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Abstract

Let X be a vector space and Y be a Banach space. Our aim in
this paper is to investigate the Hyers-Ulam stability problem of the
following bi-additive functional equation

f(x+ y, s− t) + f(x− y, s+ t) = 2f(x, s)− 2f(y, t), x, y, s, t ∈ X,

where f : X ×X → Y . As a consequence, we discuss the stability of
the considered functional equation in a restricted domain and in the
set of Lebesgue measure zero.
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1. Introduction

Let X be a vector space and Y be a Banach space. Throughout this paper,
we denote by N the set of natural numbers, N0 = N ∪ {0} and by R the
set of real numbers.

In 1989, Aczél and Dhombres [1] proved that a mapping g : X → Y
satisfies the following quadratic functional equation

g(x+ y) + g(x− y) = 2g(x) + 2g(y)

if and only if there exists a symmetric bi-additive mapping B : X×X → Y
such that g(x) = B(x, x) where

B(x, y) =
1

4

³
g(x+ y)− g(x− y)

´
, x, y ∈ X.

We recall that a function f : X ×X → Y is bi-additive provided

f(x+ y, s) = f(x, s) + f(y, s) and f(x, s+ t) = f(x, s) + f(x, t)

for all x, t, s, t ∈ X. Consider the functional equation

f(x+ y, s− t) + f(x− y, s+ t) = 2f(x, s)− 2f(y, t), x, y, s, t ∈ X.(1.1)

It is easy to show that f : X × X → Y is bi-additive, if and only if,
it fulfils Eq. (1.1) for every x, y, s, t ∈ X. Therefore, we can say that Eq.
(1.1) is a bi-additive functional equation.
W. G. Park and J. H. Báe [23] have solved and have investigated the stabil-
ity of Eq. (1.1) in Banach modules over an unital C∗-algebra. In 2017, J.
Berzdȩk et al. [12] have proved the stability and hyperstability of Eq. (1.1)
by using fixed point theorem as a basic tool under some weak assumptions.
Let us mention that the concept of stability problem has been a very pop-
ular subject of investigation for the last eighty years. The study of such
problem was motivated by the following question of S.M. Ulam [28] in 1940.

Ulam’s Problem:Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group
with a metric d(., .). Given ε > 0, does there exists a δ > 0 such that if a
mapping h : G1 → G2 satisfies the inequality

d
³
h(x ∗1 y), h(x) ∗2 h(y)

´
< δ
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for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
³
h(x),H(x)

´
< ε

for all x ∈ G1?
The affirmative answer of this question is the equation of homomorphism
h(x ∗1 y) = h(x) ∗2 H(y) is stable.
In 1941, D. H. Hyers [17] published the first answer to Ulam’s problem in
the case of Banach spaces as follows

Theorem 1.1. [17] Let E1 and E2 be two Banach spaces and f : E1 → E2
be a function such that

kf(x+ y)− f(x)− f(y)k ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function
such that

kf(x)−A(x)k ≤ δ

for all x ∈ E1.

In 1950, T. Aoki [2], D. G. Bourgin [4] considered the stability problem
with unbounded Cauchy differences. In 1978, Th. M. Rassias [24] provided
a generalization of Hyers’ theorem which allows the Cauchy difference to
be unbounded.

Theorem 1.2. Let f : X → Y be a mapping satisfying the functional
inequality

kf(x+ y)− f(x)− f(y)k ≤ θ(kxkp + kykp),

for all x, y ∈ X {0}, where θ and p constants with θ > 0 and p 6= 1. Then
there exists a unique additive mapping A : X → Y such that

kf(x+ y)−A(x)k ≤ 2θ

2− 2p kxk
p,

for all x ∈ X {0}.
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Theorem 1.2 is due to T. Aoki [2] for 0 < p < 1, Z. Gajda [14] for p > 1,
D. H. Hyers[17] for p = 0 and Th. M. Rassias [25] for p < 0. Subsequently,
several authors have studied different functional equations in various spaces
(see, for example, [5, 7, 11, 15, 24]). The stability problem of functional
equations on a restricted domain have been extensively investigated by a
number of authors (see, for example, [6, 8, 9, 13, 16, 19, 20, 27]). S. M.
Jung [18] and J. M. Rassias [26] proved the Hyers-Ulam stability of the
quadratic functional equation in a restricted domain.
It’s very natural to ask if the restricted domain D = {(x, y), (s, t) ∈ X2 ×
X2 : k(x, y)k+ k(s, t)k ≥ d} can be replaced by much smaller Γ ⊂ D (i.e.
a subset of measure zero) in a measurable space X.
In 2013, J. Chung [9] found the answer to this question by considering the
stability of the Cauchy functional equation

f(x+ y) = f(x) + f(y)

in a set Γ ⊂ {(x, y) ∈ R2 : |x|+ |y| ≥ d} where m(Γ) = 0 and f : R→ R.
In 2014, J. Chung and J.M. Rassias [10] proved the stability of the quadratic
functional equation in a set of measure zero.
Our goal, in this paper, is to investigate the Hyers-Ulam stability on a set
Γ ⊂ X4 of measure zero for the bi-additive functional equation (1.1). In
addition, we apply these results to the asymptotic behavior of Eq. (1.1).

2. Measure zero stability

First, we first study the Hyers-Ulam stability of Eq. (1.1) on X by the use
of the direct method and then we deduce the measure zero stability for this
equation.

Theorem 2.1. Let ε ≥ 0 be fixed, X be a vector space and Y a Banach
space. If a function f : X×X −→ Y such that f(x,−s) = −f(x, s), x, s ∈
X satisfies the inequality

kf(x+ y, s− t) + f(x− y, s+ t)− 2f(x, s) + 2f(y, t)k ≤ ε,(2.1)

for all x, y, s, t ∈ X, then there exists a unique bi-additive mapping B :
X ×X −→ Y such that °°°f(x, s)−B(x, s)

°°° ≤ 1
3
ε

for all x, s ∈ X.
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Proof. Letting y = x and s = −t in the inequality (2.1), we have

kf(2x, 2s)− 4f(x, s)k ≤ ε, x, s ∈ X.(2.2)

Let k ∈ N, replacing x by 2k−1x and s by 2k−1s, where k ∈ N, in (2.2),
we obtain

kf(2kx, 2ks)− 4f(2k−1x, 2k−1s)k ≤ ε,(2.3)

for all x, s ∈ X and k = 1, 2, ..., n.
Multiplying both sides of the above inequality by 1

4k
and adding the result-

ing n equalities, we get

nX
k=1

1

4k

°°°f(2kx, 2ks)− 4f(2k−1x, 2k−1s)°°° ≤ nX
k=1

ε

4k
, x, s ∈ X(2.4)

which yields

nX
k=1

1

4k

°°°f(2kx, 2ks)− 4f(2k−1x, 2k−1s)°°° ≤ ε

3

µ
1− 1

4n

¶
, x, s ∈ X.(2.5)

Using the triangle inequality, we obtain°°°° 14n f(2nx, 2ns)− f(x, s)

°°°° ≤ ε

3

µ
1− 1

4n

¶
, x, s ∈ X.(2.6)

Now, if n > m > 0, then n−m is a natural number and we can replace
n by n−m in (2.6) to obtain°°°°°f(2n−mx, 2n−ms)4n−m

− f(x, s)

°°°°° ≤ ε

3

µ
1− 1

4n−m

¶
,(2.7)

for all x, s ∈ X. Multiplying both sides by 1
4m and simplifying, we get°°°°°f(2n−mx, 2n−ms)4n

− f(x, s)

4m

°°°°° ≤ ε

3

µ
1

4m
− 1

4n

¶
,(2.8)

for all x, s ∈ X. Replacing x by 2mx and s by 2ms in (2.8), we conclude
that

°°°°f(2nx, 2ns)4n
− f(2mx, 2ms)

4m

°°°° ≤ ε

3

µ
1

4m
− 1

4n

¶
, x, s ∈ X.(2.9)
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If m→∞ in (2.9), then 1
4m −

1
4n → 0 and we have

lim
m→∞

°°°°f(2nx, 2ns)4n
− f(2mx, 2ms)

4m

°°°° = 0,
for all x, s ∈ X. Hence,

n
f(2nx,2ns)

4n

o∞
n=1

is a Cauchy sequence in Y and the

limit of this sequence exists.
Define B : X ×X → Y by

B(x, s) := lim
n→∞

f(2nx, 2ns)

4n
, x, s ∈ X.

We show that B : X ×X → Y is a bi-additive function. For this goal, we
consider

kB(x+ y, s− t) +B(x− y, s+ t)− 2B(x, s) + 2B(y, t)k
=
°°° lim
n→∞

n
f(2n(x+y),2n(s−t))

4n + f(2n(x−y),2n(s+t))
4n − 2f(2

nx,2ns)
4n

+2f(2
ny,2nt)
4n

o°°°
= lim
n→∞

1
4n

°°°f(2nx+ 2ny, 2ns− 2nt) + f(2nx− 2ny, 2ns+ 2nt)
−2f(2nx, 2ns) + 2f(2ny, 2nt)

°°°
≤ lim
n→∞

ε
4n

= 0,

for all x, y, s, t ∈ X. Therefore,

B(x+ y, s− t) +B(x− y, s+ t) = 2B(x, s)− 2B(y, t),

for all x, y, s, t ∈ X.
The next goal is to show, for each x, s ∈ X, that

kB(x, s)− f(x, s)k ≤ ε

3
.

Indeed, for every x, s ∈ X, we have

kB(x, s)− f(x, s)k =
°°° lim
n→∞

f(2nx,2ns)
4n − f(x, s)

°°°
= lim
n→∞

°°°f(2nx,2ns)4n − f(x, s)
°°°

≤ lim
n→∞

ε
3

³
1− 1

4n

´
= ε

3 .

Thus, we deduce that

kB(x, s)− f(x, s)k ≤ ε

3
,
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for all x, s ∈ X. Finally, we prove the uniqueness of B. We assume that
there exists an other bi-additive mapping C : X ×X → Y such that

kC(x, s)− f(x, s)k ≤ ε

3

for all x, s ∈ X. Therefore, for every x, s ∈ X, we have

kB(x, s)− C(x, s)k ≤ kB(x, s)− f(x, s)k+ kC(x, s)− f(x, s)k
≤ 2ε

3 .

Since B is bi-additive, for each n ∈ N0, we obtain

kB(x, s)− C(x, s)k =
°°°B(2nx,2ns)4n − C(2nx,2ns)

4n

°°°
= 1

4nkB(2nx, 2ns)− C(2nx, 2ns)k
≤ 2ε

3×4n ,

for all x, s ∈ X. Letting n→∞ in the above inequality, we obtain

lim
n→∞

kB(x, s)− C(x, s)k ≤ lim
n→∞

2ε

3× 4n = 0

for all x, s ∈ X which means that B(x, s) = C(x, s) for all x, s ∈ X. 2

For given x, y, s, t ∈ X, we define

Px,y,s,t,a,b :=n
(x+y, s−t, a, b); (x−y, s+t, a, b); (x, s, y+a, t+b); (x, s, y−a, t−b); (y, t, a,−b)

o
In this section, we assume that a set Γ ⊂ X × X × X × X satisfies the
following condition:
For given x, y, s, t ∈ X, there exists a, b ∈ X such that

(C) Px,y,s,t,a,b ⊂ Γ
In the following theorem, we prove the Hyers-Ulam stability for the

bi-additive functional equation (1.1) on Γ.

Theorem 2.2. Let ε ≥ 0 be fixed. Suppose that the function f : X ×
X −→ Y such that f(x,−s) = −f(x, s), x, s ∈ X satisfies the functional
inequality

kf(x+ y, s− t) + f(x− y, s+ t)− 2f(x, s) + 2f(y, t)k ≤ ε,(2.10)

for all (x, y, s, t) ∈ Γ. Then there exists a unique bi-additive mapping
B : X ×X −→ Y such that

kf(x, s)−B(x, s)k ≤ ε

for all x, s ∈ X.
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Proof. Suppose that f : X ×X → Y is a mapping satisfying (2.10) for
all (x, y, s, t) ∈ Γ. Define Df : X ×X ×X ×X → Y by

Df (x, y, s, t) := f(x+y, s−t)+f(x−y, s+t)−2f(x, s)+2f(y, t), (x, y, s, t) ∈ Γ.

Since Γ satisfies (C), for all x, y, s, t ∈ X, there exists (a, b) ∈ X ×X such
that

kDf (x+y, a, s, t−b)k ≤ ε, kDf (x−y, a, s, b−t)k ≤ ε, kDf (x, y+a, s, t+b)k ≤ ε,

kDf (x, y − a, s, t− b)k ≤ ε and kDf (y, a, t,−b)k ≤ ε

In view of the triangle inequality, we get

kDf (x, y, s, t)k =

°°°°12Df (x+ y, a, s, t− b) + 1
2Df (x− y, a, s, b− t)

+1
2Df (x, y + a, s, t+ b) + 1

2Df (x, y − a, s, t− b)

+Df (y, a, t,−b)
°°°°

≤ 1
2kDf (x+ y, a, s, t− b)k+ 1

2kDf (x− y, a, s, b− t)k
+1
2kDf (x, y + a, s, t+ b)k+ 1

2kDf (x, y − a, s, t− b)k
+kDf (y, a, t,−b)k
= 3 ε,

for all x, y, s, t ∈ X. According to Theorem 2.1, there exists a unique
bi-additive mapping B : X ×X −→ Y such that

kf(x, s)−B(x, s)k ≤ ε, for all x, s ∈ X. This completes the proof. 2

The following corollary is a particular case of Theorem 2.2, when ε = 0.

Corollary 2.3. Suppose that f : X × X −→ Y satisfies the functional
equation

f(x+ y, s− t) + f(x− y, s+ t) = 2f(x, s)− 2f(y, t)(2.11)

for all (x, y) ∈ Γ. Then eq. (2.11) holds for all x, y, s, t ∈ X.

3. Applications

In this section, we construct a set Γ of measure zero satisfying the condition
(C) when X = R. The following lemma is a crucial key of our construction.

Lemma 3.1. [22] The set R of real numbers can be partitioned as R =
F ∪ K where F is of first Baire category, i.e. F is a countable union of
nowhere dense subsets of R, and K is of Lebesgue measure zero.
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The following lemma was proved by J. Chung and J. M. Rassias in [9]
and [10].

Lemma 3.2. [9], [10] Let K be a subset of R of measure 0 such that
Kc := R \ K is of first Baire category. Then, for any countable subsets
U ⊂ R, V ⊂ R \ {0} and M > 0, there exists λ ≥M such that

U + λV = {u+ λv : u ∈ U, v ∈ V } ⊂ K.(3.1)

In the following theorem, we give the construction of a set Γ ⊂ R4 of
Lebesgue measure zero satisfying the condition (C).

Theorem 3.3. Let K be the set defined as in Lemma 3.2, R be a rotation
given by

R =

⎛⎜⎜⎜⎜⎝
√
2
2 0 −

√
2
2 0

0
√
2
2 0 −

√
2
2√

2
2 0

√
2
2 0

0
√
2
2 0

√
2
2

⎞⎟⎟⎟⎟⎠(3.2)

and Γ = R−1(K×K×K×K). Then Γ satisfies the condition (C) and has
four-dimensional Lebesgue measure 0.

Proof. Let x, y, s, t, a, b ∈ R and define

Px,y,s,t,a,b :=
n
(x+ y, s− t, a, b); (x− y, s+ t, a, b); (x, s, y + a, t+ b);

(x, s, y − a, t− b); (y, t, a,−b)
o
.

Then Γ satisfies the condition (C), if and only if, for every x, y, s, t ∈ R,
there exists a, b ∈ R such that

R(Px,y,s,t,a,b) ⊂ K ×K ×K ×K.(3.3)

The above inclusion relation (3.3) is equivalent to

Sx,y,s,t,a,b :=

½√
2
2 p1 −

√
2
2 p3,

√
2
2 p2 −

√
2
2 p4,

√
2
2 p1 +

√
2
2 p3,

√
2
2 p2 +

√
2
2 p4

: (p1, p2, p3, p4) ∈ Px,y,s,t,a,b

¾
⊂ K.

If we choose α ∈ R such that b = αa, then we can easily check that

Sx,y,s,t,a,αa = U + aV

where
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U :=

(√
2

2
(x+ y),

√
2

2
(x− y),

√
2

2
y,

√
2

2
(s+ t),

√
2

2
(s− t),

√
2

2
t

)

and

V :=

(
−
√
2

2
,

√
2

2
, −
√
2

2
α,

√
2

2
α

)

According to (3.1) in Lemma 3.2, for every x, y, s, t ∈ R and M > 0, there
exists a ≥M such that

Sx,y,s,t,a,αa ⊂ U + aV ⊂ K.

Thus, Γ satisfies the condition (C). This completes the proof. 2

Corollary 3.4. Let ε ≥ 0 be fixed. Suppose that the function f : R2 −→
Y such that f(x,−s) = −f(x, s), x, s ∈ R satisfying the functional in-
equality

kf(x+ y, s− t) + f(x− y, s+ t)− 2f(x, s) + 2f(y, t)k ≤ ε,(3.4)

for all (x, y, s, t) ∈ Γ. Then there exists a unique bi-additive mapping
B : R2 −→ Y such that

kf(x, s)−B(x, s)k ≤ ε

for all (x, s) ∈ R2.

Corollary 3.5. Suppose that f : R2 → Y such that f(x,−s) = −f(x, s),
x, s ∈ R satisfies

kf(x+ y, s− t) + f(x− y, s+ t)− 2f(x, s) + 2f(y, t)k→ 0(3.5)

as (x, y, s, t) ∈ Γ and |x|+ |y|+ |s|+ |t|→∞. Then f is bi-additive.
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Proof. The condition (3.5) implies that, for each n ∈ N, there exists
dn > 0 such that

kf(x+ y, s− t) + f(x− y, s+ t)− 2f(x, s) + 2f(y, t)k ≤ 1
n ,

for all (x, y, s, t) ∈ Γdn :=
n
(x, y, s, t) ∈ Γ : |x| + |y| + |s| + |t| ≥ dn

o
. Let

n ∈N be fixed. In view of the proof of Theorem 2.1 and the inclusion (3.3),
we conclude that, for every x, y, s, t ∈ R and M > 0, there exist a ∈ R
such that a ≥M and

Sx,y,s,t,a,αa ⊂ Γ.(3.6)

For given x, y, s, t ∈ R, if we take M = dn + |y| and if |an| ≥ M , then
we get

Sx,y,s,t,an,αan ⊂
n
(p1, p2, p3, p4) : |p1|+ |p2|+ |p3|+ |p4| ≥ dn

o
.(3.7)

It follows from (3.6) and (3.7) that, for each x, y, s, t ∈ R, there exist
an ∈ R such that

Sx,y,s,t,an,αan ⊂ Γdn .(3.8)

So, Γdn satisfies the condition (C). Thus, by Theorem 2.2, there exists
a unique mapping Bn : R

2 → Y such that Bn is a solution of (1.1) and

kf(x, s)−Bn(x, s)k ≤
1

n
(3.9)

for all (x, s) ∈ R2. Now, replacing n ∈N by m ∈ N in (3.9) and using the
triangle inequality, we get

kBm(x, s)−Bn(x, s)k ≤ kBm(x, s)−f(x, s)+f(x, s)−Bn(x, s)k ≤
1

m
+
1

n
≤ 2,

(3.10)
for all m,n ∈ N and all (x, s) ∈ R2. Hence, Bm − Bn is bounded. So, we
conclude that Bm = Bn for all m,n ∈ N. Finally, letting n→∞ in (3.9),
we get the desired result. 2
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