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Abstract

Let R be a commutative ring with unity and M be a unitary R-
module. Let Nil(M) be the set of all nilpotent elements of M . The
entire nilpotent element graph of M over R is an undirected graph
E(G(M)) with vertex set as M and any two distinct vertices x and
y are adjacent if and only if x + y ∈ Nil(M). In this paper we at-
tempt to study the domination in the graph E(G(M)) and investigate
the domination number as well as bondage number of E(G(M)) and
its induced subgraphs N(G(M)) and Non(G(M)). Some domination
parameters of E(G(M)) are also studied. It has been showed that
E(G(M)) is excellent, domatically full and well covered under certain
conditions.
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1. Introduction

The characterization of algebraic structures through association of graphs
has become an exciting research topic in the last two decades, leading to
many fascinating results and questions. Many fundamental papers assign-
ing graphs to rings and modules have appeared recently, for instance see,[1,
3-5, 7, 19]. In 2008, Anderson and Badawi [4] have introduced the total
graph of a commutative ring and later on this notion has been gen- eralised
to many algebraic structures, in particular to module over a commutative
ring (see [10, 11]).

The concepts of dominating sets and domination numbers play a vital role
in graph theory. Dominating sets are the focus of many books of graph
theory, for example see [13] and [14]. But not much research has been done
on the domination parameters of graphs associated to algebraic structures
such as groups, rings, modules in terms of alge- braic properties. However,
some works on domination of graphs associated to rings and modules have
appeared recently, for instance see,[9, 16, 18, 20].

The study of nilpotent elements is one of the important aspects of module
theory. There- fore, as a generalization of the total graph introduced by
Anderson and Badawi [4], the second author along with co-researchers in
[17] have introduced the entire nilpotent element graph of a moduleM over
a commutative R, denoted by E(G(M)), to be an undirected graph with all
elements of M as vertices, and for distinct x+ y ∈M , the vertices x and y
are adjacent if and only if x+y ∈ Nil(M). Let Non(M) =M−Nil(M) be
the set of all non-nilpotent elements of M . Let N(G(M)) be the (induced)
subgraph of E(G(M)) with vertices Nil(M), and Non(G(M)) be the (in-
duced) subgraph of E(G(M)) with vertices Non(M). They have studied
the characteristics of E(G(M)) and its two induced subgraphs N(G(M))
and Non(G(M)) by considering two cases, Nil(M) is a submodule of M
or is not a submodule of M .

The organization of this paper is as follows: In Section 2, we discuss some
preliminary definitions and results releted to module theory and graph the-
ory which is required in the next sections. In Section 3, we determine
the domination number of the graph E(G(M)) and its induced subgraphs
N(G(M)) and Non(G(M)). In Section 4, we determine the bondage num-
ber of the graph E(G(M)) and its induced subgraph Non(G(M)). In Sec-
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tion 5, we study some domination parameters of the graph E(G(M)). We
have also obtained some conditions under which the graph E(G(M)) is ex-
cellent, domatically full and well covered. In Section 6, we give conclusions
of our paper based on the results we have obtained and mention some of
its future aspects.

2. Preliminary Results

Throughout this paper all rings are considered to be commutative with
non-zero identity and all modules are unitary unless otherwise stated.

Let R be a ring, M an R-module and N be a submodule of M . We de-
note by (N : RM) the set of all r in R such that rM ⊂ N . The annihilator
of M denoted by annR(M) is (0 :R M). An R-module M is called faithful
if annR(M) = 0. An R-module M is called a multiplication module if
every submodule N of M has the form IM for some ideal I of R. Note
that since I ⊂ (N :R M), then N = IM ⊂ (N :R M)M ⊂ N . So that
N = (N :R M)M . If K is a multiplication submodule of M , then for all
submodules N of M , N ∩K = ((N ∩K) : K)K = (N : K)K. If M is a
finitely generated faithful multiplication R-module, thenM is cancellation,
from which it follows that (IN : M) = I(N : M). A proper submodule N
of M is prime whenever rm ∈ N , for some r ∈ R and m ∈M implies that
m ∈ N or r ∈ (N :R M). In this case, P = (N :R M) is a prime ideal of R
and N is called a P -prime submodule of M .

An ideal I of R is nilpotent if Ik = 0 for some positive integer k and
an element r of R is nilpotent if rk = 0 for some k ∈ N. Also we denote
by Nil(R) the set of all nilpotent elements of R. A submodule N of M is
called nilpotent if (N :R M)kN = 0 for some k ∈ N. We say that m ∈ M
is nilpotent if Rm is a nilpotent submodule of M [2]. Clearly, the zero
submodule of M is nilpotent and hence the zero element of M is nilpotent.
We denote by Nil(M) the set of all nilpotent elements ofM . Nil(M) is not
necessarily a submodule of M , but if M is faithful, then Nil(M) is a sub-
module of M [2, Theorem 6]. If I is a nilpotent ideal of R or N a nilpotent
submodule of M , then IN is a nilpotent submodule of M [2, Proposition
4]. Hence, if r ∈ Nil(R) or m ∈ Nil(M), then rm ∈ Nil(M). Moreover, if
M is a faithful multiplication R-module, then Nil(M) = Nil(R)M = ∩P ,
where P runs over all prime submodules of M . For any undefined termi-
nology in rings and modules we refer to [6, 15].
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By a graph G, we mean a simple undirected graph without loops. For
a graph G, we denote by V (G) and E(G) the set of all vertices and edges
respectively. We recall that a graph is finite if both V (G) and E(G) are
finite sets, and we use the symbol |G| to denote the number of vertices in
the graph G. We say that G is a null graph if E(G) = φ. Two vertices
x and y of a graph G are connected if there is a path in G connecting
them. Also, a graph G is connected if there is a path between any two
distinct vertices. A graph G is disconnected if it is not connected. A graph
G is complete if any two distinct vertices are adjacent. We denote the
complete graph on n vertices by Kn. If the vertex set V (G) of the graph
G are partitioned into two non-empty disjoint sets X and Y of cardinality
|X| = m and |Y | = n, and two vertices are adjacent if and only if they are
not in the same partite set, then G is called a bipartite graph. A graph
G is called a complete bipartite graph if every vertex in X is connected to
every vertex in Y . We denote the complete bipartite graph on m and n
vertices by Km,n. For vertices x, y ∈ G one defines the distance d(x, y), as
the length of the shortest path between x and y, if the vertices x, y ∈ G
are connected and d(x, y) =∞, if they are not. Then, the diameter of the
graph G is

diam(G) = sup{d(x, y)|x, y ∈ G}.

The cycle is a closed path which begins and ends in the same vertex. The
cycle of n vertices is denoted by Cn. The girth of the graph G,denoted by
gr(G) is the length of the shortest cycle in G and gr(G) = ∞ if G has no
cycles.

For a subset S ⊆ V (G), < S > denotes the subgraph of G induced
by S. For a vertex v ∈ V (G), deg(v) is the degree of the vertex v,
N(v) = {u ∈ V (G) | u is adjacent to v} and N [v] = N(v) ∪ {v}. A
subset S of V (G) is called a dominating set if every vertex in V (G)− S is
adjacent to atleast one vertex in S. A dominating set S is called a strong(or
weak) dominating set if for every vertex u ∈ V (G) − S there is a vertex
v ∈ S with deg(v) ≥ deg(u) (or deg(v) ≤ deg(u)) and u is adjacent to v.
The domination number γ(G) of G is defined to be minimum cardinality
of a dominating set in G and such a dominating set is called γ-set of G.
If G is a trivial graph, then γ(G) = 0. In a similar way, we define the
strong domination number γs and the weak domination number γw. A
graph G is called excellent if for every vertex v ∈ V (G), there exists a γ-set
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S containing v. A domatic partition of G is a partition of V (G) into dom-
inating sets in G. The maximum number of classes of a domatic partition
of G is called the domatic number of G and is denoted by d(G). A graph
G is called domatically full if d(G) = δ(G) + 1, which is the maximum
possible order of a domatic partition of V (G) and δ(G) is the minimum
degree of a vertex of G. The disjoint domination number γγ(G) defined by
γγ(G) =min{|S1| + |S2| : S1, S2 are disjoint dominating sets of G}. Simi-
larly, we can define ii(G) and γi(G). The double domination parameters
are referred to [12]. The bondage number b(G) is the minimum number of
edges whose removal increases the domination number. A set of vertices
S ⊆ V (G) is said to be independent if no two vertices in S are adjacent
in G. The independence number β0(G), is the maximum cardinality of an
independent set in G. A graph G is called well-covered if β0(G) = i(G).
For basic definitions and results in domination we refer to [8, 13] and for
any undefined graph-theoretic terminology we refer to [8].

Now we summarize some results on domination number and bondage
number of a graph which will be useful for the later sections.

Lemma 2.1 [8]:

(i) If G is a graph of order n, then 1 ≤ γ(G) ≤ n. A graph G of order
n has domination number 1 if and only if G contains a vertex v of
degree n− 1; while γ(G) = n if and only if G ∼= Kn.

(ii) γ(Kn) = 1 for a complete graph Kn, but the converse is not true, in
general and γ(Kn) = n for a null graph Kn.

(iii) LetG be a complete r-partite graph (r ≥ 2) with partite sets V1, V2, ..., Vr.
If |Vi| ≥ 2 for 1 ≤ i ≤ r, then γ(G) = 2; because one vertex of V1 and
one vertex of V2 dominate G. If |Vi| = 1 for some i, then γ(G) = 1.

(iv) γ(K1,n) = 1 for a star graph K1,n.

(v) If G is a partition of disjoint subgraphs G1, G2, ..., Gk, then γ(G) =
γ(G1) + γ(G2) + ...+ γ(Gk).

(vi) Domination number of a bistar graph is 2; because the set consisting
of two centres of the graph is a minimal dominating set.

(vii) Let Cn and Pn be a n-cycle and a path with n vertices, respectively.

Then γ(Cn) = d
n

3
e = γ(Pn).
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Lemma 2.2 [14]:

(i) If G is a simple graph of order n, then 1 ≤ b(G) ≤ n− 1.

(ii) b(Kn) = n− 1 for a complete graph Kn, but the converse is not true,
in general and b(Kn) = 0 for a null graph Kn.

(iii) Let G be a complete r-partite graph with partite sets V1, V2, ..., Vr.
Then b(G) = min{|V1|, |V2|, ..., |Vr|}. In particular, b(Km,n) = min{m,n}.

(iv) If G is a partition of disjoint subgraphs G1,G2, ...,Gk, then b(G) =
min{b(G1), b(G2), ..., b(Gk)}.

(v) Let Cn and Pn be a n-cycle and a path with n vertices, respectively.
Then b(Pn) = 1 and b(Cn) = 2.

3. Domination number of E(G(M)) and induced subgraphs

In this section, an attempt has been made to study the domination in
the entire graph E(G(M)) and find out the domination number of E(G(M))
and its induced subgraphs under different conditions. We begin with the
following theorem.
Theorem 3.1:[17] Let R be a ring, M an R-module and N a submodule
of M . Then the following hold:

(1) The graph E(G(M)) is complete if and only if Nil(M) =M .

(2) The graph E(G(M)) is null if and only if Nil(M) = {0} and |M | ≥ 2.

(3) If M is a faithful R-module, then N(G(M)) is a complete subgraph
of E(G(M)).

(4) E(G(N)) is a subgraph of E(G(M)).

Proposition 3.2: Let R be a ring, M an R-module and N a submodule
of M . Then

(1) γ(E(G(M))) = 1 if Nil(M) =M .

(2) γ(E(G(M))) = |M | if and only if Nil(M) = {0} and |M | ≥ 2.

(3) If M is a faithful R-module, then γ(N(G(M))) = 1.
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Example 1: Let us consider the Z2-module Z6. We know that < x >, the
submodule of Z6 generated by x is equal to {0, x} and hence (< x >:Z2
Z6) = {0}, for any x 6= 0. Therefore, NilZ2(Z6) = Z6 and the graph
E(G(Z6)) is complete. Thus, we have γ(E(G(Z6))) = 1.

Theorem 3.3[17, Theorem 2.6]: Let R be a ring and M an R-module
such that Nil(M) is a submodule of M . Then N(G(M)) and Non(G(M))
are disjoint. In particular, if Nil(M) is a proper submodule of M , then
E(G(M)) is disconnected.

In some next theorems, let |Nil(M)| = α and | M

Nil(M)
| = β and we

allow α and β to be infinite cardinals. If β is infinite, then of course

β − 1 = (β − 1)
2

= β.

Theorem 3.4 [17, Theorem 2.10]: Let R be a ring and M an R-module
such that Nil(M) is a submodule of M . If 2 = 1R + 1R ∈ Nil(R), then
Non(G(M)) is the union of β − 1 disjoint Kα’s.

Proposition 3.5: Let R be a ring and M a faithful R-module. If 2 =
1R + 1R ∈ Nil(R), then γ(E(G(M))) = β.

Proof. Suppose that 2 = 1R + 1R ∈ Nil(R). Then we have from theorem
3.4 that the graph Non(G(M)) is the union of β − 1 disjoint Kα’s and we
know that γ(Kα) = 1. Thus, γ(Non(G(M))) = β − 1.
AsM is faithful, so Nil(M) is a submodule ofM . By theorem 3.3, we have
the subgraphs N(G(M)) and Non(G(M)) are disjoint.
Again, beingM faithful we have by theorem 3.1 that N(G(M)) is complete.
Therefore, γ(N(G(M))) = 1.
Consequently, γ(E(G(M))) = γ(N(G(M))∪Non(G(M))) = γ(N(G(M)))+
γ(Non(G(M))) = 1 + β − 1 = β.

Theorem 3.6 [17, Theorem 2.12]: Let R be a ring and M a finitely gen-
erated faithful multiplication R-module such that Nil(M) is a prime sub-
module of M . If 2 = 1R + 1R /∈ Nil(R), then Non(G(M)) is the union of
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β − 1
2

disjoint Kα,α’s.

Proposition 3.7: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M . If
2 = 1R + 1R /∈ Nil(R), then γ(E(G(M))) = β.

Proof. Suppose that 2 = 1R + 1R /∈ Nil(R). Then we have from theo-

rem 3.6 that the graph Non(G(M)) is the union of
β − 1
2

disjoint Kα,α’s

and we know that γ(Kα,α) = 2. Thus, γ(Non(G(M))) =
β − 1
2

×2 = β−1.

Since Nil(M) is a prime submodule ofM , we have by theorem 3.3 that
the subgraphs N(G(M)) and Non(G(M)) are disjoint.
Again asM is faithful, we have by theorem 3.3 that N(G(M)) is complete.
Therefore, γ(N(G(M))) = 1.

Hence, γ(E(G(M))) = γ(N(G(M)) ∪ Non(G(M))) = γ(N(G(M))) +
γ(Non(G(M))) = 1 + β − 1 = β.

Proposition 3.8: Let R be a ring and M a non-zero finitely generated
faithful multiplicationR-module such thatNil(M) = 0, then γ(E(G(M))) =
β + 1

2
.

Proof. According hypothesis Nil(M) = 0. Therefore, | M

Nil(M)
| = |M | =

β. As M is a faithful multiplication R-module, so Nil(M) = Nil(R)M , by
theorem 6 of [2] yielding Nil(R) = 0. Therefore, 2 = 1R + 1R /∈ Nil(R)

and from theorem 3.8 we have the graph Non(G(M)) is the union of
β − 1
2

disjoint K1,1’s and we know that γ(K1,1) = 1.

Moreover, M is faithful, so we have by theorem 3.1 that N(G(M)) is
complete. Therefore, γ(N(G(M))) = 1.

Hence,

γ(E(G(M))) = γ(N(G(M)) ∪Non(G(M)))
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= γ(N(G(M))) + γ(Non(G(M))) = 1 + (
β − 1
2

)× 1 = β + 1

2
.

The following example explains the facts discussed above.

Example 2: Let us now consider the Z-module Z5. In this module
< x >, the submodule of Z5 generated by x is equal to Z5 and hence
(< x >:Z Z5) = Z, for any x 6= 0. Also, (< x >:Z Z5) < x >6= 0, for any
x 6= 0. Thus, NilZ(Z5) = {0}.
Moreover, annZ(Z5) = 5Z. So this module is not faithful, but NilZ(Z5) is
a prime submodule of Z5. Also, Z5 =< 0 > is finitely generated.
These facts imply thatNon(G(Z5)) andE(G(Z5)) are disconnected, |NilZ(Z5)| =
1 and Non(G(Z5)) is the union of two disjoint complete bipartite graphs
K1,1 Therefore, we have γ(Non(G(Z5))) = γ(K1,1 ∪ K1,1) = γ(K1,1) +
γ(K1,1) = 1 + 1 = 2.

Theorem 3.9 [17, Theorem 2.16]: Let R be a ring and M a finitely gen-
erated faithful multiplication R-module such that Nil(M) is a prime sub-
module of M . Then the following hold:

(1) Non(G(M)) is complete if and only if either | M

Nil(M)
| = 2 or | M

Nil(M)
| =

|M | = 3.

(2) Non(G(M)) is connected if and only if either | M

Nil(M)
| = 2 or

| M

Nil(M)
| = 3.

(3) Non(G(M)) ( and hence N(G(M))) and E(G(M)) are null if and
only if Nil(M) = 0 and 2 ∈ Nil(R).

Theorem 3.10 [17, Theorem 2.17]: Let R be a ring and M a finitely
generated faithful multiplication R-module such that Nil(M) is a prime
submodule of M . Then the following hold:

(1) diam(Non(G(M))) = 0 if and only if Nil(M) = 0 or |M | = 2.
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(2) diam(Non(G(M))) = 1 if and only if Nil(M) 6= 0 and | M

Nil(M)
| = 2

or Nil(M) = 0 and |M | = 3.

(3) diam(Non(G(M))) = 2 if and only if Nil(M) 6= 0 and | M

Nil(M)
| = 3.

(4) Otherwise diam(Non(G(M))) =∞.

Note that m+ 0 ∈ Nil(M) for each m ∈ Nil(M)\{0}. So 0 is adjacent to
any vertex of Nil(M)\{0} in N(G(M)). Thus, S = {0} is a containing set
for N(G(M)) and hence γ(N(G(M))) = 1.

Proposition 3.11: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M .
Then the following are equivalent:

(1) γ(E(G(M))) = 2.

(2) γ(Non(G(M))) = 1.

(3) | M

Nil(M)
| = 2 or | M

Nil(M)
| = |M | = 3.

Proof. (1)⇔ (2): SinceNil(M) is a prime submodule ofM andM is faith-
ful, N(G(M)) and Non(G(M)) are disjoint and N(G(M)) is complete. So,
γ(N(G(M))) = 1 and hence γ(E(G(M))) = γ(N(G(M)))+γ(Non(G(M)))
which yields γ(E(G(M))) = 1 + γ(Non(G(M))).

(2) ⇒ (3): Suppose γ(Non(G(M))) = 1. Then clearly Non(G(M)) is
connected. If 2 ∈ Nil(R), then β − 1 = 1 and hence β = 2, where

β = | M

Nil(M)
|, by theorem 3.4. Thus | M

Nil(M)
| = 2.

If 2 /∈ Nil(R), then
β − 1
2

= 1 and so β = | M

Nil(M)
| = 3, by theorem 3.6.

Also, by assumption, α = |Nil(M)| = 1 and hence Nil(M) = {0}. Thus
| M

Nil(M)
| = |M | = 3.

(3) ⇒ (2): Assume | M

Nil(M)
| = 2 or | M

Nil(M)
| = |M | = 3. Then by

theorem 3.9, Non(G(M)) is complete and hence γ(Non(G(M))) = 1.
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Corollary 3.12: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M .
Then

(1) diam(Non(G(M))) = 1 if and only if γ(Non(G(M))) = 1.

(2) diam(Non(G(M))) = 2 if and only if γ(Non(G(M))) = 2.

Proof. (1) It is clear by theorem 3.10 and proposition 3.11.

(2) If diam(Non(G(M))) = 2, then Nil(M) 6= 0 and | M

Nil(M)
| = 3, by

theorem 3.10. Hence Non(G(M)) is connected, by theorem 3.9. There-
fore Non(G(M)) is a complete bipartite graph Kα,α with α ≥ 2. So
γ(Non(G(M))) = 2.
Conversely, if γ(Non(G(M))) = 2, then Non(G(M)) is the union of two
Kα’s or is a complete bipartite graph Kα,α with α ≥ 2, by theorem 3.4 and
theorem 3.6. So β − 1 = 2 or

β − 1
2

= 1. In either case, | M

Nil(M)
| = 3

and |Nil(M)| ≥ 2. Thus |Nil(M)| 6= 0 and diam(Non(G(M))) = 2, by
theorem 3.10.

4. Bondage number of E(G(M))

In this section, we find certain domination parameters of E(G(M)).
We begin with the following proposition.

Proposition 4.1: Let R be a ring and M a faithful R-module such that

Nil(M) is a submodule of M , |Nil(M)| = α and | M

Nil(M)
| = β. If

2 = 1R + 1R ∈ Nil(R), then b(E(G(M))) = α− 1.

Proof. Suppose that 2 = 1R + 1R ∈ Nil(R). Then, by theorem 3.4, the
graph Non(G(M)) is the union of β − 1 disjoint Kα’s and we know that
b(Kα) = α − 1. Hence b(Non(G(M))) = α − 1. Also M is faithful, so
N(G(M)) is complete, by theorem 3.1 (3). Thus, b(N(G(M))) = α − 1.
On the other hand, N(G(M)) and Non(G(M)) are disjoint, by theorem
3.3. Therefore, b(E(G(M))) = α− 1.
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Proposition 4.2: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M ,

|Nil(M)| = α and | M

Nil(M)
| = β. Then b(E(G(M))) = α− 1.

Proof. If 2 = 1R+1R ∈ Nil(R), then b(E(G(M))) = α−1, by proposition
4.1.
Now, suppose that 2 = 1R+1R /∈ Nil(R). Then, by theorem 3.6,Non(G(M))

is the union of
β − 1
2

disjoint Kα,α’s and we know that b(Kα,α) = α. Thus

b(Non(G(M))) = α. But N(G(M)) is complete, by theorem 3.1 (3) and
disjoint from Non(G(M)), by theorem 3.3. So, b(N(G(M))) and hence
b(E(G(M))) is equal to α− 1.

Example 3.

(1) If E(G(M)) is complete, then b(E(G(M))) = n− 1. But Nil(M) =
M , by theorem 3.1(1). So, b(E(G(M))) = |Nil(M)|− 1.

(2) If γ(G) = |V (G), then b(G) = 0. So, by proposition 3.2(2), if
Nil(M) = 0 and |M | ≥ 2, thenb(E(G(M))) = 0.

(3) If M is a faithful R-module, then b(N(G(M))) = |Nil(M)|− 1.

Theorem 4.3 [17, Theorem 2.15]: Let R be a ring and M a finitely gen-
erated faithful multiplication R-module such that Nil(M) is a prime sub-
module of M . Then the following hold:

(1) gr(Non(G(M))) = 3 if and only if 2 ∈ Nil(R) and |Nil(M)| ≥ 3.

(2) gr(Non(G(M))) = 4 if and only if 2 /∈ Nil(R) and |Nil(M)| ≥ 2.

(3) gr(E(G(M))) = 3 if and only if |Nil(M)| ≥ 3.

(4) gr(E(G(M))) = 4 if and only if 2 /∈ Nil(R) and |Nil(M)| = 2.

(5) If gr(E(G(M))) 6= 3 or 4, then gr(E(G(M))) =∞.

Proposition 4.4: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M ,

|Nil(M)| = α and | M

Nil(M)
| = β. Then
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(1) gr(Non(G(M))) = 3 if and only if b(Non(G(M))) = α − 1 and
|Nil(M)| ≥ 3.

(2) gr(Non(G(M))) = 4 if and only if b(Non(G(M))) = α and |Nil(M)| ≥
2.

Proof.

(1) If gr(Non(G(M))) = 3, then 2 ∈ Nil(R) and |Nil(M)| ≥ 3, by
theorem 4.3. So Non(G(M)) is the union of β − 1 disjoint Kα’s, by
theorem 3.4. Therefore, b(Non(G(M))) = α− 1.
Now assume that b(Non(G(M))) = α − 1 and |Nil(M)| ≥ 3. If

2 /∈ Nil(R), then Non(G(M)) is the union of
β − 1
2

disjoint Kα,α’s,

by theorem 3.6 and hence b(Non(G(M))) = α, a contradiction by
assumption. Therefore 2 ∈ Nil(R), and then gr(Non(G(M))) = 3,
by theorem 4.3.

(2) If gr(Non(G(M))) = 4, then 2 /∈ Nil(R) and |Nil(M)| ≥ 2, by
theorem 4.3. So b(Non(G(M))) = α, by the same argument to above.
Now, let b(Non(G(M))) = α and |Nil(M)| ≥ 2. If 2 ∈ Nil(R),
then b(Non(G(M))) = α − 1, by theorem 3.4, a contradiction. So
2 /∈ Nil(R). Therefore, Non(G(M)) is the union of Kα,α’s, where
α ≥ 2. Thus gr(Kα,α) and hence gr(Non(G(M))) is equal to 4.

5. When E(G(M)) is excellent, domatically full and well cov-
ered

In this section, some domination parameters of E(G(M)) has been stud-
ied. It has been proved that E(G(M)) is excellent, domatically full and well
covered under some conditions. We begin with the following proposition.

Proposition 5.1: Let R be a ring and M a finitely generated faith-
ful multiplication R-module such that Nil(M) is a prime submodule of

M , |Nil(M)| = α and | M

Nil(M)
| = β. A set S = {x1, x2, ..., xβ} ⊂

V (E(G(M))) is a γ-set of E(G(M)) if and only if xj /∈ xi+Nil(M) for all
1 ≤ i, j ≤ β and i 6= j.
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Proof. If part follows directly from proposition 3.4 and 3.6 as γ(E(G(M))) =
β.
Conversely, let S be a γ-set of E(G(M)). Let us assume that there exist
j, k ∈ {1, 2, ..., β} such that xj ∈ xk+Nil(M). Since |S| = β, so there exist
a coset x + Nil(M) such that xi /∈ x + Nil(M) for all xi ∈ S. Now, the
vertices in −x+Nil(M) cannot be dominated by S, a contradiction.

Proposition 5.2: Let R be a ring and M an R-module such that Nil(M)
is a submodule of M . Let x be a vertex of the graph E(G(M)). Then

deg(x) =

(
|Nil(M)|− 1, if 2 ∈ Nil(R) or x ∈ Nil(M)
|Nil(M)|, otherwise.

.

Proof. If xi ∈ Nil(M), the vertex x ∈ M is adjacent to vertices xi − x.
Then deg(x) = |Nil(M)|−1 if and only if x = xi−x for some xi ∈ Nil(M),
that is, if and only if 2x ∈ Nil(M). If 2x /∈ Nil(M), then deg(x) =
|Nil(M)|.
If 2 ∈ Nil(R), then 2x ∈ Nil(M) for all x ∈ M . Therefore, deg(x) =
|Nil(M)|− 1.
Again, if 2 /∈ Nil(R), then the following two cases arise.
Case-1: If x ∈ Nil(M), then deg(x) = |Nil(M)|− 1.
Case-2: If x /∈ Nil(M), then deg(x) = |Nil(M)|.
It follows that

deg(x) =

(
|Nil(M)|− 1, if 2 ∈ Nil(R) or x ∈ Nil(M)
|Nil(M)|, otherwise.

.

Proposition 5.3: Let R be a ring and M an R-module such that Nil(M)

is a submodule of M , |Nil(M)| = α 6= 0 and | M

Nil(M)
| = β, then

(1) E(G(M)) is excellent.

(2) the domatic number d(E(G(M))) = α.

(3) E(G(M)) is domatically full.
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Proof. The proof for (1) and (2) are trivial.
(3) By (2) we have d(E(G(M))) = α = |Nil(M)|. Also, we have by propo-
sition 4.2 that δ(E(G(M))) = |Nil(M)| − 1 = α − 1. Therefore, we have
d(E(G(M))) = δ(E(G(M))) + 1. Hence, E(G(M)) is domatically full.

Theorem 5.4 [17, Theorem 3.2]: Let R be a ring and M an R-module
such that Nil(M) is not a submodule of M . Then E(G(M)) is connected
if and only if M =< Nil(M) >.

Lemma 5.5: Let M be a module over a ring R and N be a maximum

annihilator submodule in M such that |N | = α 6= 0 and |M
N
| = β. If

γ(E(G(M))) = µ, then the set S = {x1, x2, ..., xµ} ⊂ V (E(G(M))) is a
γ-set of E(G(M)) where xj /∈ xi +N for all 1 ≤ i, j ≤ β and i 6= j.

Proposition 5.6: Let R be a ring and M be an R-module. If Nil(M) is
not a submodule of M , M =< Nil(M) > and γ(E(G(M))) = µ,
then γt(E(G(M))) = γc(E(G(M))) = µ.

Proof. If Nil(M) is not a submodule of M and M =< Nil(M) >, then
by theorem 4.4, E(G(M)) is connected. Let N be a maximum annihilator
submodule in M and x1 ∈ N . Since E(G(M)) is connected, there exists a
vertex x2 ∈ a1 +N for some a1 ∈ M −N such that x2 is adjacent to x1.
Again by connectedness of E(G(M)), there exists a coset a2 +N for some
a2 /∈ N as well as a2 /∈ a1 +N such that atleast one element of a2 +N is
adjacent to either a vertex in N or in a1 +N , say N .

If there exists an element a ∈ ai+N which is adjacent to some b ∈ aj +N
with a /∈ aj+N , then each vertex in ai+N is adjacent to atleast one vertex
in aj +N . For, if a+ b = c for some c ∈ Nil(M), then c ∈ ai+aj +N . Let
d1 ∈ ai+N and take d2 ∈M such that d1+ d2 = c. From this d2 ∈ aj +N
and d1 is adjacent to d2. Therefore, each vertex in ai + N is adjacent to
atleast one vertex in aj +N .

Thus x1 is adjacent to some vertex x3 ∈ a2 +N . Similarly, we can choose
coset representatives xi, for 4 ≤ i ≤ µ, in distinct cosets of N in M other
than N , a1+N and a2+N such that < x1, x2, ...., xµ >⊆ E(G(M)) is con-
nected. Then by lemma 4.5, {x1, x2, ..., xµ} is a γc-set of E(G(M)) and so
γc(E(G(M))) = µ. Since, for any graph G, we have γ(G) ≤ γt(G) ≤ γc(G),
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so γt(E(G(M))) = µ.

We now find the bondage number of the graph E(G(M)). We begin with
the following lemma.

Lemma 5.7: Let R be a ring andM a finitely generated faithful multiplica-
tion R-module such that Nil(M) is a prime submodule ofM , |Nil(M)| = α

and | M

Nil(M)
| = β. Then

E(G(M)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Kα ∪Kα ∪Kα ∪ ... ∪Kα| {z }
(β−1)copies

, if 2 ∈ Nil(R)

Kα ∪Kα,α ∪Kα,α ∪ ... ∪Kα,α| {z }
(
β − 1
2

)copies

, if 2 /∈ Nil(R).

Proof. It follows from theorem 3.4 and theorem 3.6 directly.

Proposition 5.8: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M ,

|Nil(M)| = α and | M

Nil(M)
| = β. Then E(G(M)) is well covered.

Proof. If 2 ∈ Nil(R), then by lemma 5.7 we have i(E(G(M))) = β.
If 2 /∈ Nil(R), then all the vertices in one partition of Kα,α together with
a vertex of Nil(M), form an i-set of E(G(M)) and so i(E(G(M))) =

(
β − 1
2

)α+ 1. Similarly β0(E(G(M))) is same as i(E(G(M))). Thus

i(E(G(M))) = β0(E(G(M))) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
,

if 2 ∈ Nil(R)

(
β − 1
2

)α+ 1,

otherwise.

Hence, E(G(M)) is well covered.
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Corollary 5.9: Let R be a ring and M a finitely generated faithful mul-
tiplication R-module such that Nil(M) is a prime submodule of M and
|Nil(M)| = α, then ω(E(G(M))) = α.

As proved above, we can prove the following.

Proposition 5.10: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M ,

|Nil(M)| = α and | M

Nil(M)
| = β. Then

(1)

γt(E(G(M))) =

(
2β, if 2 ∈ Nil(R)
β + 1, otherwise.

.

(2) γs(E(G(M))) = γw(T (Γ(M))) = β.

(3) γp(E(G(M))) = β.

Proposition 5.11: Let R be a ring and M a finitely generated faithful
multiplication R-module such that Nil(M) is a prime submodule of M ,

|Nil(M)| = α and | M

Nil(M)
| = β. Then

(1) γγ(E(G(M))) = 2β.

(2)

γi(E(G(M))) =

⎧⎨⎩ 2β, if 2 ∈ Nil(R)

β + (
β − 1
2

)α+ 1, otherwise.

.

(3)

ii(E(G(M))) =

(
2β, if 2 ∈ Nil(R)
(β − 1)α+ 2, otherwise.

.

(4)

tt(E(G(M))) =

⎧⎪⎨⎪⎩
4β, if 2 ∈ Nil(R) and α ≥ 4
2(β + 1), if 2 /∈ Nil(R)
does not exist, otherwise.

.
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6. Conclusion

In this paper we study the domination properties of the entire nilpotent
element graph EG(M) of an R-module M . We determine the domina-
tion number of E(G(M)) and its two induced subgraphs N(G(M)) and
Non(G(M)). We obtain an equivalent condition describing the reletion-
ship between the domination number and the diameter of Non(G(M)).
Again we determine the bondage number of E(G(M)). In addition to this,
we establish a relationship between the bondage number and the girth of
Non(G(M)). Finally we study some domination parameters of E(G(M)).
We have shown that E(G(M)) is excellent, domatically full and well cov-
ered under certain conditions.

In future, some more graph theoretic properties such as planarity, traversabil-
ity, colorability etc. can be studied in the graph E(G(M)) and its induced
subgraphs. Also, the domination properties of some other graphs defined
on rings and modules can be studied in near future.
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