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Abstract

The orthogonal simple group O;(S) has three conjugacy classes of
maximal subgroups of the form 3%:L4(3). These groups are all isomor-
phic to each other and each group has order 4421589120 with index
1120 in O;(S). In this paper, we will compute the ordinary character
table of one of these classes of maximal subgroups using the technique
of Fischer-Clifford matrices. This technique is very efficient to com-
pute the ordinary character table of an extension group G = N.G and
especially where the normal subgroup N of G is an elementary abelian
p-group. The said technique reduces the computation of the ordinary
character table of G to find a handful of so-called Fischer-Clifford
matrices of G and the ordinary or projective character tables of the
inertia factor groups of the action of G on N.
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1. Introduction

The orthogonal group Og (3) of order 4952179814400 = 2!12.3!2.52.7.13 has
27 conjugacy classes of maximal subgroups [8]. Among the maximal sub-
groups of O; (3) are three non-conjugate but isomorphic subgroups G7,
Go and G3 of the form 3%:L4(3) with order 4421589120 and index 1120 in
Og (3). The aim of this paper is to compute the Fischer-Clifford matrices
and hence the character table of Gy, the first group of the three as they
appear in the ATLAS [8]. For this purpose, the Fischer-Clifford matrices
technique which is based on Clifford theory and was developed by Bernd
Fischer [9] is used. The group 3%:L4(3) which we shall now denote by G is
a split-extension of N = 3%, the vector space of dimension 6 over GF(3),
by the linear group G = Ly(3) = OF (3).

Let G = N:G be a split extension of N by G, where N is a vector
space of dimension n over GF'(p), for a prime p, on which a linear group G
acts naturally. The Fischer-Clifford technique involves the construction of
a non-singular matrix M (g) for each conjugacy class representative g of G,
which together with the fusion maps and ordinary character tables of some
subgroups of G, called the inertia factor groups, are used to assemble the
complete ordinary character table of G.

The Fischer-Clifford matrix M(g) is partitioned row-wise into blocks,
where each block corresponds to an inertia group H; of 6; € Irr(N) in G.
Using the columns of the character tables of the inertia factors H; &2 %
which correspond to classes of H; which fuse to the class [g] of G and mul-
tiplying these columns by the rows of the the Fischer-Clifford matrix M(g)
that correspond to H;, a portion of the character table of G which is in the
block corresponding to H; for the classes that come from the coset Ng is
constructed. The character table of G is thus divided row-wise into blocks,
where each block corresponds to an inertia group H; = N:H;. The reader
is referred to [2], [15], [16], [19], [20] and [21] for more literature on this
technique. A brief theoretical background of the Fischer-Clifford theory is
given in Section 2.

In Section 3, the coset analysis technique [17] is used to determine the
conjugacy classes of G. In Sections 4 and 5 the inertia factor groups H;
and their fusion maps into G = L3(4) are computed. The Fischer-Clifford
matrices of G = 3%:14(3) are determined in Section 6 and the associated
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ordinary character table of G is to be found in Section 7. The technique of
set intersection of characters (see [1], [17], [18]) is mainly used to compute
the fusion of the conjugacy classes of G' = 35:L4(3) into OF (3). Most of our
computations are carried out with the computer algebra systems MAGMA
[7] and GAP [11] and the notation of ATLAS is mostly followed.

2. Theory of Fischer-Clifford Matrices

Let G = N:G be a split extension of N by G. Then for § € Irr(N), we de-
fine H = {z € G|#" =0} = I5(0) and H = {z € G|6” = 0} = I5(0) where
I5(0) is the stabilizer of § in the action of G on Irr(NN), we have that I=(0)
is a subgroup of G’ and N is normal subgroup in I'5(0). Also [G:I5(0)] is
the size of the orbit containing 6. Then it can be shown that H = N:H,
where H is the inertia group of 6 in G. The inertia factor H/N = H can
be regarded as the inertia group of @ in the factor group G/N = G. Define
09 by 09(n) = 0(gng=!) for g € G, n € N, then §9 € Irr(N). We say that
0 is extendible to H if there exists ¢ € Irr(H) such that ¢ | N = 0. If 0 is
extendible to H then by Gallagher [10], we have {¢|¢ € Irr(H), < ¢ |n,
0 >+ 0} = {By|p € Irr(H/N)}, where B € Irr(H) is a lifting for 3 into
H. Let G have the property that every irreducible character of N can be
extended to its inertia group. Now let 61 = 1y, 02, ... , 0; be representa-
tives of the orbits of G on Irr(N), H; = Iz(0;), 1 < i <t, ¢; € Irr(H;) be
an extension of §; to H; and § € Irr(H;) such that N C Ker(f). Then it
can be shown that

Irr(@) = Uim{(Bei)C[B € Irr(M), N € Ker(B)}
i1 {(Bei)C|B € Irr(Hi/N)}

Hence the irreducible characters of G will be divided into blocks, where
each block corresponds to an inertia group H;. Let H; be the inertia factor
group and ¢; be an extension of 6; to H;. Take §; = 1y as the identity
character of N, then H; = G and Hy = G. Let X(g) = {z1, 22, ..., Zo(g)}
be a set of representatives of the conjugacy classes of G from the coset Ng
whose images under the natural homomorphism G — G are in [g] and we
take z1 =g. We define,

R(g) ={(,yp)|1 <i<t,HiN[g] #0,1 <k <r}

and we note that y; runs over representatives of the conjugacy classes of
elements of H; which fuse into [¢g] in G. Then we define the Fischer-Clifford
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log(@)| .
oo = S oy eilun,) with
columns indexed by X(g) and rows indexed by R(g) and where >} is the
summation over all [ for which y;, ~ x; in G. Then the partial character
table of G on the classes {z1, 22, ..., Te(g)} is given by

C1(g9)Mi(g)
Ca2(g)Ma(g)

matrix M (g) by M(g) = (a{i yk))’ where a

Ci(g)Mi(g)

where the Fischer-Clifford matrix

M (g)

My
ueg) - | M2

Mt'(g )

is divided into blocks M;(g) with each block corresponding to an inertia
group H; and C;(g) is the partial character table of H; consisting of the
columns corresponding to the classes that fuse into [g] in G. We can also
observe that the number of irreducible characters of G is the sum of the
number of irreducible characters of the inertia factors H;’s. For complete
information on the properties of Fischer-Clifford matrices the reader is re-
ferred to [2], [15], [16], [19], [20] and [21]. The group G = 3%:L4(3) is a split
extension with 3% abelian and therefore by Mackey’s theorem (see Theo-
rem 5.1.15 in [18]), we have that each irreducible character of 3 can be
extended to its inertia group in G. With this theoretical assertion in mind,
the character table of G = 35:L4(3) is now going to be determined using
the above outline.

3. The Conjugacy Classes of G = 35:1,(3)

In this section, the method of coset analysis is used to determine the con-
jugacy classes of the elements of G = 3%:L4(3). This method was de-
veloped and first used by Moori in [17] and since then, it has been used
by many other researchers to compute the conjugacy classes of groups of
extension type. The reader is referred to [3] and [4] for recent applica-
tion of this technique. By making use of the standard generators from
the online ATLAS of Group Representations [25], the groups P = Og (3)
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and G are represented as permutations on 1080 points in MAGMA. The
command “IsMazimal(P, G);” confirms that G is a maximal subgroup
of P. Proceeding with the commands, “a, b: = ChiefSeries(G);”, “N: =
a2]”, “M: = GModule(G, N);” and “M:Mazximal;” the group G = L4(3)
is constructed as matrix group of degree 6 over GF(3). Note that N is
the only elementary abelian 3-group of order 729 in G. The following two
6 X 6 matrices g; and go of orders 2 and 12, respectively, are obtained as

the generators of G.

01000 0 001000
10000 O 000100
~Joooo0 1 o0 211100
=1 00211 0 271200110
00100 0 000001
1210 21 101010

)

The 29 conjugacy classes of G = (g1, g2) are computed within GAP.

3.1. The Action of G = L4(3) on 3°

Let G = 35:L4(3) be the split extension of G = (g1, g2) by N = 35, where
N is considered as a vector space V5(3) of dimension 6 over GF'(3). Also,
N = V4(3) as a G-module of G = (g1, ¢2) is irreducible. Using GAP, it
turns out that the action of G = L4(3) on N = 3% has four orbits of lengths
1,234,234 and 260 with corresponding point stabilizers P;, P>, P; and Pjy.

3.2. Permutation Character of G = L4(3) on 3%

Checking the indices of maximal subgroups of G = L4(3) in the AT-
LAS [8], P, and P5 sit maximally inside the maximal subgroups with
the structure Uy(2):2 while Py sits maximal inside the maximal subgroup
34:2(Agx Ay).2 of G. Tt follows that Py = L4(3), Py = U4(2), P3 = Uy(2) and
Py = 3%:2(A4 x Ay) of indices 1,234,234 and 260 respectively in L4(3). We
will now determine, with the use of the permutation character y(L4(3)|3%)
of G on N whether P» and Ps are sitting separately inside one of the two
classes of Uy(2):2 or both are in one of the classes of Uy(2):2. The permu-
tation character y(L4(3)|3%) = 1+ Iﬁ;(g) + Iﬁ;(:g) + Iﬁ:(g) of G acting on N

is now going to be computed, where 11524(3), I{S;l(g) and IIIS;‘(3) are the iden-

tity characters of P,, P3 and Pj induced to G respectively. To determine
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Iﬁ;(g), the fusion of conjugacy classes of P into L4(3) and the restrictions

of x; € Irr(L4(3)) to Pa, where deg(x;) < 234 are used. Thus restricting
Xi € Irr(L4(3)) to P» where i € 1,2,3,...,8, and computing the inner prod-
uct (x;, 1) of each x;, i € 1,2,3,...,8, with the identity character ¢; of Ps,
the values below are obtained.

X1 | X2 X3 | X4|X5| Xs
ity |1 |0[(1(0 (1|0

=
=1

Xa

=
[y

From the above table and taking into consideration the Frobenius-
Reciprocity theorem [12], the permutation character 11224(3) = la + 26b +
52a + 65b 4+ 90a is obtained. Similarly, Iﬁ:(?’) is determined. In this case,
we restrict x; € Irr(L4(3), where i € 1,2,3,...,10 to Py and let ¢; be the
identity character Py. Computing the inner product (x;, 1) of each y; for
1€1,2,3,...,10 with v, the values below are found.

X1 [ Xz | Xz | Xa|Xs | X | X7|Xs|Xo | X0
ypopd| 1|0 (0|1 (0|1 |1]1]0]0

The identity character I]L;.:(?’) of Py induced to L4(3) is therefore given

by, Iﬁ:(‘q’) = la 4 39a + 65a + 65b + 90a. It follows that the permutation
character x(L4(3)[3%) is given as,

X(La(3)35) = 14205 4 15
= la-+ 2(1a + 26b + 52a + 65b + 90a) + 1a + 39a + 65a + 65b + 90a
= 4xla+2x26b+ 39 + 2 x 52a + 65a + 3 X 65b+ 3 x 90a.

The permutation characters x(L4(3)|FP;) are written in terms of the
ordinary irreducible characters of G and are computed directly using the
character table of G. The permutation character y(L4(3)|3%) on the differ-
ent conjugacy classes of G determines the number k of fixed points of each
g € G in 35. The values of k obtained by the above permutation character
are listed in Table 1.
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Table 1: Permutation Character of G = Ly(3) on 35
e | 1A T4 9F G4 3F %0 0 44 dE 40  EA @A ®F &0 &0
<Py 1L 1 1 1 T T T T T i i i T 1
WGPy (234 80 2 18 0 18 3 0 2 4 1 0 & a2
WGPy (234 80 2 18 0 18 0 2 4 4 i & 2 1
WGIPa) | 260 20 4 44 8 2 3 D 1 ) i 2 2 4 4
13 I T S - I o T 0 S I N
TE  ®A UA 0N 104 104 19F 130 184 1iF 13C 130 D04 W0F
<@Py | 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WEPy |2 0 0 & 0 i i a 0 o0 i o0
WEPy |2 0 0 & 0 0 0 2 0 o0 i o0
wEP | 4 0 a2 a i i 1 0 i 0 i o0
k 5 1 & 18 1 1 1 g 1 1 1 1 1 1
Clearly, x(L4(3)]3%) = 4 x 1la + 2 x 26b + 39a + 2 x 52a + 65a + 3 x

65b + 3 x 90a is not the required permutation character of G acting on N
since k # 3", n € {0,1,2,3,4,5,6} for all the conjugacy classes of G. In
order to obtain values of k such that k = 3", n € {0,1,2,3,4,5,6}, another
possible fusion of conjugacy classes of P» = P; into L4(3) is considered. We
restrict x; € Irr(L4(3)) to P, and then compute the inner product (x;, 11)
of each x;, ¢ € 1,2,3,...,8 with the identity character 1 of P». The values
of (xi, 1) are listed below,

i | XNz [XNa | Xa|Xs|Xe|XNr|Xs
oy |2 (120D 11|01

From the above table and taking into consideration the Frobenius-

Reciprocity theorem, the permutation character Iﬁ;(?’) now assumes the
following form,

5% = 1a + 26a + 52a + 65a + 90a.

Using I = 1a+26a+52a + 65a+90a and I = 1a+26b+52a +
65b + 90a we obtain that

X(La3)3%) = 1+ 150 + 15 ® 4 i@
= 4x1a+1x26a+1x26b+1x39+2x 52
+2 % 650+ 2 X 65b+ 3 x 90a.
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Using this result, the correct number k of fixed points of each g € G in
36 is obtained and is listed in Table 2. This confirms that P, and Pj sit
separately inside the two maximal subgroups of G of the form Uy(2):2.

Table 2: Permutation Character of G = Ly(3) on 36

e T4 TA o8 54 35 &0 %0 44 48 10 EA4 84  &F &0 &0
N IYE T ! i i i 1 1 1 1 1 1 1 1
(G Py 234 a0 2 18 0 15 %0 a 1 4 ] & 2 2
G Py 934 30 2 18 0 &8 18 0 a 4 4 g 0 a a
WGP 260 200 4 44 8 28 26 0 1 il ] a a 4 4

E S T T 1 ] ] ] ] ] ]
EE &4 04 ©F 104 124 126 12C 134 188 130 130 204 OB
IV E D i i i 1 1 T i 1 1 |
ePy]l 2 0 0 & 0 0 0 a i i 0 0
xGPy ] 2 0 & 00 0 0 a 0 0 0 0
WGPy 4 0 2 3 0 0 0 4 0 0 1] 0 0
= T 1 9§ 1 1 1 ] 1 1 1 1 1 1

3.3. The Classes of G = 3%:14(3)

The values of £ enable us to determine the number f; of orbits Q;’s, 1 <
i < k that fuse together under the action of C(g) to form one orbit A;
(see [18]). To determine the values of these f;’s and the orders of class
representatives dg € G, Programmes A and B in [24] written in GAP
are used, respectively. If o(g) = m and w = 1y then o(dg) = m and
if w # 1y then o(dg) = 3m (see Theorem 2.3.10 in [18]). The formula
|Cx(x)| = fﬁleg(gﬂ is then used to calculate the order of the centralizer

of each class of G with representative z and a constant m; = %\N | is also
calculated for each value of f;. This constant plays a very crucial role in
determination of the entries of the Fischer Clifford matrices. The group
G = 35:L4(3) is found to have 111 conjugacy classes of elements. Table 3
below gives a detailed information on the conjugacy classes of G = 36:L4(3).
The power maps of elements of G are given in the second last column of
Table 3 whereas the fusion of G into OF (3), as determined in Section 8 of
this paper, is found in the last column of Table 3.
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Table 3: The Congujacy Classes of G = 35:L4(3)
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Table 3: (continued)
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4. Inertia Factor Groups of G = 3%:1,(3)

We have already seen in Section 3 that the action of G = L4(3) on N = 36
has four orbits of lengths 1, 234, 234 and 260. By Brauer’s theorem (see
Theorem 5.1.5 in [18]), the action of G on Irr(N) will also have four orbits
of lengths 1,7, s and ¢ with 14+r+s+¢ = 729 such that [G:H;| = 1, [G:H3| =
r,|G:Hs] = s and [G:H4] = t, where Hy, Ho, H3 and H4 are the inertia
factor groups of G. When N is an elementary abelian p-group, then it
can be regarded as a vector space V over F' = GF(p). Any vector space
has a dual (the set of all linear functional maps from V into F') denoted
by V*. Although V and V* are isomorphic as vector spaces (so they have
the same dimension), they may not be equivalent as G-modules. It is easy
to show that N* = Irr(N) and hence the action of G on Irr(N) is the
same as action of G on N*. Seretlo [24] developed a programme for the
action of G on V*. It is found in the Brauer ATLAS that G = Og (3) has
only one irreducible module of dimension 6 over GF(3) and thus N and
N* are equivalent as G-modules. Hence the actions of G on N and N* are
isomorphic, and so the point stabilizers P; and stabilizers on N* (inertia
factor groups) are the same. We now have that r = 234, s = 234 and
t = 260 and that H1 == L4(3), Hg = H3 == U4(2) and H4 = 34:2(A4 X A4)
Using GAP, the number of conjugacy classes of the inertia factor groups
are determined and it turns out that

\Trr(Hy)| + [Trr(Ha)| + |Irr(Hs)| 4 [Trr(Hy)| = 29 4 20 + 20 + 42 = 111.

This shows that the total contribution of irreducible characters from
the four inertia groups is 111 and is equal to the number of classes of G
as determined in Section 3. The inertia factor groups of G are constructed
from elements within G = L4(3) and their generators are as follows:

Hy =U4(2) = (a1, a2), a1 € 6A, ag € 4B, where

101020 220101
10000 2 101 2 01
a = 200 2 2 2 g = 2 2 2 21 2
000100’ 221001
1101 21 202 2 0 2
0 00 O0O0T1 000001
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H3 = Uy(2) = (B1, P2), P1 € 68, 2 € 4C, where

222200 221011
122101 122011
o102 10 1200102
P=lo 11121 ®2= 222101
0220 2 2 111012
2011 21 021120
Hy = 34:2(A4 x Aq) = (71, 72, ¥3), V1,72, V3 € 24, where

100000 100000
001000 001000
o 10000 010000
M=f2 11021 " [211021]
122122 122122
2112 2 2 2112 2 2

100000

001000

o 10000

B=12 11021

122122

2 112 2 2

5. The fusion of Hy, H3 and H, into G = L4(3)

The fusion maps of the inertia factor groups Ha, Hs and Hy into G = L4(3)
are obtained, by using the generators of the H;’s and the GAP command
“FusionConjugacyClasses(H;, G)”. The complete fusion maps of Ha, Hs
and Hy into G = L4(3) are shown in Tables 4, 5 and 6 below.
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Table 4: The fusion of Hs into G

[May, — lgle,e) || [Play, — [9le,) || May, — l9le,e) || [Pla, — [9lo,a)
1A 1A 3C 3D 6A 6C 6F 6B
2A 2B 3D 3C 6B 6C 9A 9B
2B 2A 4A 4B 6C 6E 9B 9B
3A 3A 4B 4C 6D 6D 124 12C
3B 3A 5A 5A 6E 6D 12B 12C

Table 5: The fusion of Hs into G

(Plerg — [9leye) || [May — [9leyce) || (Mas — [9ln,ce) || Play, — [9]rys)
1A 1A 3C 3A 64 6D 6F 64
24 2B 3D 3D 6B 6C 94 94
2B 24 4A 4B 6C 6C 9B 94
34 3C 4B 4C 6D 6E 124 12C
3B 3A 54 54 6E 6E 12B 12C

Table 6: The fusion of H4 into G

(Ma, — [glo, || Mey, — lglo, || [Play — 9o, || [Play, — (9o, 3
1A 1A 31 3B 4A 4B 61 6C
2A 2B 3J 3C 4B 4B 6J 6D
2B 2A 3K 3B 6A 6A 9A 9B
3A 3C 3L 3A 6B 6B 9B 9AC
3B 3A 3M 3B 6C 6C 9C 9B
3C 3D 3N 3D 6D 6C 9D 9A
3D 3A 30 3B 6F 6F 12A 12C
3E 3B 3P 3A 6F 6D 12B 12C
3F 3A 3Q 3B 6G 6C 12C 12C
3G 3B 3R 3C 6H 6F 12D 12C
3H 3D 35 3B
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6. The Fischer-Matrices of G = 3%:14(3)

Having obtained the conjugacy classes of G in coset-analysis format and
the fusion maps of the inertia factor groups Ho, H3 and Hy into G, the
Fischer-Clifford matrices of the group G = 35:L4(3) will be now computed.
Programme D in [5] is largely used for automatic determination of a possible
candidate for each Fischer-Clifford matrix M(g), g € G, of G. Then the
properties of Fischer-Clifford matrices discussed in detail in [6], [13], [14]
and [23] are used to rearrange the rows and columns of this candidate in
order to get the unique matrix M(g) for G = 35:L4(3). The Programme D
only works on split extensions N:G, where N is elementary abelian. Note
that since N = 3% is an elementary abelian p-group, then all the relations
hold. For example, considering the conjugacy class 24 of G = L4(3),
and by making use of Theorem 5.2.4 and property (e) in [18], M(2A) has
the following form with corresponding weights attached to the rows and
columns.

[Ca(24)] |Ca(64)] [Cg(6B)] |Cg(6C))

233280 11664 7776 7776
IO, (24)] = 2880 1 1 1 1
|CH,(2B)| = 96 30 f g h
ICy,(2B)| = 96 30 ] k l
|Cm,(2B)] = 144 20 n 0 D
m; 9 180 270 270

In order to determine the entries f, g, h, j, k, I, n, o and p of the
Fischer-Clifford matrix M (2A4), the GAP output for programme D for the
matrix M (2A) is first generated as,

1 1 1 1
20 2 2 =7
30 3 -6 3
30 -6 3 3

M(2A") =


pc
P-154
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Clearly, row 2 of matrix M (2A") becomes row 4 of Fischer-Clifford ma-
trix M (2A). Using the centralizer orders for the classes 64, 6B and 6C of
G, column 4 of M (2A’) becomes column 2 of M(2A) and thus, f =3, j = 3
and n = 7. Now, columns 3 and 4 of matrix M (2A) are going to be identi-
fied using the fact that for any p—singular element g of any finite group G
and irreducible character x of G , then x(g) = x(¢*) mod p. Noting from
Table 3 that x(6B8) mod 2 = x(3A4), the second power map of the class 6B
of G is applied. If we suppose that column 3 in M (2A’) becomes column
3 of M(2A), it turns out that x(6B8) mod 2 # x(3A) for all irreducible
characters of G on classes 34 and 6B of G and coming from inertia factor
groups Hy, Hs and Hy. Thus column 2 of matrix M (2A’) becomes column
3 of M(2A) while column 3 of M (2A’) automatically becomes column 4 of
M(2A). The final Fischer-Clifford matrix assumes the following structure
withg=3,h=—-6,k=—-6,l=3,0=2and p=2.

233280 11684 TTT6 TTVE

2880 / 1 1 1 1

06 a0 3 3 —6
M(24) = gg 30 3 g 8
144 20 = 2 2

9 180 270 270

With a quite a number of the Fischer-Clifford matrices of G containing
entries which involve the complex number a = —% + @ such that a3 =
1, the Fischer-Clifford matrix corresponding to the conjugacy class 6D of
G = L4(3) is briefly discussed. Using theorem 5.2.4 and property (e) in
[18], M(6D) has the following form with corresponding weights attached
to the rows and columns:

[Ca(6T)] [Cg6U)] |Ca(6V)] [Cq6W)| |Ca(6X)] |Cg(6Y)]

324 324 324 162 162 162
(6D)| = 36 1 1 1 1 1 1
6D) = 36 1 a f k U
( p
(6E)| = 36 1 b g l q v
(64)] = 18 2 c h m T w
(6F)| = 18 2 ) n s T
(6J) = 18 2 e J 0 t Yy

m; 81 81 81 162 162 162
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To determine the remaining entries of the Fischer-Clifford matrix M (6D),
the GAP output for programme D for M (6D) is computed,

1 1 1 1 1
2 2 -1 -1 -1
2a 2a0 —a -1 -«
a a « 1 -«
20 26 —a -1 —«
a a « 1 o

M (6D') =

N = NN

where @@ = —% — @ and o = —% + 3@ The rows of Fischer-Clifford
matrix M (6D’) are then rearranged to match the structure above. Thus
we have

1 1 1 1 1 1
1l @ o «o 1 -«
1l o a@ « 1 o
M@OD)=15 5 o 1 1 4
2 2a 200 —a -1 —«
2 200 20 —-a -1 -«

Taking into consideration properties of Fischer-Clifford matrices dis-
cussed in [6], [13], [14] and [23], the values of the irreducible characters
of G on the classes 3R, 3P, 3Q and 35 that have already been obtained
by Fischer-Clifford matrix M (3C), and using the fact that (6U)% = 3R,
(6V)? = 3R, (6W)? =3P, (6X)? =3Q and (6Y)? = 35 (see Table 3), the
final Fischer-Clifford matrix M (6D) assumes the form below.

324 324 324 162 162 162

3!3(’1 1 1 1 1 1‘-1

3G 1 ] ] ] [y 1
6] 1 T W O 1
M®6D)= 131 2 2 2 -1 =1 -1

18] 2 28 20 -@ —a -1
18\ 2 20 2% -—a -a -1/
8 81 & 162 162 162

For each class representative g € L4(3), a Fischer-Clifford matrix M(g)
is constructed and listed in Table 7.


pc
m4
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TABLE 7. The Fischer-Clifford Matrices of G = 35:L4(3)

153

M(g) M(g)
1 1 11 11 1 1
24 -9 18 -9 30 3 3 —6
MQAA) = 1534 18 -9 -9 MEA) =35, 3 5 3
260 —10 —10 17 20 -7 2 2
11 01 1 1 1 1 1 1 1
9 9 9 o9& 9a 9& 9a 9a 9a 0
9 9 9 9a 9a 9a 9a 9a 9a 0
11 1 1 9 9& 92 9 9& 9% 9 9a 9a 0
2 2 -1 -1 9 9¢ 9&% 9 9a 9%& 9 9a 9a 0
M@B)= |5 5 o MBA=1g 5 § s 8 8 8 8 8 -1
4 -2 —2 1 9 9@ 92 9@ 92 9 9a 9 9a 0
9 9a 9& 9« 9& 9 9%a 9 Ya 0
9 9& 92 9o 9 9a 9%a 9%a 9 0
9 9a 9a 9o 9 9 Y9a 9o 9 0
11 1 1 1 1 1 1 1
L1 1 e a e L L L T
1 o « 18 —9 —9 9 0 o0
1 a « 1 a o« 1 a « 36 9 9 0 9 0
M@BB)=|1 a@a a @ a 1 « 1 « M(3C) = 9 9 5 9 9 _1
1 oo ; a T é 12 6a—3a -3a+6a -6 3 0
a1 o 12 —3a+6a 6a-3& —6 3 0
1 a a « 1 a a « 1
1 a @ a a 1 a 1 «
1 1 1 111
18 —9 —9 9 0 0
36 9 9 0 -9 0
M@3D) = | 5 9 5 oY M(44) = (1)
12 6a—33% —3a4+6a -6 3 0
12 —-3a+6a 6a—-3a -6 3 0
11111
2 2 -1 -1 -1 111
M@B) =2 -1 -1 2 -1 M@c)= |4 -2 1
2 -1 2 -1 -1 41 -2
2 -1 -1 -1 2
111 111
MGBA) =4 1 -2 M@©6A) = [6 -3 0
4 —2 1 2 2 -1
v —3 _ Vv —3
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TABLE 7. (continued)

e
—~ 3B~ —I833IB

—
—~ —~
H3RBIRBIRB—~—~ T T
/N
R oo 33
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—~ 33
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7. The Character Table of G = 35:14(3)

Having obtained the conjugacy classes of G = 3%:L4(3), the ordinary char-
acter tables of all the inertia factor groups available in GAP [11], the fu-
sions of conjugacy classes of the inertia factors into classes of L4(3) and
the Fischer-Clifford matrices of G = 35:L4(3), the full character table of
G can now be constructed by following the theoretical outline discussed
in Section 2. This character table is a 111 x 111 complex-valued matrix
partitioned row-wise into four blocks A1, Ao, Az and A4, where each block
corresponds to an inertia group H; = 3%:H;. In fact, A1 = {x;|1 <1 < 29},
Ag = {xi[30 < i <49}, Az = {450 < i < 69} and Ay = {x;]70 < i <
111}, where Irr(35:L4(3)) = UL, 4;. The consistency and accuracy of this
table has been tested using Programme C in [22] and the complete charac-
ter table of the group G can be accessed via the link below.

https://drive.google.com/file/d /160DwruWAOqWOF JNy8JmgOoESw7UoumVR /view?usp=sharing

8. The Fusion of 35:14(3) of into OF (3)

Since G = 3%:L4(3) is a maximal subgroup of Of (3) of index 1120, then
the action of Og (3) on the cosets of G gives rise to a permutation char-
acter x(Of (3)|G) of degree 1120. From the ATLAS of finite groups [8],
x(0g (3)|G) = 1a + 300a + 819a, where la, 300a and 819a are irreducible
characters of Og (3) of degrees 1,300 and 819 respectively. Using the in-
formation provided by the conjugacy classes of 35:L4(3) and Og (3), the
power maps and the permutation character of Og (3) of degree 1120, a
partial fusion of G into O; (3) is obtained. To complete the fusion maps,
irreducible characters of Og (3) of small degrees are restricted to 3%:L4(3).
To determine the restrictions of irreducible characters of Og (3) to 35:Ly(3),
the technique of set intersections for characters which has been discussed
in detail in [1], [17] and [18] is used.

Let p be the character of Ly(3) afforded by the regular representation
of Ly(3). Then p = 32, e;¢;, where ¢; € Irr(Ly(3)) and g; = deg(é;).
Thus p can be regarded as a character of 3%:L4(3) which contains 3% in its
kernel such that,

_ ) 1La3)] if ge3®
plg) = { 0 otherwise
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If ¢ is a character of OF (3), then

= i {P(1A)Y(14) + 234p(34)1(34) + 234p(3B)1)(3B) + 260p(3C)1h(3C)}

= oy ULaB) W (1A4) + 234[La(3)[(3A) + 234|L4(3) [ (3B) + 260| L4 (3)[4(3C) }

=5 {U(1A) + 2349 (3A4) + 2344(3B) + 260¢(3C)}

<¢36 » T1 >7

where 71 is the identity character of 3% and )56 is the restriction of v to
3%. Also for v it is obtained that;

¢36 = a101 + agsfs + aszl3 + as04

where a1, ag, a3, ag € N U{0} and 0;, i € {1,2,3,4} are sums of the
irreducible characters of 3% which are in one orbit under action of Ly(3) on
Irr(3%). Letting 7; € Irr(3°), where j € {1,2,...,729}, then,

91 = Tl,deg(él) =1

92 = 2?3:52 Tj, deg(Hg) =234

b3 = 2439236 75, deg(03) = 234

04 = Zji%wo 7j, deg(0s) = 260

Hence

235 469 729
Yo = a1T1 + a2 Y70 Ty + a3 ) 036 T+ A4 D570 Ty

and,
(1h36,1b36) = a? + 23443 + 23443 + 260a3
= {0 (1A)(14)+2343 (3A)1 (34)+234(3B)1 (3B)+2601(3C) 1 (3C)},

where

a1 = (Y36, 71) = (P, V)&

Now, the above results are applied to some irreducible characters of
Og (3) of small degrees, which in this case are 1 = 260a, 13 = 2600,
Y3 = 260c, Yy = 819D, 5 = 819c, g = 2275a, 17 = 2275b,pg = 2275c,
and Y9 = 2275d of degrees 1, 260, 260, 260, 819, 819, 2275, 2275, 2275, and
2275, respectively (see ATLAS for character table of OF (3)). From the
partial fusion that has already been determined, the class 3C of G must
fuse into the class 34 of OF (3). Also, the classes 3A and 3B of G must
each fuse into one of the following classes, 3B, 3C, 3D, 3F, 3F and 3G of
O¢ (3) such that the condition a; = (136, 71) € N U {0} is satisfied. The
values of ¥; = 260a on the classes 34, 3B and 3C of OF (3) violate this
condition. The only combination that satisfies this condition is 34, 3B and
3F and thus for 1 the following result is obtained,
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a1 = (p,¥)g = ﬁ{QGO +234(17) 4 234(44) + 260(17)} = 26
Since the degree of 1 is 260 then,
a1 + 234as + 234as + 260a4 = 260

and so we must have that a1 = 26, as = 1, a3 = 0 and ag4 = 0 or a; = 26,
az =0, a3 = 1 and a4 = 0. It turns out that (¢1)z6.1,(3) is a sum of two
irreducible characters of 3:L4(3) of degrees 26 and 234, respectively. Based
on the partial fusion of 3%:L4(3) into OF (3) that has already been done,
the result below is obtained,

(1)36:L4(3) = X3 + X50
Similarly, for ¥9 = 260b, a; is obtained as follows,
a1 = (p,¥)g = %{260 + 234(—10) + 234(—10) +260(17)} =0
Since the degree of 19 is 260 then
a1 + 234as + 234a3 + 260a4 = 260

so that a1 = 0, ao = 0, a9 = 0 and a4 = 1 and thus (¢2)36:L4(3) is an
irreducible character of 3%:L4(3) of degree 260. Based on the partial fusion
of 3%:L4(3) into OF (3) that has already been done, it turns out that

(¢2)36:L4(3) = X71-

Applying the same procedure to s, ¥4, Vs, g, Y7, g and g, we
obtained the restricted characters below.

(¥3)36:L4(3) = X716
(Va)36:04(3) = X4+ X719
(¥5)36:04(3) = X4 + X80
(V6)36:04(3) = X6 T X32 + X90
(Y7)36:04(3) = X6 + X31 + Xo1
(V8)36:1,(3) = X7+ X51 + X87
(Y9)36.04(3) = X7+ X52 + Xs6

By making use of the partial fusion which has already been deter-
mined, the values of %1, ...,%9 on the classes of O; (3) and the values of
(¥1)36:14(3), -+ (¥9)36:1,(3) On the classes of 36:L4(3), the fusion of 3%:L,(3)
into Og (3) is completed and is found in Table 3.
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