
Laplacian integral graphs with a given degree
sequence constraint ∗

Anderson Fernandes Novanta
CEFET-RJ, Brasil
Carla Silva Oliveira
ENCE/IBGE, Brasil

and
Leonardo de Lima
UFPR, Brasil

Received : February 2021. Accepted : May 2021

Proyecciones Journal of Mathematics
Vol. 40, No 6, pp. 1431-1448, December 2021.
Universidad Católica del Norte
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Abstract

Let G be a graph on n vertices. The Laplacian matrix of G, de-
noted by L(G), is defined as L(G) = D(G)−A(G), where A(G) is the
adjacency matrix of G and D(G) is the diagonal matrix of the vertex
degrees of G. A graph G is said to be L-integral if all eigenvalues of
the matrix L(G) are integers. In this paper, we characterize all L-
integral non-bipartite graphs among all connected graphs with at most
two vertices of degree larger than or equal to three.
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1. Introduction

Let G = (V,E) be an undirected graph, without loops or multiple edges.
Let d(G) = (d1(G), d2(G), . . . , dn(G)) be the sequence degree of G, such
that ∆(G) = d1(G) ≥ d2(G) ≥ · · · ≥ δ(G) = dn(G). The vertex con-
nectivity of G, k(G), is the minimum number of vertices that need to be
removed such that the graph G gets disconnected and Pn is a path with
n vertices. We define G1 as the family of connected graphs with sequence
degree in a way that d1 ≥ 3 and 1 ≤ di ≤ 2, i = 2, . . . , n. Also, we de-
fine G2 as the family of connected graphs with sequence degree such that
d1 ≥ d2 ≥ 3 and 1 ≤ di ≤ 2, i = 3, . . . , n. The sum graph, denoted
by G = G1 + G2, is the graph G such that V = V1 × V2 and each pair
of vertices (u1, u2) and (v1, v2) are adjacent in G if and only if u1 = v1
and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1. The Firefly graph, de-
noted by Fr,s,t, is the graph with 2r + s + 2t + 1 vertices that contains r
triangles, s pendant edges and t pendant paths of length 2 sharing a com-
mon vertex. We write A(G) for the (0,1)-adjacency matrix of a graph and
D(G) for the diagonal matrix of the vertex degrees of G. Also, we write
L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) for the Laplacian ma-
trix and signless Laplacian matrix of G. A graph G is L-integral (resp.
Q-integral) if all of its L-eigenvalues (resp. Q-eigenvalues) are integers.
The spectrum of the Laplacian matrix of G is denoted by SpecL(G) =n
µ1(G)

[n1], µ2(G)
[n2], . . . , µs(G)

[ns]
o
, where µi(G) is the i-th largest Lapla-

cian eigenvalue and ni is its algebraic multiplicity. The algebraic connec-
tivity of G is denoted by a(G) = µn−1(G).

In 1994, Grone and Merris [3] initiated the study of the L-integral graph
and Merris in [11] presented an explicit construction of all maximal graphs
which are L-integral. After this, some infinite families of L-integral graphs
were characterized in the literature as it can be seen in [8, 9, 10, 11, 12].
In particular, Kirkland in [9] determined all Laplacian integral graphs such
that ∆(G) = 3. Motivated by that, we study all Laplacian integral graphs
with at most two vertices of degree greater than or equal to 3. It is worth
mentioning that Novanta et al. in [13] found all bipartite Q-integral graphs
in G1 and G2. Since for bipartite graphs the L- and Q-eigenvalues coincide
all L-integral bipartite graphs within those families are determined. In this
paper, we determine all non bipartite L-integral graphs in the families G1
and G2. Thus, we state our main result:

Theorem 1. Let G be a graph on n ≥ 9 vertices with at most two vertices
of degree greater than two. Then G is L-integral if and only if G is one of
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the following: K1,n−1, K2 +K1,n−3, K2,n−2, Fr,s,0, where s ≥ 1 and r ≥ 1,
K1 ∨ (rK1 ∪ sK2 ∪K1,t), where t ≥ 2 and r + s ≥ 2 or K2 ∨ (n− 2)K1.

The remaining content of the paper is organized as follows. In Section
2, we will give some important results that will be needed in the sequel. In
Section 3, we present all non bipartite L-integral graphs in the family G1.
In Section 4, we present all non bipartite L-integral graphs in the family
G2. In this paper, we use the same demonstration techniques presented in
[13].

2. Preliminaries

In this section, we present some results that will be useful to prove the
main results of the paper.

Lemma 1. Let G be a connected graph. Then a(G) > 0.

Lemma 2. Let G be a non-complete graph. Then a(G) ≤ k(G) ≤ δ(G).

Theorem 3. Let G be a non-complete and connected graph on n vertices.
Then k(G) = a(G) if only if G can be written as G = Ga ∨Gb, where Ga

is a disconnected graph on (n− k(G)) vertices and Gb is a graph on k(G)
vertices with a(Gb) ≥ 2k(G)− n.

Lemma 4. Let A be a block diagonal matrix whith diagonal blokcs Aii,

for 1 ≤ i ≤ k are blocks of A. Then, det A =
kY
i=1

det Aii.

Defintion 5. Given a graph G, and a matrix M = [mij ] associated with
G, a partition π of V (G), V (G) = V1 ∪ · · ·∪ Vk is equitable with respect to
G and M , if for all i, j ∈ {1, 2, · · · , k}X

t∈Vj
mst = dij

is a constant dij for any s ∈ Vi.

The matrix Mπ = [dij ] of order k is called the divisor matrix of M
associated with the partition π.

Theorem 6. Any eigenvalue of Mπ is also an eigenvalue of M .
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Lemma 7. Let G be a graph on n vertices and f an edge ofG. IfH ∼= G\f
then

µ1(G) ≥ µ1(H) ≥ µ2(G) ≥ µ2(H) ≥ ... ≥ µn(G) ≥ µn(H).

If H is a subgraph of G obtained by removing r edges, then for each i =
1, . . . , n− r.

µi(G) ≥ µi(H) ≥ µi+r(G).

Let A be a matrix of order n and 1 ≤ r ≤ n. The matrix Ar of order
r is a principal submatrix of A obtained by deleting n − r rows and the
corresponding columns from A.

Proposition 8. Let A be a Hermitian matrix of order n, let r be an integer
with 1 ≤ r < n, and let Ar be a principal submatrix of A of order r with
eigenvalues λ1 ≥ · · · ≥ λn and θ1 ≥ · · · ≥ θr respectively. Then, for each
i = 1, . . . , r

λi ≥ θi ≥ λi+n−r.

Remark 9. Let Bn−2 be a principal submatrix of L(G) of order n − 2.
From Proposition 8, we have that θn−3(Bn−2) ≥ µn−1(G). If G is connected
and Bn−2 has at least two eigenvalues in the interval (0, 1), we conclude
that 0 < µn−1(G) < 1.

Remark 10. For n ≥ 7, there are at least 2 eigenvalues of L(Pn) in the
interval (0, 1).

Consider a family of p graphs, F = {G1, · · · ,Gp}, where each graph Gj

has order nj , for j = 1, · · · , p, and a graph H such that V (H) = {1, · · · , p}.
Each vertex j ∈ V (H) is assigned to the graph Gj ∈ F . The H − join
(generalized composition) of G1, · · · , Gp is the graph G = H[G1, · · · , Gp]
such that V (G) =

Sp
j=1V (Gj) and E(G) = (

Sp
j=1 V (Ej)) ∪ (

S
rs∈E(H){uv :

u ∈ V (Gr), v ∈ V (Gs)}).

Theorem 11. Let G be a graph on n vertices with at most two vertices
of degree greater than or equal to 3. Then G is Q-integral if and only if G
is one of the following: K1,n−1, K2+K1,n−3, K2,n−2 or P4[K2,K1,K1,K2].

The following results characterize cographs from forbidden P4 and show
that all cographs are L-integral.

Theorem 12. A graph is cograph if and only if it does not have an induced
subgraph isomorphic to P4.

Theorem 13. If G is cograph then G is a L-integral.
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3. L-integral graphs in G1

In [13], Novanta et al. characterized all L-integral bipartite graphs be-
longing to G1. In this section, we characterize all L-integral non-bipartite
graphs in G1. The graphs that belong to family G1 are graphs that contain
cycles, paths and pending vertices with one vertex, say u, in common such
that d(u) ≥ 3. Notice that the Firefly graphs, Fr,s,t, belong to the family
G1. In particular, F0,n−1,0 ∼= K1,n−1, F0,0,1 ∼= K1,2 are L-integral graphs.
Below, we present the main result of this section.

Theorem 1. Let G ∈ G1 be a graph on n vertices. Then, G is L-integral
if only if either G ∼= K1,n−1 or G ∼= Fr,s,0, with s ≥ 1 and r ≥ 1.

Proof. Let G ∈ G1. If G is bipartite, from Theorem 11, G is L-integral
if and only if G ∼= K1,n−1. Now, suppose that G is non-bipartite and L-
integral. From Lemmas 1 and 2, 0 < a(G) ≤ k(G) = 1, and consequently
a(G) = 1. From Theorem 3, G ∼= Ga ∨Gb where V (Gb) = {u}. As G ∈ G1
and for any x ∈ V (G), d(x) ≤ 2, we have that Ga

∼= r ·K1 ∪ s ·K2 where
r ≥ 1 and s ≥ 1. So, G ∼= Fr,s,0 which is a cograph. From Theorem 13, G
is L− integral and the result follows. 2

4. L-integral graphs in G2

In [13], Novanta et al. characterized all L-integral bipartite graphs belong-
ing to G2. Let G02 be the subfamily of non-bipartite graphs belonging to G2.
From Lemmas 1 and 2, we have that 0 < a(G) ≤ k(G) ≤ 2. So, in order
to characterize all L-integral graphs in G02 we need to consider the cases:
a(G) = k(G) and a(G) < k(G).

Case 1: G ∈ G02 and a(G) = k(G).

Theorem 1. Let G ∈ G02 with n ≥ 7 vertices. Then G is L-integral if and
only if G ∼= K1 ∨ (r · K1 ∪ s · K2 ∪ K1,t), where t ≥ 2 and r + s ≥ 2 or
G ∼= K2 ∨ (n− 2) ·K1.
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Proof. Let G ∈ G02 with n ≥ 7 vertices. Suppose that G is L-integral.
So, a(G) = k(G) = 1 or a(G) = k(G) = 2. Firstly, suppose that a(G) =
k(G) = 1. From Theorem 3, G ∼= Ga ∨ Gb where V (Gb) = {u} and,
consequently, v ∈ V (Ga). Let x ∈ V (Ga) such that x 6= v. As G ∈ G2,
d(x) ≤ 2, we conclude that Ga

∼= r · K1 ∪ s · K2 ∪ K1,t, where t ≥ 2
and r + s ≥ 2. Now, suppose that a(G) = k(G) = 2. From Theorem 3,
G ∼= Ga ∨ Gb such that Gb is a graph on two vertices. So, u, v ∈ V (Gb)
and Gb

∼= K2. Let x ∈ V (Ga). As G ∈ G02 and d(x) ≤ 2, we conclude that
Ga
∼= (n− 2) ·K1. Then, G ∼= K2 ∨ (n− 2) ·K1 and the result follows. 2

Case 2: G ∈ G02 and a(G) < k(G).
In this case, we characterize all L−integral graphs in G02 such that

a(G) < k(G) ≤ 2. If k(G) = 1, G is not L-integral. So, we only need
to consider that k(G) = 2. Then, G has only cycles that contain two ver-
tices u and v of degree larger than or equal to 3. Consequently, we need to
analyze the length of paths with end vertices u and v.

Proposition 2. Let G ∈ G02 with n ≥ 11 vertices. If G has a subgraph Pk,
for k ≥ 9, with end vertices u and v, then G is not L-integral.

Proof. Let G ∈ G02 with n ≥ 11 vertices. For k ≥ 9, suppose that G
contains a path Pk with sequence of vertices ux1 · · ·xk−2v. Let H be the
subgraph of G obtained by removing the edges ux1 and xk−2v. So, H ∼=
H1 ∪ Pk−2, where H1 is a non bipartite graph and µn(H) = µn−1(H) = 0.
From Remark 10, Pk−2 has at least 2 eigenvalues in the interval (0, 1).
Then, we assume that 0 < µn−2(H) ≤ µn−3(H) < 1. From Lemma 7, we
conclude that 0 < µn−1(G) ≤ µn−3(H) < 1. Therefore, G is not L-integral.
2

From Proposition 2 (Section 4), now we need to consider the remaining
cases when G has a subgraph Pk for 3 ≤ k ≤ 8. First, we consider that
G ∈ G02 is a graph that contains r paths P p

np , for 1 ≤ p ≤ ∆(G) = ∆ with

the sequences of vertices uxp1 · · ·x
p
np−2v such that np ∈ {3, 5, 7}. As G is non

bipartite graph, the vertices u and v should be adjacent. By a convenient
labeling for the vertices, L(G) can be seen written in the following way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
D2×2 T2×(n1−2) T2×(n2−2) · · · T2×(n∆−2)

T(n1−2)×2 An1−2 0(n1−2)×(n2−2) · · · 0(n1−2)×(n∆−2)
T(n2−2)×2 0(n2−2)×(n2−2) A(n2−2) · · · 0(n2−2)×(n∆−2)

...
...

...
. . .

...
T(n∆−2)×2 0(n∆−2)×(n1−2) 0(n∆−2)×(n2−2) · · · An∆−2

⎤⎥⎥⎥⎥⎥⎥⎦ (I),
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where D = [dij ]2×2 such that dij =

(
∆, if i = j
−1, if i 6= j

and T =

[tij ]2×np−2 such that tij =

⎧⎪⎨⎪⎩
−1, i = j = 1

−1, i = 2 and j = np − 2
0, otherwise.

Observe that Anp−2 ∈ {A1, A3, A5}, where

A1 =
h
2
i
, A3 =

⎡⎢⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤⎥⎦ andA5 =
⎡⎢⎢⎢⎢⎢⎣
2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎦ .
Notice that since G is non-bipartite, the vertices u and v should be

adjacent and we will use this fact to prove Proposition 3, 4 and 5.

Proposition 3. Let G ∈ G02 with n ≥ 9 vertices. If G has at least two
subgraphs P5, or at least two subgraphs P7 or one subgraph P5 together
with a subgraph P7 with end vertices u and v, then G is not L-integral.

Proof. Let G ∈ G02 with n ≥ 9 vertices. Suppose that G contains at least
two paths P5, or at least two paths P7 or one path P5 together with a path
P7 with the sequence of vertices ux

i
1 · · ·xinp−2v such that np ∈ {5, 7} and

i ≥ 2. In all cases, let Bn−2 be the principal submatrix of L(G) obtained
by removing both rows and columns that correspond to the vertices u and
v. It is easy to see that Bn−2 is a block diagonal matrix and its blocks are
the matrices A3 and/or A5 which have eigenvalues in the interval (0, 1).
From Proposition 8, we have 0 < µn−1(G) ≤ θn−3(Bn−2) < 1. Then, G is
not L-integral. 2

As G is a non-bipartite graph, the following remaining cases are de-
scribed as: (i) G has at least one subgraph P3 and one subgraph P5, and
(ii) G has at least one subgraph P3 and one subgraph P7. Next, Proposition
4 proves case (i), and Proposition 5 proves case (ii).

Proposition 4. Let G ∈ G02 with n ≥ 6 vertices. If G has s ≥ 1 subgraphs
P3 and one subgraph P5 with end vertices u and v, then G is not L-integral.

Proof. Let G ∈ G02 with n ≥ 6 vertices. Recall that uv ∈ G. It is easy
to see that G is not L-integral graph for s = 1. Suppose that s ≥ 2. From
matrix (I), L(G) can be seen written in the following way:
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L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D2×2 T2×1 T2×1 · · · T2×1 T2×3
T1×2 A1 01×1 · · · 01×1 01×3
T1×2 01×1 A1 · · · 01×1 01×3
...

...
...

. . .
...

...
T1×2 01×1 01×1 · · · A1 01×3
T3×2 03×1 03×1 · · · 03×1 A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ∆ = s+ 2. According to Theorem 6, the eigenvalues of the matrix

RL(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s+ 2 −1 −s −1 0 0
−1 s+ 2 −s 0 0 −1
−1 −1 2 0 0 0
−1 0 0 2 −1 0
0 0 0 −1 2 −1
0 −1 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

are eigenvalues of L(G), whose characteristic polynomial is p(λ) = λ6 +
(−2s− 12)λ5 + (s2 + 18s+ 55)λ4 + (−6s2 − 56s− 120)λ3 + (10s2 + 70s+
125)λ2 + (−4s2 − 30s − 50)λ. As p(1) = s2 − 1 > 0, for s ≥ 2, and
p(2) = −4s < 0, we conclude that there is a root in the interval (1, 2), and
consequently G is not L-integral. 2

Proposition 5. Let G ∈ G02 with n ≥ 8 vertices. If G has at least s ≥ 1
subgraphs P3 and one subgraph P7 with end vertices u and v, then G is
not L-integral.

Proof. Let G ∈ G02 with n ≥ 8 vertices. It is easy to see that G is not
L-integral for s = 1. Suppose that s ≥ 2. From matrix (I), L(G) has the
following form:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D2×2 T2×1 T2×1 · · · T2×1 T2×5
T1×2 A1 01×1 · · · 01×1 01×5
T1×2 01×1 A1 · · · 01×1 01×5
...

...
...

. . .
...

...
T1×2 01×1 01×1 · · · A1 01×5
T5×2 05×1 05×1 · · · 05×1 A5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ∆ = s + 2. Applying the Intermediate Value Theorem to the char-
acteristic polynomial associated to matrix obtained by Theorem 6 for the
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matrix L(G), we conclude that there is a root in the interval (3, 4), and
consequently G is not L-integral. 2

Remark 6. If G ∈ G02 and G has only subgraph P3 with end vertices u
and v, a(G) = k(G) which was analyzed in Case 4.1.

Now let us analyze the cases in which G ∈ G02 is a graph that contains
r paths P p

np with the sequence of vertices ux
p
1 · · ·x

p
np−2v, for 1 ≤ p ≤ r, and

np ∈ {4, 6, 8}. By a convenient labeling to the vertices of G we obtain

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
D2×2 T2×(n1−2) T2×(n2−2) · · · T2×(nr−2)

T(n1−2)×2 An1−2 0(n1−2)×(n2−2) · · · 0(n1−2)×(nr−2)
T(n2−2)×2 0(n2−2)×(n2−2) A(n2−2) · · · 0(n2−2)×(nr−2)

...
...

...
. . .

...
T(nr−2)×2 0(nr−2)×(n1−2) 0(nr−2)×(n2−2) · · · Anr−2

⎤⎥⎥⎥⎥⎥⎥⎦ (II),

where

D = [dij ]2×2 such that dij =

⎧⎪⎨⎪⎩
∆, if i = j
−1, if i 6= j and u ∼ v
0, if i 6= j and u 6∼ v

and T =

[tij ]2×np−2 such that tij =

⎧⎪⎨⎪⎩
1, if i = j = 1,
−1, if i = 2 and j = np − 2,
0, otherwise.

Observe that Anp−2 ∈ {A2, A4, A6}, where

A2 =

"
2 −1
−1 2

#
,

A4 =

⎡⎢⎢⎣
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤⎥⎥⎦ and A6 =

⎡⎢⎢⎢⎢⎢⎢⎣
2 −1 0 0 0 0
−1 2 −1 0 0 0
0 1 2 1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ .
By using the matrix L(G) presented above, we obtain the following

propositions.

Proposition 7. Let G ∈ G02 with n ≥ 9 vertices. If G has a subgraph P8
with end vertices u and v, then G is not L-integral.
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Proof. Let G ∈ G02 with n ≥ 9 vertices. Suppose that G contains a
path P8 with the sequence of vertices ux1 · · ·x6v. Let Bn−2 be the princi-
pal submatrix of L(G) obtained by removing both rows and columns that
correspond to vertices u and v. Note that Bn−2 is a block diagonal matrix
and one of its blocks is the matrix A6, which has two eigenvalues in the
interval (0, 1). From Lemma 4, we have 0 < θn−2(Bn−2) < θn−3(Bn−2) < 1
and consequently from Proposition 8, we conclude that 0 < µn−1(G) =
a(G) ≤ θn−3(Bn−2) < 1. Therefore, G is not L-integral. 2

Proposition 8. Let G ∈ G02 with n ≥ 7 vertices. If G has a subgraph P6
with end vertices u and v, then G is not L-integral.

Proof. Let G ∈ G02 with n ≥ 7 vertices. Suppose that G contains
a ≥ 2 paths P6 with the sequence of vertices ux1i · · ·x4iv for 2 ≤ i ≤ a.
Let Bn−2 be the principal submatrix of L(G) obtained by removing both
rows and columns that correspond to vertices u and v. Note that Bn−2 is
a block diagonal matrix and a ≥ 2 of its blocks is the matrix A4. It is
easy to see that A4 has one eigenvalue in the interval (0, 1). Then, Bn−2
contains a ≥ 2 eigenvalues in the interval (0, 1). From Lemma 4, we have
0 < θn−2(Bn−2) < θn−3(Bn−2) < 1, and consequently, from Proposition
8, we conclude that 0 < µn−1(G) ≤ θn−3(Bn−2) < 1. Therefore, G is not
L-integral. Now, suppose that G contains one path P6 with the sequence of
vertices ux1 · · ·x4v along with one path P5 or one path P7. Therefore the
principal submatrix of L(G) obtained by removing both rows and columns
that correspond to vertices u and v, Bn−2, is a block diagonal matrix wich
has at least two blocks A6 and A5 or A6 and A7. In both cases, Bn−2
contains a ≥ 2 eigenvalues in the interval (0, 1) and, consequently, from
Proposition 8, we conclude that 0 < µn−1(G) ≤ θn−3(Bn−2) < 1. Then, G
is not L-integral. Finally, suppose that G contains one path P6, with the
sequence of vertices ux1 · · ·x4v, with s ≥ 1 paths P3 and t ≥ 0 path P4.
So, we need to consider the following cases:

Case 1: G contains t ≥ 1 paths P4, s ≥ 1 paths P3 and one path P6.

Case 1.1: u and v are adjacent.
By a convenient labeling for the vertices, L(G) can be seen represented

in the following way:
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L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t + 2 −1 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0 0
−1 s+ t + 2 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Applying the Intermediate Value Theorem to the characteristic polyno-
mial associated to matrix obtained by Theorem 6 for the matrix L(G), we
conclude that there is a root in the interval (3, 4), and consequently G is
not L-integral.

Case 1.2: u and v are non-adjacent.
By a convenient labeling for the vertices, L(G) can be seen written in

the following way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t + 1 0 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0 0
0 s+ t + 1 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Applying the same technique as in Case 1.1, we conclude that there is
a root in the interval (3, 4), and consequently G is not L-integral.

Case 2: G contains s ≥ 1 paths P3 and one path P6.

Case 2.1: u and v are adjacent.
From the matrix (II), L(G) can be seen written in the following way:
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L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D2×2 T2×1 T2×1 · · · T2×1 T2×4
T1×2 A1 01×1 · · · 01×1 01×4
T1×2 01×1 A1 · · · 01×1 01×4
...

...
...

. . .
...

...
T1×2 01×1 01×1 · · · A1 01×4
T4×2 04×1 04×1 · · · 04×1 A4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ∆ = s+2. Applying the same technique as in Case 1.1, we conclude
that there is a root in the interval (1, 2), and consequently G is not L-
integral.

Case 2.2: u and v are non-adjacent.
It is easy to see that for s = 1 or s = 2, G is not L-integral. Suppose

that s ≥ 3. From the matrix (II), L(G) can be seen written in the following
way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D2×2 T2×1 T2×1 · · · T2×1 T2×4
T1×2 A1 01×1 · · · 01×1 01×4
T1×2 01×1 A1 · · · 01×1 01×4
...

...
...

. . .
...

...
T1×2 01×1 01×1 · · · A1 01×4
T4×2 04×1 04×1 · · · 04×1 A4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ∆ = s+1. Applying the same technique as in Case 1.1, we conclude
that there is a root in the interval (2, 3), and consequently G is not L-
integral. 2

Proposition 9. Let G ∈ G02 with n ≥ 6 vertices. If G has a subgraph P4
with end vertices u and v, then G is not L-integral.

Proof. Let G ∈ G02 with n ≥ 6 vertices. Suppose that G contains one
path P4 with the sequence of vertices ux1x2v and with at least two paths
in the set {P5, P7}. Let Bn−2 be the submatrix principal of L(G) obtained
by removing boths rows and columns corresponding to vertices u and v.
As Bn−2 is a block diagonal matrix and its blocks belong to the set {A3,
A5} which have one eigenvalue in the interval (0, 1), from Proposition 8
(Section 2), we conclude that 0 < µn−1(G) ≤ θn−3(Bn−2) < 1. Then, G
is not L-integral. Now, suppose that G contains t ≥ 1 paths P4, with the
sequence of vertices uxq1x

q
2v, such that 1 ≤ q ≤ t, s ≥ 1 paths P3 or/and

one path of the set {P5, P7}. So we need to analyse the following cases:
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Case 1: G contains t ≥ 1 paths P4 and s ≥ 1 paths P3.

Case 1.1: u and v are adjacent.

By a convenient labeling for the vertices, L(G) can be seen written in
the following way:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t+ 1 −1 −1 · · · −1 −1 · · · −1 0 · · · 0

−1 s+ t+ 1 −1 · · · −1 0 · · · 0 −1 · · · −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

−1 −1 0 · · · 2 0 · · · 0 0 · · · 0

−1 0 0 · · · 0 2 · · · 0 −1 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

−1 0 0 · · · 0 0 · · · 2 0 · · · −1
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

0 −1 0 · · · 0 0 · · · −1 0 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Applying the Intermediate Value Theorem to the characteristic polyno-
mial associated to matrix obtained by Theorem 6 for the matrix L(G), we
conclude that there is a root in the interval (1, 2), and, consequently, G is
not L-integral.

Case 1.2: u and v are non-adjacent.

By a convenient labeling for the vertices, L(G) can be seen written in
the following way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t 0 −1 · · · −1 −1 · · · −1 0 · · · 0

0 s+ t −1 · · · −1 0 · · · 0 −1 · · · −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

−1 −1 0 · · · 2 0 · · · 0 0 · · · 0

−1 0 0 · · · 0 2 · · · 0 −1 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

−1 0 0 · · · 0 0 · · · 2 0 · · · −1
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

0 −1 0 · · · 0 0 · · · −1 0 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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According to Theorem 6, the eigenvalues of the matrix

RL(G) =

⎡⎢⎢⎢⎢⎢⎣
s+ t 0 −s −t 0
0 s+ t −s 0 −t
−1 −1 2 0 0
−1 0 0 2 −1
0 −1 0 −1 2

⎤⎥⎥⎥⎥⎥⎦
are eigenvalues of L(G), whose characteristic polynomial is p(λ) = λ5 +
(−2s− 2t− 6)λ4 + (s2 +2st+ t2 +10s+10t+11)λ3 + (−4s2 − 8st− 4t2 −
14s− 14t− 6)λ2 + (3s2 + 8st+ 4t2 + 6s+ 4t)λ. Then, we have:

(i) for s = 1 and t ≥ 2, p(λ) = λ(λ2−λ(4+ t)+3+2t)2, whose roots are

0, −
√
t2+4+t+4
2 with multiplicity 2, and

√
t2+4+t+4

2 with multiplicity 2

as well. As t <
√
t2 + 4 < t+ 1, p(λ) has non-integer roots ;

(ii) for s = 2 and t = 1, SpecL(G) = {4.73[1], 4[1], 2[2], 1.27[1], 0[1]};

(iii) for s = 2 and t = 2, SpecL(G) = {5.56[1], 5[1], 3[1], 2[2], 1.44[1], 1[1], 0[1]};

(iv) for s = 2 and t ≥ 3, p(λ) = (−2t − 10)λ4 + λ5 + (t2 + 14t +
35)λ3 + (−4t2 − 30t − 50)λ2 + (4t2 + 20t + 24)λ, whose roots are

0, 2, t + 3, −
√
t2+2t+9+t+5

2 ,
√
t2+2t+9+t+5

2 . As t + 1 <
√
t2 + 2t+ 9 <

t+ 2, p(λ) has non-integer roots ;

(v) for s ≥ 3 and t ≥ 1, p(2) = −2s2+4s < 0 and p(3) = 6st+3t2−6t > 0.
So, we conclude that there is a root in the interval (2, 3).

Therefore, in all previous cases we obtain that G is not L-integral.

Case 2: G contains t ≥ 1 paths P4, s ≥ 0 paths P3, and one path P5.

Case 2.1: u and v are adjacent. By a convenient labeling for the vertices,
L(G) can be seen written in the following way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s + t + 2 −1 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0
−1 s+ t + 2 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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.

Applying the Intermediate Value Theorem to the characteristic polyno-
mial associated to matrix obtained by Theorem 6 for the matrix L(G), we
conclude that there is a root in the interval (0.5, 1), and consequently G is
not L-integral.

Case 2.2: u and v are non-adjacent.
For s = 0 and t = 2, it is easy to see that G is not L-integral. By

a convenient labeling for the vertices, L(G) can be seen written in the
following way:

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t + 1 0 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0
0 s + t + 1 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Applying the same technique as in Case 2.1, we conclude that there is
a root in the interval (0.5, 1), and consequently G is not L-integral.

Case 3: G contains t ≥ 1 paths P4, s ≥ 1 paths P3 and one path P7.

Case 3.1: u and v are adjacent.
By a convenient labeling for the vertices, L(G) can be seen written in

the following way:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t+ 2 −1 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0 0 0
−1 s+ t + 2 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



1446 Anderson F. Novanta, Carla S. Oliveira and Leonardo de Lima

Applying the same technique as in Case 2.1, we conclude that there is
a root in the interval (0.5, 1), and consequently G is not L-integral.

Case 3.2: u and v are not adjacent.
By a convenient labeling for the vertices, L(G) can be seen written in

the following way:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+ t+ 1 0 −1 · · · −1 −1 · · · −1 0 · · · 0 −1 0 0 0 0
0 s+ t + 1 −1 · · · −1 0 · · · 0 −1 · · · −1 0 0 0 0 −1
−1 −1 2 · · · 0 0 · · · 0 0 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 −1 0 · · · 2 0 · · · 0 0 · · · 0 0 0 0 0 0
−1 0 0 · · · 0 2 · · · 0 −1 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−1 0 0 · · · 0 0 · · · 2 0 · · · −1 0 0 0 0 0
0 −1 0 · · · 0 −1 · · · 0 2 · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 −1 0 · · · 0 0 · · · −1 0 · · · 2 0 0 0 0 0
−1 0 0 . . . 0 0 . . . 0 0 . . . 0 2 −1 0 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 −1 2 −1 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 −1 2 −1 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 0 −1 2 −1
0 −1 0 . . . 0 0 . . . 0 0 . . . 0 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Applying the same technique as in Case 2.1, we conclude that there is
a root in the interval (0.5, 1), and consequently G is not L-integral. 2

Theorem 10. Let G ∈ G02 with n ≥ 9 vertices. Then G is L-integral if
and only if G ∼= K1 ∨ (r ·K1 ∪ s ·K2 ∪K1,t), where t ≥ 2 and r + s ≥ 2 or
G ∼= K2 ∨ (n− 2) ·K1.

Proof. Let G ∈ G02 with n ≥ 9 vertices. Suppose that G is L-integral.
From Theorem 1 (Section 4) and Propositions 2, 3, 4, 5, 7, 8 and 9 (Section
4) we conclude that G ∼= K1 ∨ (r · K1 ∪ s · K2 ∪ K1,t), where t ≥ 2 and
r + s ≥ 2 or G ∼= K2 ∨ (n− 2) ·K1 and the result follows. 2

By Theorems 11 (Section 2), 1 (Section 3) and 10 (Section 4), the proof
of Theorem 1 (Section 1) is complete.
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