = e1L(a11)e2 for all a11 ∈ A11. Similarly, we
get e2L(a22)e1 = 0 = e1L(a22)e2 for all a22 ∈ A22. Also for any a11 ∈ A11
and a22 ∈ A22, we have

L([a11, a22]) = [L(a11), a22] = [a11,L(a22)]

0 = [e2L(a11)e2, a22] = [a11, e1L(a22)e1].

Hence we obtain that e2L(a11)e2 ∈ Z(A22) and e1L(a22)e1 ∈ Z(A11). In
view of Lemma 1.1, we get

L(a11) = e1L(a11)e1 + e2L(a11)e2

= e1L(a11)e1 + z22

= e1L(a11)e1 + ze2

= e1L(a11)e1 − ze1 + z

∈ A11 + Z(A).

for all a11 ∈ A11. Likewise, we can find for i = 2. 2

Remark 2.2. In view of Lemmas 2.1-2.5, we conclude that L(aij) = bij
and L(aii) = bii + zi for each bij , aij ∈ Aij and zi ∈ Z(A). Now let us
define a mapping δ : A → A by δ(aij) = bij , aij ∈ Aij . For each a =
a11 + a12 + a21 + a22 ∈ A, we define δ(a) =

P
δ(aij). Again, define a

mapping τ : A→ Z(A) by

τ(a) = L(a)− δ(a) for all a ∈ A.

Lemma 2.6. For any a, b ∈ A, we have

1. τ(a+ b)− τ(a)− τ(b) ∈ Z(A),

2. δ(a+ b) = δ(a) + δ(b).

Proof. (1) For any a12, b12 ∈ A12, it follows for i = 1, j = 2,

τ(a12 + b12) = L(a12 + b12)− δ(a12 + b12)

= L(a12) + L(b12) + za12,b12 − δ(a12)− δ(b12)

= τ(a12) + τ(b12) + za12,b12
τ(a12 + b12)− τ(a12)− τ(b12) ∈ Z(A).
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Likewise, we can prove other cases and in the end, we get τ(a+ b)− τ(a)−
τ(b) ∈ Z(A) for all a, b ∈ A.
(2) In view of part (1) it is easy to verify that δ is an additive mapping. 2

Lemma 2.7. For every aij , bij ∈ Aij and for i, j = 1, 2 we have

1. δ(aiibij) = δ(aii)bij = aiiδ(bij),

2. δ(aijbjj) = δ(aij)bjj = aijδ(bjj),

3. δ(aiibii) = δ(aii)bii = aiiδ(bii),

4. δ(aijbij) = δ(aij)bij = aijδ(bij),

5. δ(aijbji) = δ(aij)bji = aijδ(bji).

Proof. (1) Consider the case for i = 1, j = 2, we have

δ(a11b12) = δ([a11, b12])

= L([a11, b12])

= [L(a11), b12] = [a11,L(b12)]

= δ(a11)b12 = a11δ(b12).

On similar pattern, we can prove other parts and (2).
(3) For i = 1 with (1), we have δ(a11b11b12) = δ(a11b11)b12 = a11b11δ(b12).

On the other hand, we get

δ(a11b11b12) = δ(a11)b11b12 = a11δ(b11b12)

= δ(a11)b11b12 = a11b11δ(b12) = a11δ(b11)b12.

Now combining last two expressions, we obtain

(δ(a11b11)− δ(a11)b11)b12 = 0,

(δ(a11b11)− a11δ(b11))b12 = 0.

With application of assumption (2), we obtain the result. Likewise we
can obtain other cases.
(4) For i = 1, j = 2, it follows by 2-torsion freeness
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2δ(a12b12) = δ([a12, b12])

= L([a12, b12])

= [L(a12), b12] = [a12,L(b12)]

= δ(a12)b12 − b12δ(a12) = a12δ(b12)− δ(b12)a12

= 2δ(a12)b12 = 2a12δ(b12)

δ(a12b12) = δ(a12)b12 = a12δ(b12).

(5) Again, for i = 1, j = 2, we have

τ([a12, b21]) = L([a12, b21])− δ([a12, b21])

= [L(a12), b21]− δ([a12, b21]) = [a12,L(b21)]− δ([a12, b21])

= [δ(a12), b21]− δ([a12, b21]) = [a12, δ(b21)]− δ([a12, b21]).

This implies that

δ(a12)b21 − b21δ(a12)− δ(a12b21) + δ(b21a12) = z ∈ Z(A),
a12δ(b21)− δ(b21)a12 − δ(a12b21) + δ(b21a12) = z ∈ Z(A).

Now multiplying a12 by left side and b21 by right side in above expres-
sions respectively, we arrive at

a12(δ(a12)b21 − b21δ(a12)− δ(a12b21) + δ(b21a12)) = a12z,

(a12δ(b21)− δ(b21)a12 − δ(a12b21) + δ(b21a12))b21 = zb21.

Hence we find that

−a12b21δ(a12) + a12δ(b21a12) = a12z = 0,

−δ(b21)a12b21 + δ(b21a12)b21 = zb21 = 0.

Now in view of (2) we have

−δ(a12b21)a12 + δ(a12)b21a12 = 0,

−b21δ(a12b21) + b21a12δ(b21) = 0.

On applying assumption (2), we get δ(a12b21) = δ(a12)b21 = a12δ(b21) and
follow similarly for other cases. 2

Lemma 2.8. δ is a centralizer.
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Proof. Suppose that a, b ∈ A, then in view of Lemmas 2.6 and 2.7, we
have

δ(ab) = δ((a11 + a12 + a21 + a22)(b11 + b12 + b21 + b22))

= δ(a11b11) + δ(a11b12) + δ(a12b12) + δ(a12b21) + δ(a12b22)

+δ(a21b11) + δ(a21b12) + δ(a21b21) + δ(a22b21) + δ(a22b22)

= δ(a)b.

Similarly, we can have δ(ab) = aδ(b) for all a, b ∈ A. 2

Lemma 2.9. For any a, b ∈ A, τ([a, b]) = 0.

Proof. For any a, b ∈ A, we have

τ([a, b]) = L([a, b])− δ([a, b])

= [L(a), b]− δ(ab) + δ(ba)

= [τ(a) + δ(a), b]− δ(ab) + δ(ba)

= [δ(a), b]− δ(a)b+ bδ(a)

= 0.

2

Proof. [Proof of Theorem 2.1] In view of Remark 2.2 and Lemmas 2.6-
2.9, we conclude that multiplicative Lie centralizer can be written as a sum
of additive centralizer and a central map vanishing at commutators on A.
2

3. Jordan Centralizer

Theorem 3.1. Let A be a 2-torsion free unital alternative algebra with
nontrivial idempotent and J : A→ A be a multiplicative Jordan centralizer
satisfying for i, j, k = 1, 2; xijAjk = 0 or Akixij = 0 then xij = 0. Then J
is an additive centralizer.

We prove the above theorem via series of lemmas as follows:

Lemma 3.1. J(0) = 0.
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Proof. For any x ∈ A, we have J(0) = J(0 ◦ x) = 0 ◦ J(x) = 0. 2

Lemma 3.2. J(ei) ∈ Aii for i = 1, 2.

Proof. By definition of Jordan centralizer, we find that

J(e1 ◦ e2) = J(e1) ◦ e2 = e1 ◦ J(e2)
0 = J(e1)e2 + e2J(e1) = e1J(e2) + J(e2)e1

= e1J(e1)e2 + 2e2J(e1)e2 + e2J(e1)e1 = e1J(e2)e2 + 2e1J(e2)e1 + e2J(e2)e1.

This implies that e2J(e1)e1 = e1J(e1)e2 = e2J(e1)e2 = 0 and e2J(e2)e1 =
e1J(e2)e2 = e1J(e2)e1 = 0. 2

Lemma 3.3. J(Aij) ⊆ Aij for i 6= j, i, j = 1, 2.

Proof. For any a12 ∈ A12, we find that

J(e1 ◦ a12) = e1 ◦ J(a12)
J(a12) = e1J(a12) + J(a12)e1

J(a12) = 2e1J(a12)e1 + e1J(a12)e2 + e2J(a12)e1.

Then we see that e1J(a12)e1 = 0 = e2J(a12)e2.Hence J(a12) = e1J(a12)e2+
e2J(a12)e1 ∈ A12 +A21 for all a12 ∈ A12. Since

J(e1 ◦ a12) = J(e1) ◦ a12
J(a12) = J(e1)a12 + a12J(e1)

= e1J(e1)a12 + a12J(e1)e2.

So e2J(a12)e1 = 0 and J(a12) ∈ A12, for all a12 ∈ A12. With similar calcu-
lations, we get that J(a21) ∈ A21 for all a21 ∈ A21. 2

Lemma 3.4. J(Aii) ⊆ Aii for i = 1, 2.
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Proof. Consider i = 1. For any a11 ∈ A11, we have

J(a11 ◦ e2) = J(a11) ◦ e2
= J(a11)e2 + e2J(a11)

0 = e2J(a11)e1 + e1J(a11)e2 + 2e2J(a11)e2.

It follows that e2J(a11)e1 = e1J(a11)e2 = e2J(a11)e2 = 0 for all a11 ∈
A11. Similarly, we get e2J(a22)e1 = e1J(a22)e2 = e1J(a22)e1 = 0 for all
a22 ∈ A22. 2

Lemma 3.5. For every aij , bij ∈ Aij and for i, j = 1, 2, we have

1. J(aiibij) = J(aii)bij = aiiJ(bij),

2. J(aijbjj) = J(aij)bjj = aijJ(bjj),

3. J(aiibii) = J(aii)bii = aiiJ(bii),

4. J(aijbij) = J(aij)bij = aijJ(bij),

5. J(aijbji) = J(aij)bji = aijJ(bji).

Proof. (1) Consider the case for i = 1, j = 2, we have

J(a11b12) = J(a11 ◦ b12)
= J(a11) ◦ b12 = a11 ◦ J(b12)
= J(a11)b12 = a11J(b12).

On similar pattern, we can prove other parts and (2).
(3) For i = 1 with (1), we have J(a11b11b12) = J(a11b11)b12 = a11b11J(b12).

On the other hand, we get

J(a11b11b12) = J(a11)b11b12 = a11J(b11b12)

= J(a11)b11b12 = a11b11J(b12) = a11J(b11)b12.

Now combining last two expressions, we obtain

(J(a11b11)− J(a11)b11)b12 = 0,

(J(a11b11)− a11J(b11))b12 = 0.
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With assumption we obtain the result. Likewise we can obtain the other
cases. 2

Remark 3.2. In view of above lemma we can conclude that J is a multi-
plicative centralizer, that is, J(xy) = J(x)y = xJ(y) for all x, y ∈ A.

Lemma 3.6. For every aij , bij ∈ Aij and for i, j = 1, 2, we have

1. J(aii + bij) = J(aii) + J(bij),

2. J(aii + bii) = J(aii) + J(bii),

3. J(aii + bjj) = J(aii) + J(bii),

4. J(aij + bij) = J(aij) + J(bij),

5. J(aij + bji) = J(aij) + J(bji).

Proof. For any aij , bij ∈ Aij , we obtain that

J(aii + bij)bjk = (aii + bij)J(bjk)

= aiiJ(bjk) + bijJ(bjk)

= J(aiibjk) + J(bijbjk)

= J(aii)bjk + J(bij)bjk

(J(aii + bij)− J(aii)− J(bij))ij bjk = 0.

With assumption, we obtain the result. Likewise, we can obtain other cases.
2

Proof. [Proof of Theorem 3.1] In view of Lemma 3.5 and 3.6, we can
say that a multiplicative Jordan centralizer is an additive centralizer on
alternative algebras. 2

4. Applications

Clearly, using Remark 1.1, any alternative algebra over a basic field of
characteristic not 3 satisfies

If xijAjk = 0 or Akixij = 0 then xij = 0.

Consequently, we have the following applications on prime alternative al-
gebras.
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Corollary 4.1. Let A be a 2, 3-torsion free unital prime alternative al-
gebra with nontrivial idempotent and L : A → A be a multiplicative Lie
centralizer satisfying (1) condition of the Theorem 2.1. Then L has the form
L = δ + τ, where δ : A → A is an additive centralizer and τ : A → Z(A)
maps commutators into the zero.

Corollary 4.2. LetA be a 2, 3-torsion free unital prime alternative algebra
with nontrivial idempotent and J : A → A be a multiplicative Jordan
centralizer. Then J is an additive centralizer.
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