Proyecciones Journal of Mathematics Vol. 41, N^o 4, pp. 825-833, August 2022. Universidad Católica del Norte Antofagasta - Chile

Symmetric bi-derivation on bitonic algebras

Hasret Yazarli Sivas Cumhuriyet University, Turkey andHüseyin Koç Sivas Cumhuriyet University, Turkey Received: January 2021. Accepted: January 2022

Abstract

In this study, we give definition of symmetric bi-derivation on bitonic algebras and investigate its properties.

Subjclass [2000]: 03G25, 06F35, 16B70.

Keywords: Bitonic algebra, symmetric bi-derivation, trace of sym $metric\ bi-derivation.$

1. Introduction

The notion of the symmetric bi-derivation was defined by Maksa in [4]. Firstly, many investigaters studied the symmetric bi-derivation in rings and near rings. In [2], Çeven applied to notion of the symmetric bi-derivation in ring and near ring theory to lattices. In [3], Ilbira, Firat and Jun introduced the notion of the left-right (resp. right-left) symmetric bi-derivation of BCI algebras and investigated its properties.

In [1], Ozbal and Yon defined bitonic algebras. Bitonic algebra is a generalization of dual BCC-algebras. They introduced the notion of (r,l)-derivations and (l,r)-derivations on the bitonic algebras.

In this study, we give the definition of symmetric bi-derivation on bitonic algebras and investigate its properties.

2. Preliminaries

Definition 1. [1] Let B be a set, $1 \in B$ and * be a binary operation on B. If the following axioms hold then algebraic system (B, *, 1) is called bitonic algebra.

- (B1) For any $x \in B$, x * 1 = 1,
- (B2) For any $x \in B$, 1 * y = y,
- (B3) For any $x, y \in B$, x * y = 1 and y * x = 1 implies x = y,
- (B4) For any $x, y, z \in B$, x * y = 1 implies (z * x) * (z * y) = 1 and (y * z) * (x * z) = 1.

Lemma 1. [1] Let (B, *, 1) be a bitonic algebra. For any $x, y, z \in B$, we have the following statements

- (1) x * x = 1,
- (2) x * y = y * z = 1 implies x * z = 1,
- (3) x * (y * x) = 1.

Let (B, *, 1) be a bitonic algebra and define a binary relation " \leq " on B by

$$x \le y \Leftrightarrow x * y = 1$$
, for any $x, y \in B$,

then \leq is a partial order on B from (B3) and Lemma 1. Hence (B, \leq) is a poset and 1 is the greatest element in B from (B3).

Lemma 2. [1] Let (B, *, 1) be a bitonic algebra. Then for any $x, y, z \in B$,

- (1) $x \le y$ implies $z * x \le z * y$ and $y * z \le x * z$,
- (2) $x \le y * x$.

Example 1. [1] The set $A = \{1, a, b, c, d\}$ is a bitonic algebra by the following table:

*	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	d
c	1	1	1	1	d
Γ	1	1	1	c	1

Let (B, *, 1) be a bitonic algebra. For every $x, y \in B$, the operation " \vee " on B is defined by $x \vee y = (x * y) * y$.

Lemma 3. [1] Let (B, *, 1) be a bitonic algebra. We have the following statements:

- (1) For any $x, y \in B$, $y \le x \lor y$
- (2) For any $x, y \in B$, $x \le y$ implies $x \lor y = y$,
- (3) For any $x \in B$, $1 \lor x = 1$ and $x \lor 1 = 1$.

Definition 2. Let B be a bitonic algebra and $\Gamma: B \times B \to B$ mapping. We say that Γ is a symmetric mapping if $\Gamma(x,y) = \Gamma(y,x)$ for all $x,y \in B$.

Definition 3. Let B be a bitonic algebra. A mapping $\gamma: B \to B$ defined by $\gamma(x) = \Gamma(x,x)$ is called trace of Γ , where $\Gamma: B \times B \to B$ is a symmetric mapping.

3. The symmetric bi-derivations on bitonic algebras

Definition 4. Let B be a bitonic algebra and $\Gamma: B \times B \to B$ be a symmetric mapping. For every $x, y, z \in B$,

(i) Γ is called (l,r)-symmetric bi-derivation if

$$\Gamma(x * y, z) = (\Gamma(x, z) * y) \lor (x * \Gamma(y, z)),$$

(ii) Γ is called (r,l)-symmetric bi-derivation if

$$\Gamma(x * y, z) = (x * \Gamma(y, z)) \lor (\Gamma(x, z) * y),$$

(iii) Γ is called symmetric bi-derivation if Γ are both (r,l) and (l,r)symmetric bi-derivation.

Example 2. Let $A = \{1, a, b, c, d\}$ be a bitonic algebra in Example 1. If we define a map $\Gamma: A \times A \to A$ by

$$\Gamma(x,y) = \left\{ \begin{array}{ll} b, & x = y = b \\ 1, & otherwise \end{array} \right\}$$

then, Γ is a (l,r)-symmetric bi-derivation.

Example 3. Let $B = \{1, x, y, 0\}$ be a set. If we define a binary operation * on B by the following table:

*	1	\boldsymbol{x}	y	0
1	1	\boldsymbol{x}	y	0
x	1	1	y	y
y	1	\boldsymbol{x}	1	0
0	1	1	1	1

Then (B, *, 1) is a bitonic algebra. If we define a map $\Gamma : B \times B \to B$ by

$$\Gamma(a,b) = \left\{ \begin{array}{ll} x, & a=b=x\\ 0, & a=b=0\\ 1, & \text{otherwise} \end{array} \right\}$$

then, Γ is a (r,l)-symmetric bi-derivation.

Lemma 4. Let B be a bitonic algebra, $\Gamma: B \times B \to B$ be a (r,l)-symmetric bi-derivation and γ be a trace of Γ . For all $x \in B$,

- $(1) \gamma(1) = 1,$
- (2) $\Gamma(1, x) = 1$,
- (3) $\gamma(x) = \gamma(x) \vee x$,
- $(4) x \le \gamma(x),$
- $(5) \gamma(x) = x \vee \gamma(x).$

Proof. (1) $\gamma(1) = \Gamma(1,1) = \Gamma(1*1,1) = (1*\Gamma(1,1)) \vee (\Gamma(1,1)*1) = \Gamma(1,1) \vee 1 = 1.$

- (2) $\Gamma(1,x) = \Gamma(1*1,x) = (1*\Gamma(1,x)) \vee (\Gamma(1,x)*1) = \Gamma(1,x) \vee 1 = 1$, for all $x \in B$.
 - (3) For all $x \in B$,
 - $\gamma(x) = \Gamma(x, x) = \Gamma(1 * x, x) = (1 * \Gamma(x, x)) \lor (\Gamma(1, x) * x) = \gamma(x) \lor x.$
- (4) From (3), we get $\gamma(x) = \gamma(x) \vee x$. From Lemma 3(1), we have $x \leq \gamma(x) \vee x = \gamma(x)$.
- (5) From (4), we get $x \leq \gamma(x)$. From Lemma 3(2), we have $x \vee \gamma(x) = \gamma(x)$

If Γ be a (r,l)-symmetric bi-derivation on B with trace γ , then we get $\gamma(x) = \gamma(x) \vee x = x \vee \gamma(x)$ from Lemma 4(3) and (5).

Lemma 5. Let B be a bitonic algebra and γ be a trace of Γ where Γ is a (r,l)-symmetric bi-derivation on B. Then for all $x, y \in B$, $\gamma(x) * y \le x * \gamma(y)$.

Proof. Let Γ be a (r,l)-symmetric bi-derivation on B and $x,y \in B$. From Lemma 4(4), we get $x \leq \gamma(x)$ and $y \leq \gamma(y)$. We obtain that $\gamma(x) * y \leq x * y \leq x * \gamma(y)$ from Lemma 2(1). Thus, we have $\gamma(x) * y \leq x * \gamma(y)$ for all $x,y \in B$.

Lemma 6. Let B be a bitonic algebra and γ be a trace of Γ where Γ is a (l,r)-symmetric bi-derivation on B. For all $x \in B$,

- $(1) \gamma(1) = 1,$
- (2) $\Gamma(1, x) = 1$,
- (3) $\gamma(x) = x \vee \gamma(x)$.

Proof. (1) $\gamma(1) = \Gamma(1,1) = \Gamma(1*1,1) = (\Gamma(1,1)*1) \lor (1*\Gamma(1,1)) = 1.$

(2) For all $x \in B$,

$$\Gamma(1,x) = \Gamma(1*1,x) = (\Gamma(1,x)*1) \lor (1*\Gamma(1,x)) = 1.$$

(3) $\gamma(x) = \Gamma(x, x) = \Gamma(1 * x, x) = (\Gamma(1, x) * x) \lor (1 * \Gamma(x, x)) = x \lor \gamma(x).$

Proposition 1. Let (B, *, 1) be a bitonic algebra and $\Gamma : B \times B \to B$ be a symmetric mapping. Then we have the following

(i) If Γ be a (l,r)-symmetric bi-derivation,

$$\Gamma(x,y) = x \vee \Gamma(x,y)$$
 for all $x,y \in B$.

(ii) If Γ be a (r,l)-symmetric bi-derivation,

$$\Gamma(x,y) = \Gamma(x,y) \vee x.$$

Proof. (i) Suppose that Γ be a (l,r)-symmetric bi-derivation. For all $x, y \in B$,

$$\Gamma(x,y) = \Gamma(1*x,y) = (\Gamma(1,y)*x) \vee (1*\Gamma(x,y)) = x \vee \Gamma(x,y),$$

since $\Gamma(1, y) = 1$ and 1 * x = x.

(ii) Let Γ be a (r,l)-symmetric bi-derivation and $x, y \in B$. Hence,

$$\Gamma(x,y) = \Gamma(1*x,y) = (1*\Gamma(x,y)) \vee (\Gamma(1,y)*x) = \Gamma(x,y) \vee x.$$

Remark 1. If Γ be a (r,l)-symmetric bi-derivation, then we have $x \leq \Gamma(x,y)$ for all $x,y \in B$.

Proof. Since $y \le x \lor y$ from Lemma 3(1), we get $x \le \Gamma(x,y) \lor x = \Gamma(x,y)$.

Theorem 1. Let (B, *, 1) be a bitonic algebra and $\Gamma : B \times B \to B$ be a mapping. If Γ is a symmetric bi-derivation, then we have $\Gamma(x * y, z) = x * \Gamma(y, z)$ for all $x, y, z \in B$.

Proof. Let Γ be a symmetric bi-derivation and $x, y, z \in B$. Since $x \leq \Gamma(x, z)$ and $y \leq \Gamma(y, z)$, we have

$$\Gamma(x,z) * y \le x * y \le x * \Gamma(y,z)$$

from Lemma 2(1). Thus we have

$$\Gamma(x*y,z) = (\Gamma(x,z)*y) \vee (x*\Gamma(y,z)) = x*\Gamma(y,z)$$
 from Lemma 3(2).

Corollary 1. If Γ is a symmetric bi-derivation on bitonic algebra B, then $\Gamma(x, y * z) = y * \Gamma(x, z)$ for all $x, y, z \in B$.

Theorem 2. Let B be a bitonic algebra and $\Gamma: B \times B \to B$ be a symmetric mapping. If for all $x, y, z \in B$, $\Gamma(x * y, z) = \Gamma(x, z) * y$, then Γ is a (r,l)-symmetric bi-derivation.

Proof. Since $\Gamma(x,z)*x = \Gamma(x*x,z) = \Gamma(1,z) = 1$ for all $x,z \in B$, we get $\Gamma(x,z) \leq x$. Similarly, we have $\Gamma(y,z) \leq y$ for all $y,z \in B$. Therefore,

$$x * \Gamma(y, z) \le \Gamma(x, z) * \Gamma(y, z) \le \Gamma(x, z) * b$$

and so $x * \Gamma(y, z) \le \Gamma(x, z) * y$. Since

$$\Gamma(x * y, z) = \Gamma(x, z) * y = (x * \Gamma(y, z)) \lor (\Gamma(x, z) * y),$$

 Γ is a (r,l)-symmetric bi-derivation.

Let B be a bitonic algebra and $D: B \times B \to B$ be any mapping on B. If for all $x \in B$, $D(x,x) \vee x = x \vee D(x,x)$, then D is called commutative. If for all $x \in B$, (D(x,x)*x)*D(x,x) = D(x,x), then D is called implicative.

Lemma 7. Let Γ be a (l,r)-symmetric bi-derivation on a bitonic algebra B. If Γ is commutative, then $x \leq \gamma(x)$ for all $x \in B$.

Proof. Let $x \in B$. From Lemma 6(3), we have $\gamma(x) = x \vee \gamma(x)$. Since Γ is commutative, $\gamma(x) \vee x = x \vee \gamma(x)$. From here, we get $\gamma(x) = \gamma(x) \vee x$. From Lemma 3(1), we get $x \leq \gamma(x)$.

Definition 5. Let Γ be a symmetric bi-derivation on a bitonic algebra B and γ be a trace of Γ . The kernel of γ is defined by

$$Ker \gamma := \{x \in B \mid \Gamma(x, x) = \gamma(x) = 1\}.$$

Lemma 8. Let B be a bitonic algebra, Γ be a symmetric bi-derivation on B and γ be a trace of Γ . Then the following properties are hold:

- (1) For all $x \in B$, $x * \gamma(x) \in Ker\gamma$,
- (2) $Ker\gamma = \{\gamma(x) * x \mid x \in B\}$.

Proof. (1) Let $x \in B$.

$$\Gamma(x * \Gamma(x)) = \Gamma(x * \gamma(x), x * \gamma(x))$$

$$= x * \Gamma(\gamma(x), x * \gamma(x))$$

$$= x * \Gamma(x * \gamma(x), \gamma(x))$$

$$= x * (x * \gamma(\gamma(x))) = x * 1 = 1.$$

Thus $x * \gamma(x) \in Ker\gamma$.

(2) Let $x \in B$.

$$\begin{split} \gamma(\gamma(x)*x) &=& \Gamma(\gamma(x)*x, \gamma(x)*x) \\ &=& \gamma(x)*\Gamma(x, \gamma(x)*x) \\ &=& \gamma(x)*\Gamma(\gamma(x)*x, x)) \\ &=& \gamma(x)*(\gamma(x)*\gamma(x)) = \gamma(x)*1 = 1. \end{split}$$

Thus $\{\gamma(x) * x \mid x \in B\} \subseteq Ker\gamma$.

Let $x \in Ker\gamma$. Since $x = 1*x = \gamma(x)*x$, we get $x \in \{\gamma(x)*x \mid x \in B\}$. Therefore, $Ker\gamma = \{\gamma(x)*x \mid x \in B\}$.

Lemma 9. Let γ be a trace of Γ where Γ is (r,l)-symmetric bi-derivation on a bitonic algebra B. If $Ker\gamma = \{1\}$, then γ is identity map.

Proof. Let $x \in B$. From Lemma 8(2), we get $\gamma(x) * x \in Ker\gamma = \{1\}$. Then $\gamma(x) * x = 1$ and $\gamma(x) \le x$. Moreover, we have $x \le \gamma(x)$ for all $x \in B$ from Lemma 4(4). Therefore $\gamma(x) = x$.

Theorem 3. Let γ be a trace of Γ where Γ is a symmetric bi-derivation on a bitonic algebra B. If γ is implicative, then $\gamma^2 = \gamma$.

Proof. Let $x \in B$. Thus we have

$$\gamma^{2}(x) = \gamma(\gamma(x) \lor x) = \gamma((\gamma(x) * x) * x)$$

$$= \Gamma((\gamma(x) * x) * x, (\gamma(x) * x) * x)$$

$$= (\gamma(x) * x) * \Gamma((\gamma(x) * x) * x, x)$$

$$= (\gamma(x) * x) * ((\gamma(x) * x) * \gamma(x))$$

$$= (\gamma(x) * x) * \gamma(x)$$

$$= \gamma(x).$$

References

- [1] Y. H. Yon and S. A. Özbal, "On derivations and generalized derivations of bitonic algebras", Applicable analysis and discrete mathematics, vol. 12, no. 1, pp. 110-125, 2018. doi: 10.2298/AADM1801110Y
- [2] Y. Ceven, "Symmetric bi-derivations of lattices", Quaestiones mathematicae, vol. 32, no.2, pp.241-245, 2009. doi: 10.2989/QM.2009.32.2.6.799
- [3] S. Ilbira, A. Firat and Y. B. Jun, "On symmetric bi-derivations of BCI-algebras", Applied mathematical sciences, vol. 5, no. 60, pp. 2957-2966, 2011.
- [4] G. Maksa, "On the trace of symmetric bi-derivations", Comptes rendus mathématiques de l'Académie des sciences (En ligne), vol. 9, no. 6, pp. 303-307, 1987.

Hasret Yazarli

Department of Mathematics Faculty of Science Sivas Cumhuriyet University 58140 Sivas Turkey e-mail: hyazarli@cumhuriyet.edu.tr

Corresponding author

and

Hüseyin Koç

Department of Mathematics Faculty of Science Sivas Cumhuriyet University 58140 Sivas Turkey

e-mail: hukoc1983@gmail.com