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Abstract

Fractional metric dimension of connected graph G was introduced
by Arumugam et al. in [Discrete Math. 312, (2012), 1584-1590] as
a natural extension of metric dimension which have many applica-
tions in different areas of computer sciences for example optimiza-
tion, intelligent systems, networking and robot navigation. In this pa-
per fractional metric dimension of generalized prism graph Pm × Cn

is computed using combinatorial criterion devised by Liu et al. in [
Mathematics, 7(1), (2019), 100].
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1. Introduction and Preliminaries

Let G = (V (G), E(G)) be a finite simple connected graph and u, v ∈ V (G)
then d(u, v) denotes the length of shortest path between u and v in G. If the
ordering (v1, v2, . . . , vk) is imposed on W = {v1, v2, . . . , vk} ⊆ V (G), then
W is called ordered set. For u, v ∈ V (G), the resolving neighborhood of u
and v, denoted by R{u, v}, is given by the collection of all w ∈ V (G) which
are not equidistant from u and v. The vertex set W ⊆ V (G) is resolving
set of G if W ∩R{u, v} 6= ∅ for all distinct pair of vertices u, v in V (G) and
the minimum cardinality of such set is called metric dimension, dim(G), of
G. Slater [25, 26] and Harary et al. [15] independently introduced the con-
cept of locating set and resolving sets/ metric dimension respectively. The
metric dimension of different classes of graphs have been studied by many
authors ( see [15], [16], [17] and [18]). Khuller et al. [21] discussed metric
dimension as an application to the navigation of robots in a graph space
and showed its an NP-hard problem. Garey and Johnson [13] used reduc-
tion from 3D matching to show the minimum metric dimension problem is
NP-Complete for general graphs. In science, social science and technology
metric dimension of graphs possesses diverse applications. Pharmaceutical
chemistry [6], combinatorial optimization [23], drug discovery [7], deter-
mining routing protocols geographically[19] and telecommunication[3] are
some of them. For more applications see [4], [5], [8], [9], [10], [21] and [24].

Recently, fractionalization of various parameters of graphs are rapidly
developing. These ideas are being studied under the name of fractional
graph theory. For further details on fractional graph theory see [22]. The
problem of finding metric dimension dim(G) of a graph has been sug-
gested as an integer programming problem by Chartrand and Lesnaik
[8]. Afterwards Currie and Oellermann [10] described fractional metric
dimension to be the optimal solution of the linear relaxation of such prob-
lems. Fehr et al. [11] assert the equivalent formulation of fractional met-
ric dimension of graph G, as; suppose V (G) = W = {v1, v2, . . . , vn} and
Wp = {s1, s2, . . . , s(n2)} where si denotes the distinct pair of vertices in G.

Let A = (aij)(n2)×n
be a matrix with

aij =

⎧⎨⎩
1, if sivi ∈ E(R(G));

0, otherwise

where 1 ≤ i ≤
¡n
2

¢
, 1 ≤ j ≤ n and R(G) is the a bipartite graph with

bipartition (W,Wp) where vi ∈ W is connected to sj ∈ Wp if vi resolves
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it, called resolving graph of G. The integer programming construction of
metric dimension is describe as: Minimize f(x1, x2, . . . , xn) = x1 + x2 +
. . .+ xn subject to AX ≥ 1 where X = (x1, x2, . . . , xn)

T , xi ∈ {0, 1} and 1
is the

¡n
2

¢
×1 column vector all of whose entries are 1. The fractional metric

dimension of G is given by the optimal solution of the integer programming
relaxation of this integer programming problem after replacing xi ∈ {0, 1}
by 0 ≤ xi ≤ 1. Arumugam and Mathew [1] formulated fractional metric
dimension in terms of resolving functions.

A least function f : V (G) → [0, 1] is called minimal resolving function
of G if f(R{u, v}) = P

x∈R{u,v} f(x) ≥ 1 for any distinct pair of vertices
in V (G). min{|f | : f is a minimal resolving function of G} is called frac-
tional metric dimension ofG, denoted by dimf (G), where |f | =

P
v∈V (G) f(v).

Arumugam et al. [1, 2] determined fractional metric dimension of some
classes of graphs. Following theorem includes some of those classes.

Theorem 1.1. [1, 2]

1. For any n-cycle, dimf (Cn) =

⎧⎨⎩
n

n−2 , if n is even;

n
n−1 , if n is odd

2. For complete graph Kn, dimf (Kn) =
n
2

3. For Petersen graph P, dimf (P) = 5
3

Arumugam et al. [1, 2] initiated the problem of finding fractional met-
ric dimension of cartesian product of graphs and proved several results
including dimf (Pm × Pn) = 2 and dimf (P2 × Cn) when n is even. They
further proposed an open problem of finding dimf (P2×Cn) when n is odd.
This problem was addressed by Min Feng et al. in [12]. They prove that
P2×Cn being vertex transitive graph have fractional metric dimension

2n
n+1 .

This motivated us to compute fractional metric dimension of more general
case Pm × Cn. This class of graphs is known as generalized prism graph.
Moreover, this class of graphs is not vertex transitive since A × B is ver-
tex transitive if and only if A and B are vertex transitive (see [14]). The
path graph Pm is not vertex transitive for m ≥ 3. Recently Liu et al. [20]
calculated fractional metric dimension of generalized Jahangir graph using
combinatorial technique. The following theorem states the combinatorial
criterion proposed in [20] to compute fractional metric dimension of graphs.
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Theorem 1.2. [20] Let R = {Ri, Rj |i ∈ I and j ∈ J} be collection of all
pairwise resolving sets of G such that |Ri| = α < |Rj | and |Rj∩(∪Ri)| ≥ α,

then dimf (G) =
Pβ(G)

t=1
1
α where β(G) = | ∪i∈I Ri|.

In this paper, first section is reserved for introduction and preliminar-
ies. In Section 2 fractional metric dimension of generalized prism graph is
calculated by determining resolving neighborhoods of all possible pair of
distinct vertices in it. Finally, the paper is concluded in Section 3.

2. Fractional metric dimension of generalized prism graph
Pm × Cn.

In this section, we will compute the fractional metric dimension of gener-
alized prism graph Pm × Cn. For simplicity, throughout the paper, gener-
alized prism graph Pm × Cn is denoted by Gm,n. The vertex set of Gm,n

is {xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set consists of all edges between
two vertices if they have one common subscript, as shown in Fig. 1. For
any set A, Ac = V (Gm,n) \ A. Throughout this paper m ≥ 3. From now
on, fix one vertex on ith circle and label it as xi1, pair it with proceeding
n
2 vertices on the same circle and on circles at distance k where 1 ≤ k ≤ m
and compute resolving neighborhoods of these pair. Remaining vertices of
Gm,n behave symmetrically.

Figure 1: The Family of Graphs Gm,n

pc
dib-1
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The proof of main result depends upon parity of n (even or odd). There-
fore, in following subsections fractional metric dimension of Gm,n for n even
and odd are calculated separately by considering cardinalities of resolving
neighborhoods of distinct pair of vertices.

2.1. Fractional metric dimension of generalized prism graph Gm,n

graph when n is even.

In order to compute fractional metric dimension of Gm,n for n even, all
possible pair of vertices are classified depending upon distance between
them (even or odd). Following lemma gives the resolving neighborhood of
pair of vertices at odd distance.

Lemma 2.1. Let u, v ∈ V (Gm,n) for n even. If d(u, v) ≡ 1( mod 2), then
R{u, v} = V (Gm,n).

Proof. Let n be even, then Gm,n is bipartite. Assume u, v ∈ V (Gm,n)
such that d(u, v) ≡ 1( mod 2). Then, length of every u−v path is odd. On
contrary, suppose R{u, v} 6= V (Gm,n), then there exists x ∈ V (Gm,n) such
that x 6∈ R{u, v} and d(u, x) = d(v, x) = k. Choose k to be minimal. Let
P1 : u→ . . .→ xi and P2 : xi → . . .→ v be their respective path of length
k. Since P1 ∩ P2 = ∅ because of minimality of k. Therefore, P1 ∪ P2 is a
u− v path of length 2k. A contradiction. Hence, there is no x which does
not resolves the vertices u, v. 2

Now consider vertices u, v for which d(u, v) 6≡ 1( mod 2). Such possible
pairs may be lie on same or different circles in Gm,n. In the following
lemma resolving neighborhoods of pair of vertices lying on adjacent circles
is computed.

Lemma 2.2. If Gm,n be generalized prism graph where n is even, then
|R{xi1, x(i+1)2}| = mn

2 where 1 ≤ i ≤ m− 1. Moreover
|Sn−1

j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}| = mn.

Proof. Since R{xi1, x(i+1)2} =
(
{xts : 1 ≤ t ≤ i, 2 ≤ s ≤ 1 + n

2} ∪

{xt1, xts : i+ 1 ≤ t ≤ m, n2 + 2 ≤ s ≤ n}
)c

. Therefore, |R{xi1, x(i+1)2}| =
mn
2 . Further,

Sm−1
i=1 R{xij , x(i+1)(j+1)} = {x1(1+j), x1(2+j), . . . , x1(n

2
+j)}c.
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Implies thatSn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)} = V (Gm,n). 2

In the following lemma relation between the cardinalities of resolving
neighborhoods, computed in Lemma 2.1 and 2.2, has established.

Lemma 2.3. Let Gm,n be generalized prism graph where n is even. If
d(u, v) ≡ 1( mod 2), then |R{xi1, x(i+1)2}| ≤ |R{u, v}| and |R{u, v} ∩
(
Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}| where 1 ≤ i ≤ m− 1.

Proof. Result follows from Lemma 2.1 and 2.2 2

In the following lemma resolving neighborhoods of pair of vertices lying
on same circle are computed and their relation with resolving neighbor-
hoods computed in Lemma 2.2 has established.

Lemma 2.4. If Gm,n be generalized prism graph where n is even, then
|R{xi1, x(i+1)2}| ≤ |R{xil, xij}| and
|R{xil, xij} ∩ (

Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.

Proof. Proof is divided into the following two cases:

Case 1 When l, j are both either even or odd. Then,
R{xil, xij} = {x

t( l+j
2
)
, x

t( l+j+n
2

)
: 1 ≤ t ≤ m}c where 1 ≤ i ≤ m.

Implies that |R{xil, xij}| = mn − 2m ≥ |R{xi1, x(i+1)2}|. Clearly
R{xil, xij} ∩ (

Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}) = R{xil, xij}.

Case 2 When l, j are not both even or odd. Then, d(xil, xij) ≡ 1( mod 2)
where 1 ≤ i ≤ m. Thus, result follows from Lemma 2.3.

2

In the following two lemmas resolving neighborhoods of pair of vertices
lying on circles at distance k are computed.

Lemma 2.5. If Gm,n be generalized prism graph where n is even and m ≥
3, then |R{xi1, x(i+1)2}| ≤ |R{xij , x(i+k)j}| where 1 ≤ i + k ≤ m. Further

|R{xij , x(i+k)j} ∩ (
Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.
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Proof. Proof comprises of two cases:

Case 1 When k is odd. Then, R{xij , x(i+k)j} = V (Gm,n)

Case 2 When k is even. Then, R{xij , x(i+k)j} = {x(i+k
2
)s : 1 ≤ s ≤ n}c.

Both the cases implies |R{xij , x(i+2)j}| ∈ {mn, (m− 1)n}. Also,
R{xij , x(i+k)j} ∩ (

Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}) = R{xij , x(i+k)j}. 2

Lemma 2.6. If Gm,n be the generalized prism graph where n is even, then
|R{xi1, x(i+k)(1+j)}| ≥ |R{xi1, x(i+1)2}| where 1 ≤ i + k ≤ m. Further,

|R{xi1, x(i+k)(1+j)} ∩ (
Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.

Proof. Consider the following two cases to prove the claim:

Case 1 When k, j are not both even or odd. Then
d(xi1, x(i+k)(1+j)) ≡ 1( mod 2). Thus result follows from Lemma 2.3.

Case 2 When k, j are both either even or odd. Then the following subcases
arise:

Case 2.1 When k = j. Then,

R{xi1, x(i+k)(1+j)} =
(
{xts : 1 ≤ t ≤ i, j + 1 ≤ s ≤ 1 + n

2} ∪

{x(i+1)j , x(i+2)(j−1), . . . , x(i+j−1)2}∪{xt1, xts : i+j ≤ t ≤ m, n2 +

j + 1 ≤ s ≤ n} ∪ {x(i+1)(n
2
+2), x(i+2)(n

2
+3), . . . , x(i+j−1)(n

2
+j)}

)c

.

This shows |R{xi1, x(i+k)(1+j)}| = mn−(m+ n
2 −1+(m−j)(

n
2 −

j)). Which is least for j = 1, i.e., |R{xi1, x(i+k)(1+j)}| = mn
2 for

j = 1.

Case 2.2 When k ≥ j + 2. Then,

R{xi1, x(i+k)(1+j)} =
(
{x
(i+k−j

2
)s
: 1 + j ≤ s ≤ n

2 + 1} ∪

{x
(i+k−j

2
+1)j

, x
(i+k−j

2
+2)(j−1), . . . , x(i+k+j

2
)1
}∪{x

(i+k+j
2
)s
: 1+j+

n
2 ≤ s ≤ n}∪{x

(i+k−j
2
+1)(2+n

2
)
, x
(i+k−j

2
+2)(3+n

2
)
, . . . , x

(i+k+j
2
)(1+j+n

2
)
}
)c

.

This shows
|R{xi1, x(i+k)(1+j)}| = mn− n.
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Case 2.3 When j ≥ k + 2. Then,

R{xi1, x(i+k)(1+j)} =
(
{x

t( j+k
2
+1)

, x
t(n+j−k

2
+1)

: 1 ≤ t ≤ i} ∪

{x
(i+1)( j+k

2
)
, x
(i+2)( j+k

2
−1), . . . , x(i+k−1)( j−k

2
+2)
}∪{x

(i+1)(n+j−k
2

+2)
,

x
(i+2)(n+j−k

2
+3)

, . . . , x
(i+k−1)(n+j+k

2
)
}∪{x

t( j−k
2
+1)

, x
t(n+j+k

2
+1)

: i+

k ≤ t ≤ m}
)c

. Hence, |R{xi1, x(i+k)(1+j)}| = mn− 2m.

Combining all cases, |R{xi1, x(i+k)(1+j)}| ≥ |R{xi1, x(i+1)2}|. Moreover,
|R{xi1, x(i+k)(1+j)}∩(

Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| = |R{xi1, x(i+k)(1+j)}| ≥

|R{xi1, x(i+1)2}|. 2

In the following theorem fractional metric dimension of generalized
prism graph is calculated using Theorem 1.2.

Theorem 2.7. The fractional metric dimension of generalized prism graph
Gm,n;m ≥ 3 is n

dn
2
e , when n is even.

Proof. From Lemmas 2.1 to 2.6,

|R{xij , xlm} ∩ (
n−1[
j=1

m−1[
i=1

R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.

Thus, using Theorem 1.2 define the function f : V (Gm,n)→ [0, 1], defined
by f(v) = 2

mn for all v ∈ V (Gm,n), is a minimal resolving function. Hence,
dimf (Gm,n) = |f | =

P
f(v) = (mn)( 2

mn) = 2 =
n
dn
2
e . 2

2.2. Fractional metric dimension of generalized prism graph Gm,n

graph when n is odd.

In this subsection distinct vertices are classified on the bases of distance
between cycles on which they are lying in Gm,n and cardinalities of resolv-
ing neighborhoods of these pairs are calculated. Using these cardinalities
fractional metric dimension of Gm,n when n is odd is computed. In the fol-
lowing lemma resolving neighborhoods of pair of vertices lying on adjacent
cycles is determined.

Lemma 2.8. If Gm,n be generalized prism graph where n is odd, then

|R{xi1, x(i+1)2}| = m(n+1)
2 where 1 ≤ i ≤ m− 1. Moreover

|Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}| = mn.



Fractional metric dimension of generalized prism graph 1207

Proof. Since R{xi1, x(i+1)2} =
(
{xts : 1 ≤ t ≤ i, 2 ≤ s ≤ dn2 e} ∪ {xts :

i + 1 ≤ t ≤ m, dn2 e + 2 ≤ s ≤ n} ∪ {xt1 : i + 1 ≤ t ≤ m}
)c

. There-

fore, |R{xi1, x(i+1)2}| = m(n+1)
2 . Similarly, R{xi2, x(i+1)3} =

(
{xts : 1 ≤

t ≤ i, 3 ≤ s ≤ dn2 e + 1} ∪ {xts : i + 1 ≤ t ≤ m, dn2 e + 3 ≤ s ≤

n} ∪ {xt1, xt2 : i + 1 ≤ t ≤ m}
)c

. Continuing same procedure and

taking their union give
Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)} = V (Gm,n). Hence,

|Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}| = mn. 2

Now calculate the cardinality of resolving neighborhood of pair of ver-
tices lying on same cycle and compare it with cardinality given in Lemma
2.8.

Lemma 2.9. If Gm,n be generalized prism graph when n is odd, then
|R{xi1, x(i+1)2}| ≤ |R{xi1, xi(1+j)}|, where 1 ≤ j ≤ n− 1, 1 ≤ i ≤ m. Fur-

ther |R{xi1, xi(1+j)} ∩ (
Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.

Proof. Since

R{xi1, x(i)(1+j)} =

⎧⎨⎩
{xt(1+ j

2
)}
c, if j is even;

{xt(1+n+j
2
)}
c, if j is odd

where 1 ≤ i ≤ m. Therefore, |R{xi1, xi(1+j)}| = mn−m ≥ |R{xi1, x(i+1)2}|.
Clearly, R{xi1, xi(1+j)}∩(

Sn−1
j=1

Sm−1
i=1 R{xij , x(i+1)(j+1)}) = R{xi1, xi(1+j)}.

2

Now calculate the cardinality of resolving neighborhood of pair of ver-
tices lying on cycles at distance k and compare it with cardinality given
in Lemma 2.8. In the following lemma resolving neighborhood of vertices
lying on cycles at distance k and vertically aligned are determined.

Lemma 2.10. If Gm,n be generalized prism graph where n is odd and k be
a positive integer, then |R{xi1, x(i+1)2}| ≤ |R{xij , x(i+k)j}|. Where 1 ≤ j ≤
n, 1 ≤ i + k ≤ m. Further |R{xij , x(i+k)j} ∩ (

Sn−1
j=1 R{xij , x(i+1)(j+1)})| ≥

|R{xi1, x(i+1)2}|.
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Proof. Since

R{xij , x(i+k)j} =

⎧⎨⎩
V (G), if k is odd;

{x(i+k
2
)s : 1 ≤ s ≤ n}c, if k is even.

Therefore, |R{xij , x(i+k)j}| ∈ {mn, (m − 1)n} ≥ |R{xi1, x(i+1)2}|. Also

R{xij , x(i+k)j} ∩ (
Sn−1
j=1 R{xij , x(i+1)(j+1)}) = R{xij , x(i+k)j}. 2

In the following lemma resolving neighborhood of vertices lying on cy-
cles at distance k but are not vertically aligned, are computed.

Lemma 2.11. If Gm,n be generalized prism graph where n is odd and k
be a positive integer, then |R{xi1, x(i+1)2}| ≤ |R{xi1, x(i+k)(1+j)}|, where
1 ≤ j ≤ n− 1, 1 ≤ i+ k ≤ m. Further
|R{xi1, x(i+k)(1+j)} ∩ (

Sn−1
j=1 R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|.

Proof. The claim can be proved using the following cases:

Case 1 When k = j. Then, R{xi1, x(i+k)(1+j)} =
(
{xts : 1 ≤ t ≤ i, j+1 ≤

s ≤ dn2 e} ∪ {x(i+1)(j), x(i+2)(j−1), . . . , x(i+j−1)2} ∪ {xt1, xts : i + j ≤

t ≤ m, dn2 e + j + 1 ≤ s ≤ n}
)c

. This shows |R{xi1, x(i+k)(1+j)}| =

mn − (m + (m − j + 1)(n−12 − j)). Which is least for j = 1, i.e.,

|R{xi1, x(i+k)(1+j)}| = m(n+1)
2 for j = 1.

Case 2 When k < j. Then we have the following subcases:

Case 2.1 When both k and j are either even or odd. Then,

R{xi1, x(i+k)(1+j)} =
(
{x

t( j+k
2
+1)

: 1 ≤ t ≤ i}

∪ {x
(i+1)( j+k

2
)
, x
(i+2)( j+k

2
−1), . . . , x(i+k−1)( j−k

2
+2)
} ∪ {x

t( j−k
2
+1)

:

i+ k ≤ t ≤ m}
)c

.

Case 2.2 When k and j are not both even or odd. Then,

R{xi1, x(i+k)(1+j)} =
(
{x

t(n+j−k
2

+1)
: 1 ≤ t ≤ i}

∪{x
(i+1)(n+j−k

2
+2)

, x
(i+2)(n+j−k

2
+3)

, . . . , x
(i+k−1)(n+j+k

2
)
}∪{x

t(n+j+k
2

+1)
:

i+ k ≤ t ≤ m}
)c

.
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In both the cases |R{xi1, x(i+k)(1+j)}| = m(n− 1).

Case 3 When j < k. Then the following subcases arise:

Case 3.1 When both k and j are either even or odd. Then,

R{xi1, x(i+k)(1+j)} =
(
{x
(i+k−j

2
)s
: 1 + j ≤ s ≤ dn2 e}

∪ {x
(i+k−j

2
+1)j

, x
(i+k−j

2
+2)(j−1), . . . , x(i+k+j

2
)1
} ∪ {x

(i+k+j
2
)s
: 1 +

j + dn2 e ≤ s ≤ n}
)c

. This shows |R{xi1, x(i+k)(1+j)}| = mn −

n+ j. Which is minimum if j = 1 and is maximum if j = n− 1.

Case 3.2 When k and j are not both even or odd. Then,
R{xi1, x(i+k)(1+j)} = {x(i+dk−j

2
e)(1+dn

2
e), x(i+dk−j

2
e+1)(2+dn

2
e), . . . ,

x
(i+k+j+1

2
)(j+dn

2
e)}

c. This shows

|R{xi1, x(i+k)(1+j)}| = mn− j. Which is minimum if j = n− 1
and is maximum if j = 1.

Combining all above cases |R{xi1, x(i+1)2}| ≤ |R{xi1, x(i+k)(1+j)}|, Where
1 ≤ j ≤ n − 1, 1 ≤ i + k ≤ m. Furthermore R{xi1, x(i+k)(1+j)} ∩
(
Sn−1
j=1 R{xij , x(i+1)(j+1)}) = R{xi1, x(i+k)(1+j)}. 2

In the following theorem fractional metric dimension of generalized
prism graph is calculated using Theorem 1.2.

Theorem 2.12. The fractional metric dimension of generalized prism graph
Gm,n is

n
dn
2
e , when n is odd.

Proof. From Lemmas 2.8 to 2.11,

|R{xij , xlm} ∩ (
n−1[
j=1

m−1[
i=1

R{xij , x(i+1)(j+1)})| ≥ |R{xi1, x(i+1)2}|

. Thus, using Theorem 1.2, define a function f : V (Gm,n) → [0, 1] defined
by f(v) = 2

m(n+1) for all v ∈ V (Gm,n), is a minimal resolving function.

Hence, dimf (Gm,n) = |f | =
P

f(v) = (mn)( 2
m(n+1)) =

n
dn
2
e . 2
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3. Conclusion

In this paper a non vertex transitive class of graphs, generalized prism graph
Gm,n where m ≥ 3, have been discussed. The resolving neighborhoods of
all possible distinct pair of vertices in Gm,n are computed. Their cardinali-
ties are used to calculate its fractional metric dimension. It is worth noting
that results presented in this paper not only verify results in [2] and [12]
for m = 2 but are their natural extension.

Acknowledgement: The authors are grateful to the editor and reviewers
for the careful reading and several suggestions to improve the manuscript.
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