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Abstract

This paper advances the corona product to n times corona in the
aspect of increasing and decreasing product of graphs and calibrates its
energy and basic reproduction number. The proposed model emanates
as a graph with successive generations of complexity, whose structure
is constructed as a matrix based on its adjacency. The energy is mea-
sured from the sum of the absolute values of the eigenvalues of the
adjacency matrix of graph G and the largest eigenvalue is known to be
R0. The energy upper bound for increasing and decreasing n-corona
product with order 1 of complete graphs are attained.
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1. Introduction

The airborne infectious diseases like SARS, MERS, SARS-CoV-2, etc
mainly spread through direct, indirect or close contact between infected
people and people. It is difficult to measure the outbreak in a population.
The mathematical modeling plays a vital role in measuring, analyzing and
controlling epidemic outbreaks. The disease propagation of epidemiological
models like SIS, SIR, SIER, SEQIR and various other models are discussed
in [1, 2].

In this context the people is considered as vertices V and their con-
tact between them as edges E which is represented as a graph G(V,E).
More precisely, the first infected person host transmits to a pair of two
conected persons and all the infected persons each in turn transmits to
three connected persons and so on with increase of order 1 in every subse-
quent generation. This type of mediation can be modelled as an increasing
n corona product of graphs with order 1. Analogously a set of all n infected
individuals transmits to n − 1 connected persons, each in turn transmits
to n − 2 associated individuals and so on with decrease of order 1 in suc-
cessive generations. This sort of transmission is modelled as decreasing n
corona product of graphs. Here the adjaceny matrix of these graphs are
considered as the next generation matrix. But the outbreaks in real envi-
ronments will not be uniform and has substantial change in random order
of increase or decrease. In this paper the proposed model is confined to the
study of increasing and decreasing n corona product of graphs with order
1. Both these provides the possibility of generating graphs with different
random order. The inception of corona product of two graphs was made by
Frucht and Harary [3] in 1970. Tavakoli et al [4] studied the corona product
of graphs. Kaliraj et al. [5] investigated the equitable coloring on corona
product of graphs. Further Furmaǹcyzk and Kubale analyzed corona prod-
uct of cubic graphs [6] and multiproduct graph G ◦l H [7]. The model
introduced in this paper is almost the extended idea of l-corona product
graph.

The energy of a graph emerges from chemistry owing to importance of
total π-electron energy of carbon compounds. It is defined as the sum of
the absolute values of the eigenvalues of the adjacency matrix of G and
was introduced by Gutman [8]. The study of various graph energy can be
found in many papers, see e.g. [9, 10]. Liu et al. [11] performed the study
on upper bounds for energy of graphs. In another work, Das et al [12]
and Sridhara et al [13] investigated the improved bounds for graph energy.
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The notion of finding the energy for corona product of graphs is a recent
approach. The dominant eigenvalue of the next generation matrix is called
as the basic reproduction number R0 and was introduced by Diekmann
et al et al. [14] in 1990. The estimation of R0 was performed by Diekz
[15]. If R0 < 1 the disease is under control and if R0 > 1 the disease
can invade. Hence R0 trace the intensity of an infectious disease outbreak.
The largest eigenvalue of the adjacency matrix of a graph G is called the
spectral radius of G, which is analogous to R0. Barik et al. [16] intiated the
spectrum of corona of two graphs and also studied by Cam McLeman and
Erin McNicholas [17]. Recently Vivik and Xavier [20] worked on 2-corona
product among different graphs and calculated its energy.

In this paper the concept of increasing and decreasing n-Corona product
of graphs with order 1 are established. The energies of both such complete
graphs are determined and its nearest bounds are calibrated. The reason
behind the choice of complete graphs is that, it has higher degree of con-
tacts in all nodes than other graphs. Also the basic reproduction number
is obtained from the dominant eigenvalue of the next generation matrix
of these graphs. The magnitude of R0 helps in analyzing the preventive
measures to be adopted to control the epidemic. Not only in epidemics this
type can be applied in compter networks where different kinds of malicious
objects attack computer systems, robots and mobiles etc.

2. Increasing and Diminishing Corona Product of Graphs

Definition 2.1. [4] The corona product of G and H is the graph G ◦ H
obtained by taking one copy of G, called the center graph, |V (G)| copies
of H, called the outer graph, and making the ith vertex of G adjacent to
every vertex of the ith copy of H, where 1 ≤ i ≤ |V (G)|.

Definition 2.2. (Energy) [9]
Let G be a graph having n vertices and if A(G) is the adjacency square
matrix of order n whose (i, j)th-entry is defined as

aij =

(
1, if vertices vi and vj are adjacent
0, otherwise.

Let λ1, λ2, . . . , λn are the eigenvalues of A(G). The energy of a graph
E(G) is defined as the sum of the absolute values of its eigenvalues. Hence
E(G) =

Pn
i=1 |λi|. It is also known as simply energy or ordinary energy of

a graph.



838 Veninstine Vivik J.

Definition 2.3. [2] [18] The basic reproduction number R0 is defined as
the average number of secondary infections resulting from the index case in
a wholly susceptible population. Also it is defined mathematically as the
dominant eigenvalue of the next generation matrix.

Definition 2.4. Let G1 be a graph of order 1 and G2 be the next genera-
tion of any graph with order 2. Consider one copy of G1 as the center graph
and join 2 copies of G2 such that the one vertex of G1 is adjacent to every
vertex of the two copies of G2, is called the first corona and similarly the
corona product of upcoming r, (2 ≤ r ≤ n − 1) generations of any graphs
Gr+1 whose orders are increased by 1 is obtained by joining successively

pr copies of Gr+1 where pr = 2
n−2Y
k=1

(1 + k). Accordingly in rth generation

the ith vertex of Gr is adjacent to every vertex of i
th copy of Gr+1, where

1 ≤ i ≤ pr , 2 ≤ r ≤ n− 1 is known as the Increasing n-corona product of
order 1 and is denoted by Gr−1 ◦n+1 Gr, 2 ≤ r ≤ n .

Figure 1: 4-Corona product graph Gr−1 ◦4+1 Gr, 2 ≤ r ≤ 4.

Definition 2.5. Let G1 be any graph of order n and G2 be the first gen-
eration of any graph with order n − 1, take one copy of G1 as the center
graph and join n copies of G2 such that the i

th vertex of G1 is adjacent to
every vertex of the ith copy of G2, where 1 ≤ i ≤ n is called the first corona
and similarly the corona product of following r, (2 ≤ r ≤ n−1) generations
of any graphs Gr+1 whose orders are reduced by 1 is obtained by joining
successively pr copies of Gr+1 where

Marisol Martínez
f-1
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pr =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n, for r = 2 and n = 3
r−1Y
k=1

n(n− k), for 2 ≤ r ≤ n− 2 and n > 3

r−2Y
k=1

n(n− k), for r = n− 1, and n > 3.

Consequently in rth generation the jth vertex on each copy of Gr is
adjacent to every vertex of the jth copy of Gr+1, where 1 ≤ j ≤ pr, 2 ≤
r ≤ n − 1 is known as the Decreasing n-corona product of order 1 and is
denoted by Gr−1 ◦n−1 Gr, 2 ≤ r ≤ n.

Figure 2: 4-Corona product graph Gr−1 ◦4−1 Gr, 2 ≤ r ≤ 4.

Lemma 2.6. [19] Let λ = (λi) be a real non null n × 1 vectors, m =
λ0e
n , s

2 = λ0Cλ
n where e is the n × 1 vector of ones, the centering matrix

C = I − ee0

n , e
0 is the transpose of e and λ1 ≥ λ2 ≥ . . . ≥ λn then λn ≤

m− s

(n−1)
1
2
≤ m+ s

(n−1)
1
2
≤ λ1.

Theorem 2.7. [8] For a graph G on n vertices and having m edges, it is
shown that

E(G) ≤ 2m
n
+

vuut(n− 1) "2m− µ2m
n

¶2#

while if G is k-regular, E(G) ≤ k +
p
k(n− 1)(n− k).

Marisol Martínez
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Theorem 2.8. [9] For each > 0, there exist infinitely many n for each
of which there exists a k-regular graph G of order n with k < n − 1 and

E(G)

k+
√
k(n−1)(n−k)

< .

Theorem 2.9. [10] If m ≤ n and A is an m× n nonnegative matrix with

maximum entry α, then ε(A) ≤ α (m+
√
m)
√
n

2 .

Theorem 2.10. [13] Let G be a graph with n ≥ 3 vertices and m edges.

If n2 ≥ 4m, then ε(G) ≤ 2m
n +

q
2m
n +

q
(n− 2)(2m− 2m

n −
4m2

n2 ). Equality
holds iff G is n

2K2.

In the following section, basic reproduction number, graph energy and
its bound for n times corona of graphs are determined.

3. Energy of Increasing and Decreasing n-corona product of
order 1 for complete graph

Theorem 3.1. Let Kr−1◦n+1Kr, 2 ≤ r ≤ n be increasing n-corona product
of order 1 of complete graphs then its energy E ≤ 4n! + 4(n− 1)!− 4.

Proof. The increasing n-corona product of order 1 of complete graphs
G = Kr−1 ◦n+1 Kr, 2 ≤ r ≤ n consists of p vertices and q edges where

p = 1 +
nX

s=2

"
2
s−1Y
m=1

(1 +m)

#
and q = 6 +

nX
s=3

"
2
s−2Y
m=1

(1 +m).
s(s− 1)
2

#
+

nX
s=3

"
2
s−1Y
m=1

(1 +m)

#
respectively. Its adjacency matrix is

A(G) =

(
1, if i and j are adjacent
0, if i and j are non- adjacent.

The adjacency situations of G = Kr−1 ◦n+1 Kr are with 1’s on
i = 1, j = 2, 3, 4, 5
j = 1, i = 2, 3, 4, 5
i = 2, j = 3
i = 4, j = 5
i = 3, j = 2
i = 5, j = 4

Let ν = 2
n−2Y
m=1

(1+m), µ0 = 1+
n−2X
s=1

"
2

sY
m=1

(1 +m)

#
and µ1 = 1+

n−3X
s=1

"
2

sY
m=1

(1 +m)

#



Energy and basic reproduction number of n-Corona graphs prior ...841

For 1 ≤ k ≤ ν and if r = 2,
i = k + 1, k(1 + r) + 3 ≤ j ≤ (k + 1)(1 + r) + 2
j = k + 1, k(1 + r) + 3 ≤ i ≤ (k + 1)(1 + r) + 2

for 3 ≤ r ≤ n− 1
i = k + µ1

µ0 − (1 + r) + k(1 + r) + 1 ≤ j ≤ µ0 − (1 + r) + (k + 1)(1 + r)

Likewise if j = k + µ1
µ0 − (1 + r) + k(1 + r) + 1 ≤ i ≤ µ0 − (1 + r) + (k + 1)(1 + r)

Also if r = 2
k(1 + r) + 3 ≤ i ≤ (k + 1)(1 + r) + 2,
k(1 + r) + 3 ≤ j ≤ (k + 1)(1 + r) + 2

for 3 ≤ r ≤ n− 1
µ0 − (1 + r) + k(1 + r) + 1 ≤ i ≤ µ0 − (1 + r) + (k + 1)(1 + r)
µ0 − (1 + r) + k(1 + r) + 1 ≤ j ≤ µ0 − (1 + r) + (k + 1)(1 + r)

The non-adjacency situations are with 0’s on i = j and elsewhere. Based
on this situations the adjacency matrix of G is formulated as follows.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 · · · vp−1 vp

v1 0 1 1 1 1 0 0 . . . 0 0
v2 1 0 1 0 0 1 1 . . . 0 0
v3 1 1 0 0 0 0 0 . . . 0 0
v4 1 0 0 0 1 0 0 . . . 0 0
v5 1 0 0 1 0 0 0 . . . 0 0
v6 0 1 0 0 0 0 0 . . . 0 0
v7 0 1 0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
. . .

...
...

vp−1 0 0 0 0 0 0 0 . . . 0 1
vp 0 0 0 0 0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Set det (A(G)− λI) = 0. The characteristic equation of this adjacency
matrix with order p is of the form (−λ)p+tr(−λ)p−1+. . .+det(A) = 0 which
has exactly p roots. Therfore there should be p eigenvalues λ1, λ2, . . . , λp.
From lemma 2.6, λ1 ≥ λ2 ≥ . . . ≥ λp.

The largest eigenvalue λ1 is the basic reproduction number. i.e., R0 =
λ1
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The energy E =
pX

i=1

|λi|.

It is clear that for n-corona of complete graph E1 < E2 < . . . < Ep.
By Cauchy Schwarz inequalityÃ pX

i=1

|λi|
!2
≤

pX
i=1

|1|
pX

i=1

|λi|2

⎛⎝p−1X
i=2

|λi|− |λ1|− |λp|

⎞⎠2 ≤
⎛⎝p−1X

i=2

|1|− 2

⎞⎠⎛⎝p−1X
i=2

|λi|2 − |λ1|2 − |λp|2
⎞⎠

p−1X
i=2

|λi| ≤ |λ1|+ |λp|+

vuuut(p− 2)
⎛⎝p−1X

i=2

|λi|2 − |λ1|2 − |λp|2
⎞⎠

E(G) ≤

⎡⎢⎣|λ1|+ |λp|+
vuuut(p− 2)

⎛⎝p−1X
i=2

|λi|2 − |λ1|2 − |λp|2
⎞⎠
⎤⎥⎦

Now let |λ1| = x and |λp| = y

E(G) ≤

⎡⎢⎣x+ y +

vuuut(p− 2)
⎛⎝p−1X

i=2

|λi|2 − x2 − y2

⎞⎠
⎤⎥⎦

Construct the function

f(x, y) =
1
√
p

"
x+ y +

r
(p− 2)

n
(4n! + 4(n− 1)!− 4)2 − x2 − y2

o #

The first and second order derivatives of the function f(x, y) are

fx =
1
√
p
− x(p− 2)
√
p
q
(p− 2) {(4n! + 4(n− 1)!− 4)2 − x2 − y2}

,

fy =
1
√
p
− y(p− 2)
√
p
q
(p− 2) {(4n! + 4(n− 1)!− 4)2 − x2 − y2}

,

fxx = −
√
p− 2

h
{4n! + 4(n− 1)!− 4}2 − y2

i
√
p
h
{4n! + 4(n− 1)!− 4}2 − x2 − y2

i 3
2

,
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fyy = −
√
p− 2

h
{4n! + 4(n− 1)!− 4}2 − x2

i
√
p
h
{4n! + 4(n− 1)!− 4}2 − x2 − y2

i 3
2

,

and

fxy = fyx = −
xy
√
p− 2

√
p
h
{4n! + 4(n− 1)!− 4}2 − x2 − y2

i 3
2

.

The Hessian matrix is defined by

∆2f(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
p−2[{4n!+4(n−1)!−4}2−y2]

√
p[{4n!+4(n−1)!−4}2−x2−y2]

3
2

− xy
√
p−2

√
p[{4n!+4(n−1)!−4}2−x2−y2]

3
2

− xy
√
p−2

√
p[{4n!+4(n−1)!−4}2−x2−y2]

3
2

−
√
p−2[{4n!+4(n−1)!−4}2−x2]

√
p[{4n!+4(n−1)!−4}2−x2−y2]

3
2

Equating the partial derivatives fx and fy of the function to zero.

1− x(p−2)√
(p−3){(4n!+4(n−1)!−4)2−x2−y2}

= 0⇒ x2(p−1)+y2 = {4n! + 4(n− 1)!− 4}2

1− y(p−2)√
(p−3){(4n!+4(n−1)!−4)2−x2−y2}

= 0⇒ x2+y2(p−1) = {4n! + 4(n− 1)!− 4}2

solving the above two equations

x = y = ± 1
√
p
{4n! + 4(n− 1)!− 4} .

Therefore the critical points are
³
±4n!+4(n−1)!−4√

p ,±4n!+4(n−1)!−4√
p

´
The Hessian at the critical point is

∆2f(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(p−1)
(p−2)[4n!+4(n−1)!−4]
− 1

(p−2)[4n!+4(n−1)!−4]
− 1

(p−2)[4n!+4(n−1)!−4]
− (p−1)

(p−2)[4n!+4(n−1)!−4]

which is a negative definite and makes a local maximum of the function.

So f
³
±4n!+4(n−1)!−4√

p ,±4n!+4(n−1)!−4√
p

´
≥ f(x, y) which implies

f(x, y) ≤ 4n! + 4(n− 1)!− 4
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Thus it is successfully bounded above function with a point of local

maximum at
³
4n!+4(n−1)!−4√

p , 4n!+4(n−1)!−4√
p

´
.

In consequence E(G) ≤ 4n! + 4(n− 1)!− 4. 2

Illustration: The following table illustrates the energy bounds and basic
reproduction number for increasing n-Corona of complete graph with order
1.

Graphs Vertices Edges Energy Energy bound Dominant
Kr−1 ◦n+1 Kr, p q ε E Eigenvalue R0
2 ≤ r ≤ n

Kr−1 ◦3+1 Kr, 17 30 27.5489 28 3.7637
2 ≤ r ≤ 3,

Kr−1 ◦4+1 Kr, 65 150 114.5435 116 4.9735
2 ≤ r ≤ 4

Kr−1 ◦5+1 Kr, 305 870 562.9675 572 6.2860
2 ≤ r ≤ 5

Kr−1 ◦6−1 Kr, 1745 5910 3307.9 3556 7.6078
2 ≤ r ≤ 6

Kr−1 ◦7−1 Kr, 11825 46230 22762 23036 8.9137
2 ≤ r ≤ 7

Table 3.1: E and R0 of increasing n-Corona of complete graph with order
1.
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Figure 3: Increasing 4-Corona of complete graph with order 1.

Theorem 3.2. LetKr−1◦n−1Kr, 2 ≤ r ≤ n be decreasing n-corona product
of order 1 of complete graphs then its energy E ≤ 4n!− 2(n− 1)!.

Proof. The decreasing n-corona product of order 1 of complete graphs
G = Kr−1 ◦n−1 Kr, 2 ≤ r ≤ n consists of p vertices and q edges respectively

as p = n+
nX

s=3

"
n

s−2Y
m=1

(n−m)

#
+U while U =

⎧⎪⎨⎪⎩
, if n = 3

n
n−3Y
m=1

(n−m), for n > 3.

and q =
n−2X
s=1

"
n

sY
m=1

(n−m)

2
+ n

sY
m=1

(n−m)

#
+n

n−2Y
m=1

(n−m)

2
+n

n−2Y
m=1

(n−

m).

Marisol Martínez
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Its adjacency matrix is

A(G) =

(
1, if i and j are adjacent
0, if i and j are non- adjacent.

The adjacency of G = Kr−1 ◦n−1 Kr are with 1’s on
i = 1, j = 2, 3, . . . , n
j = 1, i = 2, 3, . . . , n
2 ≤ i ≤ n, 2 ≤ j ≤ n and i 6= j
if i ≤ n, (i− 1)(n− 1) + 1 + n ≤ j ≤ i(n− 1) + n
if j ≤ n, (j − 1)(n− 1) + 1 + n ≤ i ≤ j(n− 1) + n
for 1 ≤ l ≤ n,
n+ (l − 1)(n− 1) + 1 ≤ i ≤ l(n− 1) + n,
n+ (l − 1)(n− 1) + 1 ≤ j ≤ l(n− 1) + n

for 1 ≤ m ≤ n
n−3Y
r=1

(n− r),

if r = 2, n+ n(n− 1) + (m− 1)(n− 2) + 1 ≤ i ≤ n+ n(n− 1) +m(n− 2),
n+ n(n− 1) + (m− 1)(n− 2) + 1 ≤ j ≤ n+ n(n− 1) +m(n− 2)

if r > 2,

n + n(n − 1) + n
n−3Y
r=1

(n − r) + (m − 1)(n − r) + 1 ≤ i ≤ n + n(n − 1) +

n
n−3Y
r=1

(n− r) +m(n− r),

i ≤ n+
n−2X
s=1

"
sY

r=1

n(n− r)

#

n + n(n − 1) + n
n−3Y
r=1

(n − r) + (m − 1)(n − r) + 1 ≤ j ≤ n + n(n − 1) +

n
n−3Y
r=1

(n− r) +m(n− r),

j ≤ n+
n−2X
s=1

"
sY

r=1

n(n− r)

#
When n > 4 and r = 2,

i = n+m,n+n
n−3Y
r=1

(n−r)+(m−1)(n−r)+1 ≤ j ≤ n+n
n−3Y
r=1

(n−r)+m(n−r)

j = n+m,n+n
n−3Y
r=1

(n−r)+(m−1)(n−r)+1 ≤ i ≤ n+n
n−3Y
r=1

(n−r)+m(n−r)
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Also if r > 2, i = n+ n
n−4Y
r=1

(n− r) +m,

n + n(n − 1) + n
n−3Y
r=1

(n − r) + (m − 1)(n − r) + 1 ≤ j ≤ n + n(n − 1) +

n
n−3Y
r=1

(n− r) +m(n− r)

and j = n+ n
n−4Y
r=1

(n− r) +m,

n + n(n − 1) + n
n−3Y
r=1

(n − r) + (m − 1)(n − r) + 1 ≤ i ≤ n + n(n − 1) +

n
n−3Y
r=1

(n− r) +m(n− r)

For 1 ≤ x ≤ n
n−3Y
r=1

(n − r) and j = n +
n−2X
s=1

"
sY

r=1

n(n− r)

#
+ x, it can

have both

i = n+
n−2X
s=1

"
n

sY
r=1

(n− r)

#
− n

n−2Y
r=1

(n− r) + 2x− 1

and i = n+
n−2X
s=1

"
n

sY
r=1

(n− r)

#
− n

n−2Y
r=1

(n− r) + 2x.

Similarly for i = n+
n−2X
s=1

"
sY

r=1

n(n− r)

#
+ x,

j = n+
n−2X
s=1

"
n

sY
r=1

(n− r)

#
− n

n−2Y
r=1

(n− r) + 2x− 1

and j = n+
n−2X
s=1

"
n

sY
r=1

(n− r)

#
− n

n−2Y
r=1

(n− r) + 2x.

The non-adjacency situations are with 0’s on i = j and elsewhere. Based
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on this situations the adjacency matrix of G is formulated as follows.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 · · · vn vn+1 vn+2 · · · vp−1 vp

v1 0 1 1 . . . 1 1 1 . . . 0 0
v2 1 0 1 . . . 1 0 0 . . . 0 0
v3 1 1 0 . . . 1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

vn 1 1 1 . . . 0 0 0 . . . 0 0
vn+1 1 0 0 . . . 0 0 1 . . . 0 0
vn+2 1 0 0 . . . 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

vp−1 0 0 0 . . . 0 0 0 . . . 0 0
vp 0 0 0 . . . 0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Set det (A(G)− λI) = 0. The characteristic equation of this adjacency

matrix with order p is of the form (−λ)p+tr(−λ)p−1+. . .+det(A) = 0 which
has exactly p roots. Therfore there should be p eigenvalues λ1, λ2, . . . , λp.
By lemma 2.6, λ1 ≥ λ2 ≥ . . . ≥ λp.

Here the dominant eigenvalue λ1 is identified as the basic reproduction
number. i.e., R0 = λ1

The energy E =
pX

i=1

|λi|.

It is clear that for n-corona of complete graph E1 < E2 < . . . < Ep.
By applying Cauchy Schwarz inequality as in the proof of theorem 3.1,

it follows that

E(G) ≤

⎡⎢⎣|λ1|+ |λp|+
vuuut(p− 2)

⎛⎝p−1X
i=2

|λi|2 − |λ1|2 − |λp|2
⎞⎠
⎤⎥⎦

Now let |λ1| = x and |λp| = y

E(G) ≤

⎡⎢⎣x+ y +

vuuut(p− 2)
⎛⎝p−1X

i=2

|λi|2 − x2 − y2

⎞⎠
⎤⎥⎦

Consider the function

f(x, y) =
1
√
p

"
x+ y +

r
(p− 2)

n
(4n!− 2(n− 1)!)2 − x2 − y2

o #
(3.1)
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Differentiation of the function f(x, y) partially with respect to x and y
upto second order are

fx =
1
√
p
− x(p− 2)
√
p
q
(p− 2) {(4n!− 2(n− 1)!)2 − x2 − y2}

,

fy =
1
√
p
− y(p− 2)
√
p
q
(p− 2) {(4n!− 2(n− 1)!)2 − x2 − y2}

,

fxx = −
√
p− 2

h
{4n!− 2(n− 1)!}2 − y2

i
√
p
h
{4n!− 2(n− 1)!}2 − x2 − y2

i 3
2

,

fyy = −
√
p− 2

h
{4n!− 2(n− 1)!}2 − x2

i
√
p
h
{4n!− 2(n− 1)!}2 − x2 − y2

i 3
2

,

and

fxy = −
xy
√
p− 2

√
p
h
{4n!− 2(n− 1)!}2 − x2 − y2

i 3
2

.

For the detection of maxima or minima equate the partial derivatives
fx and fy of the function to zero.

1− x(p− 2)q
(p− 3) {(4n!− 2(n− 1)!)2 − x2 − y2}

= 0

⇒ x2(p− 1) + y2 = {4n!− 2(n− 1)!}2

1− y(p− 2)q
(p− 3) {(4n!− 2(n− 1)!)2 − x2 − y2}

= 0

⇒ x2 + y2(p− 1) = {4n!− 2(n− 1)!}2

solving the above two equations, the stationary points are

x = y = ± 1
√
p
{4n!− 2(n− 1)!} .

At this point the values are

fxx = fyy = −
p− 1

(p− 2) (4n!− 2(n− 1)!) ≤ 0,
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fxy = −
1

(p− 2) (4n!− 2(n− 1)!) ≤ 0.

But
∆ = fxx.fyy − (fxy)2 =

p

(p− 2) (4n!− 2(n− 1)!)2
≥ 0.

Hence f(x, y) attains the maximum value at x = y = 1√
p (4n!− 2(n− 1)!).

The maximum value of the function is obtained by switching the values
of x and y in (1).

So f
³
±4n!+2(n−1)!√

p ,±4n!+2(n−1)!√
p

´
= 4n!− 2(n− 1)! which implies

E(G) ≤ 4n! + 2(n− 1)!

Thus it proves to be the upper bounded. 2

Illustration:
The following table shows the energy bounds and basic reproduction

number for decreasing n-Corona of complete graph with order 1.

Graphs Vertices Edges Energy Energy bound Dominant
Kn−r+2 ◦n−1 Kn−r+1, p q ε E Eigenvalue R0

2 ≤ r ≤ n

K3−r+2 ◦3−1 K3−r+1, 12 18 18.1290 20 3.2361
2 ≤ r ≤ 3,

K4−r+2 ◦4−1 K4−r+1, 52 90 83.2330 84 4.5616
2 ≤ r ≤ 4

K5−r+2 ◦5−1 K5−r+1, 265 480 431.5432 432 5.9304
2 ≤ r ≤ 5

K6−r+2 ◦6−1 K6−r+1, 1596 2925 2609 2640 7.2808
2 ≤ r ≤ 6

K7−r+2 ◦7−1 K7−r+1, 11179 20538 18287 18720 8.6073
2 ≤ r ≤ 7

Table 3.2: E and R0 of decreasing n-Corona of complete graph with order
1.



Energy and basic reproduction number of n-Corona graphs prior ...851

Figure 4: Diminishing 4-Corona of complete graph with order 1.

4. Conclusion

The phenomena of corona graphs is observed as a unit of some basic graph
being duplicated and joined at every vertex of the existing graph. Such
duplication of random graphs can be extended n times and joined suc-
cessively to form n-corona product of graphs and this area of research is
wide open. In this paper, the n-corona product of complete graphs with
increasing and decreasing order 1 was employed. It is hard to find out
the bounds of these graphs due to mass and complexity of data. However,
the matrix formation of such graphs helps in determining the energy and
basic reproduction number, which has extensive applications in the field of
mathematics, chemistry and biological sciences.

Marisol Martínez
f-4
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