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Abstract

The orthogonal simple group O+8 (3) has three conjugacy classes of
maximal subgroups of the form 36:L4(3). These groups are all isomor-
phic to each other and each group has order 4421589120 with index
1120 in O+8 (3). In this paper, we will compute the ordinary character
table of one of these classes of maximal subgroups using the technique
of Fischer-Clifford matrices. This technique is very efficient to com-
pute the ordinary character table of an extension group G = N.G and
especially where the normal subgroup N of G is an elementary abelian
p-group. The said technique reduces the computation of the ordinary
character table of G to find a handful of so-called Fischer-Clifford
matrices of G and the ordinary or projective character tables of the
inertia factor groups of the action of G on N .
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1. Introduction

The orthogonal group O+8 (3) of order 4952179814400 = 2
12.312.52.7.13 has

27 conjugacy classes of maximal subgroups [8]. Among the maximal sub-
groups of O+8 (3) are three non-conjugate but isomorphic subgroups G1,
G2 and G3 of the form 36:L4(3) with order 4421589120 and index 1120 in
O+8 (3). The aim of this paper is to compute the Fischer-Clifford matrices
and hence the character table of G1, the first group of the three as they
appear in the ATLAS [8]. For this purpose, the Fischer-Clifford matrices
technique which is based on Clifford theory and was developed by Bernd
Fischer [9] is used. The group 36:L4(3) which we shall now denote by G is
a split-extension of N = 36, the vector space of dimension 6 over GF (3),
by the linear group G = L4(3) ∼= O+6 (3).

Let G = N :G be a split extension of N by G, where N is a vector
space of dimension n over GF (p), for a prime p, on which a linear group G
acts naturally. The Fischer-Clifford technique involves the construction of
a non-singular matrix M(g) for each conjugacy class representative g of G,
which together with the fusion maps and ordinary character tables of some
subgroups of G, called the inertia factor groups, are used to assemble the
complete ordinary character table of G.

The Fischer-Clifford matrix M(g) is partitioned row-wise into blocks,
where each block corresponds to an inertia group Hi of θi ∈ Irr(N) in G.

Using the columns of the character tables of the inertia factors Hi
∼= Hi

N
which correspond to classes of Hi which fuse to the class [g] of G and mul-
tiplying these columns by the rows of the the Fischer-Clifford matrix M(g)
that correspond to Hi, a portion of the character table of G which is in the
block corresponding to Hi for the classes that come from the coset Ng is
constructed. The character table of G is thus divided row-wise into blocks,
where each block corresponds to an inertia group Hi = N :Hi. The reader
is referred to [2], [15], [16], [19], [20] and [21] for more literature on this
technique. A brief theoretical background of the Fischer-Clifford theory is
given in Section 2.

In Section 3, the coset analysis technique [17] is used to determine the
conjugacy classes of G. In Sections 4 and 5 the inertia factor groups Hi

and their fusion maps into G = L3(4) are computed. The Fischer-Clifford
matrices of G = 36:L4(3) are determined in Section 6 and the associated
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ordinary character table of G is to be found in Section 7. The technique of
set intersection of characters (see [1], [17], [18]) is mainly used to compute
the fusion of the conjugacy classes of G = 36:L4(3) into O

+
8 (3). Most of our

computations are carried out with the computer algebra systems MAGMA
[7] and GAP [11] and the notation of ATLAS is mostly followed.

2. Theory of Fischer-Clifford Matrices

Let G = N :G be a split extension of N by G. Then for θ ∈ Irr(N), we de-
fine H = {x ∈ G|θx = θ} = IG(θ) and H = {x ∈ G|θx = θ} = IG(θ) where
IḠ(θ) is the stabilizer of θ in the action of G on Irr(N), we have that IG(θ)
is a subgroup of G and N is normal subgroup in IG(θ). Also [G:IG(θ)] is
the size of the orbit containing θ. Then it can be shown that H = N :H,
where H is the inertia group of θ in G. The inertia factor H/N ∼= H can
be regarded as the inertia group of θ in the factor group G/N ∼= G. Define
θg by θg(n) = θ(gng−1) for g ∈ G, n ∈ N , then θg ∈ Irr(N). We say that
θ is extendible to H if there exists ϕ ∈ Irr(H) such that ϕ ↓ N = θ. If θ is
extendible to H then by Gallagher [10], we have {ϕ|ϕ ∈ Irr(H), < ϕ ↓N ,
θ >6= 0} = {βϕ|β ∈ Irr(H/N)}, where β ∈ Irr(H) is a lifting for β into
H. Let G have the property that every irreducible character of N can be
extended to its inertia group. Now let θ1 = 1N , θ2, ... , θt be representa-
tives of the orbits of G on Irr(N), Hi = IG(θi), 1 ≤ i ≤ t, ϕi ∈ Irr(Hi) be
an extension of θi to Hi and β ∈ Irr(Hi) such that N ⊆ Ker(β). Then it
can be shown that

Irr(G) =
St
i=1{(βϕi)G|β ∈ Irr(Hi), N ⊆ Ker(β)}

=
St
i=1{(βϕi)G|β ∈ Irr(Hi/N)}

Hence the irreducible characters of G will be divided into blocks, where
each block corresponds to an inertia group Hi. Let Hi be the inertia factor
group and ϕi be an extension of θi to Hi. Take θ1 = 1N as the identity
character of N , then H1 = G and H1

∼= G. Let X(g) = {x1, x2, ..., xc(g)}
be a set of representatives of the conjugacy classes of G from the coset Ng
whose images under the natural homomorphism G → G are in [g] and we
take x1 = g. We define,

R(g) = {(i, yk)|1 ≤ i ≤ t,Hi ∩ [g] 6= 0, 1 ≤ k ≤ r}

and we note that yk runs over representatives of the conjugacy classes of
elements of Hi which fuse into [g] in G. Then we define the Fischer-Clifford
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matrix M(g) by M(g) = (aj(i,yk)), where a
j
(i,yk)

=
P0

l
|C

G
(xj)|

|C
Hi
(ylk )|

ϕi(ylk) with

columns indexed by X(g) and rows indexed by R(g) and where
P0

l is the
summation over all l for which ylk ∼ xj in G. Then the partial character
table of G on the classes {x1, x2, ..., xc(g)} is given by⎛⎜⎜⎜⎜⎝

C1(g)M1(g)
C2(g)M2(g)

...
Ct(g)Mt(g)

⎞⎟⎟⎟⎟⎠
where the Fischer-Clifford matrix

M(g) =

⎛⎜⎜⎜⎜⎝
M1(g)
M2(g)
...

Mt(g)

⎞⎟⎟⎟⎟⎠
is divided into blocks Mi(g) with each block corresponding to an inertia
group Hi and Ci(g) is the partial character table of Hi consisting of the
columns corresponding to the classes that fuse into [g] in G. We can also
observe that the number of irreducible characters of G is the sum of the
number of irreducible characters of the inertia factors Hi’s. For complete
information on the properties of Fischer-Clifford matrices the reader is re-
ferred to [2], [15], [16], [19], [20] and [21]. The group G = 36:L4(3) is a split
extension with 36 abelian and therefore by Mackey’s theorem (see Theo-
rem 5.1.15 in [18]), we have that each irreducible character of 36 can be
extended to its inertia group in G. With this theoretical assertion in mind,
the character table of G = 36:L4(3) is now going to be determined using
the above outline.

3. The Conjugacy Classes of G = 36:L4(3)

In this section, the method of coset analysis is used to determine the con-
jugacy classes of the elements of G = 36:L4(3). This method was de-
veloped and first used by Moori in [17] and since then, it has been used
by many other researchers to compute the conjugacy classes of groups of
extension type. The reader is referred to [3] and [4] for recent applica-
tion of this technique. By making use of the standard generators from
the online ATLAS of Group Representations [25], the groups P = O+8 (3)
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and G are represented as permutations on 1080 points in MAGMA. The
command “IsMaximal(P ,G); ” confirms that G is a maximal subgroup
of P . Proceeding with the commands, “a, b: = ChiefSeries(G); ”, “N : =
a[2]”, “M : = GModule(G,N ); ” and “M :Maximal ; ” the group G = L4(3)
is constructed as matrix group of degree 6 over GF (3). Note that N is
the only elementary abelian 3-group of order 729 in G. The following two
6 × 6 matrices g1 and g2 of orders 2 and 12, respectively, are obtained as
the generators of G.

g1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 2 1 1 0
0 0 1 0 0 0
1 2 1 0 2 1,

⎞⎟⎟⎟⎟⎟⎟⎟⎠ g2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
2 1 1 1 0 0
2 0 0 1 1 0
0 0 0 0 0 1
1 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The 29 conjugacy classes of G = hg1, g2i are computed within GAP.

3.1. The Action of G = L4(3) on 3
6

Let G = 36:L4(3) be the split extension of G = hg1, g2i by N = 36, where
N is considered as a vector space V6(3) of dimension 6 over GF (3). Also,
N ∼= V6(3) as a G-module of G = hg1, g2i is irreducible. Using GAP, it
turns out that the action of G = L4(3) on N = 36 has four orbits of lengths
1, 234, 234 and 260 with corresponding point stabilizers P1, P2, P3 and P4.

3.2. Permutation Character of G = L4(3) on 3
6

Checking the indices of maximal subgroups of G = L4(3) in the AT-
LAS [8], P2 and P3 sit maximally inside the maximal subgroups with
the structure U4(2):2 while P4 sits maximal inside the maximal subgroup
34:2(A4×A4).2 ofG. It follows that P1 = L4(3), P2 = U4(2), P3 = U4(2) and
P4 = 3

4:2(A4×A4) of indices 1, 234, 234 and 260 respectively in L4(3). We
will now determine, with the use of the permutation character χ(L4(3)|36)
of G on N whether P2 and P3 are sitting separately inside one of the two
classes of U4(2):2 or both are in one of the classes of U4(2):2. The permu-

tation character χ(L4(3)|36) = 1+ I
L4(3)
P2

+ I
L4(3)
P3

+ I
L4(3)
P4

of G acting on N

is now going to be computed, where I
L4(3)
P2

, I
L4(3)
P3

and I
L4(3)
P4

are the iden-
tity characters of P2, P3 and P4 induced to G respectively. To determine
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I
L4(3)
P2

, the fusion of conjugacy classes of P2 into L4(3) and the restrictions
of χi ∈ Irr(L4(3)) to P2, where deg(χi) < 234 are used. Thus restricting
χi ∈ Irr(L4(3)) to P2 where i ∈ 1, 2, 3, ..., 8, and computing the inner prod-
uct hχi, ψ1i of each χi, i ∈ 1, 2, 3, ..., 8, with the identity character ψ1 of P2,
the values below are obtained.

From the above table and taking into consideration the Frobenius-

Reciprocity theorem [12], the permutation character I
L4(3)
P2

= 1a + 26b +

52a + 65b + 90a is obtained. Similarly, I
L4(3)
P4

is determined. In this case,
we restrict χi ∈ Irr(L4(3), where i ∈ 1, 2, 3, ..., 10 to P4 and let ψ1 be the
identity character P4. Computing the inner product hχi, ψ1i of each χi for
i ∈ 1, 2, 3, ..., 10 with ψ1, the values below are found.

The identity character I
L4(3)
P4

of P4 induced to L4(3) is therefore given

by, I
L4(3)
P4

= 1a + 39a + 65a + 65b + 90a. It follows that the permutation
character χ(L4(3)|36) is given as,

χ(L4(3)|36) = 1 + 2I
L4(3)
P2

+ I
L4(3)
P4

= 1a+ 2(1a+ 26b+ 52a+ 65b+ 90a) + 1a+ 39a+ 65a+ 65b+ 90a
= 4× 1a+ 2× 26b+ 39a+ 2× 52a+ 65a+ 3× 65b+ 3× 90a.

The permutation characters χ(L4(3)|Pi) are written in terms of the
ordinary irreducible characters of G and are computed directly using the
character table of G. The permutation character χ(L4(3)|36) on the differ-
ent conjugacy classes of G determines the number k of fixed points of each
g ∈ G in 36. The values of k obtained by the above permutation character
are listed in Table 1.

pc
1


pc
2
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Table 1: Permutation Character of G = L4(3) on 3
6

Clearly, χ(L4(3)|36) = 4 × 1a + 2 × 26b + 39a + 2 × 52a + 65a + 3 ×
65b+ 3× 90a is not the required permutation character of G acting on N
since k 6= 3n, n ∈ {0, 1, 2, 3, 4, 5, 6} for all the conjugacy classes of G. In
order to obtain values of k such that k = 3n, n ∈ {0, 1, 2, 3, 4, 5, 6}, another
possible fusion of conjugacy classes of P2 ∼= P3 into L4(3) is considered. We
restrict χi ∈ Irr(L4(3)) to P2, and then compute the inner product hχi, ψ1i
of each χi, i ∈ 1, 2, 3, ..., 8 with the identity character ψ1 of P2. The values
of hχi, ψ1i are listed below,

From the above table and taking into consideration the Frobenius-

Reciprocity theorem, the permutation character I
L4(3)
P2

now assumes the
following form,

I
L4(3)
P2

= 1a+ 26a+ 52a+ 65a+ 90a.

Using I
L4(3)
P2

= 1a+26a+52a+65a+90a and I
L4(3)
P3

= 1a+26b+52a+
65b+ 90a we obtain that

χ(L4(3)|36) = 1 + I
L4(3)
P2

+ I
L4(3)
P3

+ I
L4(3)
P4

= 4× 1a+ 1× 26a+ 1× 26b+ 1× 39a+ 2× 52a
+2× 65a+ 2× 65b+ 3× 90a.

pc
t1


pc
3
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Using this result, the correct number k of fixed points of each g ∈ G in
36 is obtained and is listed in Table 2. This confirms that P2 and P3 sit
separately inside the two maximal subgroups of G of the form U4(2):2.

Table 2: Permutation Character of G = L4(3) on 3
6

3.3. The Classes of G = 36:L4(3)

The values of k enable us to determine the number fj of orbits Qi’s, 1 ≤
i ≤ k that fuse together under the action of CG(g) to form one orbit 4j

(see [18]). To determine the values of these fj ’s and the orders of class
representatives dg ∈ G, Programmes A and B in [24] written in GAP
are used, respectively. If o(g) = m and w = 1N then o(dg) = m and
if w 6= 1N then o(dg) = 3m (see Theorem 2.3.10 in [18]). The formula
|CG(x)| =

k
fj
|CG(g)| is then used to calculate the order of the centralizer

of each class of G with representative x and a constant mj =
fj
k |N | is also

calculated for each value of fj . This constant plays a very crucial role in
determination of the entries of the Fischer Clifford matrices. The group
G = 36:L4(3) is found to have 111 conjugacy classes of elements. Table 3
below gives a detailed information on the conjugacy classes ofG = 36:L4(3).
The power maps of elements of G are given in the second last column of
Table 3 whereas the fusion of G into O+8 (3), as determined in Section 8 of
this paper, is found in the last column of Table 3.

pc
t2
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Table 3: The Congujacy Classes of G = 36:L4(3)

pc
TA-3-1
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Table 3: (continued)

pc
TA-3-2
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4. Inertia Factor Groups of G = 36:L4(3)

We have already seen in Section 3 that the action of G = L4(3) on N = 36

has four orbits of lengths 1, 234, 234 and 260. By Brauer’s theorem (see
Theorem 5.1.5 in [18]), the action of G on Irr(N) will also have four orbits
of lengths 1, r, s and t with 1+r+s+t = 729 such that [G:H1] = 1, [G:H2] =
r, [G:H3] = s and [G:H4] = t, where H1,H2,H3 and H4 are the inertia
factor groups of G. When N is an elementary abelian p-group, then it
can be regarded as a vector space V over F = GF (p). Any vector space
has a dual (the set of all linear functional maps from V into F ) denoted
by V ∗. Although V and V ∗ are isomorphic as vector spaces (so they have
the same dimension), they may not be equivalent as G-modules. It is easy
to show that N∗ = Irr(N) and hence the action of G on Irr(N) is the
same as action of G on N∗. Seretlo [24] developed a programme for the
action of G on V ∗. It is found in the Brauer ATLAS that G ∼= O+6 (3) has
only one irreducible module of dimension 6 over GF (3) and thus N and
N∗ are equivalent as G-modules. Hence the actions of G on N and N∗ are
isomorphic, and so the point stabilizers Pi and stabilizers on N∗ (inertia
factor groups) are the same. We now have that r = 234, s = 234 and
t = 260 and that H1 = L4(3), H2

∼= H3 = U4(2) and H4 = 3
4:2(A4 × A4).

Using GAP, the number of conjugacy classes of the inertia factor groups
are determined and it turns out that

|Irr(H1)|+ |Irr(H2)|+ |Irr(H3)|+ |Irr(H4)| = 29 + 20 + 20 + 42 = 111.

This shows that the total contribution of irreducible characters from
the four inertia groups is 111 and is equal to the number of classes of G
as determined in Section 3. The inertia factor groups of G are constructed
from elements within G = L4(3) and their generators are as follows:

H2 = U4(2) = hα1, α2i, α1 ∈ 6A, α2 ∈ 4B, where

α1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 2 0
1 0 0 0 0 2
2 0 0 2 2 2
0 0 0 1 0 0
1 1 0 1 2 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , α2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0 1 0 1
1 0 1 2 0 1
2 2 2 2 1 2
2 2 1 0 0 1
2 0 2 2 0 2
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠



148 D. M. Musyoka, L. N. Njuguna, A. L. Prins and L. Chikamai

H3 = U4(2) = hβ1, β2i, β1 ∈ 6B, β2 ∈ 4C, where

β1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 2 0 0
1 2 2 1 0 1
0 1 0 2 1 0
0 1 1 1 2 1
0 2 2 0 2 2
2 0 1 1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , β2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 0 1 1
1 2 2 0 1 1
2 0 0 1 0 2
2 2 2 1 0 1
1 1 1 0 1 2
0 2 1 1 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
H4 = 3

4:2(A4 ×A4) = hγ1, γ2, γ3i, γ1, γ2, γ3 ∈ 2A, where

γ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
2 1 1 0 2 1
1 2 2 1 2 2
2 1 1 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , γ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
2 1 1 0 2 1
1 2 2 1 2 2
2 1 1 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

γ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
2 1 1 0 2 1
1 2 2 1 2 2
2 1 1 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
5. The fusion of H2, H3 and H4 into G = L4(3)

The fusion maps of the inertia factor groups H2, H3 and H4 into G = L4(3)
are obtained, by using the generators of the Hi’s and the GAP command
“FusionConjugacyClasses(Hi ,G)”. The complete fusion maps of H2, H3

and H4 into G = L4(3) are shown in Tables 4, 5 and 6 below.
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pc
TA-4

pc
TA-5

pc
TA-6
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6. The Fischer-Matrices of G = 36:L4(3)

Having obtained the conjugacy classes of G in coset-analysis format and
the fusion maps of the inertia factor groups H2, H3 and H4 into G, the
Fischer-Clifford matrices of the group G = 36:L4(3) will be now computed.
Programme D in [5] is largely used for automatic determination of a possible
candidate for each Fischer-Clifford matrix M(g), g ∈ G, of G. Then the
properties of Fischer-Clifford matrices discussed in detail in [6], [13], [14]
and [23] are used to rearrange the rows and columns of this candidate in
order to get the unique matrix M(g) for G = 36:L4(3). The Programme D
only works on split extensions N :G, where N is elementary abelian. Note
that since N = 36 is an elementary abelian p-group, then all the relations
hold. For example, considering the conjugacy class 2A of G = L4(3),
and by making use of Theorem 5.2.4 and property (e) in [18], M(2A) has
the following form with corresponding weights attached to the rows and
columns.

In order to determine the entries f , g, h, j, k, l, n, o and p of the
Fischer-Clifford matrix M(2A), the GAP output for programme D for the
matrix M(2A) is first generated as,

M(2A0) =

⎛⎜⎜⎜⎝
1 1 1 1
20 2 2 −7
30 3 −6 3
30 −6 3 3

⎞⎟⎟⎟⎠ .

pc
P-154
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Clearly, row 2 of matrix M(2A0) becomes row 4 of Fischer-Clifford ma-
trix M(2A). Using the centralizer orders for the classes 6A, 6B and 6C of
G, column 4 ofM(2A0) becomes column 2 ofM(2A) and thus, f = 3, j = 3
and n = 7. Now, columns 3 and 4 of matrix M(2A) are going to be identi-
fied using the fact that for any p−singular element g of any finite group G
and irreducible character χ of G , then χ(g) ≡ χ(gp) mod p. Noting from
Table 3 that χ(6B) mod 2 ≡ χ(3A), the second power map of the class 6B
of G is applied. If we suppose that column 3 in M(2A0) becomes column
3 of M(2A), it turns out that χ(6B) mod 2 6≡ χ(3A) for all irreducible
characters of G on classes 3A and 6B of G and coming from inertia factor
groups H2, H3 and H4. Thus column 2 of matrix M(2A

0) becomes column
3 of M(2A) while column 3 of M(2A0) automatically becomes column 4 of
M(2A). The final Fischer-Clifford matrix assumes the following structure
with g = 3, h = −6, k = −6, l = 3, o = 2 and p = 2.

With a quite a number of the Fischer-Clifford matrices of G containing

entries which involve the complex number α = −12 +
√
−3
2 such that α3 =

1, the Fischer-Clifford matrix corresponding to the conjugacy class 6D of
G = L4(3) is briefly discussed. Using theorem 5.2.4 and property (e) in
[18], M(6D) has the following form with corresponding weights attached
to the rows and columns:

pc
m2


pc
P-155
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To determine the remaining entries of the Fischer-Clifford matrixM(6D),
the GAP output for programme D for M(6D) is computed,

M
¡
6D0¢ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
2 2 2 −1 −1 −1
2 2α 2α −α −1 −α
1 α α α 1 −α
2 2α 2α −α −1 −α
1 α α α 1 α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where α = −12 −

√
−3
2 and α = −12 +

√
−3
2 . The rows of Fischer-Clifford

matrix M(6D0) are then rearranged to match the structure above. Thus
we have

M
¡
6D0¢ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 α α α 1 −α
1 α α α 1 α
2 2 2 −1 −1 −1
2 2α 2α −α −1 −α
2 2α 2α −α −1 −α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Taking into consideration properties of Fischer-Clifford matrices dis-

cussed in [6], [13], [14] and [23], the values of the irreducible characters
of G on the classes 3R, 3P , 3Q and 3S that have already been obtained
by Fischer-Clifford matrix M(3C), and using the fact that (6U)2 = 3R,
(6V )2 = 3R, (6W )2 = 3P , (6X)2 = 3Q and (6Y )2 = 3S (see Table 3), the
final Fischer-Clifford matrix M(6D) assumes the form below.

For each class representative g ∈ L4(3), a Fischer-Clifford matrix M(g)
is constructed and listed in Table 7.

pc
m4
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7. The Character Table of Ḡ = 36:L4(3)

Having obtained the conjugacy classes of G = 36:L4(3), the ordinary char-
acter tables of all the inertia factor groups available in GAP [11], the fu-
sions of conjugacy classes of the inertia factors into classes of L4(3) and
the Fischer-Clifford matrices of G = 36:L4(3), the full character table of
G can now be constructed by following the theoretical outline discussed
in Section 2. This character table is a 111 × 111 complex-valued matrix
partitioned row-wise into four blocks 41,42,43 and44, where each block
corresponds to an inertia group Hi = 3

6:Hi. In fact, 41 = {χi|1 ≤ i ≤ 29},
42 = {χi|30 ≤ i ≤ 49}, 43 = {χi|50 ≤ i ≤ 69} and 44 = {χi|70 ≤ i ≤
111}, where Irr(36:L4(3)) = ∪4i=14i. The consistency and accuracy of this
table has been tested using Programme C in [22] and the complete charac-
ter table of the group G can be accessed via the link below.

https://drive.google.com/file/d/16oDwruWA0qWOFJNy8JmgOoESw7UoumVR/view?usp=sharing

8. The Fusion of 36:L4(3) of into O+
8 (3)

Since G = 36:L4(3) is a maximal subgroup of O
+
8 (3) of index 1120, then

the action of O+8 (3) on the cosets of G gives rise to a permutation char-
acter χ(O+8 (3)|Ḡ) of degree 1120. From the ATLAS of finite groups [8],
χ(O+8 (3)|Ḡ) = 1a + 300a + 819a, where 1a, 300a and 819a are irreducible
characters of O+8 (3) of degrees 1, 300 and 819 respectively. Using the in-
formation provided by the conjugacy classes of 36:L4(3) and O+8 (3), the
power maps and the permutation character of O+8 (3) of degree 1120, a
partial fusion of G into O+8 (3) is obtained. To complete the fusion maps,
irreducible characters of O+8 (3) of small degrees are restricted to 3

6:L4(3).
To determine the restrictions of irreducible characters of O+8 (3) to 3

6:L4(3),
the technique of set intersections for characters which has been discussed
in detail in [1], [17] and [18] is used.

Let ρ be the character of L4(3) afforded by the regular representation
of L4(3). Then ρ =

P29
i=1 εiφi, where φi ∈ Irr(L4(3)) and εi = deg(φi).

Thus ρ can be regarded as a character of 36:L4(3) which contains 3
6 in its

kernel such that,

ρ(g) =

(
|L4(3)| if g ∈ 36
0 otherwise
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If ψ is a character of O+8 (3), then
hρ, ψiG = 1

|36:L4(3)|{ρ(1A)ψ(1A) + 234ρ(3A)ψ(3A) + 234ρ(3B)ψ(3B) + 260ρ(3C)ψ(3C)}
= 1

|36:L4(3)|{|L4(3)|ψ(1A) + 234|L4(3)|ψ(3A) + 234|L4(3)|ψ(3B) + 260|L4(3)|ψ(3C)}
= 1

729{ψ(1A) + 234ψ(3A) + 234ψ(3B) + 260ψ(3C)}
= hψ36 , τ1i,

where τ1 is the identity character of 3
6 and ψ36 is the restriction of ψ to

36. Also for ψ it is obtained that;

ψ36 = a1θ1 + a2θ2 + a3θ3 + a4θ4

where a1, a2, a3, a4 ∈ N ∪ {0} and θi, i ∈ {1, 2, 3, 4} are sums of the
irreducible characters of 36 which are in one orbit under action of L4(3) on
Irr(36). Letting τj ∈ Irr(36), where j ∈ {1, 2, ..., 729}, then,

θ1 = τ1, deg(θ1) = 1

θ2 =
P235

j=2 τj , deg(θ2) = 234

θ3 =
P469

j=236 τj , deg(θ3) = 234

θ4 =
P729

j=470 τj , deg(θ4) = 260
Hence

ψ36 = a1τ1 + a2
P235

j=2 τj + a3
P469

j=236 τj + a4
P729

j=470 τj

and,

hψ36 , ψ36i = a21 + 234a
2
2 + 234a

2
3 + 260a

2
4

= 1
729{ψ(1A)ψ(1A)+234ψ(3A)ψ(3A)+234ψ(3B)ψ(3B)+260ψ(3C)ψ(3C)},

where

a1 = hψ36 , τ1i = hρ, ψiḠ
Now, the above results are applied to some irreducible characters of

O+8 (3) of small degrees, which in this case are ψ1 = 260a, ψ2 = 260b,
ψ3 = 260c, ψ4 = 819b, ψ5 = 819c, ψ6 = 2275a, ψ7 = 2275b,ψ8 = 2275c,
and ψ9 = 2275d of degrees 1, 260, 260, 260, 819, 819, 2275, 2275, 2275, and
2275, respectively (see ATLAS for character table of O+8 (3)). From the
partial fusion that has already been determined, the class 3C of G must
fuse into the class 3A of O+8 (3). Also, the classes 3A and 3B of G must
each fuse into one of the following classes, 3B, 3C, 3D, 3E, 3F and 3G of
O+8 (3) such that the condition a1 = hψ36 , τ1i ∈ N ∪ {0} is satisfied. The
values of ψ1 = 260a on the classes 3A, 3B and 3C of O+8 (3) violate this
condition. The only combination that satisfies this condition is 3A, 3B and
3E and thus for ψ1 the following result is obtained,
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a1 = hρ, ψiG =
1
729{260 + 234(17) + 234(44) + 260(17)} = 26

Since the degree of ψ1 is 260 then,

a1 + 234a2 + 234a3 + 260a4 = 260

and so we must have that a1 = 26, a2 = 1, a3 = 0 and a4 = 0 or a1 = 26,
a2 = 0, a3 = 1 and a4 = 0. It turns out that (ψ1)36:L4(3) is a sum of two
irreducible characters of 36:L4(3) of degrees 26 and 234, respectively. Based
on the partial fusion of 36:L4(3) into O+8 (3) that has already been done,
the result below is obtained,

(ψ1)36:L4(3) = χ3 + χ50

Similarly, for ψ2 = 260b, a1 is obtained as follows,

a1 = hρ, ψiG =
1
729{260 + 234(−10) + 234(−10) + 260(17)} = 0

Since the degree of ψ2 is 260 then

a1 + 234a2 + 234a3 + 260a4 = 260

so that a1 = 0, a2 = 0, a0 = 0 and a4 = 1 and thus (ψ2)36:L4(3) is an
irreducible character of 36:L4(3) of degree 260. Based on the partial fusion
of 36:L4(3) into O

+
8 (3) that has already been done, it turns out that

(ψ2)36:L4(3) = χ71.

Applying the same procedure to ψ3, ψ4, ψ5, ψ6, ψ7, ψ8 and ψ9, we
obtained the restricted characters below.

(ψ3)36:L4(3) = χ76
(ψ4)36:L4(3) = χ4 + χ79
(ψ5)36:L4(3) = χ4 + χ80
(ψ6)36:L4(3) = χ6 + χ32 + χ90
(ψ7)36:L4(3) = χ6 + χ31 + χ91
(ψ8)36:L4(3) = χ7 + χ51 + χ87
(ψ9)36:L4(3) = χ7 + χ52 + χ86

By making use of the partial fusion which has already been deter-
mined, the values of ψ1, ..., ψ9 on the classes of O

+
8 (3) and the values of

(ψ1)36:L4(3), ..., (ψ9)36:L4(3) on the classes of 3
6:L4(3), the fusion of 3

6:L4(3)

into O+8 (3) is completed and is found in Table 3.
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