Symmetric bi-derivation on bitonic algebras

Hasret Yazarli
Sivas Cumhuriyet University, Turkey and
Hüseyin Koş
Sivas Cumhuriyet University, Turkey
Received: January 2021. Accepted: January 2022

Abstract

In this study, we give definition of symmetric bi-derivation on bitonic algebras and investigate its properties.

Subjclass [2000]: 03G25, 06F35, 16B70.

Keywords: Bitonic algebra, symmetric bi-derivation, trace of symmetric bi-derivation.

1. Introduction

The notion of the symmetric bi-derivation was defined by Maksa in [4]. Firstly, many investigaters studied the symmetric bi-derivation in rings and near rings. In [2], Çeven applied to notion of the symmetric bi-derivation in ring and near ring theory to lattices. In [3], Ilbira, Firat and Jun introduced the notion of the left-right (resp. right-left) symmetric bi-derivation of BCI algebras and investigated its properties.

In [1], Özbal and Yon defined bitonic algebras. Bitonic algebra is a generalization of dual BCC-algebras. They introduced the notion of (r, l)derivations and (l,r)-derivations on the bitonic algebras.

In this study, we give the definition of symmetric bi-derivation on bitonic algebras and investigate its properties.

2. Preliminaries

Definition 1. [1] Let B be a set, $1 \in B$ and $*$ be a binary operation on B. If the following axioms hold then algebraic system $(B, *, 1)$ is called bitonic algebra.
(B1) For any $x \in B, x * 1=1$,
(B2) For any $x \in B, 1 * y=y$,
(B3) For any $x, y \in B, x * y=1$ and $y * x=1$ implies $x=y$,
(B4) For any $x, y, z \in B, x * y=1$ implies $(z * x) *(z * y)=1$ and $(y * z) *(x * z)=1$.

Lemma 1. [1] Let $(B, *, 1)$ be a bitonic algebra. For any $x, y, z \in B$, we have the following statements
(1) $x * x=1$,
(2) $x * y=y * z=1$ implies $x * z=1$,
(3) $x *(y * x)=1$.

Let $(B, *, 1)$ be a bitonic algebra and define a binary relation " \leq " on B by

$$
x \leq y \Leftrightarrow x * y=1, \text { for any } x, y \in B,
$$

then \leq is a partial order on B from (B3) and Lemma 1 . Hence (B, \leq) is a poset and 1 is the greatest element in B from (B3).

Lemma 2. [1] Let $(B, *, 1)$ be a bitonic algebra. Then for any $x, y, z \in B$,
(1) $x \leq y$ implies $z * x \leq z * y$ and $y * z \leq x * z$,
(2) $x \leq y * x$.

Example 1. [1]The set $A=\{1, a, b, c, d\}$ is a bitonic algebra by the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	d
c	1	1	1	1	d
Γ	1	1	1	c	1

Let $(B, *, 1)$ be a bitonic algebra. For every $x, y \in B$, the operation " \vee " on B is defined by $x \vee y=(x * y) * y$.

Lemma 3. [1] Let $(B, *, 1)$ be a bitonic algebra. We have the following statements:
(1) For any $x, y \in B, y \leq x \vee y$
(2) For any $x, y \in B, x \leq y$ implies $x \vee y=y$,
(3) For any $x \in B, 1 \vee x=1$ and $x \vee 1=1$.

Definition 2. Let B be a bitonic algebra and $\Gamma: B \times B \rightarrow B$ mapping. We say that Γ is a symmetric mapping if $\Gamma(x, y)=\Gamma(y, x)$ for all $x, y \in B$.

Definition 3. Let B be a bitonic algebra. A mapping $\gamma: B \rightarrow B$ defined by $\gamma(x)=\Gamma(x, x)$ is called trace of Γ, where $\Gamma: B \times B \rightarrow B$ is a symmetric mapping.

3. The symmetric bi-derivations on bitonic algebras

Definition 4. Let B be a bitonic algebra and $\Gamma: B \times B \rightarrow B$ be a symmetric mapping. For every $x, y, z \in B$,
(i) Γ is called (l,r)-symmetric bi-derivation if

$$
\Gamma(x * y, z)=(\Gamma(x, z) * y) \vee(x * \Gamma(y, z)),
$$

(ii) Γ is called (r, l-symmetric bi-derivation if

$$
\Gamma(x * y, z)=(x * \Gamma(y, z)) \vee(\Gamma(x, z) * y)
$$

(iii) Γ is called symmetric bi-derivation if Γ are both (r,l) and (l,r)symmetric bi-derivation.

Example 2. Let $A=\{1, a, b, c, d\}$ be a bitonic algebra in Example 1. If we define a map $\Gamma: A \times A \rightarrow A$ by

$$
\Gamma(x, y)=\left\{\begin{array}{cl}
b, & x=y=b \\
1, & \text { otherwise }
\end{array}\right\}
$$

then, Γ is a (l,r)-symmetric bi-derivation.
Example 3. Let $B=\{1, x, y, 0\}$ be a set. If we define a binary operation * on B by the following table:

$*$	1	x	y	0
1	1	x	y	0
x	1	1	y	y
y	1	x	1	0
0	1	1	1	1

Then $(B, *, 1)$ is a bitonic algebra. If we define a map $\Gamma: B \times B \rightarrow B$ by

$$
\Gamma(a, b)=\left\{\begin{array}{ll}
x, & a=b=x \\
0, & a=b=0 \\
1, & \text { otherwise }
\end{array}\right\}
$$

then, Γ is a (r, l)-symmetric bi-derivation.
Lemma 4. Let B be a bitonic algebra, $\Gamma: B \times B \rightarrow B$ be a (r,l)-symmetric bi-derivation and γ be a trace of Γ. For all $x \in B$,
(1) $\gamma(1)=1$,
(2) $\Gamma(1, x)=1$,
(3) $\gamma(x)=\gamma(x) \vee x$,
(4) $x \leq \gamma(x)$,
(5) $\gamma(x)=x \vee \gamma(x)$.

Proof. $\quad(1) \gamma(1)=\Gamma(1,1)=\Gamma(1 * 1,1)=(1 * \Gamma(1,1)) \vee(\Gamma(1,1) * 1)=$ $\Gamma(1,1) \vee 1=1$.
(2) $\Gamma(1, x)=\Gamma(1 * 1, x)=(1 * \Gamma(1, x)) \vee(\Gamma(1, x) * 1)=\Gamma(1, x) \vee 1=1$, for all $x \in B$.
(3) For all $x \in B$,
$\gamma(x)=\Gamma(x, x)=\Gamma(1 * x, x)=(1 * \Gamma(x, x)) \vee(\Gamma(1, x) * x)=\gamma(x) \vee x$.
(4) From (3), we get $\gamma(x)=\gamma(x) \vee x$. From Lemma 3(1), we have $x \leq \gamma(x) \vee x=\gamma(x)$.
(5) From (4), we get $x \leq \gamma(x)$. From Lemma 3(2), we have $x \vee \gamma(x)=$ $\gamma(x)$

If Γ be a (r, l)-symmetric bi-derivation on B with trace γ, then we get $\gamma(x)=\gamma(x) \vee x=x \vee \gamma(x)$ from Lemma 4(3) and (5).

Lemma 5. Let B be a bitonic algebra and γ be a trace of Γ where Γ is a (r,l)-symmetric bi-derivation on B. Then for all $x, y \in B, \gamma(x) * y \leq x * \gamma(y)$.

Proof. Let Γ be a (r,l)-symmetric bi-derivation on B and $x, y \in B$. From Lemma $4(4)$, we get $x \leq \gamma(x)$ and $y \leq \gamma(y)$. We obtain that $\gamma(x) * y \leq$ $x * y \leq x * \gamma(y)$ from Lemma 2(1). Thus, we have $\gamma(x) * y \leq x * \gamma(y)$ for all $x, y \in B$.

Lemma 6. Let B be a bitonic algebra and γ be a trace of Γ where Γ is a (l,r)-symmetric bi-derivation on B. For all $x \in B$,
(1) $\gamma(1)=1$,
(2) $\Gamma(1, x)=1$,
(3) $\gamma(x)=x \vee \gamma(x)$.

Proof. (1) $\gamma(1)=\Gamma(1,1)=\Gamma(1 * 1,1)=(\Gamma(1,1) * 1) \vee(1 * \Gamma(1,1))=1$.
(2) For all $x \in B$,
$\Gamma(1, x)=\Gamma(1 * 1, x)=(\Gamma(1, x) * 1) \vee(1 * \Gamma(1, x))=1$.
(3) $\gamma(x)=\Gamma(x, x)=\Gamma(1 * x, x)=(\Gamma(1, x) * x) \vee(1 * \Gamma(x, x))=x \vee \gamma(x)$.

Proposition 1. Let $(B, *, 1)$ be a bitonic algebra and $\Gamma: B \times B \rightarrow B$ be a symmetric mapping. Then we have the following
(i) If Γ be a (l,r)-symmetric bi-derivation,

$$
\Gamma(x, y)=x \vee \Gamma(x, y) \text { for all } x, y \in B
$$

(ii) If Γ be a (r,l)-symmetric bi-derivation,

$$
\Gamma(x, y)=\Gamma(x, y) \vee x
$$

Proof. (i) Suppose that Γ be a (l,r)-symmetric bi-derivation. For all $x, y \in B$,

$$
\Gamma(x, y)=\Gamma(1 * x, y)=(\Gamma(1, y) * x) \vee(1 * \Gamma(x, y))=x \vee \Gamma(x, y),
$$

since $\Gamma(1, y)=1$ and $1 * x=x$.
(ii) Let Γ be a (r, l)-symmetric bi-derivation and $x, y \in B$. Hence,

$$
\Gamma(x, y)=\Gamma(1 * x, y)=(1 * \Gamma(x, y)) \vee(\Gamma(1, y) * x)=\Gamma(x, y) \vee x .
$$

Remark 1. If Γ be a (r, l)-symmetric bi-derivation, then we have $x \leq$ $\Gamma(x, y)$ for all $x, y \in B$.

Proof. \quad Since $y \leq x \vee y$ from Lemma 3(1), we get $x \leq \Gamma(x, y) \vee x=$ $\Gamma(x, y)$.

Theorem 1. Let $(B, *, 1)$ be a bitonic algebra and $\Gamma: B \times B \rightarrow B$ be a mapping. If Γ is a symmetric bi-derivation, then we have $\Gamma(x * y, z)=$ $x * \Gamma(y, z)$ for all $x, y, z \in B$.

Proof. Let Γ be a symmetric bi-derivation and $x, y, z \in B$. Since $x \leq \Gamma(x, z)$ and $y \leq \Gamma(y, z)$, we have

$$
\Gamma(x, z) * y \leq x * y \leq x * \Gamma(y, z)
$$

from Lemma 2(1). Thus we have

$$
\Gamma(x * y, z)=(\Gamma(x, z) * y) \vee(x * \Gamma(y, z))=x * \Gamma(y, z)
$$

from Lemma 3(2).
Corollary 1. If Γ is a symmetric bi-derivation on bitonic algebra B, then $\Gamma(x, y * z)=y * \Gamma(x, z)$ for all $x, y, z \in B$.

Theorem 2. Let B be a bitonic algebra and $\Gamma: B \times B \rightarrow B$ be a symmetric mapping. If for all $x, y, z \in B, \Gamma(x * y, z)=\Gamma(x, z) * y$, then Γ is a (r, l)symmetric bi-derivation.

Proof. Since $\Gamma(x, z) * x=\Gamma(x * x, z)=\Gamma(1, z)=1$ for all $x, z \in B$, we get $\Gamma(x, z) \leq x$. Similarly, we have $\Gamma(y, z) \leq y$ for all $y, z \in B$. Therefore,

$$
x * \Gamma(y, z) \leq \Gamma(x, z) * \Gamma(y, z) \leq \Gamma(x, z) * b
$$

and so $x * \Gamma(y, z) \leq \Gamma(x, z) * y$. Since

$$
\Gamma(x * y, z)=\Gamma(x, z) * y=(x * \Gamma(y, z)) \vee(\Gamma(x, z) * y)
$$

Γ is a (r, l)-symmetric bi-derivation.
Let B be a bitonic algebra and $D: B \times B \rightarrow B$ be any mapping on B. If for all $x \in B, D(x, x) \vee x=x \vee D(x, x)$, then D is called commutative. If for all $x \in B,(D(x, x) * x) * D(x, x)=D(x, x)$, then D is called implicative.

Lemma 7. Let Γ be a (l,r)-symmetric bi -derivation on a bitonic algebra B. If Γ is commutative, then $x \leq \gamma(x)$ for all $x \in B$.

Proof. Let $x \in B$. From Lemma 6(3), we have $\gamma(x)=x \vee \gamma(x)$. Since Γ is commutative, $\gamma(x) \vee x=x \vee \gamma(x)$. From here, we get $\gamma(x)=\gamma(x) \vee x$. From Lemma 3(1), we get $x \leq \gamma(x)$.

Definition 5. Let Γ be a symmetric bi-derivation on a bitonic algebra B and γ be a trace of Γ. The kernel of γ is defined by

$$
\text { Ker } \gamma:=\{x \in B \mid \Gamma(x, x)=\gamma(x)=1\} .
$$

Lemma 8. Let B be a bitonic algebra, Γ be a symmetric bi-derivation on B and γ be a trace of Γ. Then the folowing properties are hold:
(1) For all $x \in B, x * \gamma(x) \in K e r \gamma$,
(2) $\operatorname{Ker} \gamma=\{\gamma(x) * x \mid x \in B\}$.

Proof. (1) Let $x \in B$.

$$
\begin{aligned}
\Gamma(x * \Gamma(x)) & =\Gamma(x * \gamma(x), x * \gamma(x)) \\
& =x * \Gamma(\gamma(x), x * \gamma(x)) \\
& =x * \Gamma(x * \gamma(x), \gamma(x)) \\
& =x *(x * \gamma(\gamma(x)))=x * 1=1
\end{aligned}
$$

Thus $x * \gamma(x) \in K e r \gamma$.
(2) Let $x \in B$.

$$
\begin{aligned}
\gamma(\gamma(x) * x) & =\Gamma(\gamma(x) * x, \gamma(x) * x) \\
& =\gamma(x) * \Gamma(x, \gamma(x) * x) \\
& =\gamma(x) * \Gamma(\gamma(x) * x, x)) \\
& =\gamma(x) *(\gamma(x) * \gamma(x))=\gamma(x) * 1=1
\end{aligned}
$$

Thus $\{\gamma(x) * x \mid x \in B\} \subseteq \operatorname{Ker} \gamma$.
Let $x \in$ Ker γ. Since $x=1 * x=\gamma(x) * x$, we get $x \in\{\gamma(x) * x \mid x \in B\}$. Therefore, $\operatorname{Ker} \gamma=\{\gamma(x) * x \mid x \in B\}$.

Lemma 9. Let γ be a trace of Γ where Γ is ($r, l)$-symmetric bi-derivation on a bitonic algebra B. If $\operatorname{Ker} \gamma=\{1\}$, then γ is identity map.

Proof. Let $x \in B$. From Lemma 8(2), we get $\gamma(x) * x \in \operatorname{Ker} \gamma=\{1\}$. Then $\gamma(x) * x=1$ and $\gamma(x) \leq x$. Moreover, we have $x \leq \gamma(x)$ for all $x \in B$ from Lemma 4(4). Therefore $\gamma(x)=x$.

Theorem 3. Let γ be a trace of Γ where Γ is a symmetric bi-derivation on a bitonic algebra B. If γ is implicative, then $\gamma^{2}=\gamma$.

Proof. Let $x \in B$. Thus we have

$$
\begin{aligned}
\gamma^{2}(x) & =\gamma(\gamma(x) \vee x)=\gamma((\gamma(x) * x) * x) \\
& =\Gamma((\gamma(x) * x) * x,(\gamma(x) * x) * x) \\
& =(\gamma(x) * x) * \Gamma((\gamma(x) * x) * x, x) \\
& =(\gamma(x) * x) *((\gamma(x) * x) * \gamma(x)) \\
& =(\gamma(x) * x) * \gamma(x) \\
& =\gamma(x) .
\end{aligned}
$$

References

[1] Y. H. Y on and S.. A. Özbal, "On derivations and generalized derivations of bitonic algebras", A pplicable analysis and discrete mathematics, vol. 12, no. 1, pp. 110-125, 2018. doi: 10.2298/ A A D M 1801110 Y
[2] Y. Çeven, "Symmetric bi-derivations of lattices", Quaestiones mathematicae, vol. 32, no.2, pp.241-245, 2009. doi: 10.2989/ QM .2009.32.2.6.799
[3] S. Ilbira, A. Firat and Y. B. Jun, "On symmetric bi-derivations of BCI-algebras", Applied mathematical sciences, vol. 5, no. 60, pp. 2957-2966, 2011.
[4] G. M aksa, "On the trace of symmetric bi-derivations", Comptes rendus mathématiques de l'Académie des sciences (En ligne), vol. 9, no. 6, pp. 303-307, 1987.

Hasret Yazarli

Department of Mathematics
Faculty of Science
Sivas Cumhuriyet University
58140 Sivas
Turkey
e-mail: hyazarli@cumhuriyet.edu.tr
Corresponding author
and

Hüseyin Koç

Department of Mathematics Faculty of Science
Sivas Cumhuriyet University
58140 Sivas
Turkey
e-mail: hukoc1983@gmail.com

