Stability problem in a set of Lebesgue measure zero of bi-additive functional equation

Rachid El Ghali
University of Ibn Tofail, Morocco
and
Samir Kabbaj
University of Ibn Tofail, Morocco
Received: January 2021. Accepted: November 2021

Abstract

Let X be a vector space and Y be a Banach space. Our aim in this paper is to investigate the Hyers-Ulam stability problem of the following bi-additive functional equation $$
f(x+y, s-t)+f(x-y, s+t)=2 f(x, s)-2 f(y, t), \quad x, y, s, t \in X
$$ where $f: X \times X \rightarrow Y$. As a consequence, we discuss the stability of the considered functional equation in a restricted domain and in the set of Lebesgue measure zero.

Keywords: Bi-additive functional equation; Hyers-Ulam stability; functional equation; Baire category theorem; First category; Lebesgue measure.

1. Introduction

Let X be a vector space and Y be a Banach space. Throughout this paper, we denote by \mathbf{N} the set of natural numbers, $\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$ and by \mathbf{R} the set of real numbers.

In 1989, Aczél and Dhombres [1] proved that a mapping $g: X \rightarrow Y$ satisfies the following quadratic functional equation

$$
g(x+y)+g(x-y)=2 g(x)+2 g(y)
$$

if and only if there exists a symmetric bi-additive mapping $B: X \times X \rightarrow Y$ such that $g(x)=B(x, x)$ where

$$
B(x, y)=\frac{1}{4}(g(x+y)-g(x-y)), \quad x, y \in X
$$

We recall that a function $f: X \times X \rightarrow Y$ is bi-additive provided

$$
f(x+y, s)=f(x, s)+f(y, s) \quad \text { and } \quad f(x, s+t)=f(x, s)+f(x, t)
$$

for all $x, t, s, t \in X$. Consider the functional equation

$$
\begin{equation*}
f(x+y, s-t)+f(x-y, s+t)=2 f(x, s)-2 f(y, t), \quad x, y, s, t \in X \tag{1.1}
\end{equation*}
$$

It is easy to show that $f: X \times X \rightarrow Y$ is bi-additive, if and only if, it fulfils Eq. (1.1) for every $x, y, s, t \in X$. Therefore, we can say that Eq. (1.1) is a bi-additive functional equation.
W. G. Park and J. H. Báe [23] have solved and have investigated the stability of Eq. (1.1) in Banach modules over an unital C^{*}-algebra. In 2017, J. Berzdȩk et al. [12] have proved the stability and hyperstability of Eq. (1.1) by using fixed point theorem as a basic tool under some weak assumptions. Let us mention that the concept of stability problem has been a very popular subject of investigation for the last eighty years. The study of such problem was motivated by the following question of S.M. Ulam [28] in 1940.

Ulam's Problem:Let $\left(G_{1}, *_{1}\right)$ be a group and let $\left(G_{2}, *_{2}\right)$ be a metric group with a metric $d(.,$.$) . Given \varepsilon>0$, does there exists a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d\left(h\left(x *_{1} y\right), h(x) *_{2} h(y)\right)<\delta
$$

for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\varepsilon
$$

for all $x \in G_{1}$?
The affirmative answer of this question is the equation of homomorphism $h\left(x *_{1} y\right)=h(x) *_{2} H(y)$ is stable.
In 1941, D. H. Hyers [17] published the first answer to Ulam's problem in the case of Banach spaces as follows

Theorem 1.1. [17] Let E_{1} and E_{2} be two Banach spaces and $f: E_{1} \rightarrow E_{2}$ be a function such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for some $\delta>0$ and for all $x, y \in E_{1}$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in E_{1}$, and $A: E_{1} \rightarrow E_{2}$ is the unique additive function such that

$$
\|f(x)-A(x)\| \leq \delta
$$

for all $x \in E_{1}$.
In 1950, T. Aoki [2], D. G. Bourgin [4] considered the stability problem with unbounded Cauchy differences. In 1978, Th. M. Rassias [24] provided a generalization of Hyers' theorem which allows the Cauchy difference to be unbounded.

Theorem 1.2. Let $f: X \rightarrow Y$ be a mapping satisfying the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X\{0\}$, where θ and p constants with $\theta>0$ and $p \neq 1$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x+y)-A(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X\{0\}$.

Theorem 1.2 is due to T. Aoki [2] for $0<p<1$, Z. Gajda [14] for $p>1$, D. H. Hyers[17] for $p=0$ and Th. M. Rassias [25] for $p<0$. Subsequently, several authors have studied different functional equations in various spaces (see, for example, [5, 7, 11, 15, 24]). The stability problem of functional equations on a restricted domain have been extensively investigated by a number of authors (see, for example, $[6,8,9,13,16,19,20,27]$). S. M. Jung [18] and J. M. Rassias [26] proved the Hyers-Ulam stability of the quadratic functional equation in a restricted domain.
It's very natural to ask if the restricted domain $D=\left\{(x, y),(s, t) \in X^{2} \times\right.$ $\left.X^{2}:\|(x, y)\|+\|(s, t)\| \geq d\right\}$ can be replaced by much smaller $\Gamma \subset D$ (i.e. a subset of measure zero) in a measurable space X.
In 2013, J. Chung [9] found the answer to this question by considering the stability of the Cauchy functional equation

$$
f(x+y)=f(x)+f(y)
$$

in a set $\Gamma \subset\left\{(x, y) \in \mathbf{R}^{2}:|x|+|y| \geq d\right\}$ where $m(\Gamma)=0$ and $f: \mathbf{R} \rightarrow \mathbf{R}$. In 2014, J. Chung and J.M. Rassias [10] proved the stability of the quadratic functional equation in a set of measure zero.
Our goal, in this paper, is to investigate the Hyers-Ulam stability on a set $\Gamma \subset X^{4}$ of measure zero for the bi-additive functional equation (1.1). In addition, we apply these results to the asymptotic behavior of Eq. (1.1).

2. Measure zero stability

First, we first study the Hyers-Ulam stability of Eq. (1.1) on X by the use of the direct method and then we deduce the measure zero stability for this equation.

Theorem 2.1. Let $\varepsilon \geq 0$ be fixed, X be a vector space and Y a Banach space. If a function $f: X \times X \longrightarrow Y$ such that $f(x,-s)=-f(x, s), x, s \in$ X satisfies the inequality

$$
\begin{equation*}
\|f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t)\| \leq \varepsilon \tag{2.1}
\end{equation*}
$$

for all $x, y, s, t \in X$, then there exists a unique bi-additive mapping B : $X \times X \longrightarrow Y$ such that

$$
\|f(x, s)-B(x, s)\| \leq \frac{1}{3} \varepsilon
$$

for all $x, s \in X$.

Proof. Letting $y=x$ and $s=-t$ in the inequality (2.1), we have

$$
\begin{equation*}
\|f(2 x, 2 s)-4 f(x, s)\| \leq \varepsilon, \quad x, s \in X \tag{2.2}
\end{equation*}
$$

Let $k \in \mathbf{N}$, replacing x by $2^{k-1} x$ and s by $2^{k-1} s$, where $k \in \mathbf{N}$, in (2.2), we obtain

$$
\begin{equation*}
\left\|f\left(2^{k} x, 2^{k} s\right)-4 f\left(2^{k-1} x, 2^{k-1} s\right)\right\| \leq \varepsilon \tag{2.3}
\end{equation*}
$$

for all $x, s \in X$ and $k=1,2, \ldots, n$.
Multiplying both sides of the above inequality by $\frac{1}{4^{k}}$ and adding the resulting n equalities, we get

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{4^{k}}\left\|f\left(2^{k} x, 2^{k} s\right)-4 f\left(2^{k-1} x, 2^{k-1} s\right)\right\| \leq \sum_{k=1}^{n} \frac{\varepsilon}{4^{k}}, \quad x, s \in X \tag{2.4}
\end{equation*}
$$

which yields
(2.5) $\sum_{k=1}^{n} \frac{1}{4^{k}}\left\|f\left(2^{k} x, 2^{k} s\right)-4 f\left(2^{k-1} x, 2^{k-1} s\right)\right\| \leq \frac{\varepsilon}{3}\left(1-\frac{1}{4^{n}}\right), \quad x, s \in X$.

Using the triangle inequality, we obtain

$$
\begin{equation*}
\left\|\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} s\right)-f(x, s)\right\| \leq \frac{\varepsilon}{3}\left(1-\frac{1}{4^{n}}\right), x, s \in X \tag{2.6}
\end{equation*}
$$

Now, if $n>m>0$, then $n-m$ is a natural number and we can replace n by $n-m$ in (2.6) to obtain

$$
\begin{equation*}
\left\|\frac{f\left(2^{n-m} x, 2^{n-m} s\right)}{4^{n-m}}-f(x, s)\right\| \leq \frac{\varepsilon}{3}\left(1-\frac{1}{4^{n-m}}\right), \tag{2.7}
\end{equation*}
$$

for all $x, s \in X$. Multiplying both sides by $\frac{1}{4^{m}}$ and simplifying, we get

$$
\begin{equation*}
\left\|\frac{f\left(2^{n-m} x, 2^{n-m} s\right)}{4^{n}}-\frac{f(x, s)}{4^{m}}\right\| \leq \frac{\varepsilon}{3}\left(\frac{1}{4^{m}}-\frac{1}{4^{n}}\right), \tag{2.8}
\end{equation*}
$$

for all $x, s \in X$. Replacing x by $2^{m} x$ and s by $2^{m} s$ in (2.8), we conclude that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}-\frac{f\left(2^{m} x, 2^{m} s\right)}{4^{m}}\right\| \leq \frac{\varepsilon}{3}\left(\frac{1}{4^{m}}-\frac{1}{4^{n}}\right), x, s \in X . \tag{2.9}
\end{equation*}
$$

If $m \rightarrow \infty$ in (2.9), then $\frac{1}{4^{m}}-\frac{1}{4^{n}} \rightarrow 0$ and we have

$$
\lim _{m \rightarrow \infty}\left\|\frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}-\frac{f\left(2^{m} x, 2^{m} s\right)}{4^{m}}\right\|=0
$$

for all $x, s \in X$. Hence, $\left\{\frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in Y and the limit of this sequence exists.
Define $B: X \times X \rightarrow Y$ by

$$
B(x, s):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}, \quad x, s \in X
$$

We show that $B: X \times X \rightarrow Y$ is a bi-additive function. For this goal, we consider

$$
\begin{aligned}
& \|B(x+y, s-t)+B(x-y, s+t)-2 B(x, s)+2 B(y, t)\| \\
& =\| \lim _{n \rightarrow \infty}\left\{\frac{f\left(2^{n}(x+y), 2^{n}(s-t)\right)}{4^{n}}+\frac{f\left(2^{n}(x-y), 2^{n}(s+t)\right)}{4^{n}}-2 \frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}\right. \\
& \left.+2 \frac{f\left(2^{n} y, 2^{n} t\right)}{4^{n}}\right\} \| \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \| f\left(2^{n} x+2^{n} y, 2^{n} s-2^{n} t\right)+f\left(2^{n} x-2^{n} y, 2^{n} s+2^{n} t\right) \\
& -2 f\left(2^{n} x, 2^{n} s\right)+2 f\left(2^{n} y, 2^{n} t\right) \| \\
& \leq \lim _{n \rightarrow \infty} \frac{\varepsilon}{4^{n}} \\
& =0
\end{aligned}
$$

for all $x, y, s, t \in X$. Therefore,

$$
B(x+y, s-t)+B(x-y, s+t)=2 B(x, s)-2 B(y, t)
$$

for all $x, y, s, t \in X$.
The next goal is to show, for each $x, s \in X$, that

$$
\|B(x, s)-f(x, s)\| \leq \frac{\varepsilon}{3}
$$

Indeed, for every $x, s \in X$, we have

$$
\begin{aligned}
\|B(x, s)-f(x, s)\| & =\left\|\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}-f(x, s)\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\frac{f\left(2^{n} x, 2^{n} s\right)}{4^{n}}-f(x, s)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{\varepsilon}{3}\left(1-\frac{1}{4^{n}}\right)=\frac{\varepsilon}{3}
\end{aligned}
$$

Thus, we deduce that

$$
\|B(x, s)-f(x, s)\| \leq \frac{\varepsilon}{3}
$$

for all $x, s \in X$. Finally, we prove the uniqueness of B. We assume that there exists an other bi-additive mapping $C: X \times X \rightarrow Y$ such that

$$
\|C(x, s)-f(x, s)\| \leq \frac{\varepsilon}{3}
$$

for all $x, s \in X$. Therefore, for every $x, s \in X$, we have

$$
\begin{aligned}
\|B(x, s)-C(x, s)\| & \leq\|B(x, s)-f(x, s)\|+\|C(x, s)-f(x, s)\| \\
& \leq \frac{2 \varepsilon}{3} .
\end{aligned}
$$

Since B is bi-additive, for each $n \in \mathbf{N}_{0}$, we obtain

$$
\begin{aligned}
\|B(x, s)-C(x, s)\| & =\left\|\frac{B\left(2^{n} x, 2^{n} s\right)}{4^{n}}-\frac{C\left(2^{n} x, 2^{n} s\right)}{4^{n}}\right\| \\
& =\frac{1}{4^{n}}\left\|B\left(2^{n} x, 2^{n} s\right)-C\left(2^{n} x, 2^{n} s\right)\right\| \\
& \leq \frac{2 \varepsilon}{3 \times 4^{n}},
\end{aligned}
$$

for all $x, s \in X$. Letting $n \rightarrow \infty$ in the above inequality, we obtain

$$
\lim _{n \rightarrow \infty}\|B(x, s)-C(x, s)\| \leq \lim _{n \rightarrow \infty} \frac{2 \varepsilon}{3 \times 4^{n}}=0
$$

for all $x, s \in X$ which means that $B(x, s)=C(x, s)$ for all $x, s \in X$.
For given $x, y, s, t \in X$, we define

$$
\begin{gathered}
P_{x, y, s, t, a, b}:= \\
\{(x+y, s-t, a, b) ;(x-y, s+t, a, b) ;(x, s, y+a, t+b) ;(x, s, y-a, t-b) ;(y, t, a,-b)\}
\end{gathered}
$$

In this section, we assume that a set $\Gamma \subset X \times X \times X \times X$ satisfies the following condition:
For given $x, y, s, t \in X$, there exists $a, b \in X$ such that

$$
(C) \quad P_{x, y, s, t, a, b} \subset \Gamma
$$

In the following theorem, we prove the Hyers-Ulam stability for the bi-additive functional equation (1.1) on Γ.
Theorem 2.2. Let $\varepsilon \geq 0$ be fixed. Suppose that the function $f: X \times$ $X \longrightarrow Y$ such that $f(x,-s)=-f(x, s), \quad x, s \in X$ satisfies the functional inequality

$$
\begin{equation*}
\|f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t)\| \leq \varepsilon \tag{2.10}
\end{equation*}
$$

for all $(x, y, s, t) \in \Gamma$. Then there exists a unique bi-additive mapping $B: X \times X \longrightarrow Y$ such that

$$
\|f(x, s)-B(x, s)\| \leq \varepsilon
$$

for all $x, s \in X$.

Proof. Suppose that $f: X \times X \rightarrow Y$ is a mapping satisfying (2.10) for all $(x, y, s, t) \in \Gamma$. Define $D_{f}: X \times X \times X \times X \rightarrow Y$ by
$D_{f}(x, y, s, t):=f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t), \quad(x, y, s, t) \in \Gamma$.
Since Γ satisfies (C), for all $x, y, s, t \in X$, there exists $(a, b) \in X \times X$ such that
$\left\|D_{f}(x+y, a, s, t-b)\right\| \leq \varepsilon,\left\|D_{f}(x-y, a, s, b-t)\right\| \leq \varepsilon,\left\|D_{f}(x, y+a, s, t+b)\right\| \leq \varepsilon$,

$$
\left\|D_{f}(x, y-a, s, t-b)\right\| \leq \varepsilon \text { and }\left\|D_{f}(y, a, t,-b)\right\| \leq \varepsilon
$$

In view of the triangle inequality, we get

$$
\begin{aligned}
\left\|D_{f}(x, y, s, t)\right\| & =\| \frac{1}{2} D_{f}(x+y, a, s, t-b)+\frac{1}{2} D_{f}(x-y, a, s, b-t) \\
& +\frac{1}{2} D_{f}(x, y+a, s, t+b)+\frac{1}{2} D_{f}(x, y-a, s, t-b) \\
& +D_{f}(y, a, t,-b) \| \\
& \leq \frac{1}{2}\left\|D_{f}(x+y, a, s, t-b)\right\|+\frac{1}{2}\left\|D_{f}(x-y, a, s, b-t)\right\| \\
& +\frac{1}{2}\left\|D_{f}(x, y+a, s, t+b)\right\|+\frac{1}{2}\left\|D_{f}(x, y-a, s, t-b)\right\| \\
& +\left\|D_{f}(y, a, t,-b)\right\| \\
& =3 \varepsilon
\end{aligned}
$$

for all $x, y, s, t \in X$. According to Theorem 2.1, there exists a unique bi-additive mapping $B: X \times X \longrightarrow Y$ such that
$\|f(x, s)-B(x, s)\| \leq \varepsilon$, for all $x, s \in X$. This completes the proof.
The following corollary is a particular case of Theorem 2.2, when $\varepsilon=0$.
Corollary 2.3. Suppose that $f: X \times X \longrightarrow Y$ satisfies the functional equation

$$
\begin{equation*}
f(x+y, s-t)+f(x-y, s+t)=2 f(x, s)-2 f(y, t) \tag{2.11}
\end{equation*}
$$

for all $(x, y) \in \Gamma$. Then eq. (2.11) holds for all $x, y, s, t \in X$.

3. Applications

In this section, we construct a set Γ of measure zero satisfying the condition (C) when $X=\mathbf{R}$. The following lemma is a crucial key of our construction.

Lemma 3.1. [22] The set \mathbf{R} of real numbers can be partitioned as $\mathbf{R}=$ $F \cup K$ where F is of first Baire category, i.e. F is a countable union of nowhere dense subsets of \mathbf{R}, and K is of Lebesgue measure zero.

The following lemma was proved by J. Chung and J. M. Rassias in [9] and [10].

Lemma 3.2. [9], [10] Let K be a subset of \mathbf{R} of measure 0 such that $K^{c}:=\mathbf{R} \backslash K$ is of first Baire category. Then, for any countable subsets $U \subset \mathbf{R}, V \subset \mathbf{R} \backslash\{0\}$ and $M>0$, there exists $\lambda \geq M$ such that

$$
\begin{equation*}
U+\lambda V=\{u+\lambda v: u \in U, v \in V\} \subset K \tag{3.1}
\end{equation*}
$$

In the following theorem, we give the construction of a set $\Gamma \subset \mathbf{R}^{4}$ of Lebesgue measure zero satisfying the condition (C).

Theorem 3.3. Let K be the set defined as in Lemma 3.2, R be a rotation given by

$$
R=\left(\begin{array}{cccc}
\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} & 0 \tag{3.2}\\
0 & \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\
0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}
\end{array}\right)
$$

and $\Gamma=R^{-1}(K \times K \times K \times K)$. Then Γ satisfies the condition (C) and has four-dimensional Lebesgue measure 0 .

Proof. Let $x, y, s, t, a, b \in \mathbf{R}$ and define

$$
\begin{aligned}
P_{x, y, s, t, a, b}: & :=\{(x+y, s-t, a, b) ;(x-y, s+t, a, b) ;(x, s, y+a, t+b) \\
& (x, s, y-a, t-b) ;(y, t, a,-b)\} .
\end{aligned}
$$

Then Γ satisfies the condition (C), if and only if, for every $x, y, s, t \in \mathbf{R}$, there exists $a, b \in \mathbf{R}$ such that

$$
\begin{equation*}
R\left(P_{x, y, s, t, a, b}\right) \subset K \times K \times K \times K \tag{3.3}
\end{equation*}
$$

The above inclusion relation (3.3) is equivalent to

$$
\begin{aligned}
S_{x, y, s, t, a, b} & :=\left\{\frac{\sqrt{2}}{2} p_{1}-\frac{\sqrt{2}}{2} p_{3}, \frac{\sqrt{2}}{2} p_{2}-\frac{\sqrt{2}}{2} p_{4}, \frac{\sqrt{2}}{2} p_{1}+\frac{\sqrt{2}}{2} p_{3}, \frac{\sqrt{2}}{2} p_{2}+\frac{\sqrt{2}}{2} p_{4}\right. \\
& \left.:\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in P_{x, y, s, t, a, b}\right\} \subset K
\end{aligned}
$$

If we choose $\alpha \in \mathbf{R}$ such that $b=\alpha a$, then we can easily check that

$$
S_{x, y, s, t, a, \alpha a}=U+a V
$$

where

$$
U:=\left\{\frac{\sqrt{2}}{2}(x+y), \frac{\sqrt{2}}{2}(x-y), \frac{\sqrt{2}}{2} y, \frac{\sqrt{2}}{2}(s+t), \frac{\sqrt{2}}{2}(s-t), \frac{\sqrt{2}}{2} t\right\}
$$

and

$$
V:=\left\{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \alpha, \frac{\sqrt{2}}{2} \alpha\right\}
$$

According to (3.1) in Lemma 3.2, for every $x, y, s, t \in \mathbf{R}$ and $M>0$, there exists $a \geq M$ such that

$$
S_{x, y, s, t, a, \alpha a} \subset U+a V \subset K
$$

Thus, Γ satisfies the condition (C). This completes the proof.

Corollary 3.4. Let $\varepsilon \geq 0$ be fixed. Suppose that the function $f: \mathbf{R}^{2} \longrightarrow$ Y such that $f(x,-s)=-f(x, s), \quad x, s \in \mathbf{R}$ satisfying the functional inequality

$$
\begin{equation*}
\|f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t)\| \leq \varepsilon \tag{3.4}
\end{equation*}
$$

for all $(x, y, s, t) \in \Gamma$. Then there exists a unique bi-additive mapping $B: \mathbf{R}^{2} \longrightarrow Y$ such that

$$
\|f(x, s)-B(x, s)\| \leq \varepsilon
$$

for all $(x, s) \in \mathbf{R}^{2}$.

Corollary 3.5. Suppose that $f: \mathbf{R}^{2} \rightarrow Y$ such that $f(x,-s)=-f(x, s)$, $x, s \in \mathbf{R}$ satisfies

$$
\begin{equation*}
\|f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t)\| \rightarrow 0 \tag{3.5}
\end{equation*}
$$

as $(x, y, s, t) \in \Gamma$ and $|x|+|y|+|s|+|t| \rightarrow \infty$. Then f is bi-additive.

Proof. The condition (3.5) implies that, for each $n \in \mathbf{N}$, there exists $d_{n}>0$ such that
$\|f(x+y, s-t)+f(x-y, s+t)-2 f(x, s)+2 f(y, t)\| \leq \frac{1}{n}$,
for all $(x, y, s, t) \in \Gamma_{d_{n}}:=\left\{(x, y, s, t) \in \Gamma:|x|+|y|+|s|+|t| \geq d_{n}\right\}$. Let $n \in \mathbf{N}$ be fixed. In view of the proof of Theorem 2.1 and the inclusion (3.3), we conclude that, for every $x, y, s, t \in \mathbf{R}$ and $M>0$, there exist $a \in \mathbf{R}$ such that $a \geq M$ and

$$
\begin{equation*}
S_{x, y, s, t, a, \alpha a} \subset \Gamma \tag{3.6}
\end{equation*}
$$

For given $x, y, s, t \in \mathbf{R}$, if we take $M=d_{n}+|y|$ and if $\left|a_{n}\right| \geq M$, then we get

$$
\begin{equation*}
S_{x, y, s, t, a_{n}, \alpha a_{n}} \subset\left\{\left(p_{1}, p_{2}, p_{3}, p_{4}\right):\left|p_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right|+\left|p_{4}\right| \geq d_{n}\right\} \tag{3.7}
\end{equation*}
$$

It follows from (3.6) and (3.7) that, for each $x, y, s, t \in \mathbf{R}$, there exist $a_{n} \in \mathbf{R}$ such that

$$
\begin{equation*}
S_{x, y, s, t, a_{n}, \alpha a_{n}} \subset \Gamma_{d_{n}} \tag{3.8}
\end{equation*}
$$

So, $\Gamma_{d_{n}}$ satisfies the condition (C). Thus, by Theorem 2.2, there exists a unique mapping $B_{n}: \mathbf{R}^{2} \rightarrow Y$ such that B_{n} is a solution of (1.1) and

$$
\begin{equation*}
\left\|f(x, s)-B_{n}(x, s)\right\| \leq \frac{1}{n} \tag{3.9}
\end{equation*}
$$

for all $(x, s) \in \mathbf{R}^{2}$. Now, replacing $n \in \mathbf{N}$ by $m \in \mathbf{N}$ in (3.9) and using the triangle inequality, we get
$\left\|B_{m}(x, s)-B_{n}(x, s)\right\| \leq\left\|B_{m}(x, s)-f(x, s)+f(x, s)-B_{n}(x, s)\right\| \leq \frac{1}{m}+\frac{1}{n} \leq 2$, (3.10)
for all $m, n \in \mathbf{N}$ and all $(x, s) \in \mathbf{R}^{2}$. Hence, $B_{m}-B_{n}$ is bounded. So, we conclude that $B_{m}=B_{n}$ for all $m, n \in \mathbf{N}$. Finally, letting $n \rightarrow \infty$ in (3.9), we get the desired result.

References

[1] J. A czél and J. Dhombres, Functional Equations in Several Variables. C ambridge: Cambridge U niversity Press, 1989.
[2] T. A oki, "On the stability of the linear transformation in Banach spaces", Journal of the M athematical Society of J apan, vol. 2: pp. 64-66, 1950.
[3] A. Bahyrycz and J. Brzdęk, "On solutions of the d'A lembert equation on a restricted domain", Aequationes mathematicae, vol. 85, pp. 169-183, 2013.
[4] D. G. Bourgin, "Classes of transformations and bordering transformations", Bulletin of the American M athematical Society, vol. 57, pp. 223-237, 1951.
[5] J. Brzdęk, "On the quotient stability of a family of functional equations", N onlinear A nalysis: Theory, M ethods \& A pplications, vol. 71, pp. 4396-4404, 2009.
[6] J. Brzdęk, "On a method of proving the Hyers-Ulam stability of functional equations on restricted domains", Australian Journal of M athematical A nalysis and Applications, vol. 6, pp. 1-10, 2009.
[7] J. Brzdęk and J. Sikorska, "A conditional exponential functional equation and its stability", Nonlinear Analysis: Theory, M ethods \& A pplications, vol. 72, pp. 2929-2934, 2010.
[8] J. Chung, "Stability of functional equations on restricted domains in a group and their asymptotic behaviors", Computers \& M athematics with A pplications, vol. 60, pp. 2653-2665, 2010.
[9] J. Chung, "Stability of a conditional Cauchy equation on a set of measure zero", A equationes mathematicae, vol. 87, pp. 391-400, 2014. doi: 10.1007/ s00010-013-0235-5
[10] J. Chung and J. M. Rassias, "Quadratic functional equations in a set of Lebesgue measure zero", Journal of Mathematical Analysis and A pplications, vol. 419, no. 2, pp. 1065-1075, 2014.
[11] S. Czerwik, Stability of Functional Equations of Ulam-H yers-R assias Type. Palm Harbor (FL): Hadronic, 2003.
[12] I. EI-F assi, J. Brzdęk, A. Chahbi, and S. K abbaj, "On the H yperstability of the biadditive functional equation", A cta M athematica Scientia, vol. 37, no. 6, pp. 1727-1739, 2017.
[13] M . Fochi, "An alternative functional equation on restricted domain", A equationes mathematicae, vol. 70, pp. 201-212, 2005.
[14] Z. Gajda, "On stability of additive mappings", International Journal of M athematics and M athematical Sciences, vol. 14: pp. 431-434, 1991.
[15] P. G ávrutá, "A generalization of the Hyers-U lam-R assias stability of approximately additive mappings", Journal of M athematical Analysis and A pplications, vol. 184, no. 1, pp. 431-436, 1984.
[16] R. Ger, and J. Sikorska, "On the Cauchy equation on spheres", A nnales M athematicaeSilesianae, vol. 11, pp. 89-99, 1997.
[17] D. H. Hyers, "On the stability of the linear functional equation", Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941.
[18] S. -M . Jung, "On the Hyers-U lam stability of the functional equations that have the quadratic property", Journal of M athematical A nalysis and A pplications, vol. 222, pp. 126-137, 1998.
[19] M . K uczma, "Functional equations on restricted domains", A equationes mathematicae, vol. 18, pp. 1-34, 1978.
[20] Y .-H. Lee, "Hyers-Ulam-R assias stability of a quadratic-additive type functional equation on a restricted domain", International Journal of M athematical Analysis, vol. 7, no. 55, pp. 2745-2752, 2013.
[21] A. Nuino, M. Almahalebi, and A. Charif, "M easure Zero Stability Problem for Drygas Functional Equation with Complex Involution", in Frontiers in Functional Equations and Analytic Inequalities, G. A. A nastassiou and J. M. Rassias, Eds. Cham: Springer, 2019, pp. 183-193.
[22] J. C. Oxtoby, M easure and Category. N ew Y ork: Springer, 1980.
[23] W .G . Park, and J.H. Bae, "Stability of a bi-additive functional equation in Banach modules over a C*-A Igebra", Discrete Dynamics in Nature and Society, vol. 2012, A rt. ID 835893.
[24] Th. M. Rassias, "On the stability of the linear mapping in Banach spaces", Proceedings of the A merican M athematical Society, vol. 72, no. 2, pp. 297-300, 1978.
[25] Th.M. Rassias, "On a modified Hyers-Ulam sequence", Journal of M athematical A nalysis and A pplications, vol. 158: pp. 106-113, 1991.
[26] J. M. Rassias, "On the Ulam stability of mixed type mappings on restricted domains", Journal of M athematical Analysis and Applications, vol. 281, pp. 747-762, 2002.
[27] J. M. Rassias, "On the Ulam stability of Jensen and Jensen type mappings on restricted domains", Journal of M athematical A nalysis and A pplications, vol. 281, pp. 516-524, 2003.
[28] S. M. Ulam, A Collection of Mathematical Problems. New Y ork: Wiley, 1964.

Rachid El Ghali

Department of Mathematics, Faculty of Sciences
University of Ibn Tofail,
Kenitra,
Morocco
e-mail: rachid2810@gmail.com
Corresponding author
and

Samir Kabbaj

Department of Mathematics, Faculty of Sciences
University of Ibn Tofail, Kenitra,
Morocco
e-mail: Samkabbaj@yahoo.fr

